Skip to main content

Advertisement

Log in

Bending-stability Interfacial Layer as Dual Electron Transport Layer for Flexible Organic Photovoltaics

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The flexibility of organic photovoltaics (OPVs) has attracted worldwide attention in recent years. To realize the bending-stability of OPVs, it is necessary to put forward the bending-stability of interfacial layer. A novel bendable composite is explored and successfully applied as an electron transport layer (ETL) for fully-flexible OPVs. We incorporated poly(vinylpyrrolidone)(PVP) into conjugated electrolytes (CPE) to composite a bendable ETL for high-performance OPVs devices. Fortunately, the devices based on PVP-modified CPE exhibited better device performances and more excellent mechanical properties of bendability. The fullerene-free OPVs based on PM6:IT-4F with CPE@PVP as ETLs yield the best power conversion efficiency (PCE) of 13.42%. Moreover, a satisfying efficiency of 12.59% has been obtained for the fully-flexible OPVs. As far as we know, this is one of the highest PCE for fully-flexible OPV based PM6:IT-4F system. More importantly, the flexible OPVs devices can retain more than 80% of its initial efficiency after 5000 bending cycles. Furthermore, among various curvature radii, the mechanical properties of the device based on CPE@PVP are superior to those of the device based on bare CPE as ETL. These findings indicate that the functional flexibility of CPE as a cathode interfacial layer is an effective strategy to fabricate high-performance flexible devices in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. In. Ed. 2008, 47, 58–77.

    Article  CAS  Google Scholar 

  2. Shrotriya, V. Polymer power. Nat. Photon. 2009, 3, 447–449.

    Article  CAS  Google Scholar 

  3. Meng, X. C.; Zhang, L.; Xie, Y. P.; Hu, X. T.; Xing, Z.; Huang, Z. Q.; Liu, C.; Tan, L. C.; Zhou, W. H.; Sun, Y. M.; Ma, W.; Chen, Y. W. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater. 2019, 31, 1903649.

    Article  CAS  Google Scholar 

  4. Maria, A.; Cyr, P. W.; Klern, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed infrared photovoltaic devices with > 10% monochromatic internal quantum efficiency. Appl. Phys. Lett. 2005, 87, 213112.

    Article  Google Scholar 

  5. Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K.; Yang, S. F.; Zhang, X. T.; Ding, L. M. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  6. Lin, Y. B.; Firdaus, Y.; Isikgor, F. H.; Nugraha, M. I.; Yengel, E.; Harrison, G. T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C.; Zheng, X. P.; Subbiah, A.; Howells, C. T.; Bakr, O. M.; McCulloch, I.; de Wolf, S.; Tsetseris, L.; Anthopoulos, T. D. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 2020, 5, 2935–2944.

    Article  CAS  Google Scholar 

  7. Hu, X. T.; Chen, L.; Zhang, Y.; Hu, Q.; Yang, J. L.; Chen, Y. W. Large-scale flexible and highly conductive carbon transparent electrodes via roll-to-roll process and its high performance lab-scale indium tin oxide-free polymer solar cells. Chem. Mater. 2014, 26, 6293–6302.

    Article  CAS  Google Scholar 

  8. Wang, Q. X.; Hu, X. T.; Yang, X.; Liu, G. L.; Meng, X. C.; Xie, Y. P.; Xiao, Y. B.; Liu, J. L.; Tan, L. C.; Chen, Y. W. Large-scale ultra-adhesive and mechanically flexible silver grids transparent electrodes by solution process. Org. Electron. 2018, 61, 296–303.

    Article  Google Scholar 

  9. Yang, X.; Hu, X. T.; Wang, Q. X.; Xiong, J.; Yang, H. J.; Meng, X. C.; Tan, L. C.; Chen, L.; Chen, Y. W. Large-scale stretchable semiembedded copper nanowire transparent conductive films by an electrospinning template. ACS Appl. Mater. Interfaces 2017, 9, 26468–26475.

    Article  CAS  Google Scholar 

  10. Castro, F. A.; Chabrecek, P.; Hany, R.; Nuesch, F. Transparent, flexible and low-resistive precision fabric electrode for organic solar cells. Phys. Status Solidi-R 2009, 3, 278–280.

