Skip to main content

Advertisement

Log in

Ionic Liquid/Poly(ionic liquid)-based Semi-solid State Electrolytes for Lithium-ion Batteries

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) have appeared as the most promising electrolytes for lithium-ion batteries, owing to their unique high ionic conductivity, chemical stability and thermal stability properties. Poly(ionic liquid)s (PILs) with both IL-like characteristic and polymer structure are emerging as an alternative of traditional electrolyte. In this review, recent progresses on the applications of IL/PIL-based semi-solid state electrolytes, including gel electrolytes, ionic plastic crystal electrolytes, hybrid electrolytes and single-ion conducting electrolytes for lithium-ion batteries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci.2009, 34, 431–448.

    CAS  Google Scholar 

  2. Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: syntheses and applications. Chem. Soc. Rev.2017, 46, 1124–1159.

    CAS  PubMed  Google Scholar 

  3. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci.2011, 4, 3243–3262.

    CAS  Google Scholar 

  4. Tarascon, J.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature2001, 414, 359–367.

    CAS  PubMed  Google Scholar 

  5. Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta2000, 45, 2461–2466.

    CAS  Google Scholar 

  6. Goodenough, J. B.; Kim, Y. Challenges for rechargeable batteries. J. Power Sources2011, 196, 6688–6694.

    CAS  Google Scholar 

  7. Cao, C.; Li, Y.; Feng, Y.; Peng, C.; Li, Z.; Feng, W. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater.2019, 19, 401–407.

    Google Scholar 

  8. Cao, C.; Li, Y.; Feng, Y.; Long, P.; An, H.; Qin, C.; Han, J.; Li, S.; Feng, W. A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J. Mater. Chem. A2017, 5, 22519–22526.

    CAS  Google Scholar 

  9. Cao, C.; Li, Y.; Chen, S.; Peng, C.; Li, Z.; Tang, L.; Feng, Y.; Feng, W. Electrolyte-solvent-modified alternating copolymer as a single-ion solid polymer electrolyte for high-performance lithium metal batteries. ACS Appl. Mater. Interfaces2019, 11, 35683–35692.

    CAS  PubMed  Google Scholar 

  10. Cheng, X.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci.2015, 3, 1–20.

    Google Scholar 

  11. Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater.2017, 2, 1–16.

    Google Scholar 

  12. Wu, Z.; Xie, Z.; Yoshida, A.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: a critical review. Renew. Sustain. Energy Rev.2019, 109, 367–385.

    CAS  Google Scholar 

  13. Li, C.; Zhang, H.; Otaegui, L.; Singh, G.; Armand, M.; Rodriguez-Martinez, L. M. Estimation of energy density of Li-S batteries with liquid and solid electrolytes. J. Power Sources2016, 326, 1–5.

    CAS  Google Scholar 

  14. Eshetu, G. G.; Mecerreyes, D.; Forsyth, M.; Zhang, H.; Armand, M. Polymeric ionic liquids for lithium-based rechargeable batteries. Mol. Syst. Des. Eng.2019, 4, 294–309.

    CAS  Google Scholar 

  15. Ma, F.; Zhang, Z.; Yan, W.; Ma, X.; Sun, D.; Jin, Y.; Chen, X.; He, K. Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustain. Chem. Eng.2019, 7, 4675–4683.

    CAS  Google Scholar 

  16. Qiu, B.; Lin, B.; Yan, F. Ionic liquid/poly(ionic liquid)-based electrolytes for energy devices. Polym. Int.2013, 62, 335–337.

    CAS  Google Scholar 

  17. Shaplov, A. S.; Marcilla, R.; Mecerreyes, D. Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim. Acta2015, 175, 18–34.

    CAS  Google Scholar 

  18. Park, J. Y.; Park, J. W.; Doh, C. H.; Ha, Y. C.; Lee, S. M.; Kim, S. Effect of solvated ionic liquids on the ion conducting property of composite membranes for lithium ion batteries. Res. Chem. Intermed.2018, 44, 6039–6051.

    CAS  Google Scholar 

  19. Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Nanoconfined ionic liquids. Chem. Rev.2017, 117, 6755–6833.

    CAS  PubMed  Google Scholar 

  20. MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Kar, M.; Passerini, S.; Pringle, J. M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater.2016, 1, 15005.

    CAS  Google Scholar 

  21. Forsyth, M.; Porcarelli, L.; Wang, X.; Goujon, N.; Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res.2019, 52, 686–694.

    CAS  PubMed  Google Scholar 

  22. Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev.2017, 117, 7190–7239.

    CAS  PubMed  Google Scholar 

  23. Tan, S.; Zeng, X.; Ma, Q.; Wu, X.; Guo, Y. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev.2018, 1, 113–138.

    CAS  Google Scholar 

  24. Xu, D.; Guo, J.; Yan, F. Porous ionic polymers: design, synthesis, and applications. Prog. Polym. Sci.2018, 79, 121–143.

