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Abstract
This paper introduces a new dissimilarity measure between two discrete and finite probability
distributions. The followed approach is grounded jointly on mixtures of probability distribu-
tions and an optimization procedure. We discuss the clear interpretation of the constitutive
elements of the measure under an information-theoretical perspective by also highlighting its
connections with the Rényi divergence of infinite order. Moreover, we show how the measure
describes the inefficiency in assuming that a given probability distribution coincides with a
benchmark one by giving formal writing of the random interference between the considered
probability distributions. We explore the properties of the considered tool, which are in line
with those defining the concept of quasimetric—i.e. a divergence for which the triangular
inequality is satisfied. As a possible usage of the introduced device, an application to rare
events is illustrated. This application shows that our measure may be suitable in cases where
the accuracy of the small probabilities is a relevant matter.

Keywords Inefficiency measurement · Mixture of distributions · Statistical measures ·
Random interference · Rare events

1 Introduction

Measuring the similarity between two probability distributions is one of the grounds of
information theory, as clearly certified by the celebrated concept of entropy proposed by
[27]. Shannon’s entropy is a device used for stating whether a given probability distribution
is closer to a uniform random variable or a degenerate random variable having mass on a
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unique point. The former case is associated with the maximum level of information of the
considered random variable, while the latter is the minimum.

Nowadays, we are still witnessing the popularity of Shannon’s contribution, with several
information theorists following his route and working actively on concepts of similar-
ity between probability distributions. Indeed, such instruments find applications in several
information-theory contexts, like data clustering and compression, pattern recognition and
signal restoring (see, e.g. [1–3, 16, 20, 30, 36]).

An important generalization of Shannon’s entropy is Kullback–Leibler divergence (see
[17])—also called relative entropy—which is an instrument able to measure the similarity
between a probability distribution and a reference one. The property of assigning different
roles to the considered probability distributions explains the versatility of the relative entropy
when a random target is pursued. This is the case in several applied science contexts, ranging
from risk-neutral measures for option pricing in finance (see, e.g. [29]), to the assessment of
fluid turbulences in hydrodynamics (see, e.g. [37]), to information criteria for the selection of
the states in the environment of Markov switching models (see, e.g. [28]), to the multi-agent
collaboration mechanisms in the context of independent reinforce learning (see, e.g. [35]),
to the problem of nonnegative matrix factorization for reducing the dimension of a dataset
composed by nonnegative numbers (see, e.g. [13]) or to the challenging theme of fraudulent
reviewers detection in the environment of the E-commerce platforms (see, e.g. [10]).

Interestingly, Kullback–Leibler divergence can be considered a special case of Rényi
divergence (see [26]). Indeed, Rényi divergence is a family of similarity measures depending
on a nonnegative parameter—the so-called order. It is easy to show that the Kullback–Leibler
is the Rényi divergence of unitary order. The properties of the Rényi divergence are explored
in depth by [34].

From a purely methodological perspective, any given similarity measure brings peculiar
information on how the measured probability distributions differ. Thus, the same probability
distributions can be very farwhen one specificmeasure is employed, or they can even coincide
when changing the measurement device. More generally, one can say that two different
metrics provide different orders of the same set of probability distributions—of course, once
the law stating how the measure leads to the partial order is fixed. This explains the endless
scientific debate on how to conceptualize theoretically a way to measure the difference
between probability distributions (see, e.g. [5, 8, 19, 24] and, more recently, [32] and [7] we
also address the reader to the excellent survey of distance/similarity measures proposed in
[4]).

We notice that the divergences can be viewed as weak concepts of metric—or, in general,
as statistical distances—since they do not satisfy the standard axiomatization of metrics.
Indeed, a divergence is a statistical distancewhich is not symmetric—for a symmetric version
of the Kulback-Leibler divergence, see [14]—and violates the triangular inequality. Thus,
by following the arguments above, one can argue that statistical distances do not need to be
metrics for playing a relevant role in applications (see the discussion on this in [9]).

This paper enters this debate. It proposes a novel concept of similarity measure between
discrete and finite probability distributions. We consider a benchmark (target) probability
distribution and a to-be-measured one. The measure is based jointly on an optimization
procedure and a mixture decomposition of the considered probability distributions, with the
intervention of an additional random quantity. In particular, such a measure is the optimized
coefficient of a convex combination between the reference probability distribution and the
newly introduced one, where the combination is imposed to be equal to the to-be-measured
distribution.
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As we will see, the proposed dissimilarity measure is not a metric in that it violates the
symmetry property. Specifically, it is a quasimetric, i.e. a divergence for which the triangular
inequality holds true. It is worth noticing that also the Rényi divergence or order infinity—
which is the Rényi divergence as its order goes to infinity—fulfils the triangular inequality
(e.g. see [22]), being then a quasimetric. In this respect, we show that our proposedmeasure is
related to the Rényi divergence of infinite order in that it can be obtained through a monotone
transformation of it. As a consequence, we here offer a new dissimilarity measure producing
the same ordering of the Rényi divergence of infinite order.

