
Knowledge and Information Systems
https://doi.org/10.1007/s10115-024-02108-4

REGULAR PAPER

Robustness verification of k-nearest neighbors by abstract
interpretation

Nicolò Fassina1 · Francesco Ranzato1 ·Marco Zanella1

Received: 4 January 2024 / Revised: 6 March 2024 / Accepted: 21 March 2024
© The Author(s) 2024

Abstract
We study the certification of stability properties, such as robustness and individual fairness,
of the k-nearest neighbor algorithm (kNN). Our approach leverages abstract interpretation,
a well-established program analysis technique that has been proven successful in verifying
several machine learning algorithms, notably, neural networks, decision trees, and support
vector machines. In this work, we put forward an abstract interpretation-based framework
for designing a sound approximate version of the kNN algorithm, which is instantiated to
the interval and zonotope abstractions for approximating the range of numerical features. We
show how this abstraction-based method can be used for stability, robustness, and individual
fairness certification of kNN. Our certification technique has been implemented and experi-
mentally evaluated on several benchmark datasets. These experimental results show that our
tool can formally prove the stability of kNN classifiers in a precise and efficient way, thus
expanding the range of machine learning models amenable to robustness certification.

Keywords k-nearest neighbors · Robustness · Individual fairness · Data poisoning · Formal
certification

1 Introduction

k-nearest neighbors (kNN) [2] are one of the simplest supervised machine learning (ML)
algorithms. Nevertheless, kNN is a popular and accurate predictive model with diverse appli-
cation fields [21]. The basic idea of kNN is to predict the outcome for an input sample x ∈ Rn

by inferring the k nearest neighbors of x ranging in a given dataset. The number k ∈ N of
neighbors as well as the distance function between vectors is parameters of this model. Once
the set of k nearest neighbors of an input sample is computed, the output is inferred as the
most common label of these k neighbors in case of classification, or as average of the val-
ues of the k neighbors in case of regression. The diagram in Fig. 1 depicts an example of
classification for a kNN model with k = 3 and a dataset in R2 with three classes red, green,
and blue. For an input vector x represented by a black bullet, 3NN therefore computes the
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Fig. 1 kNN on a dataset with three classes red, green, blue (color figure online)

3 nearest samples in the dataset w.r.t. Manhattan distance, as depicted by the dashed lines,
and then the most common label among them is inferred. In kNN, the dataset is stored and
entirely used at classification time; namely, kNN is a lazy (or “just-in-time”) learning algo-
rithm [4]. While this makes kNN simple to implement, it can exhibit a significant prediction
time due to the computational effort required to calculate distances for the whole dataset and,
correspondingly, for sorting samples, especially for high values of k. (k is usually a low odd
value, often below 9.)

Adversarial machine learning [18, 22, 28] studies vulnerabilities of ML in adversarial
scenarios. Adversarial examples have been found in diverse application fields of ML, and
the current defense techniques include adversarial model training, input validation, testing
and automatic formal certification of learning algorithms. A ML classifier C is defined to
be stable on an input x for a (typically very small) perturbation P(x) of x which represents
an adversarial attack, when C assigns the same class to all the samples in P(x). Moreover,
when such class is also the correct class of x with respect to ground truth, the classifier C
is robust on x as it cannot be deceived by unnoticeable malicious alterations of x. Figure 1
depicts in gray an adversarial region P(x) defined around the black input sample x, which
represents an (infinite) set of attacks. Here, the 3 nearest neighbors of each attack in P(x)
are labeled as red (being p1 and p2) and green (being p3), making 3NN stable on x as 3NN
classifies x are red. If red is the ground truth label for x, then 3NN is robust on x as well.

1.1 Contributions

Ourmain contribution is a novel formal and automatic verificationmethod for inferring when
a kNNclassifier is provably stable for an input samplewith respect to a given perturbation.We
leverage the well-established framework of abstract interpretation [7, 8, 17] for computing
correct over-approximations of dynamic system behaviors, which has already been success-
fully applied to the formal verification of diverse machine learning models (see the surveys
[1, 26, 44]). Our approach is based on designing a sound abstract version CA

δ,k of a kNN
classifier based on a distance function δ, e.g., Euclidean or Manhattan distance. This approx-
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imate classifier CA
δ,k is defined over a symbolic numerical abstraction A of the input space

℘(Rn), and leverages a sound approximation δA in A of the distance function δ. In turn, the
definition of δA relies on sound approximations over A of its basic numerical operations such
as addition, product, and modulus. Given an abstract value a ∈ A which provides a symbolic
over-approximation of an adversarial perturbation P(x) of an input sample x,CA

δ,k(a) returns
an over-approximation of the set of classes computed by kNN for all the samples in P(x).
Hence, if CA

δ,k(a) = kNN(x) holds, then we can infer that kNN is provably stable on x for
its perturbation P(x). We instantiate our certification method to the well-known numerical
abstract domains of intervals [8] and zonotopes [19], that approximate the range of numerical
features by, resp., real intervals (e.g., xi ∈ [l, u]) and affine forms (e.g., xi = a0+∑k

j=1 a jε j

with a j ∈ R and noise symbols ε j ∈ [−1, 1]). This certification framework for kNN has been
implemented in Python. The corresponding tool, called NAVe (kNN Abstract Verifier; the
Italian word “nave” means “ship”), has been designed to be scalable both in the size of the
training dataset and in the value of k, for which no upper bound is assumed. We performed
an experimental evaluation of NAVe on seven datasets commonly used in robustness certifi-
cation and on two additional datasets for individual fairness verification. These experimental
results show that NAVe is an effective tool for formally certifying the adversarial robustness
of inputs to kNN, and that, in general, kNN turns out to be a quite robust prediction algorithm:
In fact, for adversarial perturbations ≤ ±2%, NAVe is able to infer for several datasets more
than 90% of robustness for k ∈ {1, 3, 5, 7}.

1.2 Illustrative example

Let us consider the example in R2 depicted in Fig. 1, where x = (2, 4) is the input sample
and P(x) � {x′ ∈ R2 | max(|x′1 − x1|, |x′2 − x2|) ≤ 1} is a perturbation defined as the
�∞ ball of radius 1 centered in x, which can be exactly represented through intervals as
(x1 ∈ [1, 3], x2 ∈ [3, 5]). By leveraging the interval abstract domain I, we compute the
abstract Manhattan distance μI between P(x) and the 3 points p1 = (1, 5), p2 = (8, 4),
p3 = (9, 4) of the training dataset:

μI(P(x),p1) = |[1, 3] −I 1|I +I |[3, 5] −I 5|I = [0, 2] +I [0, 2] = [0, 4] ,

μI(P(x),p2) = |[1, 3] −I 8|I +I |[3, 5] −I 4|I = [5, 7] +I [0, 1] = [5, 8] ,

μI(P(x),p3) = |[1, 3] −I 9|I +I |[3, 5] −I 4|I = [6, 8] +I [0, 1] = [6, 9] .

These abstract distances are symbolically computed in the interval abstraction I and provide
correct lower and upper bounds for the infinite set of Manhattan distances

{μ(y,pi ) ∈ R≥0 | y ∈ P(x)}.
By leveraging these abstract distances, for any number of neighbors k ∈ N∗, the abstract
classifier CI

μ,k(P(x)) returns an over-approximation of the set of classes ∪y∈P(x)kNN(y).
Let us observe that p1 is the nearest point to P(x), as its interval [0, 4] is strictly dominated
by all the others. ([l1, u1] is strictly dominated by [l2, u2] when u1 < l2.) As a consequence,
CI

μ,1(P(x)) = {red}, so that we proved that 1NN is stable on x. On the other hand, it turns
out that p2 is closer than p3 to every point in P(x), although this cannot be inferred from
the corresponding abstract distances since the interval [5, 8] for p2 is not strictly dominated
by [6, 9] for p3: This is an example of loss of precision, also called incompleteness of the
stability certification. Consequently, if we use k = 2 in this scenario, then we cannot exclude
p3 by the approximate set of neighbors, which could be either {p1,p2}, thus resulting in a
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red output, or {p1,p3}, thus causing an ambiguity between a red or green output. This entails
that CI

μ,2(P(x)) = {red, green}, so that stability of 2NN on x cannot be proved. In this case,
green is therefore a false positive, arising from the interval approximation. Finally, for k = 3,
the stability verification turns out to be complete, because the three samples p1,p2,p3 are
the unique points which will be taken into account, as hinted by the black dashed line in
Fig. 1, so that CI

μ,3(P(x)) = {red} holds, thus allowing us to infer that 3NN is stable on x.

1.3 Related work

Formal verification methods in adversarial machine learning have been thoroughly investi-
gated for (deep) neural networks, while different ML models have been much less studied.
In particular, adversarial attacks on k-nearest neighbor algorithms have been studied only
recently [3, 11, 20, 23–25, 41, 42, 45, 46, 48]. Among them, let us mention [42], where the
authors put forward an algorithm, called GeoAdEx, based on higher-order Voronoi diagrams,
that aims at finding the smallest perturbation that moves an input sample to an adversarial
cell, which is an order-k Voronoi cell that has a different majority label. However, finding this
smallest perturbation, or a certified lower bound for it, may often need a long time, essentially
due to a combinatorial complexity, so that in most cases GeoAdEx outputs exact results, i.e.,
without approximations, only for k = 1. Moreover, Fan et al. [11]’s approach is orthogonal
to ours: (i) Their notion of robustness is different, since an input x is considered to be robust
w.r.t. a set of datasets I, when there exists a label l such that for all D ∈ I, kNND(x) = l;
(ii) [11] studies the theoretical complexity of certifying this different concept of robustness
w.r.t. a notion of subset repair of datasets. Let us finallymention that [23, 25] prove robustness
of kNN to adversarial poisoning of the dataset by leveraging an over-approximated kNN clas-
sifier, while [24] puts forward an abstraction-based method for certifying the fairness of kNN
under the assumption that the training datamay have bias caused by systematicmislabeling of
samples.While theseworks [23–25] leverage some specific sound over-approximations of the
procedures involved in kNN classification, they are not firmly designed and specified within
the compositional abstract interpretation framework [7, 8]; namely, they are not parametric
on some underlying numerical abstract domains (such as the interval and zonotope abstrac-
tions employed in this work) and on the corresponding abstract operations (such as abstract
additions, exponentials and modulus) to be used for defining abstract distances. Abstract
interpretation techniques have been applied for designing precise and scalable robustness
verification algorithms and adversarial training techniques for a range of ML models [5, 15,
27, 32–37, 39, 40]. To the best of our knowledge, no prior work applied abstract interpretation
for the robustness certification of k-nearest neighbors.

