Knowledge and Information Systems (2024) 66:2747-2767
https://doi.org/10.1007/510115-023-02046-7

REGULAR PAPER

®

Check for
updates

An automated approach for binary classification on
imbalanced data

Pedro Marques Vieira' - Fatima Rodrigues'2

Received: 2 June 2023 / Revised: 5 September 2023 / Accepted: 7 December 2023 /
Published online: 12 January 2024
© The Author(s) 2024

Abstract

Imbalanced data are present in various business sectors and must be handled with the proper
resampling methods and classification algorithms. To handle imbalanced data, there are
numerous resampling and learning method combinations; nonetheless, their effective use
necessitates specialised knowledge. In this paper, several approaches, ranging from more
accessible to more advanced in the domain of data resampling techniques, will be considered
to handle imbalanced data. The application developed delivers recommendations of the most
suitable combinations of techniques for a specific dataset by extracting and comparing dataset
meta-feature values recorded in a knowledge base. It facilitates effortless classification and
automates part of the machine learning pipeline with comparable or better results than state-
of-the-art solutions and with a much smaller execution time.

Keywords Imbalanced classification - Resampling - Meta-learning - Automated machine
learning

1 Introduction

Several current real-world datasets are imbalanced by nature, in that they have one or some
classes underrepresented compared to the other class or classes. The class imbalance problem
arises in multiple areas, including telecommunication, bioinformatics, fraud detection, and
medical diagnosis. The best approach to handle imbalanced data highly depends on the
nature of the data. The methods and combination of methods proposed are abundant in
various conceivable outcomes, and most times they require specialised knowledge to be used
correctly. As such, this paper focuses on an open-ended current problem associated with

B Pedro Marques Vieira
1160634 @isep.ipp.pt

B Fatima Rodrigues
mfc@isep.ipp.pt

1 ISEP, Polytechnic Institute of Porto, Rua Dr. Anténio Bernardino de Almeida, Porto 4249-015,
Portugal

Interdisciplinary Studies Research Center (ISRC), Porto, Portugal

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-02046-7&domain=pdf

2748 P. M. Vieira, F. Rodrigues

machine learning (ML) tasks, being a new proposal to automate imbalanced classification,
applied to different case study solutions.

Classification algorithms for imbalance scenarios applied without proper data resampling
or a cost-sensitive approach, for instance, tend to perform better for well-represented classes
and worse for underrepresented classes. In these cases, the underrepresented class tends to be
the one with more interest. Multiple strategies have been proposed to address class imbalance
problems. However, there is no general guidance on when to use each technique.

In addition, combining different data resampling techniques, classification algorithms,
and multiple hyperparameter optimisations makes the possibilities for evaluating the desired
solution endless. Thus, a solution to automate and facilitate these imbalanced classification
tasks is needed to get better and faster results.

The goal of this study is to develop a system to automatically prepare an imbalanced dataset
to be used by a classifier. To accomplish that, this paper includes a review of the state of the
art on related solutions, an implementation of the most promising balance techniques, and
testing different combinations of them in several public datasets using different classification
algorithms. The best balance technique, classification algorithm, and dataset meta-features
are recorded in a knowledge base to be recommended for new datasets.

The remainder of this paper is organised as follows: Sect. 2 reviews and discusses existing
solutions for imbalanced classification. The developed solution, which includes a learning
module and a recommendation module, is described in Sect. 3. The learning module is pre-
sented the criteria for dataset selection to be used in the development of the solution, the
meta-features extracted from the selected datasets, the evaluation metrics to assess model
performance, the resampling and classification algorithms considered, and lastly, the process
of selecting the best combinations of resampling and classification algorithms to use in the
learning module. In the recommendation module section, the selection process for the best
resampling and classification recommendations for a specific dataset is described. Section
4 presents an internal and external evaluation of the recommendation module. The internal
evaluation compares the recommendation module results with the best resampling and classi-
fication algorithms obtained with the learning module. The external evaluation compares the
recommendation module results with the results obtained with an automated ML pipeline
framework. The main conclusions and prospects of future work are disclosed in the final
section.

2 State of the Art

The research described in this paper sits at the intersection of two major areas: imbalanced
classification and automated ML (AutoML). In this section, an overview of both study fields
will be provided, along with some AutoML frameworks.

2.1 Imbalanced data

A dataset becomes inherently imbalanced when one class is heavily underrepresented, in
their instances, regarding the rest of the classes, in two-class or multi-class datasets. The
underrepresented class is designated as the minority class, which has few instances, contrarily
to the majority class(es) which has several instances. In this paper, we only focus on the two-
class imbalanced learning problem. As such, the minority class is typically the one with the
most interest, being represented as the positive one, which corresponds to the class where

@ Springer

An automated approach for binary classification... 2749

the correct prediction is more important. The minority class is usually rare, extreme, or
unusual in some capacity and faces abundant examples of the majority class. As a result, the
need to identify or predict the minority class emphasises how difficult this problem is. The
imbalanced ratio of a dataset can be defined as Eq. 1 [1], where N_ and N are cardinalities
of the minority and the majority classes, respectively.

_ N_

IR = —
Ny

ey

However, this ratio can also be expressed, for example, in (1:50), which means that for
every one example in the minority class, there are fifty examples in the majority class.

This imbalance property can be categorised into a slight and a severe imbalance [2]. The
former applies when the distribution of examples in the training dataset is uneven by a small
margin, for example, a distribution of (2:3), and the latter applies when the distribution of
examples in the training dataset is uneven by a large margin, such as (1:100) or more. A slight
imbalance of the classes is often not a problem because predictive modelling can be achieved
without degradation of results [3]. This can happen because, sometimes, the less represented
classes are not the most relevant ones, depending on the aim of the work, or when the classes
are well separated [1].

2.2 Strategies for handling imbalanced data

Imbalanced learning has been receiving plenty of scientific attention, partly due to its utility in
real-world applications. As a result, numerous authors have thoroughly investigated the topic.
General surveys of the area can be found in the works [2—5]. The existing approaches to learn-
ing under imbalanced domains are divided into four main categories: data pre-processing,
special-purpose learning methods, prediction post-processing, and hybrid methods [4]. In
this paper, we shall focus on the combination of data balancing methods with classification
algorithms.

Data balancing techniques can be divided into weighing the data space when using cost-
sensitive procedures or distribution adjustments when resampling the data. This research
focuses on distribution adjustment strategies that alter data distribution to more accurately
reflect the cases that are more important but underrepresented. Consequently, distribution
change and more specifically data sampling algorithms change the composition of the training
dataset to improve the performance of a standard ML algorithm on an imbalanced classifi-
cation problem [3].

Data oversampling involves duplicating examples several times of the minority class
or synthesising new examples from the minority class from existing examples. Examples
include the synthetic minority oversampling technique (SMOTE), adaptive synthetic sam-
pling approach (ADASYN), borderline SMOTE, SVM SMOTE, and k-means SMOTE.
Fernandez et al [3] present an overview of concepts based on the SMOTE algorithm [6].

Data undersampling involves deleting examples from the majority class, such as randomly
or using an algorithm to carefully choose which examples to delete [3]. Algorithm exam-
ples are random undersampling, condensed nearest neighbour, Tomek links, edited nearest
neighbours, neighbourhood cleaning rule, and one-sided selection [7].