This said the proposed dissimilaritymeasure brings some relevant innovationswith respect
to its Rényi-type counterpart. First, it is bounded. This property allows us to state how the
distance between two distributions is close to its theoretical maximal or minimal level. In this
respect, we notice that Rényi divergence explodes in some cases related to the presence of
null probabilities, making it inadequate to explore situations with rare events. Second, it has a
simple interpretation in terms of mixtures. This property provides a clear view of the discrep-
ancy between the considered variables. Third—in line with the mixture-based interpretation
presented above—the computation of the proposed measure leads to the identification of a
third distribution representing the random gap between the considered probability distribu-
tions. Such a gap has an important informative content in that it might be seen as the random
interference—the one with the minimum amount of disturbance—between the measured
probability distributions. In so doing, we also contribute to the theme of identifying the effi-
ciency gap in information-theoretical contexts (see, e.g. [33] and, more recently, [25]). This
opportunity is not given in the case of Rényi divergence of infinite order.

Furthermore, we offer here an original proof that our dissimilarity measure satisfies the
triangular inequality based on its geometric representation.

In line with the arguments above, the methodological proposal is tested over the paradig-
matic case of rare events. In doing so, we provide a proper illustration of the constitutive terms
compounding the dissimilarity measure, along with a description of the random interference.
Noticeably, we show that the considered dissimilarity measure penalizes the underestimation
of the probabilities of the rare events.

To further illustrate the features of the proposed measure, we show an application to the
binomial and normal distributions. This application also highlights some possible numerical
drawbacks produced, even in simple cases, by other divergences with unbounded values,
such as the Kullback–Leibler.

Finally, we present an empirical application of the proposed methodological device.
Specifically, we deal with financial data related to the Standard& Poor Index of the NewYork
Stock Exchange.Wemodel the distribution of the returns by using a normal and a generalized
Student’s t distribution. The outcomes of the empirical experiments certify that the consid-
ered dissimilarity measure is particularly appropriate for exploring real-world instances;
moreover, its properties lead to an intuitive interpretation of the considered phenomenon.

In addition, we show a preliminary extension of the dissimilarity measure to the case of
continuous probability density functions, providing an example for Gaussian distributions.

The rest of the paper is organized as follows. Section2 contains the definition of the
dissimilarity measure here introduced. Section3 outlines and discusses the properties of the
dissimilarity measure, along with the original proof of the triangular inequality. Section4 is
devoted to the application of the proposed methodology to the case of extreme events, to the
binomial and normal distributions. Section5 presents an introduction to the application of
theMDMnotion to continuous distributions and provides an example in the case of Gaussian
distributions. The last section offers some conclusive remarks.
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2 Definition of the dissimilarity measure

We consider the set of discrete probabilities on n possible outcomes and identify a given
distribution with the corresponding probability vector p = [p1, p2, . . . , pn] ∈ R

n , with
p ≥ [0] and ∑n

i=1 pi = 1, being [0] the null (n-dimensional) vector and the inequality
symbol ≥ has to be intended in a component-wise sense, so that p ≥ [0] is equivalent to
pi ≥ 0, for each i = 1, . . . , n. We collect such probability vectors in the set Pn .

From the geometric point of view, p is a point on the unit (n − 1)-dimensional simplex in
R
n . Consider a benchmark discrete probability distribution, with probability vector δ ∈ Pn ,

and another generic probability distribution X , with probability vector δX ∈ Pn . It is always
possible to write δX as the mixture—which here means convex combination—between δ and
another suitably defined probability vector δY , as follows:

δX = αδY + (1 − α)δ, α ∈ [0, 1]. (1)

In writing (1), we implicitly assume that δ, δX and δY are considered on the same n outcomes.
This is not restrictive at all, in that we can consider for all of them the union of the sets of
their possible outcomes, hence possibly obtaining some cases of null components in the
probability vectors. As we will see below, it is not a problem in our framework.1

Definition 2.1 Let δX and δ be two discrete probability distributions inPn , being δ the bench-
mark distribution and δX the investigated distribution. The Mixture Dissimilarity Measure
(MDM) between δX and δ is the smallest α ∈ [0, 1]—namely, α∗ = M(δX , δ)—such that
there exists a probability distribution δY (α∗) satisfying (1).

The distribution δY (α∗) can be defined as the random interference of the distribution δX

with respect to the benchmark δ.

In the light of the mixture formulation (1), we think Definition 2.1 deserves a geometric
interpretation inR

n . In (1), α and δY may be considered two indicators of how δX is similar to
the benchmark δ: roughly speaking, α is the “size” of the difformity—so that, the difformity
between δX and δ decreases as α decreases—and δY its “shape” or “direction”.

For every δX and δ > [0], there exist an infinite number of possible choices of α leading to
a δY (α) ∈ Pn such that condition (1) is true. Loosely speaking, the possible mixtures range
from a largeweight α—which implies the corresponding selection of a δY whose components
are rather similar to those of δX—to a small α – corresponding to a δY far from δX . It is clear
that the corner case α = 1—and, consequently, δY = δX—is not interesting at all. A way to
make the decomposition (1) as informative as possible is to solve the following:

Problem 2.2 Given δ, δX ∈ Pn, find the distribution δY ∈ Pn with the largest Euclidean
distance from δX and such that (1) is true.