This article is a full and revised version of the ICDM2023 conference paper [13], extended
to include all the technical proofs and the following novel contributions: Sect. 2.1.2 introduces
a new sound abstraction of themodulus operation on zonotopes; Sect. 3.3 shows how to extend
the verification method to regression tasks; Sect. 3.4 discusses how different abstractions and
perturbations can be used in our approach; and Sect. 4 studies the relationship between our
notion of stability with data poisoning.
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2 Background

2.1 Numerical abstract domains

Anumerical abstract domain (or numerical abstraction) [31] A symbolically represents sets of
real vectors through a so-called concretization map γ A : A → ℘(Rn) providing the meaning
of its abstract (i.e., symbolic) values. A subset of vectors S ∈ ℘(Rn) is over-approximated by
some abstract value a ∈ A when S ⊆ γ A(a), while S is exactly represented by a when S =
γ A(a) holds. An abstract domain Amay also admit an abstraction function αA : ℘(Rn) → A
such that αA(S) is the best abstraction in A of the set S, where the notion of best means least
(or minimal) w.r.t. the following preorder relation on A: a �A a′ ⇔ γ A(a) ⊆ γ A(a′). If
〈A,�A〉 is a partially ordered set, then the concretization and abstraction maps form a Galois
connection: For all S ∈ ℘(Rn) and a ∈ A, αA(S) �A a ⇔ S ⊆ γ A(a) holds.

Given a k-ary operation on vectors f : (Rn)k → Rn , for some k ≥ 1, an abstract
function f A : Ak → A is a sound (or correct) (over-)approximation of f when for all
(a1, . . . , ak) ∈ Ak , the containment

{ f (x1, . . . , xk) | ∀i · xi ∈ γ A(ai )} ⊆ γ A( f A(a1, . . . , ak))

holds, while f A is defined to be exact (or complete) when equality holds. In words, sound-
ness holds when f A(a1, . . . , ak) never misses a concrete computation of f on some input
(x1, . . . , xk)which is abstractly represented by (a1, . . . , ak), while exactnessmeans that each
abstract computation f A(a1, . . . , ak) is an exact abstract representation of the set of concrete
computations of f on all the inputs that are abstractly represented by (a1, . . . , ak). If A is
endowed with an abstraction map αA, then the function

f Abest � λ(a1, . . . , ak) · αA( f (γ A(a1), . . . , γ
A(ak)))

is called the best correct approximation of f , because for any other correct approximation f A,
f Abest(a1, . . . , ak) �A f A(a1, . . . , ak) always holds. Thus, f Abest represents the best possible
approximation of f that can be defined on the abstract domain A.

Intervals The abstract domain of real intervals I is one of the simplest and most used
abstractions in ML verification. The interval domain abstracts the values of a real variable
by a (possibly unbounded) real interval [l, u], where l, u ∈ R ∪ {−∞,+∞} and l ≤ u
(with −∞ ≤ x ≤ +∞ for all x ∈ R). Moreover, I includes a symbolic representation ⊥I
of the empty set. The concretization γ I : I → ℘(R) is defined as follows: γ I(⊥I) � ∅;
γ I([l, u]) � {x ∈ R | l ≤ x ≤ u}. The product interval abstraction In , with n ≥ 1, is also
called the box (or hyperrectangle) domain, and its concretization map γ In : In → ℘(Rn)

is defined by a straightforward componentwise product of γ I . Intervals have an abstraction
map αI : ℘(R) → I which is defined as follows:

αI(X) �
{⊥I if X = ∅
[inf X , sup X ] otherwise

Zonotopes The interval domain can be imprecise as it is nonrelational, i.e., I does not
represent information on how values of different variables are related. For example, the most
precise interval approximation of the set T = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 1, x = y} is
〈x ∈ [0, 1], y ∈ [0, 1]〉, thus losing the information that x − y = 0. The zonotope abstract
domain Z [16, 19] is based on affine arithmetic [9] and can be viewed as an extension of
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intervals that keeps track of affine relations between values of different variables. The domain
Z consists of abstract values â = a0 + ∑m

j=1 a jε j ∈ Z, where a j ∈ R are coefficients and
ε j are noise symbols whose values range in the real interval [−1, 1], and when these ε j

are shared between different variables/features, they encode a relation between them. The
concretization of a zonotope â is given by

γZ (â) �
{
a0 +

∑m

j=1
a jε j ∈ R | ∀ j · ε j ∈ [−1, 1]

}
,

i.e., the zonotope â represents the real interval
[
a0 − ∑m

j=1 |a j |, a0 + ∑m
j=1 |a j |

]
. The

product zonotope abstraction Zn , with n ≥ 1, may share noise symbols between different
components, thus enabling to represent relational information between features. For exam-
ple, the above set T ⊆ R2 can be exactly represented by the zonotope (x̂ = 0.5 + 0.5ε1, ŷ =
0.5 + 0.5ε1), so that we can infer that x̂− ŷ = 0 holds. A fundamental property of zonotopes
is that linear functions, such as vector addition and constantmultiplication, admit correspond-
ing exact abstract operations on Z, while nonaffine functions, such as multiplications and
modulus, must necessarily be approximated.

The basic abstract operations on intervals and zonotopes for computing abstract distances
are recalled below.

2.1.1 Abstract operations on intervals

The most precise abstract operations, that is, the best correct approximations, on I are well
known [31] and recalled below.

addition: [l1, u1] +I [l2, u2] � [l1 + l2, u1 + u2]

constant multiplication: c[l, u] �
{
[cl, cu] if c ≥ 0

[cu, cl] otherwise

multiplication: [l1, u1] ·I [l2, u2] � [min(l1l2, l1u2, u1l2, u1u2),max(l1l2, l1u2, u1l2, u1u2)]

modulus: |[l, u]|I �
{
[min(|l|, |u|),max(|l|, |u|)] if lu ≥ 0

[0,max(|l|, |u|)] otherwise

exponential: [l, u]pI �

⎧
⎪⎨

⎪⎩

[l p, u p] if p odd or l ≥ 0

[u p, l p] if p even and u < 0

[0,max(l p, u p)] otherwise

dominance test: [l1, u1] <I [l2, u2] � u1 < l2

In particular, soundness of the dominance test means that if [l1, u1] <I [l2, u2], then for
all x ∈ γ I([l1, u1]) and y ∈ γ I([l2, u2]), x < y holds.

2.1.2 Abstract operations on zonotopes

Zonotopes are exact for linear operations, namely addition and constant multiplication, while
for nonlinear operations, in particular multiplication and modulus, the result, in general, can-
not be exactly represented by a zonotope, so that themultiplication of zonotopes approximates
the precise result by adding a fresh noise symbol εf whose coefficient is typically computed
by a Taylor approximation of the nonlinear part of themultiplication (see [19, Section 2.1.5]).
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Fig. 2 Example of the absolute value of a zonotope

Given â = a0 + ∑m
j=1 a jε j ∈ Z and b̂ = b0 + ∑m

j=1 b jε j ∈ Z, the abstract operations are
given below:

addition: â +Z b̂ � (a0 + b0) + ∑m
j=1(a j + b j )ε j

constant multiplication: câ � ca0 + ∑k
j=1 ca jε j

multiplication: â ·Z b̂ �
(
a0b0 + 1

2

∑m
j=1 |a jb j |

)+
∑m

j=1(a jb0 + b ja0)ε j +
( 1
2

∑m
j=1 |a jb j |+∑

1≤i< j≤m |aib j + a jbi |
)
εf

exponential: â pZ � â ·Z . . . ·Z â with p − 1 abstract multiplications ·Z
dominance test: â <Z b̂ � a0 − b0 + ∑m

j=1 |a j − b j | < 0

An abstractmodulus on zonotopes To the best of our knowledge, no algorithm implement-
ing a sound abstraction of the modulus operation on zonotopes is available in the literature.
Therefore, we designed a novel abstract function onZ that approximates the genericmodulus
operation. By following the general approach in affine arithmetic described in [9], we define
a zonotope approximating the absolute value of a given zonotope, and then, we compute the
maximal absolute error of such approximation and add that error to a nonlinear term εf to
guarantee soundness.

Figure2 depicts an example where a zonotope â = c + aε1 is plotted as y = ax + c,
with x ∈ [−1, 1] (the white area in the diagram), through a dashed black line, and its
absolute value y = |â| = |ax + c| as solid black line. In this example, finding a sound over-
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approximation of |â| in Z means computing two parallel lines defining a zonotope which
includes every point of y = |â|, as shown in the figure by the blue area. The two lines l and
h determining the blue area are parallel, i.e., they have the same slope m ∈ R, and differ for
their vertical displacements ql , qh ∈ R. More precisely, we need to find m, ql , qh ∈ R such
thatmx +ql ≤ |ax + c| ≤ mx +qh for every x ∈ [−1, 1]. The overapproximating zonotope
will be generated by the line y = mx + ql+qh

2 parallel to l and h and will account for the
absolute error qh−ql

2 . This therefore defines the zonotope |â|Z � ql+qh
2 + mε1 + qh−ql

2 εf
that retains some information about the linear contribution of ε1 and introduces a nonlinear
contribution in εf.