Additionally, multiple oversampling and undersampling approaches can be combined.
Examples can be SMOTE and random undersampling, SMOTE and Tomek links, and SMOTE
and edited nearest neighbours [7]. When applying undersampling there is a risk of losing

@ Springer

2750 P. M. Vieira, F. Rodrigues

important cases, and when applying oversampling there is a risk of overfitting because of the
replication of certain cases.

For a classification algorithm, the optimal resampling methods are different for different
imbalance datasets. Given an imbalanced dataset, the best resampling method is also differ-
ent when different classification algorithms are applied [8]. Therefore, the selection of the
resampling method is related to the classification algorithm as well as the data characteristics.

2.3 Automated Machine Learning

Knowledge Discovery from Data (KDD) is a multi-step process that uses algorithms for each
step, including data cleaning, data pre-processing like data labelling, handling imbalanced
classes, and feature selection. Next, one or more ML algorithms are trained on the data,
followed by knowledge evaluation and refinement. All of these steps are repeated numerous
times [9]. Given the variety of KDD tasks and the abundance of ML algorithms, one major
challenge is how to choose the best algorithms among the many candidate algorithms that
are available for each one of the KDD steps.

The process of automated algorithm selection for each step of the KDD process has
received a lot of attention, originating a new research area—Automated Machine Learning
(AutoML). AutoML aims to improve the current way of building ML applications by automa-
tion [10]. Its key objectives are to reduce the amount of time and resources needed to develop
accurate prediction models, support the early implementation of the best solutions, and save
time and resources without sacrificing model accuracy. Numerous authors have thoroughly
covered the subject of AutoML including high-level overviews [11], to specific issues such as
pipeline creation [12], meta-learning [13], and empirical benchmarks of various techniques
[10].

In AutoML, methods that are based on meta-learning have shown substantial success
concerning algorithm selection. Meta-learning is the process of learning from past experience
gathered through the application of learning algorithms to a wide range of datasets, with the
end goal of minimising the amount of time required to learn new tasks [13]. The meta-learning
strategy is based on learning from dataset characteristics known as dataset meta-features and
prior model evaluations to automate algorithm selection. The dataset meta-features permit us
to discern what properties the various learning tasks share that make some algorithms more
effective at learning them.

Although the goal of AutoML is to automate the complete ML pipeline, the main devel-
opments focus only on algorithm selection and hyperparameter optimisation [10] known as a
CASH problem [14]. The selection of pre-processing methods is a relatively new but rapidly
expanding research area in AutoML. Since pre-processing involves 50% to 80% of the overall
KDD process [9], it plays a significant role as it is one of the most expensive steps.

Specific works for pre-processing based on meta-learning include noise filter selection
[15] and feature selection [16—18]. Concerning imbalanced learning, to the extent of our
knowledge, only two works addressed the automation of imbalanced learning. The first study
was conducted by the authors in [8]. They adopt a learning-to-rank approach by selecting
the top-K most promising imbalance handling methods using data characteristic measures.
The rank of the imbalance handling methods on the dataset is obtained by integrating the
ranks of the k neighbours. According to the recommended rank and personal bias, the most
appropriate imbalance handling method is picked out. Concerning our proposal, this work
has aspects significantly different, such as the optimisation criteria and the meta-learning
approach based on a learning-to-rank approach. The other work is the Automated Imbalanced

@ Springer

An automated approach for binary classification... 2751

Table 1 AutoML frameworks

Framework Cash Search Pipeline Pre- Feature Data

solver space structure Processing Selection Balancing
Auto- Bayesian Iterative Semi Missing value Yes No
Sklearn Algorithms Fixed Imputation
TPOT Genetic H20 Variable limited Yes No

Progr Pipelines
H20 Grid Scikit-learn Fixed Normalisation Yes No
AutoML Search Pipelines One-hot

Encoding

Classification (ATOMIC) method [19] which applies AutoML specifically for imbalanced
classification. Like our work, they extract meta-features from the datasets, but differently, they
use meta-learning, building a model on the meta-data, which in turn recommends appropriate
algorithms according to the learned meta-model. Therefore, the solution is computationally
complex and only builds models using the Random Forest learning algorithm.

Also, AutoML frameworks permit building ML pipelines automatically, which mainly
involves defining the pipeline structure followed by the selection of algorithms and their
hyperparameters. However, the first concern to note is that most of them focus only on some
parts of the ML pipeline [20].

For instance, Auto-sklearn framework [21] consists of a configuration space, a Bayesian
optimiser, a meta-learner, and a model integrator. Auto-sklearn uses a Bayesian optimiser
to solve the generalised CASH problem and obtain the optimal predictive model. In addi-
tion, Auto-sklearn integrates two techniques to further improve algorithm performance: first,
a meta-learner to obtain the initial configuration space according to prior information to
improve the efficiency of the algorithm and, second, a model integrator to combine multi-
ple ML pipelines to improve the algorithm’s accuracy. It can do parallelisation on a single
computer or in a cluster on a limited time budget.

TPOT [22]is an AutoML framework that optimises pipelines using genetic programming.
Using grammar, ML pipelines are expressed as trees where different branches represent
distinct pre-processing pipelines. These pipelines are then optimised through evolutionary
optimisation. To reduce overfitting that may arise from the large search space, multi-objective
optimisation is used to minimise the pipeline complexity while optimising performance [22].
To reduce the search space is also possible by specifying a pipeline template, which dictates
the high-level steps in the pipeline.

Finally, there is also H20 AutoML [23], an ML framework with APIs in R, Python, Java,
and Scala and a web GUI. Its main feature relies on the efficient training of ML algorithms (e.g.
GBMs, Random Forests, Deep Neural Networks, and GLMs), yielding a diverse amount of
candidate models that are exploited by stacked ensembles to produce a powerful final model.
Key aspects of H20 AutoML include its ability to handle missing or categorical data natively,
its comprehensive modelling strategy, including powerful stacked ensembles, and the ease
with which H20 models can be deployed and used in production environments.

Table 1 presents a summary of the main characteristics of the AutoML frameworks here
described.

A rigorous evaluation of these AutoML frameworks can be found in the 2022 OpenML
AutoML Benchmark [24].

@ Springer

2752 P. M. Vieira, F. Rodrigues

<<component>> gl

HIC
gl

Learning

g] (<<component>> &]
Classifier Learning Recommender
<<component>>]

Optimi

<<component>> g]
Machine Learning
Controller

<<component>>] O g] A g O <<component>> §]
Dataset File Data Rele_aE] Data Retrieval Data Manager DD:gManager Knowledge Base

Machine Learning
Controller

Fig.1 Component diagram

When analysing all these frameworks there are not any advanced data balancing methods
in the context of AutoML, most frameworks offer basic data pre-processing operations and
some specific feature selection pipelines, and there are few flexible approaches. In addition,
as most frameworks automate pipeline creation, new functionalities are difficult to include,
as all of these tools restrict the maximum number of steps. To make AutoML truly available
to users, the definition and integration of new facilities are necessary. Moreover, automated
imbalanced classification is still in its early days; therefore, the contribution of this paper is
to implement a new, easy-to-use application that automates the classification of imbalanced
datasets even for less experienced users, mainly because few tools specialise in imbalanced
datasets.