Problem 2.2, which is directly related to Definition 2.1, may shade more light on the meaning
of MDM, and allows to find an easy way to compute α∗ = MDM(δX , δ) and δY (α∗).

In the case δ = δX , Problem 2.2 has the obvious solution α∗ = 0, for any δY ∈ Pn .
To solve Problem 2.2, for α > 0 rewrite (1) in the form

δY = 1

α

[
δX − (1 − α)δ

]
, α ∈ (0, 1], (2)

1 To simplify the notation, some dependencies can be omitted. In relation (1), α and δY depend on δ and
δX—such dependence is omitted in the employed notation; moreover, they are not independent quantities. In
particular, the selection of α leads to the consequent identification of the δY for which (1) is satisfied. In this
respect, we will state the dependence of δY on α by denoting δY = δY (α), when needed.
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Fig. 1 Two examples of graphical representation of the mixture decomposition of δX ; case n = 3. Left: the
benchmark distribution is set to δ = [1/3, 1/3, 1/3], the other considered distribution is δX = [0.2, 0.1, 0.7];
the value of α is set to 0.7 and, consequently, the δY for which (2) is satisfied is δY (0.7) ≈ [0.1429, 0, 0.8571].
Right: δ = [0.5, 0.3, 0.2], δX = [0.3, 0.6, 0.1], α = 0.5, and the δY leading to the validity of (2) is δY (0.5) =
[0.1, 0.9, 0]

and notice that, from the geometric point of view in R
n , δY lies on the line through δ and

δX , in the half line with origin in δX and non-containing δ. Figure1 illustrates a graphical
representation of the mixture decomposition by showing two examples in the case n = 3.

Formally, Problem 2.2 can be written as the constrained optimization problem

min
α

α

s.t. 1
α

[
δX − (1 − α)δ

] ≥ [0]
α ∈ [0, 1]

(3)

whose solution is

α∗ = 1 − min
δi>0

δxi

δi
. (4)

Clearly, the random interference δY (α∗)— obtained by (2)—lays on the boundary of the
unit simplex, so at least one of its components is null. See Fig. 1 for an illustration.

The optimized value α∗ is the inefficiency measure of assuming that δX coincides with the
benchmark δ. Its variation range is [0, 1], and inefficiency increases as α∗ does. The corner
cases α∗ = 0 and α∗ = 1 represent the situations where one has the minimum and maximum
level of inefficiency, respectively. The interference δY (α∗) is a random adjustment which
can be seen as the inefficiency gap in assuming that δX and δ are the same. Plugging α∗ and
δY (α∗) into (1), the probability distribution δX is obtained as a contaminated benchmark δ,
where α∗ describes the percentage of contamination while δY is the random term which is
responsible for such a contamination.

To illustrate the relations between the mixture distance M(δX , δ) and the distributions,
we provide a graphical analysis of the two examples considered in Fig. 1. Figure2 shows the
values of α∗ for distributions δX which have the same Euclidean distance— equal to 0.1, in
the represented cases—from δ on R

3. Figure3 shows the level sets of M(δX , δ), projected
on the plane of the first two components (probabilities). We remark how the mixture distance
depends on the relative location of δX and δ with respect to the simplex boundaries, with a
steeper increase along the boundary which is closest to δ. In other words, let i be the index
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Fig. 2 mdm α∗ for distributions δX which have Euclidean distance from δ equal to 0.1, with δ =
[1/3, 1/3, 1/3] on the top, and δ = [0.5, 0.3, 0.2] on the bottom. On the left, is a graphical representa-
tion of the simplex; on the right, is the value for α∗ relative to the projection of the circle on the horizontal
plane

of the minimum component of δ, the steepest increase in M(δX , δ) is produced by reducing
δXi below δi .

3 Properties of the dissimilarity measure

We now present the main properties of the MDM in Definition 2.1.
First of all, we state that the connection between the MDM and the Rényi divergence. The

proof is immediate, thanks to formula (4).

Property 3.1 Given δX , δ ∈ Pn, then M(δX , δ) = 1 − exp
{−d+∞(δ, δX )

}
, where d+∞ is

the Rényi divergence of infinite order, defined as

d+∞(δ, δX ) = sup
δi>0

log
δi

δXi
,

with the conventional agreement that δXi = 0 is associated to log(+∞) = +∞ and
exp{−∞} = 0, while δi = 0 gives log(0) = −∞.
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Fig. 3 Level sets, projected on the plane (p2, p1), of the MDM α∗ = M(δX , δ) with respect to δ =
[1/3, 1/3, 1/3] (left) and δ = [0.5, 0.3, 0.2] (right). The dot indicates the reference measure

Property 3.1 implies that the MDM and d+∞ induce the same ordering on the set Pn , for any
target distribution δ. Moreover, the properties of the Rényi divergence of infinite order can
be easily addressed to the MDM. The following proposition lists some relevant properties of
MDM.