To computem, ql , qu satisfyingmx+ql ≤ |ax+c| ≤ mx+qh for every x ∈ [−1, 1], we
first observe that the value of a zonotope c + aε1 is either always positive, always negative,
or it crosses y = 0 in some point x0 ∈ [−1, 1]. The first two cases are trivial as the absolute
value can be simply omitted, possibly after changing the sign of the zonotope, so we focus on
the last case where x0 is − c

a . The absolute value is therefore strictly decreasing in [−1, x0]
and strictly increasing in [x0, 1] due to the linearity of its argument.We have that P0 = (x0, 0)
is the (global) minimum point while PL = (−1, | − a + c|) and PR = (1, |a + c|) are the
two (local) maximal points. Thus, the following three inequalities for m, ql , qu must hold:
mx0 + ql ≤ 0, | − a + c| ≤ −m + qh , and |a + c| ≤ m + qh . An easy way to find m, qh
satisfying |a + c| ≤ m + qh is to pick the line passing through PL and PR , whose slope is
m = |a+c|−|a−c|

1−(−1) = |a+c|−|a−c|
2 . The value of qh can be estimated by imposing either PL or

PR to be a solution of yP = mxP + qh , a line referred to as 	h . Since the absolute value of
a linear function is a convex shape, it can be crossed by 	h in at most two points, which are
precisely PL and PR : As no other point can intersect 	h , and PL , PR are the extreme points
within the domain, every other point must belong to the same half-space identified by 	h .
Moreover, since PL and PR are maximal points, every other point must be dominated by 	h ,
thus proving that the line 	h is a sound upper bound. Lastly, we need to determine ql . By
using a similar argument, we define the line 	l as y = mx + ql such that P0 ∈ 	l . Once
again, due to convexity, 	l can cross the absolute value in at most two points, which is P0
with multiplicity two, hence any other point must belong to the same half-space. Since P0 is
the global minimum, it turns out that 	l is dominated by every other point and, consequently,
the line 	l is a sound lower bound. Since the vertical distance between the two lines 	h and
	l is qh −ql , we can consider the parallel line located halfway between them and as absolute
error the semi distance qh−ql

2 : This therefore defines as sound abstraction of |â| the zonotope
|â|Z = ql+qh

2 + mε1 + qh−ql
2 εf.

The example described above assumes a single nonzero linear noise contribution for ε1
for the argument zonotope â = c+ aε1. This same approximation technique can be applied
to the case where the argument zonotope has a nonlinear noise contribution εr and no linear
noise εi , i.e., â = c+aεr . While the computations remain the same, the coefficientm must be
added to the nonlinear term, so that, in this case, we have that |â|Z = ql+qh

2 +(|m|+ qh−ql
2 )εr .

In practice, it is always possible to consider εr as a fresh independent noise symbol while
converting a zonotope to its geometrical representation.

When the argument zonotope has both a nonzero linear and nonlinear noise, i.e., â =
c + aε1 + bεr , or, more in general, there are d linear noise contributions εi and a nonlinear
noise εr , i.e., â = a0+∑d

j=1 a jε j +arεr , we can generalize this approximation technique as

follows.We first convert the argument zonotope â into a hyperplane
 inRd+2 by interpreting
εr as xd+1 (so that ad+1 = ar ), and adding a dimension xd+2 to represent the dependent
variable, and we set the constraints x1, x2, . . . , xd+1 ∈ [−1, 1] (while xd+2 ∈ R). We then
define a subset S ⊆ 
 by selecting d + 2 points from 
 whose values for every independent
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variable xi are either−1 or+1, while the value of the dependent variable xd+2 is accordingly
computed, that is,

S =
{(

a1e1, . . . , aded , ad+1ed+1, a0 +
∑d+1

j=1
a j e j

)

∈ 
 | ∃ j .e j = −1,∀i �= j .ei = 1

}

∪
{(

a1, . . . , ad , ad+1, a0 +
∑d+1

j=1
a j

)}

.

If all the dependent values xd+2 of every vector in S are nonnegative, then â is always
nonnegative, so that its absolute value is itself, i.e., |â|Z � â. Similarly, if all the values
xd+2 are nonpositive, then â is nonpositive, so that its absolute value can be obtained simply
by |â|Z � −â. In both cases, the absolute value |â|Z is an exact abstraction with no loss
of precision. Otherwise, there exist two vectors x and y in S with xd+2 < 0 and yd+2 > 0,
meaning that 
 has a nonempty intersection with the hyperplane 
0 defined as xd+2 = 0.
We then define the subset S′ = {(x1, x2, . . . , xd , xd+1, |xd+2|) | x ∈ S}; namely, we switch
the negative signs of xd+2. By doing so, S′ is a subset of the extremal points of the absolute
value of â. Next, we compute the hyperplane 
h containing every point in S′. This step
needs to compute the determinant of a (d + 2) × (d + 2) matrix, which is nonsingular by
construction. Such hyperplane
h provides an upper bound for the absolute value of â. Then,
the lower bound hyperplane
l , parallel to
h , is computed, thus having the same coefficients
of variables of 
h and a different constant term. To do so, we compute 
′ = 
 ∩ 
0, thus
defining a subspace in Rd ′

for some d ′ < d + 2. We sample a single vector P0 of 
′, whose
existence is guaranteed by construction, and we use that vector to estimate the constant term
of 
l , so that 
l provides a lower bound for the absolute value of â. Then, we consider the
hyperplane
m parallel to both
l and
h and equally distant from them, i.e.,
m = 
l+
h

2 ,

and convert 
m to a zonotope in Rd by adding the vertical distance 
h−
l
2 to the nonlinear

noise term. Such abstraction is sound because the vectors in 
h , resp. 
l , dominate, resp.
are dominated, by the absolute values of the points in the argument zonotope â.

It turns out that our algorithm for the stability certification of kNN relies on an abstract
modulus function on zonotopes that always has a specific form, and this can be exploited to
enhance the efficiency of computing the modulus. In fact, our certification algorithm always
applies an abstractmodulus of type |a0+a jε j |Z , for some j ∈ [1,m], that is, themodulus of a
line on a plane with unknown ε j . Hence, the abstract modulus computes the line including the
two extremal points (−1, a0−a j ) and (+1, a0+a j ) as a correct upper bound for |a0+a jε j |,
and the parallel line passing through the point (− a0

a j
, 0) as a correct lower bound. We then

consider the line y = px + q parallel to these two lines and at the same distance d > 0 from
them. This allows us to define as abstract modulus |a0 + a jε j |Z � q + pε j + dεf, where εf
is a fresh noise symbol.

2.2 kNN classifiers

Consider a ground truth dataset D ⊆ X × L , where X ⊆ Rn is an input space and L is a set
of classification labels, and a distance function δ : X × X → R≥0. Given k ∈ N∗ � N�{0},
a kNN classifier is modeled as a total function Cδ,k : X → ℘(L), which maps an input
sample x ∈ X into a nonempty set of labels, by first selecting in D the k nearest samples to
x according to δ, and then returning the set of their most frequent labels. Hence, an output
set including more than one label means a tie vote, and this justifies why we consider sets of
labels as codomain of classifiers.
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2.3 Stability and robustness

A perturbation P : X → ℘(X) of an input sample x ∈ X is a variation of its feature values
defining a potential adversarial region P(x) ∈ ℘(X). A very common instance [6] is given
by perturbations for the maximum norm ‖ · ‖∞: Given x ∈ Rn and a magnitude τ > 0,
the �∞-perturbation is Pτ∞(x) � {w ∈ Rn | max(|w1 − x1|, . . . , |wn − xn |) ≤ τ }, i.e.,
the �∞-ball of radius τ centered in x. This perturbation can be exactly represented through
intervals and zonotopes, that is, Pτ∞(x) = γ In

(〈[x1 − τ, x1 + τ ], . . . , [xn − τ, xn + τ ]〉) =
γZn

(〈 x12 + τε1, . . . ,
xn
2 + τεn〉).

A classifier C : X → ℘(L) is accurate on a ground truth input (x, lx) ∈ D when C(x) =
{lx}. Moreover, C is stable over a region R ⊆ X , when ∪w∈RC(w) = {l} holds, for some
l ∈ L . Stability means that a classifier does not change its output on a region of similar
inputs and is an orthogonal notion with respect to accuracy, as it does not require to know
the ground truth labels. If a classifier C is both accurate on an input (x, lx) and stable over
a perturbation P(x) of x, then C is robust on input (x, lx) for P(x), i.e., for all w ∈ P(x),
C(w) = {lx} holds. Accordingly, stability and robustness metrics for a classifier C on some
test set T ⊆ X × L are defined as the percentage of test samples x ∈ T for which C is
stable/robust over a perturbation P(x):

stab(C, T ) � |{(x, lx) ∈ T | C stable on P(x)}|/|T |
rob(C, T ) � |{(x, lx) ∈ T | C robust on (x, lx) for P(x)}|/|T |

2.4 Individual fairness

Our method can be also applied to certify individual fairness [10] that intuitively encodes
the principle that “two individuals who are similar with respect to a particular task should be
classified similarly.” The similarity relation on the input space X is expressed in terms of a
distance δ and a threshold τ > 0 by considering Sδ,τ � {(x, y) ∈ X × X | δ(x, y) ≤ τ }. The
distance metric δ is specific to the fairness problem, where [10] studies the total variation
or relative �∞ distances. Then, given an individual x ∈ X , a classifier C : X → ℘(L) is
individually fair on x with respect to Sδ,τ when:

∀y ∈ X · (x, y) ∈ Sδ,τ ⇒ C(x) = C(y).

Thus, individual fairness for x holds if and only if for all y ∈ Pτ
δ (x), C(x) = C(y), where

Pτ
δ : X → ℘(X) is the perturbation defined as Pτ

δ (x) � {y ∈ X | δ(x, y) ≤ τ }. Hence, by
leveraging this simple observation, individual fairness boils down to stability, so that their
metrics coincide.

3 Abstract verification of kNN

Given a classifier C : X → ℘(L), a sound abstraction of C on a numerical abstraction
〈A, γ A〉 is an algorithm CA : A → ℘(L), which is sound, i.e.,

for all a ∈ A,∪x∈γ A(a)C(x) ⊆ CA(a)

holds. Thus, soundness means that CA(a) over-approximates all the output labels of C on
inputs abstractly represented by a ∈ A. If this over-approximation is indeed a singleton then
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C is provably stable over the region γ A(a), i.e., this approach provides a formal stability
certification.