3 Developed solution

The application that will be described was built in Python and is available, in a GitHub
repository [25], as free and open-source software, licensed as GPL 3.0 [26].

The developed application implements two separate but related modules: the learning
module, which creates a knowledge base that is used by the recommendation module. The
learning module mainly involves the evaluation of balancing and classification algorithms on
several datasets, the extraction of meta-features from the datasets, and building a knowledge
base with all the information necessary for the recommendation module to suggest the best
balancing and classification algorithm for a new dataset without having to run the entire ML
pipeline.

To better understand this application, it was envisioned the architecture of the solution
expressed as a component diagram in Fig. 1.

A dataset file should be loaded in the application using the data retrieval component that
is responsible for reading the dataset file and that is called by the ML controller component.
Then, the ML controller component communicates with the learning component, at the early
stages of the application, and with the recommendation component, at the late stages of the
application. The learning controller is composed of the handling imbalanced classification
(HIC), the classifier, and the optimiser components.

This first component applies different techniques to handle imbalanced classification,
primarily in the pre-processing stage of the ML pipeline. The classifier component should
select the most appropriate classification algorithm for the balanced dataset, and then the
optimiser component improves the selected classifier by optimising its parameters. When
the best combination of resampling and classification algorithms is found, the ML controller

@ Springer

An automated approach for binary classification... 2753

component uses the data manager component that is responsible for writing to the knowledge
base all the information concerning this ML pipeline.

3.1 Learning module

The ultimate goal of the learning module is to build a knowledge base with the best features
necessary for the recommendation module to suggest the most performing resampling and
classification algorithms to process an unbalanced binary dataset. For that, it will be described
next: the datasets selected, the dataset meta-features extracted, the evaluation metrics, and
the resampling and classification algorithms used.

3.1.1 Datasets

Several imbalanced datasets were chosen from different business domains. The aim is to
always choose publicly available datasets without needing to do specific data cleaning tasks
before using them. In addition, it was also ensured to have a different ratio of proportions of
imbalanced data across the diverse datasets.

Initially, it was analysed several candidate datasets from websites like UCI Machine Learn-
ing Repository [27], KEEL—Knowledge Extraction based on Evolutionary Learning [28],
OpenML, Kaggle [29], and Google Dataset Search [30]. Then, it was selected to work with
KEEL website because it listed the diverse datasets by the imbalanced ratio in an organised
manner with key information. Afterwards, it was also selected to work with OpenML since
it provides plenty of datasets to choose from and has an easy-to-use and well-documented
API (application programming interface) [31].

At the time of this paper’s development, the OpenML API provided 125 datasets when
filtering the datasets that have an active status, for binary classification problems, with the
number of instances (rows) between 200 and 10000, the number of features (columns) less
than 500 and with an imbalance ratio above 2. Of these 125 datasets, some datasets were
repeated since they have different versions of the same dataset; in this case, it was selected the
most recent one, discarding the older ones. Other datasets were not possible to use because it
was not conceivable to provide a decent enough evaluation metrics score. They needed major
individual data pre-processing tasks that were not the point of this application to make. From
the 125 initial datasets provided by the OpenML API, 53 datasets were used. For the same
criteria selection, it was also selected 12 datasets from the KEEL website, getting a total of
65 datasets to be used. For these 65 datasets, it was found that the imbalanced ratio ranges
from 1.820 (minimum) to 85.880 (maximum), averaging 14.501 with a standard deviation
of 19.301.

3.1.2 Dataset meta-features

Meta-features for imbalanced classification refer to characteristics or properties of datasets
that can provide insights into their level of class imbalance and potential challenges when
applying ML algorithms to them. These features are often used to pre-screen or analyse
datasets before selecting an appropriate resampling and classification algorithm for an imbal-
anced classification task. The work [32] provides an excellent survey and evaluation of dataset
meta-features for classification tasks that are organised in the following taxonomy:

e complexity: estimate the difficulty in separating the data points into their expected classes.

@ Springer

2754 P. M. Vieira, F. Rodrigues

e concept: estimate the variability of class labels among examples and the density of the
examples.

e general: general information related to the dataset, also known as simple measures, such

as the number of instances, attributes, and classes.

itemset: compute the correlation between binary attributes.

landmarking: performance of simple and efficient learning algorithms.

model-based: measures designed to extract characteristics from simple ML models.

statistics: standard statistical measures to describe the numerical properties of data dis-

tribution.

The authors also made available an open-source meta-feature extraction library (pymfe
library [33]) that we use to extract the meta-features only from the original (not resampled)
datasets. All meta-features available in the library were extracted. To increase the expressive-
ness of the meta-features, for those represented by multiple values, we compute the average,
the standard deviation, the kurtosis, and the skewness. Other meta-features, like the “c2”
meta-feature of the group complexity, which is the value of the imbalance ratio, are solely
represented by a scalar. Some of them, like the “cov” meta-feature of the group statistics,
which is the absolute value of the covariance of distinct dataset attribute pairs, are already
expressed using a summary function.

3.1.3 Evaluation metrics

The choice of performance metrics is crucial to properly evaluating the effectiveness of a
prediction model. Several performance metrics extensively used in balanced domains cannot
be applied to the imbalanced case since the use of the majority class in the metric could
lead to a misleading evaluation of performance [4]. A well-known example is the accuracy
paradox when a high value of accuracy does not correspond to a high-quality model because
the model is skewed to the majority class and can mask the obtained results [2].

Choosing an appropriate metric is particularly difficult for imbalanced classification prob-
lems because most of the standard metrics that are widely used to evaluate classification
models assume a balanced class distribution and do not consider that prediction errors may
have different importance. Imbalanced classification problems typically consider the minor-
ity class more important than the majority class; as such, performance metrics must focus
on the minority class, which is a challenge because the minority class lacks the observations
required to effectively test the model. So, when working with imbalanced domains, different
evaluation metrics are important to use to achieve a more rigorous evaluation [2].

To evaluate our proposal, we have adopted standard metrics that are more appropriate for
imbalanced domains [2, 34]. According to the literature, we have selected 5 evaluation met-
rics: Balanced Accuracy, F1 score, ROC AUC, Geometric Mean, and Cohen’s Kappa. These
evaluation metrics are defined based on the confusion matrix as shown in Table 2. TP and TN
denote the number of positive and negative examples that are classified correctly, while FN
and FP denote the number of misclassified positive and negative examples, respectively. By
convention, the class label of the minority class is positive, and the class label of the majority
class is negative.

The most intuitive metric obtained from the confusion matrix is accuracy, which represents
the ratio of correctly predicted instances among all instances in the dataset. As already referred
this metric is sensitive to imbalanced data as it gives an over-optimistic estimation over the
majority class.