Proposition 3.2 The MDM is endowed with the following properties:

1. M(δX , δ) ∈ [0, 1], for each δX , δ ∈ Pn.
2. Consider δX , δ ∈ Pn. Then M(δX , δ) = 0 ⇐⇒ δX = δ.
3. There exist two distributions δX and δ in Pn, such that M(δX , δ) 	= M(δ, δX ).
4. For every pair of distributions δ, δX ∈ Pn, then M(δX , δ) is unique.
5. M(δX , δ) = 1 ⇒ δX ≯ [0]. Moreover, if δ > [0], then: δX ≯ [0] ⇒ M(δX , δ) = 1.

Proof The proof proceeds in pointwise form.

1. This result follows from Definition 2.1, and a fortiori from the notion of mixture distri-
bution (e.g. see [21]).

2. In fact, thanks to (1), M(δX , δ) = 0 ⇒ δX = δ, and from Definition 2.1 it is easy to
obtain δX = δ ⇒ M(δX , δ) = 0.

3. It is simple to find a pair of distributions for which the MDM is not symmetric. For
instance, let us consider the particular case with δ the uniform distribution in Pn (i.e.
δi = 1/n, i = 1, . . . n), and δX , such that δX1 = 1

n + ε, δX2 = 1
n − ε, δXi = 1

n , i > 2, with
ε ∈ (

0, 1
n

)
. In this case, thanks to (4), M(δX , δ) = nε 	= M(δ, δX ) = nε

1+nε
.

4. This property is evident from (4).
5. If M(δX , δ) = 1, then formula (1) implies δX = δY (1), and we know that δY (1) has at

least one null component; if δX ≯ [0], i.e. δXi = 0 for some i , then the hypothesis δ > [0]
implies that maxi

{

1 − δXi
δi

}

= 1, so that and the constraints of problem (3) boil down to

α∗ = 1. Notice that the assumption that δ > [0] can be relaxed by stating that there exists
i = 1, . . . , n such that δXi = 0 and δi > 0.


�
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Of course, the MDM also satisfies the triangular inequality, being an increasing concave
transformation of d+∞.2 However, we find it worth providing an original proof of such a
property by following a geometric approach—on the ground of the formulation of the MDM
in Definition 2.1. To this aim, some technical preliminaries are needed.

The first technical result follows immediately from a simple geometric argument. We
enunciate it.

Lemma 3.3 Consider δ, δX ∈ Pn. Assume that M(δX , δ) = α∗, with random interference
δY (α∗). Then:

α∗ = ‖δX − δ‖
‖δY (α∗) − δ‖ , (5)

where ‖ · ‖ indicates the Euclidean norm.

Lemma 3.3 is useful for checking our second technical statement.

Lemma 3.4 Let us consider δA, δB , δC ∈ Pn. If ∃β ∈ [0, 1] such that
δB = βδA + (1 − β)δC , (6)

then

M(δA, δC ) ≤ M(δA, δB) + M(δB , δC ), (7)

and the three corresponding interference terms are equal: δYAC = δYAB = δYBC

Proof Since the three vectors δA, δB , δC are aligned, and δB is between the other two vectors,
a simple application of Definition 2.1 leads to δYAC = δYAB = δYBC ; let us indicate this
common interference vector as δY . Therefore, the four vectors δY , δA, δB , δC are aligned,
following this order, on the same segment on the unit simplex. Consequently, thanks to (5)
in Lemma 3.3, we obtain

M(δA, δC ) = ‖δA − δC‖
‖δY − δC‖ , M(δA, δB) = ‖δA − δB‖

‖δY − δB‖ , M(δB , δC ) = ‖δB − δC‖
‖δY − δC‖ .

We remember also that, thanks to the alignment of the vectors

‖δA − δC‖ = ‖δA − δB‖ + ‖δB − δC‖, and ‖δY − δC‖ ≥ ‖δY − δC‖.
It is now straightforward to obtain the thesis, in fact

M(δA, δC ) = ‖δA − δC‖
‖δY − δC‖ = ‖δA − δB‖

‖δY − δC‖ + ‖δB − δC‖
‖δY − δC‖

2 From Property 3.1, M(δX , δ) is an increasing and concave transformation of d+∞(δ, δX ). Therefore, given
the probability distributions δA, δB , δC ∈ Pn , the following holds

d+∞(δC , δA) ≤ d+∞(δB , δA) + d+∞(δC , δB ).

Let f : R → R increasing and convex, then

f
(
d+∞(δC , δA)

)
≤ f

(
d+∞(δB , δA) + d+∞(δC , δB )

)
( f increasing)

≤ f
(
d+∞(δB , δA)

)
+ f

(
d+∞(δC , δB )

)
( f concave).

�
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≤ ‖δA − δB‖
‖δY − δB‖ + ‖δB − δC‖

‖δY − δC‖ = M(δA, δB) + M(δB , δC ).