    Article  CAS  Google Scholar 

  11. Park, S.; Wang, G.; Cho, B.; Kim, Y.; Song, S.; Ji, Y.; Yoon, M. H.; Lee, T. Flexible molecular-scale electronic devices. Nat. Nanotechnol. 2012, 7, 438–442.

    Article  CAS  Google Scholar 

  12. Fan, Q.; Su, W.; Chen, S.; Kim, W.; Chen, X.; Lee, B.; Liu, T.; Méndez-Romero, U. A.; Ma, R.; Yang, T.; Zhuang, W.; Li, Y.; Li, Y.; Kim, T. S.; Hou, L.; Yang, C.; Yan, H.; Yu, D.; Wang, E. Mechanically robust all-polymer solar cells from narrow band gap acceptors with heterobridging atoms. Joule 2020, 4, 658–672.

    Article  CAS  Google Scholar 

  13. Tan, L.; Wang, Y.; Zhang, J.; Xiao, S.; Zhou, H.; Li, Y.; Chen, Y.; Li, Y. Highly efficient flexible polymer solar cells with robust mechanical stability. Adv. Sci. 2019, 6, 1801180.

    Article  Google Scholar 

  14. Lipomi, D. J.; Tee, B. C.; Vosgueritchian, M.; Bao, Z. Stretchable organic solar cells. Adv. Mater. 2011, 23, 1771–1775.

    Article  CAS  Google Scholar 

  15. Lipomi, D. J.; Chong, H.; Vosgueritchian, M.; Mei, J.; Bao, Z. Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain. Solar Energy Mater. Solar Cells 2012, 107, 355–365.

    Article  CAS  Google Scholar 

  16. Lin, K.; Wang, J.; Hu, Z.; Xu, R.; Liu, J.; Liu, X.; Xu, B.; Huang, F.; Cao, Y. Novel cross-linked films from epoxy-functionalized conjugated polymer and amine based small molecule for the interface engineering of high-efficiency inverted polymer solar cells. Solar Ener. Mater. Solar Cells 2017, 168, 22–29.

    Article  CAS  Google Scholar 

  17. Huang, F.; Wu, H.; Cao, Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev. 2010, 39, 2500–2521.

    Article  CAS  Google Scholar 

  18. Liao, H. H.; Chen, L. M.; Xu, Z.; Li, G.; Yang, Y. Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl. Phys. Lett. 2008, 92, 173303.

    Article  Google Scholar 

  19. Wang, G.; Zhang, J.; Yang, C.; Wang, Y.; Xing, Y.; Adil, M. A.; Yang, Y.; Tian, L.; Su, M.; Shang, W.; Lu, K.; Shuai, Z.; Wei, Z. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices. Adv. Mater. 2017, 32, 2005153.

    Article  Google Scholar 

  20. Zhao, D. W.; Liu, P.; Sun, X. W.; Tan, S. T.; Ke, L.; Kyaw, A. K. K. An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl. Phys. Lett. 2009, 95, 153304.

    Article  Google Scholar 

  21. Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L. W.; Battaglia, V. S.; Yang, W.; Liu, G. Toward an ideal polymer binder design for high-capacity battery anodes. J. Am. Chem. Soc. 2013, 135, 12048–12056.

    Article  CAS  Google Scholar 

  22. van Reenen, S.; Kouijzer, S.; Janssen, R. A. J.; Wienk, M. M.; Kemerink, M. Origin of work function modification by ionic and amine-based interface layers. Adv. Mater. Interfaces 2014, 1, 1400189.

    Article  Google Scholar 

  23. Bao, Q.; Liu, X.; Wang, E.; Fang, J.; Gao, F.; Braun, S.; Fahlman, M. Regular energetics at conjugated electrolyte/electrode modifier for organic electronics and their implications on design rules. Adv. Mater. Interfaces 2015, 2, 1400189.

    Google Scholar 

  24. Huang, L.; Chen, L.; Huang, P.; Wu, F.; Tan, L.; Xiao, S.; Zhong, W.; Sun, L.; Chen, Y. Triple dipole effect from self-assembled small-molecules for high performance organic photovoltaics. Adv. Mater. 2016, 28, 4852–4860.