@ Springer

An automated approach for binary classification... 2755

Table 2 Confusion matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

The true positive rate (TPR), also known as recall or sensitivity, can be understood as the
probability that an observed positive instance is classified as positive by the ML classifier.
The true negative rate (TNR), or specificity, is the proportion of negative instances that
are correctly predicted. Another useful metric is Precision, which can be considered the
probability of success when an instance is classified as positive. They are given by the
following equations:

TP
TPR= ——— (2
TP+ FN
TN
TNR= —— 3)
TN+ FN
. TP
Precision = —— “4)
TP+ FP

These metrics are individually insufficient because none of them takes into consideration
the entire confusion matrix or all the information that the classifier provides, so they only
capture a partial perspective of the classifier’s performance [35].

The Balanced Accuracy (BA) [36] is the arithmetic mean of the TPR and the TNR, that is,
the average of positive and negative instances correctly classified. The BA, unlike accuracy,
is robust for evaluating classifiers over imbalanced datasets and is given by the following
equation:

_TPR+TNR
-—

BA %)

The F1 score [37] is defined as the harmonic mean of precision and recall. This measure
does not consider the ratio of negative instances correctly predicted by the ML classifier, so
two models with different TNRs have the same F1 score.

2 x precision x recall

F1 (6)

precision + recall

Another metric adequate to handle imbalanced data is the receiver operating characteristic
(ROC) curve [38]. It summarises the performance of the classifiers over a range of TPRs
(Eq.2) and false positive rates (FPRs). The FPR is defined by the equation:

FP

FPR= ——
FP+TN

)

When evaluating models with various error rates, the ROC curves can determine which
proportion of instances will be correctly classified for a given FPR. While ROC curves provide
a visual method to determine the effectiveness of a classifier, the area under the ROC curve
(AUC) is a performance metric obtained from ROC that can be used to compare classifiers
[39]. It is defined as the proportion of the unit square under the ROC curve. Thus, it takes

@ Springer

2756 P. M. Vieira, F. Rodrigues

values in the range [0, 1].
1
ROC_AUC =/ TPR(FPR™'(x))dx ®)
0

Another used metric is Geometric Mean (GM) [40] which represents class-wise weighted
accuracy rates and is defined as the geometric mean of sensitivity and specificity:

GM =~TPR xTNR (C))

Finally, Cohen’s Kappa (K) [41] is the measure of the agreement between the model
predictions and the actual class values as if they happened by chance and is given by the
following equation:

. 2x (TP xTN — FN x FP)
T (TP+FP)x (FP+TN)+ (TP +FN) x (FN +TN)

(10)

Cohen’s Kappa coefficient is more informative than accuracy when working with imbal-
anced data. However, it is likely to give low values for imbalanced data. The Cohen’s Kappa
coefficient takes values from —1 to +1.

3.1.4 Sampling and classification algorithms

The selection of resampling algorithms aimed to encompass those discussed in state-of-
the-art papers on imbalanced binary classification, representing various types of resampling
techniques, including undersampling, oversampling, and hybrid sampling.

In total, we tested 19 resampling algorithms, 11 undersampling techniques: Cluster-
Centroids, CondensedNearestNeighbour, EditedNearestNeighbours, RepeatedEditedNear-
estNeighbours, AIIKNN, InstanceHardnessThreshold, NearMiss, NeighbourhoodClean-
ingRule, OneSidedSelection, RandomUnderSampler, and TomekLinks; 6 oversampling
techniques: RandomOverSampler, SMOTE, ADASYN, BorderlineSMOTE, KMeansSMOTE,
SVMSMOTE; and 2 combinations of over- and undersampling techniques: SMOTEENN and
SMOTETomek.

In regard to classification algorithms, our aim was to select a diverse range of approaches,
including two tree-based algorithms (RandomForestClassifier and ExtraTreesClassifier), a
probabilistic algorithm (GaussianNB), a generalised linear algorithm (LogisticRegression),
a nonparametric algorithm (KNeighborsClassifier), a kernel method (Support Vector Clas-
sifier), and five tree-based ensemble learning algorithms (LGBMClassifier, XGBClassifier,
AdaBoostClassifier, BaggingClassifier, and GradientBoostingClassifier).

3.1.5 Process of discarding the worst performant combinations

This process started by executing 19 resampling techniques and 1 without any pre-processing
technique, combined with 11 classification algorithms, resulting in 220 different combina-
tions of resampling and classification algorithms. The 19 resampling techniques used, as of
the time of writing, are all available in the Imbalanced Learn library [42].

Testing 220 combinations of resampling techniques and classification algorithms on 65
datasets would be computationally very expensive, so iteratively, we discarded some of the
worst-performing combinations of resampling techniques and classification algorithms.

To do this selection, the 220 combinations of resampling techniques and classification
algorithms were first applied to one dataset randomly chosen, which permitted the association

@ Springer

An automated approach for binary classification... 2757

of each combination with a final score, resulting from the average of the 5 metrics previously
presented, and a corresponding ranking position, for example, position 22 from the 220 total
combinations. Next, two lists were initialised, one concerning the resampling techniques and
the other with the classification algorithms; both lists were ordered from better to worse scores
by the ranking position of the resampling technique and classification algorithm, respectively.

Then, when some more datasets were randomly chosen and processed, the various posi-
tions of each combination were analysed by ordering them first by the resampling technique
and then by the classifier. Next, the combinations with the worst scores, with values above
the third quartile (75% to 100%), were discarded for all the processed datasets.

In the first step, after 3 datasets were imported and processed, 5 resampling techniques
and 3 classification algorithms were discarded, leaving 120 combinations. The algorithm was
iteratively applied to several datasets, randomly chosen in each iteration. After five time steps,
a total of 16 resampling techniques and 8 classification algorithms were discarded, for a total
of 31 datasets processed. The rest of the datasets imported and processed no longer caused
discarding more combinations because it was not found any worse performing resampling
technique or classifier based on the previous explanation.

In the end, the remaining combinations were 12 with 4 resampling techniques (3 oversam-
pling techniques: RandomOverSampler, SMOTE, SVMSMOTE, and 1 combination of over-
and undersampling techniques: SMOTETomek) and 3 boosted tree algorithms: LGBMClas-
sifier, XGBClassifier, and GradientBoostingClassifier.

3.2 Recommendation module

The objective of this module is to make suggestions for the most effective resampling and
classification algorithm combinations to use with a specific imported dataset.

For this, we started to get the best recommendation by developing a multi-classification
model using the meta-feature values of each dataset as prediction features and, as a target
attribute, the combination of resampling techniques and classification algorithms. However,
overfitting occurred due to the complexity of the classifiers and the small size of the training
set: 65 instances (the number of datasets available), each with 257 meta-feature values, and
12 different target values to predict. Therefore, we calculated the best recommendations
following an instance-based learning approach.

For that, the Frobenius norm (the Euclidean distance of two vectors) is computed, which,
in this case, is the average of all Euclidean distances of each meta-feature of the current
imported dataset and the meta-features of each of the datasets in the knowledge base. The
Frobenius norm can be expressed as Eq. 11.

SN ans) (11)

i=1 j=1

IAllF =

This takes into consideration the previously processed 257 meta-features (m), the 65
imported datasets (1), and the values of each meta-feature (a; ;).

Next, the three smaller average values are selected, since a smaller value means that those
two datasets resemble the most in terms of the features used. By knowing the corresponding
datasets, the three combinations of resampling techniques and classification algorithms that
are distinct and were recorded as the better performant ones are recommended, in the learning
module, for those datasets.