�

We are now in the position of checking the triangular inequality for the MDM.

Property 3.5 (Triangular inequality) For every choice of three vectors of probabilities
δA, δB , δC ∈ Pn, the following holds

M(δA, δC ) ≤ M(δA, δB) + M(δB , δC ). (8)

Proof To prove this result, we need a premise for the graphical reasoning proposed below.
If M(δB , δC ) ≥ M(δA, δC ), the inequality (8) is trivially verified. Otherwise, if the two ran-
dom interferences δY

AC
and δY

AB
associated to M(δA, δC ) and M(δA, δB) lie on the same

facet of the unit simplex boundary, then the comparison between the three probabilities is
equivalent to the comparison of δA, δB

′
, δC , where δB

′
is the vector belonging to both (i)

the level set {δ ∈ Pn : M(δ, δC ) = M(δB , δC )}, and (ii) the segment from δC and the ran-
dom interference δY

AC
associated to M(δA, δC ). The equivalence follows from the fact that

the level sets of M(δ, δB) and M(δ, δC ) are—in the relevant region of the simplex—given
by portions of parallel hyperplanes. In this case, being δA, δB

′
, δC aligned, the triangular

inequality (8) holds, thanks to Lemma 3.4.
For the graphical proof, remark that we can restrict the analysis to the region of the domain of
the MDM defined as the intersection T between the probability simplex and the plane trough
δA, δB , δC . This is justified by the fact that the random interferences are vectors aligned with
the two arguments of the MDM so that all the vectors δA, δB , δC , δYAC , δYBC , δYAB lie on
the same plane. We point out that the intersection T is a polygon whose sides lie on the
boundaries of the simplex. Moreover, the level sets of the MDM intersections with T are
similar polygons where each side is parallel to the corresponding boundary of T .
Consider a probability δC and let δA be any probability vector on a given level set ofM(δ, δC ).
The intersection L of this level set with T is the edge of a polygon. Figure4a represents a
case where the intersection is a triangle, but the same arguments apply to any polygon shape.
If δB belongs to the shaded region of Fig. 4a, we have M(δB , δC ) ≥ M(δA, δC ); therefore,
the inequality (8) is verified.
Consider the case in which δB belongs to the interior of the polygon delimited by the consid-
ered level set. As indicated in Fig. 4b, let us consider the (only) level set of M(δ, δB) that has
an entire side in common with L. Along this side (the thicker one in Fig. 4b), the triangular
inequality (8) holds, thanks to the reasoning put forward in the premise at the beginning of
this proof.
Therefore, if δA belongs to this (thicker) side

M(δA, δC ) ≤ M(δA, δB) + M(δB , δC ). (9)

Given δB and δC , for all δA ∈ L both M(δA, δC ) and M(δB , δC ) are constant. Moreover
M(δA, δB) reaches its minimum in the thicker region, lying the remaining part ofL on higher
level sets of M(δ, δB), increasing the right-hand side of (9), which continues to be verified.
The arbitrariness of δA, δB , δC completes the proof. 
�
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Fig. 4 Graphical proof of Property 3.5. The dashed-dotted line is the level set of the MDM with respect to δC

such that M(δ, δC ) = M(δA, δC ). The solid and thick lines on the right are the level set of the MDM with
respect to δC ; the thicker portion is common to the two-level sets shown

4 Applications

This section proposes some applications of the SMS to some simple cases: rare events and
common distributions.

4.1 Application to rare events

Rare events, i.e. events with low probability (or which occur with a low frequency), are of
great interest in many scientific areas. In fact, rare events are often also extreme in size.
Therefore, their effects can be relevant. For instance, some areas of interest are seismology,
epidemiology, economics and finance. In these fields, a measure of similarity may provide
a tool to evaluate the accuracy loss derived from the use of a given probability δX , instead
of the true one δ. The probability vector δX is commonly obtained by estimation. When
rare events are a matter of concern, like earthquakes or financial crashes, the MDM may be
suitable since it provides a measure that focuses on small probabilities: the MDM assigns a
larger value when a small probability is approximated by a smaller probability than a larger
one. Therefore, the underestimation of rare events probabilities is more severely penalized
than the overestimation.

To illustrate this behaviour, we compare the non-conformity between distributions mea-
sured by theMDM, themean absolute deviation (MAD:MAD(δ, δX ) = 1

n

∑n
i=1|δ−i−δXi |)

and the Kullback–Leibler divergence (KL: KL(δ, δX ) = DKL
(
δ‖δX ) = ∑n

i=1 δi log2
δi
δXi

).

We consider, as reference probability δ, the probabilities assigned by a Student’s t distribution
with ν = 7 degrees of freedom to 30 bins: 28 equally spaced between −15 and 15, and two
collecting the remaining probability: (−∞,−15] and (15,+∞). In this case, the rare events
are those in the tails of the distribution. As the degrees of freedom parameter ν decreases,
the probabilities of tail events increase (see Fig. 5 for an example with ν = 3, 7, 11). The
distribution δ with seven degrees of freedom is then compared with the distribution δX with ν

degrees of freedom. Therefore, when ν < 7 the distribution δX overestimates the rare events
probabilities, whereas when ν > 7, δX underestimates them. The choice of ν = 7 as refer-
ence case allows to compare δ with both over- and underestimating rare events probabilities,
by setting ν = 3, 4 . . . , 11 for δX .