    CAS  Google Scholar 

  25. Yin, K.; Zhang, Z.; Li, X.; Yang, L.; Tachibana, K.; Hirano, S. I. Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries. J. Mater. Chem. A2015, 3, 170–178.

    CAS  Google Scholar 

  26. Di Noto, V.; Lavina, S.; Giffin, G. A.; Negro, E.; Scrosati, B. Polymer electrolytes: present, past and future. Electrochim. Acta2011, 57, 4–13.

    CAS  Google Scholar 

  27. Safa, M.; Chamaani, A.; Chawla, N.; El-Zahab, B. Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications. Electrochim. Acta2016, 213, 587–593.

    CAS  Google Scholar 

  28. Li, Q.; Ardebili, H. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J. Power Sources2016, 303, 17–21.

    Google Scholar 

  29. Song, J.; Wang, Y.; Song, J.; Wang, Y.; Wan, C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources1999, 77, 183–197.

    CAS  Google Scholar 

  30. Ren, Y.; Guo, J.; Liu, Z.; Sun, Z.; Wu, Y.; Liu, L.; Yan, F. Ionic liquid-based click-ionogels. Sci. Adv.2019, 5, eaax0648.

    PubMed  PubMed Central  Google Scholar 

  31. Sun, X. An investigation on ion solvation and ion association in a gel-type solid state polymer electrolyte. Solid State Ionics1996, 83, 79–85.

    CAS  Google Scholar 

  32. Guo, Q.; Han, Y.; Wang, H.; Sun, W.; Jiang, H.; Zhu, Y.; Zheng, C.; Xie, K. Thermo and electrochemical-stable composite gel polymer electrolytes derived from core-shell silica nanoparticles and ionic liquid for rechargeable lithium metal batteries. Electrochim. Acta2018, 288, 101–107.

    CAS  Google Scholar 

  33. Que, M.; Tong, Y.; Wei, G.; Yuan, K.; Wei, J.; Jiang, Y.; Zhu, H.; Chen, Y. Safe and flexible ion gel based composite electrolyte for lithium batteries. J. Mater. Chem. A2016, 4, 14132–14140.

    CAS  Google Scholar 

  34. Singh, S. K.; Shalu; Balo, L.; Gupta, H.; Singh, V. K.; Tripathi, A. K.; Verma, Y. L.; Singh, R. K. Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery. Energy2018, 150, 890–900.

    CAS  Google Scholar 

  35. Zhang, R.; Chen, Y.; Montazami, R. Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Materials2015, 8, 2735–2748.

    CAS  PubMed Central  Google Scholar 

  36. Li, Q.; Zhao, J.; Sun, B.; Lin, B.; Qiu, L.; Zhang, Y.; Chen, X.; Lu, J.; Yan, F. High-temperature solid-state dye-sensitized solar cells based on organic ionic plastic crystal electrolytes. Adv. Mater.2012, 24, 945.

    PubMed  Google Scholar 

  37. Basile, A.; Hilder, M.; Makhlooghiazad, F.; Pozo-Gonzalo, C.; MacFarlane, D. R.; Howlett, P. C.; Forsyth, M. Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies. Adv. Energy Mater.2018, 8, 1–20.

    Google Scholar 

  38. Cooper, E. I.; Angell, C. A. Ambient temperature plastic crystal fast ion conductors. Solid State Ionics1986, 18, 570–576.

    Google Scholar 

  39. Howlett, P. C.; Sunarso, J.; Shekibi, Y.; Wasser, E.; Jin, L.; MacFarlane, D. R.; Forsyth, M. On the use of organic ionic plastic crystals in all solid-state lithium metal batteries. Solid State Ionics2011, 204, 73–79.

    Google Scholar 

  40. Abu-Lebdeh, Y.; Abouimrane, A.; Alarco, P.; Armand, M. Ionic liquid and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries. J. Power Sources2006, 154, 255–261.

    CAS  Google Scholar 

  41. Taniki, R.; Matsumoto, K.; Hagiwara, R.; Hachiya, K.; Morinaga, T.; Sato, T. Highly conductive plastic crystals based on fluorohydrogenate anions. J. Phys. Chem. B2013, 117, 955–960.

    CAS  PubMed  Google Scholar 

  42. Tsunashima, K.; Sugiya, M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun.2001, 9, 2353–2358.

    Google Scholar 

  43. Jin, L.; Howlett, P. C.; Pringle, J. M.; Janikowski, J.; Armand, M.; MacFarlane, D. R.; Forsyth, M. An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries. Energy Environ. Sci.2014, 7, 3352–3361.