@ Springer

2758 P. M. Vieira, F. Rodrigues

Dataset : car-good.dat

Results:

dataset pre processing algorithm result

analcatdata_germangss (id:1025) SVMSMOTE GradientBoostingClassifier 0.202055
poker-8 vs_6.dat SMOTE GradientBoostingClassifier ©0.227712

glassl.dat SMOTE XGBClassifier 0.275151

Fig.2 GUI recommendations output example

For instance, as illustrated in Fig. 2, submitting the “car-good.dat” dataset to the recom-
mendation module finds “analcatdata_germangss”, “poker-8_vs_6.dat”, and “glassi.dat”
as the datasets with the lowest Euclidean distances, 0.202055, 0.227712, and 0.275151,
respectively.

For those datasets, the best combinations of resampling techniques and classifiers found
by the learning module are (SVMSMOTE, GradientBoostingClassifier), (SMOTE, Gradient-

BoostingClassifier), (SMOTE, XGBClassifier), which are recommended.

4 Solution evaluation

The evaluation of the solution is conducted with two distinct steps, an internal evaluation and
an external evaluation. The former is made by analysing and comparing the recommended
results, with the results that were acquired by the learning module. The latter is made by
analysing and comparing the recommended results with the TPOT AutoML framework.

Concerning the datasets chosen to evaluate this application internally and externally, 15
datasets were randomly selected from the initial 65. However, it should be noted that both
internal and external evaluations depend on the performance of the recommendation system,
and this one works by searching for the datasets closest to the test dataset. So, these 15
test datasets were not considered in the knowledge base of the recommendation system, as
this would not make sense since the recommendation module is based on searching for the
datasets closest to the test dataset that is intended to find the best techniques to apply.

These 15 test datasets’ unbalanced ratios range from 2.307 (the minimum) to 67 (the
maximum), with an average of 18.662 and a standard deviation of 21.998. Table 3 displays
the datasets, their dimensions, and their imbalance ratio.

The evaluation metrics employed to assess the various solutions are the same as those
used in the creation of the knowledge base. Additionally, it was assumed that the minority
target class is the most relevant to predict.

The default parameters of all resampling and classification algorithms were used, and
for all the executions, it was addressed the guarantee of reproducibility with random_state.
Also, all the processors of the machine during the cross-validation step were used with n_jobs.
When it was possible to automatically adjust the class weights inversely proportional to class
frequencies, it was used the class_weight equal to "balanced" mode, or to specify the learning
objective function that the dataset is binary.

It was chosen a Stratified K-Fold cross-validation with 10 folds, repeated 3 times, with
different randomisation in each repetition, which is common practice in imbalance scenarios,
to assure a rigorous estimator performance.

Also, all evaluation tasks were executed with the same conditions of the same available
local computer resources.

@ Springer

An automated approach for binary classification... 2759

Table 3 Datasets selected to test the application

ID Dataset Lines x columns IR

D1 dis (OpenML ID:40713) 3772 x 30 64.034
D2 musk (OpenML ID:1116) 2000 x 100 5.488
D3 mfeat-fourier (OpenML ID:971) 2000 x 77 9.000
D4 Satellite (OpenML ID:40900) 5100 x 37 67.000
D5 arsenic-male-bladder (OpenML ID:947) 5590 x 5 22.292
D6 analcatdata_apnea2 (OpenML ID:765) 475 x 4 6.422
D7 regime_alimentaire (OpenML 1D:42172) 220 x 20 3.744
D8 page-blocks0.dat 5473 x 10 8.789
D9 dgf test (OpenML ID:42883) 3420 x 5 5.053
D10 cpu_small (OpenML ID:735) 8190 x 13 2.307
D11 analcatdata_birthday (OpenML ID:968) 365 x 4 5.837
D12 optdigits (OpenML ID:980) 5620 x 65 8.825
D13 kr-vs-k-zero_vs_eight.dat 1460 x 6 53.074
D14 analcatdata_lawsuit (OpenML 1D:450) 264 x 5 12.895
D15 JapaneseVowels (OpenML 1D:976) 9960 x 15 5.172

4.1 Internal evaluation

Regarding the internal evaluation, the recommendation module will never perform better
than the learning module; it may present an equal performance if it returns a combination of
resampling and classification algorithms equal to those of the learning module or worse if one
of the algorithms it proposes is different. This happens because the learning module tests all
potential resampling and classification algorithm combinations before choosing the optimal
one. Table 4 presents the combinations of resampling and classifier algorithms obtained
with the learning module and with the recommendation module (the first recommended
combination of the three combinations available) when executing with those 15 datasets.

As can be seen from Table 4, for only 3 datasets (D2, D5, and D6), the recommendation
module gives the same suggestions as the learning module, but 7 recommendations have
one of the algorithms, balancing and/or classification, in common with those given by the
learning module.

Next, we will quantitatively assess both modules. The performance obtained from the
combination of balancing and classification algorithms suggested by the learning module
(LM) and the recommendation module (RM) is shown in Table 5, along with the values of the
evaluation metrics Balanced Accuracy (BA), F1 Score (F1), ROC_AUC (AUC), Geometric
Mean (GM), and Cohen’s Kappa (K).

Concerning imbalance classification evaluation, choosing an appropriate metric is chal-
lenging because not all classes or prediction errors are equally important; they depend on
the context of the problem. But, in this paper, we do not have a specific problem to analyse
but several datasets from different business domains, so we averaged the various metrics to
cover different aspects of the model’s performance, such as accuracy, precision, recall, and
overall agreement, and thus had a more holistic assessment of their performance.

Stratified k-fold cross-validation is a robust technique for assessing the performance of
ML models. However, it is important to consider factors such as the magnitude of differences,

@ Springer

2760

P. M. Vieira, F. Rodrigues

Table 4 Resampling and classification algorithms of both modules

Learning module

Recommendation module

Dataset Resampling Classification Resampling Classification
D1 RandOverSampler GradBoostClassif RandOverSampler LGBMClassif
D2 RandOverSampler XGBClassifier RandOverSampler XGBClassifier
D3 SMOTE GradBoostClassif SVMSMOTE GradBoostClassif
D4 SMOTETomek LGBMClassif SMOTE GradBoostClassif
D5 RandOverSampler LGBM(Classif RandOverSampler LGBMClassif
D6 RandOverSampler GradBoostClassif RandOverSampler GradBoostClassif
D7 SVMSMOTE LGBMClassif SVMSMOTE XGBClassifier
D8 RandOverSampler XGBClassifier SMOTE LGBMClassif
D9 RandOverSampler XGBClassifier SVMSMOTE LGBMClassif
D10 SMOTETomek LGBMClassif SMOTETomek GradBoostClassif
D11 SVMSMOTE XGBClassifier RandOverSampler LGBMClassif
D12 SVMSMOTE XGBClassifier RandOverSampler GradBoostClassif
D13 RandOverSampler GradBoostClassif SVMSMOTE XGBClassifier
D14 RandOverSampler LGBMClassif SVMSMOTE GradBoostClassif
DI5 SVMSMOTE LGBMClassif RandOverSampler GradBoostClassif
Table 5 Learning and recommendation evaluation metrics values