From Fig. 6, it is clear that all the measures increase as ν gets far from 7, but the behaviour
is different for the three measures. First of all, we notice that all measures display asymmetric
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Fig. 5 Histogram of Student’s t histograms for different degrees of freedom. The described discretization is
applied. The horizontal scale simply indicates the order of the bin, rather than the value of the random variable

behaviours. KL is smooth, and the MDM and MAD are not. Considering the effect of rare
event probabilities, the main difference between the measures is that MAD and KL penalize
the overestimation of the rare event probabilities, whereas the MDM behaves oppositely:
underestimating small probabilities rapidly drives the MDM close to its maximum value.
This feature may be desirable in the study of rare, extreme and catastrophic events.

In addition, Fig. 7 shows the resulting interference random term δY related to the MDM in
the various cases. A possible interpretation is that when ν < 7, i.e. the rare event probabilities
are overestimated, the sample distribution δX is obtained by sampling a fraction α of times
from a distribution assigning larger probabilities on the “sides” of the distributions. In this
case, the fraction α is small; in fact, from Fig. 6 we can see that α < 0.1. Instead, for ν > 7,
i.e. in case of underestimation of small probabilities, δX is obtained sampling most of the
times—the fraction α is larger than 0.5 and gets quickly close to 1—from a distribution
concentrated around the mean. It is, therefore, possible to conclude that in the latter case, our
sample is highly contaminated, and so the MDM assigns a large dissimilarity measure.

4.2 Binomial and Gaussian examples

In this section, we show the results of the application of the MDM to two common distribu-
tions: the binomial and the Gaussian.

Consider the binomial distribution with parameters π ∈ [0, 1] andm ∈ N
+. Let δ ∈ Pm+1

be the reference distribution of the binomial with parameters π = 1
2 ,m = 10. Consider the

binomial distributions δX with parameters π = 0.1, 0.2, . . . 0.9 and m = 10. The MDM
rapidly increases, being around 0.89 for π = 0.4 and π = 0.6, and further increasing for π

farther from 0.5. We remark that when π is close to 0 or 1, some binomial probabilities are
very close to 0, producing numerical concerns for some unbounded divergences, such as the
Kullback–Leibler, that become extremely large or cause numerical overflows.
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Fig. 6 Values of the statistical distances MDM, MAD and KL between a probability δX obtained discretizing
a Student’s t with ν degrees of freedom, and the reference δ, which is a Student’s t with ν = 7

Fig. 7 Histograms of the interference distribution δY in the case of comparison between Student’s t distribu-
tions, with different degrees of freedom for δX

The interference term δY is shown in Fig. 8. This term essentially follows and compensates
for the asymmetry produced by the parameter π .

Consider the normal distribution with parameters μ ∈ R and σ > 0. Let δ ∈ Pn be
the reference distribution obtained discretizing the standard normal distributions (i.e. μ =
0, σ = 1) in n bins, symmetric around 0. Consider δX , the discretization of the normal
distribution with parameters μ = 0 and σ ∈ {0.2, 0.4, 0.75, 0.9, 1, 1.5, 2, 3, 4}. We notice
that the MDM rapidly increases towards 1 for σ < 1, reproducing the same phenomenon
discussed in Sect. 4.1 concerning the rare events. We also highlight, in this case, the possible
numerical overflows produced by unbounded divergences in the case of small σ . In fact, with
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Fig. 8 Histograms of the interference distribution δY in the case of comparison between binomial (π,m)

distributions, with m = 10, and different values of π

a small σ the extreme bins have infinitesimal probabilities. The interference term δY is shown
in Fig. 9, with a behaviour similar to the one shown in Fig. 7, with a reversed order. Also in
this case when small tail probabilities are underestimated, in addition to a large MDM, the
random gap term δY is concentrated around 0.

4.3 Empirical application

To show a possible way to benefit from the behaviour of MDM in case of rare events, we
propose a financial application. It is a stylized fact that financial return distributions display
heavy tails, i.e. the frequency of extreme returns is larger than what a normal distribution
accounts for. This fact is reflected by the common use of riskmeasures that explicitly consider
the probability of extreme events. Among the risk measures, the Value at Risk (VaR) can be
considered a benchmark (see [15]). The VaR is the negative of the percentile of the return
distribution, computed for a low probability level, usually 5%, or 1%. In other words, the
VaR5% is the level of loss that can be exceeded with a probability equal to 5%. As such, it is
a risk measure that focuses on the possible losses of a financial asset.