Theorem 3.1 (Abstract stability certification) LetC A be a sound abstraction ofC andassume
that a region R ⊆ X is over-approximated by some a ∈ A. If |CA(a)| = 1 then C is stable
over R.

Proof By hypothesis, there exists a label l ∈ L such that CA(a) = {l}. By soundness of CA,
∪x∈γ A(a)C(x) ⊆ {l}. Since, for all x, C(x) �= ∅, we have that for all x ∈ γ A(a), C(x) = {l}.
Since R ⊆ γ A(a), we obtain that for all y ∈ R, C(y) = {l}, namely C is stable over R. ��

It is worth remarking that the converse of Theorem 3.1, in general, does not hold, meaning
that this stability certification method can be incomplete. This incompleteness may depend
on an input abstract value a ∈ A which does not represent exactly the adversarial region R or
by a loss of precision in the abstract computations of CA. The former issue can be settled by
leveraging abstract domains which are capable to represent exactly the perturbation model
of interest, as it is the case of the interval and zonotope abstractions for �∞-perturbations.

3.1 Abstract distance

The kNN algorithm relies on a distance δ : Rn × Rn → R≥0 for determining the k nearest
vectors to a given input sample. Although kNN is parametric on δ, Minkowski distance is
the standard choice: given p ∈ N∗,

δp(x, y) � p

√
∑n

i=1
|xi − yi |p.

In particular, the two most common instances are for p = 1, 2:

Manhattan distance: μ(x, y) � δ1(x, y) = ∑n
i=1 |xi − yi |

Euclidean distance: η(x, y) � δ2(x, y) =
√∑n

i=1(xi − yi )2

Observe that kNN relies on the distance for relative comparisons only, sowe can safely dis-
charge the p-th root p

√· in δp to simplify the computations. A numerical abstract domainmust
therefore provide sound abstractions of the operations used for computing these distances,
namely addition (i.e., subtraction), exponential and modulus. We recalled in Sect. 2.1 the
definitions of the abstract operations on intervals and zonotopes. Let us remark the following
points.

(1) We need a sound abstract dominance relation to be used for comparing abstract distances,
i.e., an algorithm (· <A ·) : A × A → {true, ?} such that

if a1 <A a2 = true then for all x ∈ γ A(a1) and y ∈ γ A(a2), x < y holds.

The dominance tests for intervals and zonotopes have been given in Sect. 2.1. It is worth
noticing that the dominance relation <I for intervals boils down to the so-called interval
order [14], while the relation <Z for zonotopes may exploit their relational information
as encoded by shared noise symbols: e.g., a comparison between zonotopes such as
−2+ 2ε1 <Z 1+ ε1 + ε2 reduces to −3+ ε1 − ε2 <Z 0, which clearly holds.

(2) A sound and precise enough approximation for zonotopes of the modulus function |·|was
not available in the literature, and hence, we designed a novel algorithm for the abstract
modulus of zonotopes as described in Sect. 2.1.2.
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(3) The abstract operations on the product domains In and Zn are defined by a straightfor-
ward componentwise extension of their unary versions on I and Z.

It turns out that the abstract Minkowski distance δI
n

p , without the p-th root, on intervals
does not lose precision, i.e., it is an exact approximation.

Theorem 3.2 (Minkowski distance on intervals is exact) Given a,b ∈ In,

{δp(x, y) | x ∈ γ In
(a), y ∈ γ In

(b)} = γ I(δI
n

p (a,b)),

where δIp (a,b) � (+I)ni=1(|ai −I bi |I)p
I
.

Proof We show that all the abstract operations on the interval abstract domain I used in
the definition of δIp are complete. This entails the completeness of the interval Minkowski
distance δIp because the composition of complete abstract functions preserves their com-
pleteness. In fact, if A is a numerical abstraction of ℘(Rn) (this property actually holds
for generic domains in abstract interpretation) and f A : Ai → A j and gA : A j → Ak

are two abstract functions that are complete w.r.t., resp., f : ℘(Rn)i → ℘(Rn) j and
g : ℘(Rn) j → ℘(Rn)k , then gA ◦ f A : Ai → Ak is complete for g ◦ f : ℘(Rn)i → ℘(Rn)k

because γ A ◦ gA ◦ f A = g ◦ γ A ◦ f A = g ◦ f ◦ γ A.
We refer to the definitions of abstract numerical operations on the interval abstraction as
given in Sect. 2.1.1. The interval difference ai −I bi is well known to be complete (see,
e.g., [31]). Then, we observe that the interval modulus is also complete, i.e., γ I(|[l, u]|I) =
{|x | ∈ R | l ≤ x ≤ u}: This is an easy observation which can be inferred by distinguishing
the two cases lu ≥ 0 and lu < 0 of the definition of |[l, u]|I . As a consequence, each
interval |ai −I bi |I = [li , ui ] occurring in the definition of δIp (a,b) is such that li ≥ 0.

Therefore, by definition of interval exponential (·)pI , it turns out that (|ai −I bi |I)
pI =

[li , ui ]pI = [(li )p, (ui )p] = {x p ∈ R | li ≤ x ≤ ui }; namely, completeness of the p-th
interval exponential holds. Finally, interval addition is well known to be complete (see, e.g.,
[31]).
Hence, it turns out that the intervalMinkowski distance δIp (a,b) is a composition of complete
abstract operations, so that δIp turns out to be complete. ��

By contrast, we show that the abstract Minkowski distance on zonotopes cannot be guar-
anteed to be exact: This is expected as the modulus and exponential operations are not linear
and, therefore, are necessarily approximated on zonotopes.

Example 3.3 (Minkowski distance on zonotopes is not exact) Consider two zonotopes â =
4 + ε1 + 2ε2 and b̂ = 2 + ε1 + ε2, representing some feature in R, that share two noise
symbols ε1, ε2. Consider the abstract Euclidean distance ηZ (â, b̂) = (â −Z b̂)2

Z
. Thus, by

applying the operations on zonotopes recalled in Sect. 2.1.2, we have that:

ηZ (â, b̂) = (
(4+ ε1 + 2ε2) −Z (2+ ε1 + ε2)

)2Z= (2+ ε2)
2Z

= (2+ ε2) ·Z (2+ ε2) = 9
2 + 4ε2 + 1

2εf

with εf ∈ [0, 1] because this nonlinear noise symbol approximates a square which is always
positive. (With εf ∈ [−1, 1], the approximation would be even worse.) Thus, we have that
γZ ( 92 + 4ε2 + 1

2εf) = [0.5, 9]. However, observe that the square operation (2 + ε2)
2Z is

sound but not exact, because the range of values of (2+ ε2)
2 is the interval [1, 3]2 = [1, 9].

Thus, {η(x, y) ∈ R | x ∈ γZ (â), y ∈ γZ (b̂)} � γZ (ηZ(â, b̂)), as [1, 9] � [0.5, 9]. ��
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Exactness of the distance function is not enough to achieve completeness of the abstract
kNN classifier on intervals, as shown by the following example.

Example 3.4 (Incompleteness of abstract kNN on intervals) Let us consider a dataset D =
{(v = 2, l1), (w = 3, l2)} in the one-dimensional input space R, and the 1NN classifier Cμ,1

for the Manhattan distance μ. Consider a region R = P1∞(0) = {x ∈ R | −1 ≤ x ≤ 1} ∈
℘(R). The distances of a generic adversarial vector x ∈ R from v and w are:

μ(x, v) = |x − 2| = 2− x,

μ(x,w) = |x − 3| = 3− x.

Hence, the dominance test μ(x, v) <? μ(x,w) boils down to 2− x <? 3− x, which always
holds. Thus, v is always the nearest neighbor to R, and, in turn, every sample in R is classified
by Cμ,1 as l1, so that stability holds.

Let us perform the abstract stability certification on I, where the region R is exactly
represented by the interval a � [−1, 1]. The abstract Manhattan distances are as follows:

μI(a, v) = |[−1, 1] −I 2|I = |[−3,−1]|I = [1, 3],
μI(a,w) = |[−1, 1] −I 3]|I = |[−4,−2]|I = [2, 4].

These abstract distances do not allow us to infer the nearest vector to a because
μI(a, vI) �<IμI(a,wI) and μI(a,wI) �<IμI(a, vI).
We can easily adapt this counterexample to show the incompleteness for different distance
functions, such as the Euclidean distance. By a simple symbolic computation, we can infer
that v is the nearest neighbor when x < 2.5; hence, once again, every sample in R is labeled
as l1. However, by applying the abstract Euclidean distance, which is complete on I, we
obtain ηI(a, v) = [1, 9] and ηI(a,w) = [4, 16], so that we cannot infer the stability on R.
This lack of precision is rooted in the interval abstraction that does not keep track of multiple
occurrences of the same variable x in different abstract distances.
More refined relational abstractions such as octagons or even convex polyhedra [31] would
also fail. For instance, with the convex polyhedra abstraction P we would still have an
inconclusive comparison μP (a, v) = 1 ≤ x ≤ 3 �<P 2 ≤ x ≤ 4 = μP (a,w). On a positive
side, the relational information of the zonotope abstraction Z in this case allows us to prove
stability. In fact, the zonotope â � 0 + ε1 ∈ Z exactly represents the region R by keeping
track of the dependence on x through the noise symbol ε1, so we have that:

μZ (â, v) = |0+ ε1 −Z 2|Z = | − 2+ ε1|Z = 2+ ε1,

μZ (â,w) = |0+ ε1 −Z 3|Z = | − 3+ ε1|Z = 3+ ε1.

Thus, μZ (â, v) <Z μZ (â,w) iff 2+ ε1 <Z 3+ ε1, which clearly holds. ��
Example 3.4 exhibits a well-known issue of compositional computations in nonrelational

abstractions (see [31]): For example, an expression such as x − x with x ∈ [0, 1] is com-
positionally evaluated in I as [0, 1] −I [0, 1] = [−1, 1], thus causing a significant loss of
precision w.r.t. its concrete value [0, 0].

The following example shows that even if zonotopes are more precise than intervals, it
may happen that intervals prove the stability of some input sample, whereas zonotopes fail.