BA Fl1 AUC GM K

LM RM LM RM LM RM LM RM LM RM
D1 0.868 0.787 0.990 0.995 0.943 0.915 0.852 0.747 0.523 0.614
D2 0.998 0.998 0.996 0.996 1.000 1.000 0.998 0.998 0.996 0.996
D3 0.995 0.990 0.999 0.999 1.000 0.999 0.995 0.990 0.993 0.986
D4 0.875 0.882 0.752 0.672 0.993 0.984 0.860 0.870 0.749 0.666
D5 0.795 0.795 0.636 0.636 0.836 0.836 0.716 0.716 0.625 0.625
D6 0.936 0.936 0.833 0.833 0.972 0.972 0.934 0.934 0.804 0.804
D7 0.949 0.940 0.899 0.876 0.973 0.977 0.947 0.938 0.869 0.840
D8 0.946 0.950 0.883 0.868 0.990 0.992 0.945 0.949 0.870 0.852
D9 0.987 0.987 0.971 0.971 0.999 0.999 0.987 0.987 0.966 0.965
D10 0.916 0.914 0.947 0.943 0.979 0.976 0.916 0.913 0.827 0.816
D11 0.860 0.800 0.932 0.937 0.936 0.944 0.851 0.778 0.619 0.576
D12 0.979 0.982 0.997 0.996 0.999 0.999 0.979 0.982 0.971 0.960
D13 0.999 0.980 0.970 0.947 1.000 0.998 0.999 0.977 0.969 0.945
D14 0.970 0.966 0.916 0.873 0.993 0.991 0.965 0.962 0.909 0.863
D15 0.989 0.978 0.995 0.987 1.000 0.998 0.989 0.978 0.972 0.925

variability across folds, and the practical significance of the results that a statistical test can
give us. For comparing more rigorously the performance of both modules, the Wilcoxon
signed-rank test is carried out on the paired final score from the learning and recommenda-
tion modules to validate their results further and determine whether there exists a significant
difference among them. The null hypothesis of the test is that the median difference between

@ Springer

An automated approach for binary classification... 2761

Table 6 Wilcoxon signed-rank

test results Final Score Hypothesis
Dataset LM RM p_value (@ =0.05)
D1 0.835 0.812 0.0672 Not rejected
D2 0.998 0.998 - -
D3 0.996 0.993 0.0192 Rejected
D4 0.846 0.815 0.0120 Rejected
D5 0.722 0.722 - -
D6 0.896 0.896 - -
D7 0.927 0914 0.2395 Not rejected
D8 0.927 0.922 0.0743 Not rejected
D9 0.982 0.982 0.9089 Not rejected
D10 0.917 0.912 0.0014 Rejected
D11 0.840 0.807 0.0173 Rejected
D12 0.985 0.984 0.2173 Not rejected
D13 0.987 0.969 0.0679 Not rejected
D14 0.951 0.931 0.0716 Not rejected
D15 0.989 0.973 1.7149E-06 Rejected

the paired scores is zero, while the alternative hypothesis is that there is a significant differ-
ence. The choice of the Wilcoxon signed-rank test is because it does not assume a specific
distribution for the data and is suitable for nonparametric analysis, making it useful when
dealing with performance metrics that might not follow a normal distribution.

Table 6 displays the final score for the LM and RM together with the Wilcoxon signed-rank
test findings. As already explained, the LM outperforms the RM in all datasets. However,
the Wilcoxon signed-rank test’s p-value only rejects the null hypothesis for 5 datasets, mean-
ing that the RM performs similarly to the LM for the remaining 10 datasets. The RM’s
performance is thus around 67% similar to that of the LM.

Concerning the execution time for all 15 datasets, the execution of the RM was accom-
plished in 1073s and the LM in 8237s. Thus, for these 15 datasets, the RM time was
approximately 8 times smaller or faster than the LM time. This was expected because it is
usually faster to execute one instance-based learning algorithm on some meta-feature values
than to execute several combinations of resampling techniques and classification algorithms.

4.2 External evaluation

In the external evaluation, we begin by exploring the three AutoML frameworks previously
analysed in the State of the Art Section to select one that implements a similar ML pipeline
to execute for these 15 datasets. We selected the TPOT because this framework is open
source and permits defining parameters that assure test conditions like those defined by our
application. To guarantee for this framework identical execution time values as the RM,
we tried greater or smaller values with a try-error approach for several TPOT parameters.
Regarding the maximum time that the TPOT framework can optimise the pipeline, we define
a closer value to the maximum time that the LM achieved with one of the 15 test datasets.
Additionally, it used the same cross-validation technique as the developed application.

@ Springer

2762 P. M. Vieira, F. Rodrigues

Table 7 Resampling and classification algorithms

Recommendation module TPOT framework

Dataset Resampling Classification Classification

D1 RandOverSampler LGBMClassif RandomForestClassif
D2 RandOverSampler XGBClassifier GaussianNB

D3 SVMSMOTE GradBoostClassif GaussianNB

D4 SMOTE GradBoostClassif RandomForestClassif
D5 RandOverSampler LGBMClassif GaussianNB

D6 RandOverSampler GradBoostClassif SGDClassif

D7 SVMSMOTE XGBClassifier RandomForestClassif
D8 SMOTE LGBMClassif RandomForestClassif
D9 SVMSMOTE LGBMClassif RandomForestClassif
D10 SMOTETomek GradBoostClassif RandomForestClassif
D11 RandOverSampler LGBMClassif RandomForestClassif
D12 RandOverSampler GradBoostClassif RandomForestClassif
D13 SVMSMOTE XGBClassifier RandomForestClassif
D14 SVMSMOTE GradBoostClassif GaussianNB

DI5 RandOverSampler GradBoostClassif RandomForestClassif

Similar to how it was done in the internal evaluation, Table 7 depicts the algorithms used
by the RM and the classification algorithm used by the TPOT framework, as this framework
does not apply balancing functions. Additionally, Table 8 compares the evaluation metrics
values for the 15 datasets acquired using the RM to those obtained using the TPOT framework
(TF). The results of the Wilcoxon signed-rank test are shown in Table 9 along with the final
score for the RM and the TF.

As can be observed from Table 9, the final score of RM is higher than the final score of
TF for all datasets, demonstrating the superiority of RM. There is a statistically significant
difference between these two solutions, as shown by the Wilcoxon signed-rank test’s p-value,
which rejects the null hypothesis for all datasets but one. The RM outperformed the TF in
14 out of the 15 datasets examined or 93% of the datasets. This emphasises the importance
of balancing procedures.

Concerning the execution time for all 15 datasets, the execution of the RM was accom-
plished in 1073 s and the TF in 1381 s. Thus, for these 15 datasets, the RM time was 29%
smaller or faster than the TF time execution.

5 Conclusions

The application here described can deliver recommendations of suited combinations of resam-
pling and classification algorithms to binary imbalanced datasets, therefore automating this
step in the ML pipeline and thus reducing the human effort placed in building accurate
predictive models.