Our application considers the Standard & Poor Index (SPX) of the New York Stock
Exchange. Following common practices in this field, we model the return distribution by a
normal or a generalized Student’s t distribution (e.g. see [6, 12, 23]).3 Then, we estimate
the distribution parameters through maximum likelihood (ML), minimum KL divergence

3 Other models can be selected to take into account the skewness and other features of the returns distribution.
For instance, [11, 18, 31] consider the generalized non-central skew-t distribution as a more flexible model
to describe financial variables. However, the considered probabilistic assumptions are in agreement with the
mentioned relevant literature contributions and allow a clear and convincing empirical representation of the
methodological proposal.
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Fig. 9 Histograms of the interference distribution δY in the case of comparison between normal (0, σ ) distri-
butions, with different values of σ

and min MDM.4 Finally, we compare the historical VaR at the 5% level of the empirical
return distribution with the ones implied by the estimated distribution. We consider SPX
daily returns from April 2002 to April 2022 to take into account different market conditions,
such as expansion, stability and crisis. In this way, the return distribution displays the usual
stylized features: small mean (0.0002721), relatively high standard deviation (0.0122819),
negative skewness (−0.4480573) and high kurtosis (15.332965). See Fig. 10 for a graphical
representation of the empirical distribution. To make a more robust analysis of the features
of the application of the indicated estimation methods, we resample 1000 simulated samples
of the same size as the data (5035 observations), from the empirical distribution of the
returns. On each simulated sample, we estimate the normal and the Student’s t models with
the three methods: ML, min KL and min MDM. First of all, we highlight that the min
KL method numerically stucks 295 (i.e. about 30%) times. Figure11 shows the parameter
estimate distributions. The ones relative to the KL case are computed only on the successful
(about 70%) cases; the consequence is that the area under the displayed densities is 0.7, instead
of 1, leaving the out-of-scale values out of the plots. From the plots, we may conclude that
all the methods roughly agree on the mean of the normal (μ), and on the degrees of freedom
of the Student’s t (ν). Instead, the MDM overestimates the normal standard deviation (σ )
and the t scale parameter (s), probably to better account for the extreme event frequency.
Besides, we compute the VaR implied by the estimated distribution and compare them with
the sample realization. This allows computing the errors whose distributions are shown in
Fig. 11. In general, it is possible to conclude that the MDM minimization produces less

4 For KL and MDM, the distribution has been discretized in 25 equally spaced bins from the first and the 99th
percentile, plus two bins for the extreme percentiles.
The optimization is performed by a genetic algorithm to reduce the multiple local maxima issue.
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Fig. 10 Gaussian kernel smoothing of the distribution of the SPX daily returns, from April 2002 to April 2022

precise estimates because the variances are larger than the other methods. However, it is
worth noting that numerical convergence problems never occur. TheMDMmethod produces
the best results in two out of four cases: normal distribution, VaR5%; Student’s t distribution,
VaR1%. In the normal distribution, VaR1% case, the MDM is in between the others, whereas
in the Student’s t distribution, VaR5% it is the worst.

The results obtained by this non-exhaustive application may lead to the conclusion that
theMDMcan be a suitable tool for studying real datasets because its performances align with
other methods. The main advantage with respect to KL divergence is the numerical stability
which follows from the bounded range of the MDM.Moreover, the MDM produces a second
outcome: the interference distribution that may help interpret the phenomenon at hand.

5 Some remarks on the continuous case

This paper deals with discrete and finite probability distributions. An interesting avenue
of future research could concern the extension of the results to numerable or continuous
probability spaces. In this respect, we present here some initial remarks concerning the case
where P is the set of probability distributions endowed with density. Specifically, consider a
benchmark probability density function δ(s), and another probability density function δX (s),
with s ∈ R. Following the same reasoning put forward in Sect. 2, it is always possible to write
δX (s) as the mixture between δ(s) and another suitably defined probability density function
δY (s), as follows:

δX (s) = αδY (s) + (1 − α)δ(s), α ∈ [0, 1], ∀s ∈ R. (10)

Definition 5.1 Let δX (s) and δ(s) be two probability density functions, being δ(s) the bench-
mark distribution and δX (s) the investigated distribution. TheMixture Dissimilarity Measure
(MDM) between δX (s) and δ(s) is the smallest α ∈ [0, 1]—namely, α∗ = M(δX (s), δ(s))—
such that there exists a probability distribution δY (s, α∗) satisfying (10).
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Fig. 11 Distribution of the estimate parameters obtained through 1000 resampling from the empirical dis-
tribution. First line: normal distribution N (μ, σ ), mean μ, standard deviation σ . Second line: generalized
Student’s t, degrees of freedom ν, location m, scale s. For the KL case, the plots are drawn considering only
the simulations where numerical convergence is obtained (about 70%)

Fig. 12 VaR estimation errors. Differences between the VaR obtained by the estimated distributions and the
actual VaR of the samples. For the KL case, the plots are drawn considering only the simulations where
numerical convergence is obtained (about 70%)

The distribution δY (s, α∗) can be defined as the random interference of the distribution δX (s)
with respect to the benchmark δ(s).