    CAS  Google Scholar 

  44. Al-Masri, D.; Yunis, R.; Zhu, H.; Jin, L.; Bruce, P.; Hollenkamp, A.; Pringle, J. A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals. J. Mater. Chem. A2019, 7, 25389–25398.

    CAS  Google Scholar 

  45. Osada, I.; De Vries, H.; Scrosati, B.; Passerini, S. Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed.2016, 55, 500–513.

    CAS  Google Scholar 

  46. Eftekhari, A.; Saito, T. Synthesis and properties of polymerized ionic liquids. Eur. Polym. J.2017, 90, 245–272.

    CAS  Google Scholar 

  47. Pont, A. L.; Marcilla, R.; De Meatza, I.; Grande, H.; Mecerreyes, D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J. Power Sources2009, 188, 558–563.

    CAS  Google Scholar 

  48. Appetecchi, G. B.; Kim, G. T.; Montanino, M.; Carewska, M.; Marcilla, R.; Mecerreyes, D.; de Meatza, I. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J. Power Sources2010, 155, 3668–3675.

    Google Scholar 

  49. Li, X.; Zhang, Z.; Li, S.; Yang, K.; Yang, L. Polymeric ionic liquid-ionic plastic crystal all-solid-state electrolytes for wide operating temperature range lithium metal batteries. J. Mater. Chem. A2011, 5, 21362–21369.

    Google Scholar 

  50. Tiyapiboonchaiya, C.; Pringle, J. M.; Sun, J.; Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater.2001, 3, 29–32.

    Google Scholar 

  51. Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries. Adv. Mater.2005, 17, 2497–2501.

    CAS  Google Scholar 

  52. Lu, F.; Gao, X.; Wu, A.; Sun, N.; Shi, L.; Zheng, L. Lithium-containing zwitterionic poly(ionic liquid)s as polymer electrolytes for lithium-ion batteries. J. Phys. Chem. C2017, 121, 17756–17763.

    CAS  Google Scholar 

  53. Zhang, Z.; Zhang, Y.; Du, B.; Peng, Z. Liquid-like poly(ionic liquid) as electrolyte for thermally stable lithium-ion battery. ACS Omega2018, 3, 10564–10571.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, X.; Li, S.; Zhang, Z.; Huang, J.; Yang, L.; Hirano, S. I. High-performance polymeric ionic liquid-silica hybrid ionogel electrolytes for lithium metal natteries. J. Mater. Chem. A2016, 4, 13822–13829.

    CAS  Google Scholar 

  55. Wang, S.; Shi, Q. X.; Ye, Y. S.; Xue, Y.; Wang, Y.; Peng, H. Y.; Xie, X. L.; Mai, Y. W. Constructing desirable ion-conducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates. Nano Energy2017, 33, 110–123.

    CAS  Google Scholar 

  56. Zhou, D.; Liu, R.; Zhang, J.; Qi, X.; He, Y. B.; Li, B.; Yang, Q. H.; Hu, Y. S.; Kang, F. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy2017, 33, 45–54.

    CAS  Google Scholar 

  57. Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev.2017, 46, 797–815.

    CAS  PubMed  Google Scholar 

  58. Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J. Mater. Chem. A2019, 7, 13113–13119.

    CAS  Google Scholar 

  59. Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E. Ionic conductivities for poly(othylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers. Polymer1984, 25, 1291–1296.

    CAS  Google Scholar 

  60. Porcarelli, L.; Aboudzadeh, M. A.; Rubatat, L.; Nair, J. R.; Shaplov, A. S.; Gerbaldi, C.; Mecerreyes, D. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries. J. Power Sources2017, 364, 191–199.

    CAS  Google Scholar 

  61. Porcarelli, L.; Shaplov, A. S.; Salsamendi, M.; Nair, J. R.; Vygodskii, Y. S.; Mecerreyes, D.; Gerbaldi, C. Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl. Mater. Interfaces2016, 8, 10350–10359.

    CAS  PubMed  Google Scholar 

  62. Hovington, P.; Lagacé, M.; Guerfi, A.; Bouchard, P.; Mauger, A.; Julien, C. M.; Armand, M.; Zaghib, K. New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li12V3O8. Nano Lett.2015, 15, 2671–2678.

    CAS  PubMed  Google Scholar 

  63. Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y. S.; Li, H.; Huang, X. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed.2016, 55, 2521–2525.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 21425417), the National Natural Science Foundation of China (Nos. 21835005 and U1862109), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Li or Feng Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DZ., Ren, Yy., Hu, Y. et al. Ionic Liquid/Poly(ionic liquid)-based Semi-solid State Electrolytes for Lithium-ion Batteries. Chin J Polym Sci 38, 506–513 (2020). https://doi.org/10.1007/s10118-020-2390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2390-1

Keywords

Navigation