Such tasks are complicated and time-consuming because they require testing a significant
number of possible solutions. The proposed application takes advantage of solutions already
tested with previous datasets and provides recommendations for a new dataset by choosing

@ Springer

An automated approach for binary classification... 2763

Table 8 Recommendation module and TPOT framework evaluation metrics values

BA Fl1 AUC GM K
RM TPOT RM TF RM TF RM TF RM TF

D1 0.787 0.677 0.995 0.993 0.915 0.677 0.747 0.549 0.614 0.416
D2 0.998 0.996 0.996 0.978 1.000 0.996 0.998 0.996 0.996 0.974
D3 0.990 0.974 0.999 0.997 0.999 0.974 0.990 0.974 0.986 0.966
D4 0.882 0.809 0.672 0.740 0.984 0.809 0.870 0.778 0.666 0.737
D5 0.795 0.771 0.636 0.630 0.836 0.771 0.716 0.673 0.625 0.623
D6 0.936 0.667 0.833 0.385 0.972 0.667 0.934 0.463 0.804 0.349
D7 0.940 0.827 0.876 0.722 0.977 0.827 0.938 0.785 0.840 0.669
D8 0.950 0.914 0.868 0.871 0.992 0914 0.949 0.910 0.852 0.858
D9 0.987 0.975 0.971 0.949 0.999 0.975 0.987 0.974 0.965 0.939
D10 0914 0.903 0.943 0.944 0.976 0.903 0.913 0.901 0.816 0.813
D11 0.800 0.725 0.937 0.926 0.944 0.725 0.778 0.664 0.576 0.456
D12 0.982 0.971 0.996 0.995 0.999 0.971 0.982 0.971 0.960 0.953
D13 0.980 0.903 0.947 0.862 0.998 0.903 0.977 0.884 0.945 0.861
D14 0.966 0.813 0.873 0.634 0.991 0.813 0.962 0.718 0.863 0.612
D15 0.978 0.969 0.987 0.991 0.998 0.969 0.978 0.969 0.925 0.945

Table 9 Wilcoxon signed-rank

test results Final Score Hypothesis

Dataset RM TF p_value (@ =0.05)
D1 0.812 0.662 7.3251E-06 Rejected
D2 0.998 0.988 0.0021 Rejected
D3 0.993 0.977 4.2736E-05 Rejected
D4 0.815 0.775 0.0101 Rejected
D5 0.722 0.694 0.2878 Not rejected
D6 0.896 0.506 1.7333E-06 Rejected
D7 0914 0.766 0.0003 Rejected
D8 0.922 0.893 5.5050E-05 Rejected
D9 0.982 0.962 2.5356E-06 Rejected
D10 0.912 0.893 1.8852E-06 Rejected
D11 0.807 0.699 3.4052E-05 Rejected
D12 0.984 0.972 2.6948E-06 Rejected
D13 0.969 0.883 0.0105 Rejected
D14 0.931 0.718 0.0002 Rejected
D15 0.973 0.969 0.0007 Rejected

the most similar datasets in terms of meta-features, thus helping to automate the development
of efficient solutions to imbalance binary classification problems.

According to the outcomes of the various balancing and classification algorithms that
were tested, oversampling in conjunction with boosted trees is a useful strategy for dealing
with imbalanced classification.

@ Springer

2764 P. M. Vieira, F. Rodrigues

Additionally, appropriate evaluation metrics were used to compare the various balance
and classification combinations proposed with the best possible solution as well as with
an AutoML solution. Due to the absence of balancing mechanisms, the AutoML solution
was only partially successful. The analysis revealed that the AutoML solutions have not yet
concentrated on dealing with imbalanced classification issues. Consequently, this paper is
a contribution to the state of the art, despite some limitations and the need for additional
research, as will be addressed in the next section.

5.1 Limitations and future work

While the objectives were accomplished, this application might still use some improvements.
First, it would be beneficial to evaluate the performance of the evaluation metrics used, first
in terms of the measures’ consistency with one another and then in terms of the metrics’ level
of discriminant, to compare the proposed solutions more effectively.

Furthermore, it can also be applied a meta-feature selection like principal component
analysis to the extracted meta-features to optimise the instance-based learning search of
similar datasets.

Additionally, it is imperative to add new datasets to the knowledge base, which will
certainly improve the application’s outcomes. Further, to accommodate more balancing and
classification algorithms, the requirements for discarding the worst-performing combinations
must be relaxed.

Finally, in the future, this application should be extended to operate with multi-class
classification problems.

Author Contributions Pedro Marques Vieira helped in application implementation, original manuscript prepa-
ration, and writing. Fitima Rodrigues contributed to conceptualisation, supervision, and review/editing.

Funding Open access funding provided by FCTIFCCN (b-on).

Availability of supporting data The data used in this study are openly available from public sources as
described in the text. The code developed is freely available at GitHub and licensed as GPL 3.0.

Declarations

Conflict of interest The authors have no competing interests to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Lango M (2019) Tackling the problem of class imbalance in multi-class sentiment classification: an
experimental study. Found Comput Decis Sci 44(2):151-178. https://doi.org/10.2478/fcds-2019-0009

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2478/fcds-2019-0009

An automated approach for binary classification... 2765

13.
14.

20.

21.

22.

23.

24.

25.

26.

Krawczyk B (2016) Learning from imbalanced data: open challenges and future directions. Prog Artif
Intell 5(4):221-232. https://doi.org/10.1007/s13748-016-0094-0

Fernandez A, Garcia S, Galar M, Prati RC, Krawczyk B, Herrera F (2018) Learning from imbalanced
data sets, vol 10. Springer. https://doi.org/10.1007/978-3-319-98074-4

Branco P, Torgo L, Ribeiro RP (2016) A survey of predictive modeling on imbalanced domains. ACM
Comput Surv (CSUR) 49(2):1-50. https://doi.org/10.1145/2907070

Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G (2017) Learning from class-imbalanced
data: review of methods and applications. Expert Syst Appl 73:220-239. https://doi.org/10.1016/j.eswa.
2016.12.035

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling
technique. J Artif Intell Res (JAIR) 16:321-357. https://doi.org/10.1613/jair.953

Chaplot A, Choudhary N, Jain K (2019) A review on data level approaches for managing imbalanced clas-
sification problem. Int J Sci Res Sci Eng Technol 6(2):91-97. https://doi.org/10.32628/IJSRSET196225
https://doi.org/10.32628/1ISRSET 196225 https://doi.org/10.32628/IJSRSET196225

Zhang X, Li R, Zhang B, Yang Y, Guo J, Ji X (2019) An instance-based learning recommendation
algorithm of imbalance handling methods. Appl Math Comput 351:204-218. https://doi.org/10.1016/j.
amc.2018.12.020

Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases.
Al Mag 17(3):37. https://doi.org/10.1609/aimag.v17i3.1230

Zoller MA, Huber MF (2021) Benchmark and survey of automated machine learning frameworks. J Artif
Intell Res. https://doi.org/10.1613/jair.1.11854

. Tuggener L, Amirian M, Rombach K, Lorwald S, Varlet A, Westermann C, Stadelmann T (2019) Auto-

mated machine learning in practice: state of the art and recent results. In: 6th Swiss Conference on Data
Science (SDS), pp 31-36. IEEE. https://doi.org/10.21256/zhaw-3156

Hutter F, Kotthoff L, Vanschoren J (2019) Automated machine learning: methods, systems, challenges.
Springer Nature, New York. https://doi.org/10.1007/978-3-030-05318-5