The geometric interpretation in R
n cannot be provided in the continuous case. However,

Definition 5.1 can be related to the following

Problem 5.2 Given the densities δ(s), δX (s), s ∈ R, find the density δY with the largest

distance, in the sense of the norm ‖ f , g‖ =
√∫ +∞

−∞ ( f (s) − g(s))2 ds, from δX (s) and such
that (10) is true.

In the case δ(s) = δX (s), Problem 5.2 has the obvious solutionα∗ = 0, for any δY (s) ∈ P .
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To solve Problem 5.2, for α > 0 rewrite (10) in the form

δY (s) = 1

α

[
δX (s) − (1 − α)δ(s)

]
, α ∈ (0, 1]. (11)

and rewrite it as the constrained optimization problem

min
α

α

s.t. 1
α

[
δX (s) − (1 − α)δ(s)

] ≥ [0]
α ∈ [0, 1]

(12)

whose solution is

α∗ = 1 − inf
s∈{s∈R|δ(s)>0}

δX (s)

δ(s)
. (13)

5.1 Example (normal density)

In the case of parametric distribution functions, the application of the results above can be
affordable. In particular, for Gaussian distributions, the matter can be straightforward. In fact,
let the reference distribution δ(s) be a normal density with parameters μ ∈ R and σ > 0.
Consider another normal density δX (s), with parameters μX ∈ R and σ X > 0. In this case,

arginf
s∈{s∈R}

{
δx (s)

δ(s)

}

= argsup
s∈{s∈R}

{
s2

(
σ 2 − (σ X )2

)
+ s 2

(
μ(σ X )2 − μXσ 2

)}

therefore, from simple computations and (13), we obtain

if σ > σ X , s∗ = ±∞, α∗ = 1
if σ = σ X , s∗ = sign(μ − μX )∞, α∗ = 1

if σ < σ X , s∗ = μXσ 2−μ(σ X )2

σ 2−(σ X )2
, α∗ = 1 − σ

σ X exp
{
− (σσ X (μ−μX )2

2(σ 2−(σ X )2)

}

To illustrate this case, let δ(s) be the standard normal density (i.e. μ = 0, σ =
1), and consider the normal densities δX (s), with parameters μ = 0 and σ ∈
{0.2, 0.4, 0.75, 0.9, 1, 1.5, 2, 3, 4}. Figure13 presents the interference densities obtained in
this example. It deserves a remark the fact that the shape of the interferences is different with
respect to the discretized case (see Fig. 9), although the dispersions of the δYs are comparable;
moreover, the values of MDM follow a similar behaviour:

σ X 0.2 0.4 0.75 0.9 1 1.5 2 3 4
MDM discr. 1 1 1 0.9867 0 0.2749 0.4391 0.6175 0.7108
MDM cont. 1 1 1 1 0 0.3333 0.5 0.6667 0.75

6 Conclusions

This paper enters thewell-established debate in information theory on themeasurement of the
dissimilarity between two probability distributions associated with two random quantities.
Specifically, we introduce the MDM—a novel dissimilarity measure—coming out from a
joint application of a mixture distributions approach and an optimization model. Such a
measure is shown to be equivalent to theRényi divergence of infinite order, being an increasing
transformation of it. The proposed measure also provides the identification of the random
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Fig. 13 Interference distributions δY in the case of comparison between normal (0, σ ) distributions, with
different values of σ

interference appearing when comparing a given probability distribution with a benchmark
one.

We explore the main properties of the MDM. In doing so, we come to say that it is a
quasimetric, i.e. a divergence with the addition of the validity of the triangular inequality.
Furthermore—and differently from the Rényi divergence—the mixture nature of the MDM
leads to a clear geometric interpretation for such a measure. In this respect, we offer a novel
proof of the triangular property by following a geometric approach.

The proposed measure is tested in the context of rare events, showing a high level of
usefulness. Indeed, it reasonably penalizes the deviations from the rare event probabilities
more when such probabilities are underestimated than for overestimation.Moreover, as some
simple examples in the cases of binomial and normal distributions showed, when some
probabilities of the compared distribution δX are close to 0, the MDM yields a usable (large)
value, whereas other unbounded divergences—such as the Kullback–Leibler—can incur in
numerical overflows.

Importantly, the versatility of the proposed quasimetric allows its applicability over a wide
set of real-world contexts, like pattern recognition and forecasting algorithms for finance and
engineering studies.

As an avenue of future research, the MDM can be extended to the uncountable and
continuous cases. We present some preliminary results in the case of continuous probability
density functions, and an example with Gaussian distributions (see Sect. 5). We may observe
that the comparison between the normal instance in the discrete case and in the continuous
one suggests some remarkable differences in the behaviour of δY . This evidence gives that
the continuous case does not lead in general to the same results as the discrete one— hence,
supporting the effects of the discretization on the interference. From a different perspective,
one does not have substantial deviations in terms of α∗.

We also notice that the continuous normal distribution is associated with affordable com-
putations, while other cases present formulas that cannot be easily simplified. In conclusion,
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we admit that the generalization of the MDM to the continuous case is a challenging oppor-
tunity for going on with further research.
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