    Article  CAS  Google Scholar 

  25. Xu, G.; Gao, L.; Xu, H.; Huang, L.; Xie, Y.; Cheng, X.; Li, Y.; Chen, L.; Chen, Y. n-Type conjugated electrolytes cathode interlayer with thickness-insensitivity for highly efficient organic solar cells. Mater. Chem. A 2017, 5, 13807–13816.

    Article  CAS  Google Scholar 

  26. Zhang, Y.; Chen, L.; Hu, X.; Zhang, L.; Chen, Y. Low work-function poly(3,4-ethylenedioxylenethiophene): poly(styrene sulfonate) as electron-transport layer for high-efficient and stable polymer solar cells. Sci. Rep. 2015, 5, 12839.

    Article  CAS  Google Scholar 

  27. Zhong, W.; Chen, L.; Xiao, S.; Huang, L.; Chen, Y. A versatile buffer layer for polymer solar cells: rendering surface potential by regulating dipole. Adv. Funct. Mater. 2015, 25, 3164–3171.

    Article  CAS  Google Scholar 

  28. Ouyang, X.; Peng, R.; Ai, L.; Zhang, X.; Ge, Z. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte, Nat. Photon. 2015, 9, 520–524.

    Article  CAS  Google Scholar 

  29. Xie, L.; Song, W.; Ge, J.; Tang, B.; Zhang, X.; Wu, T.; Ge, Z. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy 2021, 82, 105770.

    Article  CAS  Google Scholar 

  30. Zhang, J.; Han, Y.; Zhang, W.; Ge, J.; Xie, L.; Xia, Z.; Song, W.; Yang, D.; Zhang, X.; Ge, Z. High-efficiency thermal-annealing-free organic solar cells based on an asymmetric acceptor with improved thermal and air stability. ACS Appl. Mater. Interfaces 2020, 12, 57271–57280.

    Article  CAS  Google Scholar 

  31. Huang, L.; Wang, G.; Zhou, W.; Fu, B.; Cheng, X.; Zhang, L.; Yuan, Z.; Xiong, S.; Zhang, L.; Xie, Y.; Zhang, A.; Zhang, Y.; Ma, W.; Li, W.; Zhou, Y.; Reichmanis, E.; Chen, Y. Vertical stratification engineering for organic bulk-heterojunction devices. ACS Nano 2018, 12, 4440–4452.

    Article  CAS  Google Scholar 

  32. Sun, C.; Wu, Z.; Hu, Z.; Xiao, J.; Zhao, W.; Li, H. W.; Li, Q. Y.; Tsang, S. W.; Xu, Y. X.; Zhang, K.; Yip, H. L.; Hou, J.; Huang, F.; Cao, Y. Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ. Sci. 2017, 10, 1784–1791.

    Article  CAS  Google Scholar 

  33. Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138, 2004–2013.

    Article  CAS  Google Scholar 

  34. Chen, Z.; Hu, Z.; Wu, Z.; Liu, X.; Jin, Y.; Xiao, M.; Huang, F.; Cao, Y. Counterion-tunable n-type conjugated polyelectrolytes for the interface engineering of efficient polymer solar cells. J. Mater. Chem. A 2017, 5, 19447–19455.

    Article  CAS  Google Scholar 

  35. Yang, B.; Zhang, S.; Li, S.; Yao, H.; Li, W.; Hou, J. A self-organized poly(vinylpyrrolidone)-based cathode interlayer in inverted fullerene-free organic solar cells. Adv. Mater. 2019, 31, 1804657.

    Article  Google Scholar 

Download references

Acknowledgments

Y. C, X. H and X. L thank for the financial support from the National Natural Science Foundation of China (Nos. 51833004, 22005131, 51973032, 21905043 and U20A20128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwang Chen.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Hu, X., Liao, X. et al. Bending-stability Interfacial Layer as Dual Electron Transport Layer for Flexible Organic Photovoltaics. Chin J Polym Sci 39, 1441–1447 (2021). https://doi.org/10.1007/s10118-021-2586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2586-z

Keywords

Navigation