Example 3.5 (Intervals vs zonotopes for proving stability) Consider the dataset D = {(v =
0, �1), (w = 4.1, �2)}, a region R = {x | 0 ≤ x ≤ 2}, and the 1NNclassifier for theEuclidean
distance η (w.l.o.g. we consider the square of η). The region R is exactly represented by the
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interval a = [0, 2] ∈ I and by the zonotope â = 1 + ε1 ∈ Z. The abstract Euclidean
distances on I and Z are as follows:

ηI(a, v) = ([0, 2] −I 0)2
I = [0, 4],

ηI(a,w) = ([0, 2] −I 4.1)2
I = [4.41, 16.81],

ηZ(â, v) = (1+ 1ε1 −Z 0)2
Z = 1+ 2ε1 + εf1 , with εf1 ∈ [0, 1],

ηZ(â,w) = (1+ 1ε1 −Z 4.1)2
Z = 9.61− 6.2ε1 + εf2 , with εf2 ∈ [0, 1].

Thus, for intervals, we have that ηI(a, v) <I ηI(a,w) iff [0, 4] <I [4.41, 16.81], which
holds and, therefore, entails stability. For zonotopes, we have that:

ηZ(â, v) <Z ηZ(â,w) iff

1+ 2ε1 + εf1 <Z 9.61− 6.2ε1 + εf2 iff

− 8.61+ 8.2ε1 + εf1 − εf2 <Z 0

which does not hold for, e.g., ε1 = 1, εf1 = 1 and εf2 = 0. Thus, stability cannot be proved
with Z. Let us remark that zonotopes here fail because Z needs to introduce two different
fresh nonlinear noise symbols εf1 and εf2 for computing, resp., ηZ(â, v) and ηZ (â,w), while
both would represent the same square ε21 . ��

Example 3.5 arises because zonotopes do not keep track precisely of all nonlinear terms, as
for the p-thMinkowski distance inRn this would require storing and computing n p nonlinear
terms, thusmaking abstract computations for practical datasets unfeasible (see [19] for further
details on the approximations and practical limitations of zonotopes).

3.2 Abstract kNN classification

Given a ground truth dataset D, we describe an algorithm for computing the sound abstract
kNN classifier CA

δ,k on a numerical abstract domain A, which is parametric on a distance
function δ, provided that A is endowed with the abstract functions to be used for designing
a sound abstract distance δA : A × A → A, where, by a slight abuse of notation, A used in
the domain A × A of δA is meant to be an abstraction of sets of vectors in ℘(Rn), while A
used as codomain of δA is an abstraction of sets of numbers in ℘(R); in this latter case, for
each a ∈ A, we assume that lb(a), ub(a) ∈ R ∪ {−∞,+∞} provide, resp., a sound lower
and upper bound for γ A(a) ∈ ℘(R), i.e., for all x ∈ γ A(a), lb(a) ≤ x ≤ ub(a) holds. The
pseudocode for CA

δ,k is given as Algorithm 1.

STEP1: Computing and ordering abstract distances

Given a kNN classifier Cδ,k , an input (x, lx) ∈ X × L , and a perturbation function P : X →
℘(X), we first need a sound abstraction aP(x) ∈ A for the region P(x), and an abstract
representation yA ∈ A for every vector y occurring in the dataset as (y, ly) ∈ D. For abstract
domains that admit an abstraction function αA : ℘(Rn) → A, we define aP(x) � αA(P(x)).
This can always be done for intervals where, for nonempty S, αI(S) � [inf S, sup S],
whereas zonotopes, in general, do not admit an abstraction function. On the other hand,
let us recall that both intervals and zonotopes provide exact abstract representations for
�∞ perturbations Pε∞(x). For each sample (y, ly) ∈ D, we compute its abstract distance
d A
y � δA(aP(x), yA) ∈ A from the abstract value aP(x) representing the perturbation P(x).
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Each abstract distance is paired with its corresponding label, thus constructing the set of pairs
{(d A

y , ly)}(y,ly)∈D . The abstract dominance relation <A on A is extended to A × L simply

by disregarding labels, i.e., (d A
y , ly) <A×L (d A

z , lz) when d A
y <A d A

z . This relation <A×L is
weakened by the following total order relation �:

(
d A
y , ly

) � (
d A
z , lz

) �⇐⇒ lb
(
d A
y

)
< lb

(
d A
z

)
or

(
lb

(
d A
y

) = lb
(
d A
z

)
& ub

(
d A
y

) ≤ ub(d A
z )

)
(∗)

where ≺ denotes the corresponding strict order relation. This relation (∗) allows us to sort
the set {(d A

y , ly)}(y,ly)∈D into a totally ordered set 〈O,�〉. By a slight abuse of notation,
we refer to O[i], with i ∈ [1, |D|], as the i-th smallest element of the total order 〈O,�〉,
so that O[1] is the smallest element, O[2] the second smallest, and so forth. Firstly, let
us observe that � weakens <A×L , because if O[i] <A×L O[ j] holds, then it turns out
that lb(O[i]) ≤ ub(O[i]) < lb(O[ j]), so that O[i] ≺ O[ j] holds, meaning that i < j .
Moreover, a second property of the total order 〈O,�〉 is that if O[ j] dominates O[i], then
any entry O[k]with index k ≥ j also dominates O[i], i.e., O[i] <A×L O[ j] implies ∀k ≥ j ,
O[i] <A×L O[k]. In fact, k > j implies O[ j] � O[k], so that lb(O[ j]) ≤ lb(O[k]), and,
in turn, since O[i] <A×L O[ j], we have that ub(O[i]) < lb(O[ j]) ≤ lb(O[k]), hence
entailing that O[i] <A×L O[k] holds. In the best case scenario, the sequence 〈O[i]〉i∈[1,|D|]
may result to be a total order for <A×L , meaning that for all i, j ∈ [1, |D|], if i < j , then
O[i] <A×L O[ j]. In this optimal case, the abstract computation of the k nearest neighbors
of aP(x) boils down to extracting the first k elements from the sequence O . However, in
general, 〈O[i]〉i∈[1,|D|] will not be totally ordered for <A×L because abstract distances may
“overlap,” as illustrated in Example 3.4 for the intervals [1, 3] and [2, 4]. In our NAVe tool,
O has been implemented as a min heap for the total order � (cf. MinHeapify(O,�) at line
6 of Algorithm 1) to leverage its logarithmic cost for building heaps and extracting its i-th
smallest element.

STEP2: Computing score bounds for labels

We compute the abstract score intervals s[l] ∈ I, for all the labels l ∈ L , namely an integer
interval s[l] = [lb(l), ub(l)], with lb(l), ub(l) ∈ N, that provides a lower bound lb(l) ≥ 0
and an upper bound ub(l) ≥ lb(l) to the number of votes that a label l receives from the k
nearest neighbors of aP(x). We initialize s[l] = [0, 0], for each label l ∈ L , then we extract
the first k pairs from the indexed sequence 〈O[i]〉i∈[1,|D|] of Step1. For each extracted pair
(d A

z , lz), we check whether O still includes a pair (d A
y , ly) having a different label and not

dominating d A
z , i.e., such that ly �= lz and d A

z �<A d A
y . If such pair does not exist, then all the

pairs (d A
y , ly) left in O are such that d A

z <A d A
y , thus meaning that lz will certainly get a vote

from z, which has been proved to be a k-nearest neighbor of aP(x). If this happens then it is
correct to increase by 1 both the lower and the upper bound of the interval of scores s[lz].
Otherwise, it is not possible to infer that lz will certainly get a vote from z, so that the lower
bound lb(lz) cannot be increased, while to preserve the soundness of s[lz] we must increase
its upper bound ub(lz) by 1, meaning that it is possible that lz will get an additional vote from
z. After this computation of the score intervals [lb(l), ub(l)]l∈L that processed the first k pairs
extracted from the sequence O , the sum σk �

∑
l∈L lb(l) of the current lower bounds may

be less than k, meaning that still no sound inference on the set of most voted labels for kNN
can be drawn from the current status of the score intervals. Hence, if σk < k and there exist
unprocessed pairs (d A

z , lz) left in O whose distance d A
z does not dominate all the distances

of the first k pairs extracted from O , then we check whether ub(lz) < k−∑
l∈L�{lz} lb(l)

holds. If this is the case then ub(lz) is increased by 1.
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STEP3: Refining lower bounds

Following Step2, we try to refine the lower bounds of s[l] as sketched by the following
example. Let us consider a binary classification with two labels l1 and l2 and k = 7, whose
current score intervals are, resp., s[l1] = [2, 4] and s[l2] = [1, 3]. We observe that this
information allows us to make a sound increment of the lower bounds of both l1 and l2. In
fact, since the sum of the two labels must be k = 7, this can happen just when s[l1] = [4, 4]
and s[l2] = [3, 3]. Therefore, in this case, we can infer that l1 is the most voted label.

A precise and general pseudocode of this refinement step is given at lines 17-19 of Algo-
rithm 1. For each label l, we compute the minimum μ between k and the sum of ub(l ′) for
all l ′ �= l. If k −μ < lb(l) holds then we can correctly refine the lower bound for l to k −μ.

1: M, O ← ∅ M, O indexing starts at 1
2: for all (y, ly) ∈ D do STEP1
3: yA ← α(y)
4: d A

y ← δA(aP(x), y
A)

5: Insert(O, (d A
y , ly))

6: MakeTotalOrder(O, ) MinHeapify(O, )

7: for all l ∈ L do {lb(l) ← 0; ub(l) ← 0} Step2
8: for all i ∈ [1, k] do M[i] ← Extract(O[i])
9: for all (d A

z , lz) ∈ M do
10: ub(lz) ← ub(lz) + 1
11: if ∀(d A

y , ly) ∈ O, ly = lz ⇒ d A
z <A d A

y then lb(lz) ← lb(lz) + 1

12: σk ← l∈L lb(l)
13: if σk < k then
14: for all (d A

z , lz) ∈ O do
15: if ∃(d A

y , ly) ∈ M such that ly = lz ∧ d A
y <A d A

z then
16: if ub(lz) < k − (σk − lb(lz)) then ub(lz) ← ub(lz) + 1
17: for all l ∈ L do Step3
18: μ ← min(k, l =l ub(l ))

19: lb(l) ← max(lb(l), k − μ)

20: for all l ∈ L do Step4
21: if ub(l) = 0 then L ← L {l}
22: if (|L| = 1 or k = 1) then return L
23: τ k

min(k,|L|)
24: return {l ∈ L | ub(l) ≥ τ, ∀l ∈ L {l}. s[l] <I s[l ]}

STEP4: Abstract classification

After the refinement of Step3,we return the set of labelswhose score intervals are numerically
significant, i.e., different from [0, 0], and maximal for the dominance relation <I between
score intervals, that is, CA

δ,k(aP(x)) outputs the following set of labels:
{

l ∈ L | ub(l) ≥
⌈ k

min(k, |L|)
⌉
, ∀l ′ �= l : s[l] �<I s[l ′]

}

.

We are thus excluding from the output set only those labels l whose score interval either
has an upper bound strictly less than  k

min(k,|L|)! or is not maximal, i.e., there exists a different

label l ′ with a dominant score s[l ′] >I s[l], meaning that the number of votes for l is surely
less than the votes of l ′. This definition is sound because no real classification label given
as output by Cδ,k(y) for some adversarial attack y ∈ γ A(aP(x)) is forgot, while the lack of
precision in computing the abstract distances—this cannot happen with intervals but it may
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be the case for zonotopes, cf. Theorem 3.2 and Example 3.3—and, in turn, the score intervals
may lead to an over-approximation that includes some spurious labels.

Theorem 3.6 (Soundness of abstract kNN) The abstract classifier C A
δ,k is a sound approxi-

mation of Cδ,k , namely for all a ∈ A, ∪y∈γ A(a)Cδ,k(y) ⊆ CA
δ,k(a).

Proof It follows by the arguments given above that justify the soundness of the four steps of
Algorithm 1 that implements the abstract classifier CA

δ,k . ��

Remarks

In Step1, the first k pairs of the total order 〈O,�〉 are intuitively the k most likely candidates
to be the k nearest neighbors of the abstract adversarial region aP(x). If their distances from
aP(x) are all strictly dominated by the other pairs in O then these first k samples in O are
indeed the k nearest neighbors of aP(x), and therefore we can assign a sure vote to their
labels, i.e., we increment both the lower and upper bounds of the score intervals for their
labels. If, instead, this is not the case; namely, there exist O[i] = (dz, lz), for some i ∈ [1, k],
and O[ j] = (dy, ly) with j > k, such that dz �<A dy, then we increment the upper bound
ub(lz) just when lz �= ly: In fact, if lz = ly, then neglecting the contribution of the sample z
among the k nearest neighbors does not change the score for that same label lz. Moreover, if
some O[ j] = (dy, ly), with j > k, strictly dominates all the first k pairs of O , then all the
pairs O[m] with m ≥ k do the same, so that we do not need to consider them in computing
the score intervals. The same reasoning applies to any pair O[ j] = (dy, ly) w.r.t. a generic
sample: If there exists some labeled sample (u, lu) such that lu �= ly and du �<A dy, then the
upper bound ub(ly) can be correctly incremented by 1, as this label ly could potentially be
considered, althoughwe do not know this for sure due to incompleteness. Increasing an upper
bound of a score by some positive integer is always sound. However, while the computation of
the abstract distance δA(aP(x), yA)may be exact (cf. Theorem 3.2), the computation of score
intervals, in general, is not exact. This is due to the fact that score intervals for labels cannot
represent relations between different scores. For example, mutual exclusion is a relational
property which cannot be expressed by score intervals: The property “if a label lx gets n
votes, then a different label ly gets m− n votes” cannot be represented through intervals that
cannot keep track of the fact that the score of ly depends on that of lx.

3.3 Regression tasks

While our primary focus is on classification tasks, our methodology can be easily adapted to
accommodate regression. Let us succinctly recall the basic steps of a regression task for kNN
models. Initially, distances from a given input sample x to every point in the training dataset
D are computed and exploited for sorting the vectors in D from nearest to farthest to x,
akin to the classification algorithm. Subsequently, the k nearest neighbors are identified, and
an aggregation function is applied to their numeric values to compute the output regression
value. A common example of aggregation function is the weighted mean, where the weights
are inversely proportional to the distances.

Let us sketch how our abstract kNN algorithm can be adapted to a regression task. Firstly,
we perform the same initial Step1 of the classification approach, thus computing and ordering
abstract distances of training samples in D to an input abstract value a ∈ A. Following this,
a sound superset of the k nearest neighbors can be inferred using analogous techniques as in
classification (namely Step2), by leveraging an abstract version of the aggregation function.
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The specific algorithm to be used for this purpose depends upon the chosen aggregation.
Common aggregation functions, such as the weighted mean, entail using standard numerical
operations such as addition, multiplication, and inverse, all of which have sound (or even
exact) abstract versions on the abstract domains used in our work, notably intervals and
zonotopes. Consequently, the abstract kNN regression algorithm should compute a sound
output interval, namely a sound over-approximation of the true regression values for all the
samples represented by input abstract value a.

3.4 Instantiating to different abstractions and perturbations

Our abstraction-based verification technique is fully parametric on the specific type of
perturbation and numerical abstraction employed and is not restricted to interval-based per-
turbations/abstractions. As an example, let us sketch its applicability to perturbations not
induced by the �∞ norm. Consider a perturbation function P : R2 → ℘(R2) defined by

P(x) � {x′ ∈ R2 | |x1 − x′1| + |x2 − x′2| ≤ 1}, (‡)

thus representing the �1-ball of radius 1 with center x. Geometrically, P(x) is a square
rotated by π

4 and cannot be exactly represented by an interval or a zonotope. Nevertheless,
it is feasible to over-approximate P(x) through the smallest two-dimensional interval (i.e.,
box) containing it simply by computing the minimum and maximum values for each axis,
thus obtaining the box 〈[x1 − 1, x1 + 1], [x2 − 1, x2 + 1]〉. Indeed, each �p-ball of radius r
can be over-approximated by a hypercube of the same radius, although this approximation
may introduce a further loss of precision into the abstract kNN procedure that may yield an
increased number of output labels, and, consequently, a less precise stability certification. To
mitigate this, we can use more appropriate abstract domains that are capable of representing
more precisely (or even exactly) a given class of perturbations, typically paying a cost in
time efficiency: As an example, the octagon abstraction [30, 31] would allow to represent in
an exact way the above perturbation (‡).

4 Equivalence of data poisoning and input perturbation for the
maximum norm

Data poisoning is a distinctive form of attack that injects malicious or deceptive data into the
training set ofmachine learningmodels [43, 47]. In contrast to conventional attacks that target
vulnerabilities in model architecture or parameters, data poisoning surreptitiously erodes the
fundamental underpinnings of the learningprocess since through subtle alterations or strategic
injections of malicious instances into the training data, the attacker aims at compromising
the integrity of the learning algorithm. We investigate the relationship between stability, akin
to input poisoning, and data poisoning, by showing that our certification method for stability
under input perturbations can be also applied to verify resilience to data poisoning when the
underlying numerical abstract domain is the interval or zonotope abstraction.

Assume that training datasets D range into a space ℘(X × L). A data poisoning is
defined as a function P : ℘(X × L) → ℘(X × L) that for any input dataset D returns a
poisoned dataset P(D). Consider a learning algorithm LA that, given a training dataset D,
deterministically returns a classifier LA(D) = CD : X → ℘(L). A learning algorithm LA
is defined to be resilient on an input sample x ∈ X under a data poisoning P when for all
datasets D, CP(D)(x) = CD(x). In the following, we consider data poisoning functions Pτ∞,
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derived from maximum norm perturbations Pτ∞ and defined as follows:

Pτ∞(D) � {(x′, lx) ∈ X × L | (x, lx) ∈ D, x′ ∈ Pτ∞(x)}.
We are interested in proving that a kNN classifier Cδ,k is resilient on some input to a Pτ∞

data poisoning of its ground truth dataset D. Since the output of an abstract classifier CA
δ,k

depends on the abstract distances of each sample s in the dataset D from the perturbation
Pτ∞(x) of an input sample x, in the following we prove that the abstract distance between
an individual poisoning Pτ∞(s) of a sample s in D and a given input x coincides with the
abstract distance between s and the corresponding perturbation Pτ∞(x) of x. Hence, when
this happens, by Theorems 3.1 and 3.6, it turns out that the resilience of a kNN classification
Cδ,k(x) to a �∞-poisoning Pτ∞ of its training dataset D can be proved as an abstract stability
certification of Cδ,k over Pτ∞(x) through the abstract classification CA

δ,k(P
τ∞(x)).

4.1 Intervals

Let us consider a training sample s ∈ D ⊆ Rn , a �∞-perturbation Pτ∞ : Rn → ℘(Rn), and
an input sample x ∈ Rn . Hence, for the abstract Minkowski distance δI

n

p that neglects the
irrelevant p-th root, we have that:

δI
n

p (x, αI(Pτ∞(s))) =
∑n

i=1
|xi −I [si − τ, si + τ ]|p

=
∑n

i=1
|[xi − si − τ, xi − si + τ ]|p

=
∑n

i=1
|[xi − τ − si , xi + τ − si ]|p

=
∑n

i=1
|[xi − τ, xi + τ ] −I si |p

= δI
n

p

(
αI(

Pτ∞(x)
)
, s

)
.

As a consequence, the resilience of a kNN classification Cδ,k(x) under a �∞-poisoning
Pτ∞ of the training dataset D can be inferred as an abstract stability certification by means of
the interval classification CI

δ,k(P
τ∞(x)).

4.2 Zonotopes

A similar result can be proved for zonotopes. Let us recall that while, in general, the abstrac-
tion function for zonotopes does not exist, a �∞-perturbation Pτ∞(x) can be always exactly
represented through the zonotope 〈 x12 + τε1, . . . ,

xn
2 + τεn〉, which is therefore the best

abstraction of Pτ∞(x) in Z. We have that:

δZ
n

p

(
x, αZ(

Pτ∞(s)
)) =

∑n

i=1

∣
∣
∣xi −

( si
2

+ τεi

)∣
∣
∣
p

=
∑n

i=1

∣
∣
∣xi − si

2
− τεi

∣
∣
∣
p [as xi − τεi = xi + τεi ]

=
∑n

i=1

∣
∣
∣xi + τεi − si

2

∣
∣
∣
p

= δZ
n

p

(
αZ(

Pτ∞(x)
)
, s

)
.

Hence, resilience to a maximum norm data poisoning can be also inferred by leveraging
the zonotope classifier CZ

δ,k .
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4.3 Arbitrary abstractions

In general, the equivalence shown above between maximum norm data poisoning and input
perturbation does not hold for an arbitrary abstract domain A. To exhibit a counterexample,we
consider an artificial abstractionRmirroring the behavior of the interval abstraction I, with
the exception that interval lower and upper bounds cannot belong to the range (−1, 1). Thus,
for example, a numerical set X having sup(X) ∈ (−1, 1)will have an interval approximation
in R with upper bound 1 which is strictly larger than sup(X). Clearly, this abstract domain
R is endowed with the abstraction function αR, e.g., αR([−2, 0]) = [−2, 1].

Example 4.1 Let us consider the training dataset D = {s1 = ((1, 1), l1), s2 =
((−1,−1), l2), s3 = ((−2,−2), l1)} in R2, an input sample x = (3, 3), and the pertur-
bation Pτ∞ with τ = 0.1. The abstract Minkowski distances di = δRp (αR(Pτ∞(x)), si ) in R
for the input perturbation are as follows:

d1 = [2(2− τ)p, 2(2+ τ)p],
d2 = [2(4− τ)p, 2(4+ τ)p],
d3 = [2(5− τ)p, 2(5+ τ)p].

Let us observe that d1 <R d2 <R d3.
On the other hand, for the data poisoning Pτ∞(si ), we have the following abstract distances
ei = δRp (x, αR(Pτ∞(si ))):

e1 = [2(2− τ)p, 2 · 4p],
e2 = [2 · 2p, 2(4+ τ)p],
e3 = [2(5− τ)p, 2(5+ τ)p].

It turns out that both e1 <R e3 and e2 <R e3 hold but neither e1 <R e2 nor e2 <R e1 hold,
since the abstract distances e1 and e2 overlap.
Hence, for the case k = 1, the abstract classifier CR

δp,1
allows us to infer stability of input

perturbation but not resilience to data poisoning. Stability of input perturbation can be inferred
because the sample s1 is proved to be the nearest to Pτ∞(x). For resilience to data poisoning
Pτ∞(si ), both s1 and s2 are selected by the abstract classifierCR

δp,1
, because the corresponding

abstract distances to x overlap.

Nevertheless, we put forward some sufficient conditions on an abstraction A guaranteeing
the equivalence of the best correct approximations in A of the distances for data poisoning
and input perturbation for the maximum norm.

Theorem 4.2 (Equivalence of data poisoning and input perturbation) Let Pτ∞ : Rn → ℘(Rn)

be a �∞ perturbation and A be a numerical abstraction. Assume the following conditions:

(i) A admits an abstraction function αA.
(ii) For all x ∈ X, there exists ax such that Pτ∞(x) = γ A(ax), i.e., each adversarial region

Pτ∞(x) is exactly representable in A.
(iii) For all x ∈ X and t ∈ Rn, x + t ∈ Pτ∞(x) ⇔ ‖t‖∞ ≤ τ .

Then, the best correct approximations in A of the distances for Pτ∞ input perturbation and
data poisoning coincide.
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Proof Since A admits an abstraction function αA, the best correct approximation of any
concrete function f exists and is αA ◦ f ◦ γ A. Thus, given an input x and a train-
ing sample s, to prove the equivalence we show that αA(δp(γ

A(αA(Pτ∞(x))), s)) =
αA(δp(x, γ A(αA(Pτ∞(s))))). By letting a � αA(Pτ∞(x))) and b � αA(Pτ∞(s))), we show
that δp(γ A(a), s) = δp(x, γ A(b)):

δp(γ
A(a), s) =

⋃

x′∈γ A(a)
δp(x′, s) [by (ii)]

=
⋃

x′∈Pτ∞(x)
δp(x′, s) [by (iii)]

=
⋃

t∈Rn ,‖t‖∞≤τ
δp(x + t, s)

=
⋃

t∈Rn ,‖t‖∞≤τ

∑n

i=1
|xi + ti − si |p

=
⋃

t∈Rn ,‖t‖∞≤τ

∑n

i=1
|xi − (si − ti )|p

=
⋃

t∈Rn ,‖t‖∞≤τ
δp(x, s− t) [by def. of ‖ · ‖∞]

=
⋃

t∈Rn ,‖t‖∞≤τ
δp(x, s+ t) [by (iii)]

=
⋃

s′∈Pτ∞(s)
δp(x, s′) [by (ii)]

=
⋃

s′∈γ A(b)
δp(x, s′) = δp(x, γ A(b)).

��
Let us stress that Theorem 4.2 concerns abstract domains A endowed with an abstraction

function and refers to the best correct approximations of distances, which may not coincide
with the compositional definition of abstract distances considered in Sect. 3.1.

5 Dealing with categorical features

Datasets may contain both numerical and categorical features, where the latter usually
range in nonnumerical sets of values, e.g., color ∈ {red, green, blue}. Most ML algo-
rithms can only process numerical features, hence they rely on some numerical encoding
of categorical features. One-hot encoding is a de facto standard encoding that consists in
replacing a feature having k categories with k binary numerical features. More precisely, if
F = {c1, c2, . . . , cq} is the set of values for a categorical feature f ∈ F , one-hot encoding

replaces f with q binary numerical features (x f
1 , x f

2 , . . . , x f
q ) ∈ {0, 1}q in such a way that

∀i ∈ [1, q] : x f
i = 1 ⇔ f = ci . Therefore, one-hot encoding implicitly introduces the

constraint
∑q

i=1 x
f
i = 1, which prevents a one-hot encoded sample from having more than

one categorical value. If these relational constraints between one-hot encoded numerical fea-
tures cannot be represented by an abstraction A, then an abstract classifier defined on A may
exhibit a significant loss of precision, as illustrated by the following example for intervals.

Example 5.1 (Loss of precision due to one-hot encoding) Consider data samples with a
categorical color ∈ {red, green, blue} and a numerical si ze ∈ R≥0. Let a′ � (red, 1),
b′ � (red, 3), and consider a dataset D = {(a′, l1), (b′, l2)}. By one-hot encoding, color
is replaced by (isRed, isGreen, isBlue) ∈ {0, 1}3, so that a′ and b′ are encoded as a �
(1, 0, 0, 1) andb � (1, 0, 0, 3). Consider an adversarial region R � {(r , g, b, si ze) | r , g, b ∈
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{0, 1}, si ze ∈ [0, 1]}. We observe that a is always closer than b to any vector x ∈ R, for any
Minkowski distance δp: In fact, we have that

δp(a, x) < δp(b, x) ⇔ p
√
|1− x1|p + xp

2 + xp
3 + |1− x4|p <

p
√
|1− x1|p + xp

2 + xp
3 + |3− x4|p

⇔ |1− x4| < |3− x4|
which always holds for x4 = xsi ze ∈ [0, 1]. Hence, 1NN classifies any vector in R as l1.

Consider the abstract 1NN classifier on the interval abstraction I and the Manhattan
distance δ1. Therefore, R is abstracted as αI4

(R) = r = 〈[0, 1], [0, 1], [0, 1], [0, 1]〉 ∈ I4,
and the abstract distances are as follows:

δI1 (r , a) = [0, 1] +I [0, 1] +I [0, 1] +I [0, 1] = [0, 4],
δI1 (r ,b) = [0, 1] +I [0, 1] +I [0, 1] +I [2, 3] = [2, 6].

Since the intervals [0, 4] and [2, 6] overlap, we cannot infer which of the two samples a and
b is the nearest to R, so that the abstract 1NN classifier returns {l1, l2}, i.e., no information at
all. This loss of precision depends on the interval abstraction, which is not able to represent
the constraint isRed, isGreen, isBlue ∈ {0, 1} and isRed + isGreen + isBlue = 1. ��

This additional loss of precision due to one-hot encoding could happen for zonotopes as
well, although this phenomenon is mitigated by the chance that zonotopes represent some
relational information between different one-hot encoded features through shared noise sym-
bols.

To avoid the loss of precision due to one-hot encoding, we partition the original adversarial
region R, abstractly represented by some a ∈ A, into q subregions Ri ⊆ R, each of them
abstractly represented by some ai ∈ A, where q is the overall number of values of the
categorical features perturbed in the adversarial region R. Then, we execute the abstract
classifier CA(ai ) for each abstract subregion ai , and for each of them we compute a sound
output set of labels. If, by repeatedly applying CA(ai ), it happens that the union of their
output sets of labels is the whole set L , then we stop and output L . This splitting process
will be such that every categorical feature of every subregion Ri will have exactly one
possible categorical value, so that within each subregion Ri there is no need for abstracting
the one-hot encoded categorical features. The final output will be obtained by collecting
all the labels for each ai , namely: CA(a) � ∪i∈[1,q]CA(ai ). This simple splitting strategy
over categorical features reduces false negatives generated by one-hot encoding at the price
of a higher certification time, since this procedure generates a new sub-problem for every
possible combination of categorical values. Let us remark that if the perturbation of an input
sample concerns categorical values only (i.e., numerical values are not perturbated)—this
can happen in individual fairness certification—then this partitioning approach boils down to
a concrete (and, therefore, trivially exact) verification, at the cost of an exponential number
of sub-problems. More precisely, if m is the maximum number of different categories and p
is the number of perturbed categorical features, then we need to check O(mp) sub-problems.
This exponential blow-up is expected for an exact stability certification procedure with no
false negatives. To balance cost and precision, one could allow only certain features to be
split. (Unsplit features behave as numerical ones, and soundness still holds.) We applied this
splitting technique in our experiments on individual fairness certification, where reference
datasets typically include categorical features.
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6 Experimental evaluation

We implemented our abstraction framework for kNN classifiers in a verification tool called
NAVe andwritten in Python, andwe instantiated itwith the interval and zonotope abstractions.
The source code of NAVe together with datasets and scripts for reproducing our experimental
results is available on GitHub [12].

6.1 Setup

For our experiments, we considered some standard datasets used in robustness certification
of kNN [42] and fairness verification of deep neural networks [29, 38]. Following [38], the
datasets are preprocessed as follows:

(1) rows/columns with missing values are dropped;
(2) when needed (Letter, Pendigits and Satimage already have explicit test sets), datasets are

split into training (≈ 70–80%) and test (≈ 20–30%) sets, resp., D and T ;
(3) categorical features are one-hot encoded;
(4) numerical features are scaled to [0, 1].

The details of these datasets, together with the accuracy of kNN on their test sets, are
summarized in Table 1. In our individual fairness experiments, we consider the Noise-Cat
similarity relation as defined by Ruoss et al. [38], where two individuals x, y ∈ X are similar
when:

(1) given the subset Noise ⊆ N of indexes of all numerical features and a noise threshold
ε ≥ 0, for all i ∈ Noise, |xi − yi | ≤ ε;

(2) given a subset Cat ⊆ N of indexes of “sensitive” categorical features, both x and y are
allowed to have any category for features with indexes in Cat;

(3) every other categorical feature of x and y, i.e., with index not in Cat, must be the same;
namely, for any index i /∈ (Noise ∪ Cat), xi = yi holds.

Fairness experiments with ε = 0 represent a pure Cat perturbation of sensitive categorical
features only, leaving numerical features unaltered: In this case, our certification method is
complete, i.e., the percentages of individual fairness for ε = 0 turn out to be exact (i.e., not
a lower bound).

We instantiated our parametric abstract kNN classifier of Theorem 3.6 to both intervals I
and zonotopesZ, andwe evaluated both theManhattan δ1 andEuclidean δ2 distances.Wecon-
sidered the �∞-perturbation Pε∞ for our stability experiments, with the magnitude ε ranging
in [0.001, 0.1] for stability experiments ([0.001, 0.05] for the dataset Letter), i.e., numerical
features can be altered from ±0.1% to ±10%. In the individual fairness experiments, we
considered the following Noise-Cat perturbations: For Noise, the numerical attributes were
perturbed with Pε∞ with ε ∈ [0, 0.05]; for Cat, the sensitive categorical attributes were race
for Compas and gender for German; when ε = 0, this boils down to a pure Cat perturbation.
The parameter k ranges in {1, 3, 5, 7}, where, following the standard practice for kNN, we
avoided even values of k as they are more likely to introduce tie votes in the classification.
We conducted all our experiments on a low-cost AWS virtual machine t2.micro instance, that
provides a baseline level of CPU performance through a single 2.5 GHz CPU and 1 GB of
RAM. Throughout the experiments, we mostly observed consistent time behaviors.
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Table 1 Summary of datasets

Dataset |D| training |T | test #feat #feat with one-hot #labels kNN accuracy %
k = 1 k = 3 k = 5 k = 7

Stability

Australian 483 207 14 39 2 77.8 80.2 82.6 82.6

BreastCancer 479 204 10 10 2 92.6 94.6 93.6 93.6

Diabetes 556 230 8 8 2 70.9 72.2 70.0 71.3

Fourclass 604 258 2 2 2 100 100 100 100

Letter 15,000 5000 16 16 26 95.7 94.6 94.2 94.3

Pendigits 7494 3498 16 16 10 97.7 97.8 97.5 97.5

Satimage 4435 2000 36 46 6 88.8 90.3 89.5 90.1

Fairness

Compas 4222 1056 10 370 2 58.4 59.1 60.2 61.1

German 800 200 20 56 2 73.0 71.5 74.5 77.0

6.2 Results

Tables 2, 3, 4, 5 report the percentages of test samples in T for which our NAVe tool proves
that the kNN classifier is stable, i.e., for all k and ε, we provide the following metric:

ProvableStabilityk,ε � |{(x, _) ∈ T | |CA
δi ,k(P

ε∞(x))| = 1}|/|T |
where A ∈ {I,Z} and i = 1, 2. As shown in Sect. 2.4, for fairness datasets provable stability
means provable individual fairness. For each distance δ1 and δ2, and for each dataset and
perturbation magnitude ε, we highlight in bold the percentage corresponding to the most
provably stable/fair kNN classifier. Due to incompleteness of the abstract kNN classification
(cf. Example 3.4), it is worth recalling that ProvableStabilityk,ε is a lower bound of the real
stability of kNN on the test set T .

As expected, the zonotope abstraction Z allows us to have a certification technique that
is generally more precise, and often much more precise, than that using the interval domain
I. The only exception is provided by the German dataset with ε = 0.02 where for the case
k = 1 intervals infer one more stable sample than zonotopes (overall, 85% vs. 84.5% of
provable stability; indeed, this may happen as shown in Example 3.5).

Our NAVe tool infers with the zonotope abstraction more than 80% of stability, indepen-
dently of k and distance δi , for:

(i) Australian for all ε ≤ 0.1;
(ii) BreastCancer for all ε ≤ 0.05;
(iii) Fourclass and Pendigits for all ε ≤ 0.03;
(iv) Diabetes, Letter and Satimage for ε ≤ 0.005.

Of course, provable stability decreases with higher values of ε since stronger perturbations
are more likely to produce unstable behaviors, as well as more false positives among the
approximate output sets of labels. In particular, we observe that Diabetes exhibits the worst
stability scores, that together with a low accuracy (≈ 70%) hints that a diagnosis of diabetes
may be a hard task for which kNN does not perform well. On the other hand, the provable
stability of Letter seems to be negatively affected by the size of its training set D, as more
samples and more features are more likely to introduce ties between abstract distances.
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Table 6 Average certification
time per sample in seconds

Dataset Intervals I Zonotopes Z
δ1 (s) δ2 (s) δ1 (s) δ2 (s)

Australian 0.01 0.01 0.11 0.22

BreastCancer 0.01 0.01 0.06 0.05

Diabetes 0.11 0.07 0.55 0.58

Fourclass 0.04 0.04 0.35 0.40

Letter 5.44 4.97 21.89 22.64

Pendigits 0.26 0.57 9.99 9.70

Satimage 0.33 2.90 11.91 4.29

Compas 15.30 18.48 140.82 239.99

German 0.75 0.74 5.08 7.67

The fairness experiments show that kNN predictions on:

(i) Compas are rather unfair on the sensitive race category, since the average provable race
fairness for all k with ε = 0 is 64.7%;

(ii) German are rather fair on the sensitive gender attribute, since the average provable
gender fairness for all k with ε = 0 is 83.8%;

(iii) Compas are always more fair with k = 7;
(iv) German are mostly more fair with k = 1.

Table 6 shows the average certification time, in seconds, per input sample x and per
magnitude ε. This is computed as the average time for executing NAVe for all k ∈ {1, 3, 5, 7}
on a given input sample (i.e., average on the whole test set T ) and for a given magnitude ε

(i.e., average on the 8 magnitudes ε). Our certification technique turns out to be quite fast,
where the peak average time of about 4min is reached for certifying the individual fairness
of Compas samples with Euclidean distance through zonotopes, very likely due to one-hot
encoding that explodes the number of features from 10 to 370.

6.2.1 Robustness

Table 7 reports the percentages of provable robustness for the interval abstraction I and
Euclidean distance δ2. Recall from Sect. 2.3 that a classifier is robust when it is both stable
and accurate on its input sample, so that the provable robustness inferred by our tool NAVe
on a test set T is defined as follows: for all k and ε,

ProvableRobustnessk,ε � |{(x, lx) ∈ T | |CI
D,δ2,k(P

ε∞(x))| = 1, kNN(x) = lx}|/|T |.
For the sake of comparison with stability, ε is limited to 0.05 because for higher thresholds

the robustness percentages were too low. Let us recall that provable robustness is necessarily
less thanor equal to accuracy andprovable stability.As expected, robustness behaves similarly
to stability, where the relative comparison of Table 7 with stability must consider Table 4.
In particular, Australian, Diabetes and Satimage exhibit smaller lower bounds on provable
robustness w.r.t. stability, which is due to the lower accuracy of kNN on these datasets
(cf. Table 1). This observation turns out to be precise for the dataset Australian, where for
ε = 0.001 our tool NAVe infers 100% stability for any k (cf. Table 4): Hence, in this case,
robustness actually coincides with accuracy, as the lack of accuracy is the sole reason why
kNN is not robust. The same effect happens for Diabetes, where, for ε ≤ 0.005, stability
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ranges over 80%, while robustness is around 60%, once again due to lack of accuracy of
kNN classification.

7 Conclusion

We have shown how to design an abstract interpretation of k-nearest neighbor classifiers and
how this technique defines, to the best of our knowledge, the first robustness certification
framework for this popular ML algorithm. We implemented and experimentally evaluated
our verification technique. The experiments show that our approach is effective and precise,
and that kNN classification is generally robust for numerical perturbations less than ±3%.

As any formal verification method, our robustness certification technique is sound, mean-
ing that if a classifier is proved stable over an adversarial region R, then every input in R
will actually receive the same classification. However, our certification method, in general,
is not complete; namely, the verification may suffer from a precision loss, thus failing to
prove stability when this actually holds. This incompleteness makes our verification method
susceptible to false negatives, which is the primary limitation of our approach, shared with
any incomplete verification method. As discussed in Sect. 3.4, this issue can be mitigated by
employing more precise abstract domains to reduce the loss of precision or by partitioning
the adversarial region and applying the abstract verification tool to smaller inputs, similarly
to the splitting technique described in Sect. 5 for categorical features.

As future work, we plan to design a new numerical abstraction that can precisely track the
role of different features when comparing abstract distances between two samples. Ideally,
we would aim to achieve a complete stability certification of kNN.
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