Vanschoren J (2018) Meta-learning: a survey. https://doi.org/10.48550/arXiv.1810.03548

Thornton C, Hutter F, Hoos H, Leyton-Brown K (2013) Auto-WEKA: combined selection and hyper-
parameter optimization of classification algorithms. In: ACM International Conference on Knowledge
Discovery and Data Mining, pp 847-855. https://doi.org/10.1145/2487575.2487629

. Garcia L, Carvalho A, Lorena A (2016) Noise detection in the meta-learning level. Neurocomputing

176:14-25. https://doi.org/10.1016/j.neucom.2014.12.100

Parmezan AR, Lee HD, Wu FC (2017) Metalearning for choosing feature selection algorithms in data
mining: proposal of a new framework. Expert Syst Appl 75:1-24. https://doi.org/10.1016/j.eswa.2017.
01.013

Shen Z, Chen X, Garibaldi JM (2020) A novel meta learning framework for feature selection using data
synthesis and fuzzy similarity. In: IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1-8.
https://doi.org/10.1109/FUZZ48607.2020.9177769

Khan I, Zhang X, Ayyasamy RK, Ali R (2023) AutoFe-Sel: a meta-learning based methodology for
recommending feature subset selection algorithms. KSII Trans Internet Inform Syst. https://doi.org/10.
3837/tiis.2023.07.002

Moniz N, Cerqueira V. Automated imbalanced classification via meta-learning. Expert Syst Appl
178:115011 .https://doi.org/10.1016/j.eswa.2021.115011

He X, Zhao K, Chu X (2021) AutoML: a survey of the state-of-the-art. Knowl-Based Syst 212:106622.
https://doi.org/10.1016/j.knosys.2020.106622

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, ‘Auto-Sklearn 2.0: Hands-free
AutoML via Meta-Learning’, 2020, http://arxiv.org/abs/2007.04074 accessed: Feb. 13, 2022

Olson, R.S., Bartley, N., Urbanowicz, R.J. and Moore, J.H., Evaluation of a tree-based pipeline opti-
misation tool for automating data science. In Proceedings of the genetic and evolutionary computation
conference pp. 485-492, 2016. https://doi.org/10.1145/2908812.2908918

LeDell E, Poirier S (2020) H20 automl: Scalable automatic machine learning. In Proceedings of the
AutoML Workshop at ICML (Vol. 2020). ICML. https://www.automl.org/wp-content/uploads/2020/07/
AutoML_2020_paper_61.pdf

Gijsbers P, Bueno M L, Coors S, LeDell E, Poirier S, Thomas J, Vanschoren J (2022). Amlb: an automl
benchmark. arXiv preprint. https://doi.org/10.48550/arXiv.2207.12560

P. Vieira, PedroVieiral160634/automated-imbalanced-classification: Automated Imbalanced Classifi-
cation. https://github.com/PedroVieiral 160634/automated-imbalanced-classification accessed Sep. 10,
2022

GNU General Public License v3.0 - Project GNU - Free Software Foundation https://www.gnu.org/
licenses/gpl-3.0.html accessed Sep. 10, 2022

@ Springer

https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1145/2907070
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1613/jair.953
https://doi.org/10.32628/IJSRSET196225
https://doi.org/10.32628/IJSRSET196225
https://doi.org/10.32628/IJSRSET196225
https://doi.org/10.1016/j.amc.2018.12.020
https://doi.org/10.1016/j.amc.2018.12.020
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1613/jair.1.11854
https://doi.org/10.21256/zhaw-3156
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.48550/arXiv.1810.03548
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1016/j.neucom.2014.12.100
https://doi.org/10.1016/j.eswa.2017.01.013
https://doi.org/10.1016/j.eswa.2017.01.013
https://doi.org/10.1109/FUZZ48607.2020.9177769
https://doi.org/10.3837/tiis.2023.07.002
https://doi.org/10.3837/tiis.2023.07.002
https://doi.org/10.1016/j.eswa.2021.115011
https://doi.org/10.1016/j.knosys.2020.106622
http://arxiv.org/abs/2007.04074
https://doi.org/10.1145/2908812.2908918
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://doi.org/10.48550/arXiv.2207.12560
https://github.com/PedroVieira1160634/automated-imbalanced-classification
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html

2766 P. M. Vieira, F. Rodrigues

27.
28.
29.
30.
31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

UCI Machine Learning Repository https://archive.ics.uci.edu/ accessed Aug. 01, 2023

KEEL: A software tool to assess evolutionary algorithms for Data Mining problems (regression, clas-
sification, clustering, pattern mining and so on) https://sci2s.ugr.es/keel/datasets.php accessed Feb. 14,
2022

Find Open Datasets and Machine Learning Projects - Kaggle https://www.kaggle.com/datasets accessed
Feb. 14,2022

Dataset Search https://datasetsearch.research.google.com/ accessed Feb. 14, 2022

OpenML APIs - OpenML Documentation https://docs.openml.org/APIs/ accessed Jul. 30, 2022

Rivolli A, Garcia L P, Soares C, Vanschoren J, Carvalho A C (2018) Characterizing classification datasets:
a study of meta-features for meta-learning. arXiv preprint. https://doi.org/10.48550/arXiv.1808.10406
The PyMFE example gallery — pymfe 0.4.1 documentation https://pymfe.readthedocs.io/en/latest/auto
examples/index.html accessed Aug. 20, 2022

GaudreaultJ G, Branco P, Gama J (2021) An analysis of performance metrics for imbalanced classification.
In International Conference on Discovery Science (pp. 67-77). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-88942-5_6

De Diego IM, Redondo AR, Ferndndez RR, Navarro J, Moguerza JM (2022) General Performance
Score for classification problems. Appl Intell 52(10):12049-12063. https://doi.org/10.1007/s10489-021-
03041-7

Brodersen K H, Ong C S, Stephan K E, Buhmann J M (2010) The balanced accuracy and its posterior
distribution. In 20th international conference on pattern recognition (pp. 3121-3124). IEEE. https://doi.
org/10.1109/ICPR.2010.764

Ferri C, Herndndez-Orallo J, Modroiu R (2009) An experimental comparison of performance measures
for classification. Pattern Recogn Lett 30(1):27-38. https://doi.org/10.1016/j.patrec.2008.08.010
Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861-874. https://doi.org/
10.1016/j.patrec.2005.10.010

Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recogn 30(7):1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2
Tharwat A (2020) Classification assessment methods. Applied computing and informatics 17(1):168-192.
https://doi.org/10.1016/j.aci.2018.08.003

McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276-82. PMID:
23092060; PMCID: PMC3900052. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
Imbalanced-learn documentation — Version 0.9.1 https://imbalanced-learn.org/stable/ accessed Sep. 10,
2022

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Pedro Marques Vieira is a software developer employed at Sistrade
Software Consulting in Porto. Sistrade is an information systems com-
pany with knowledge in software development and consulting services
for different activity areas, including industry companies. He has a
degree and master’s in computer engineering from ISEP, the Poly-
technic Institute of Porto. The thesis of the degree is “Specification
and Development of a Contextual Intelligent Network™ associated with
Sistrade. The master is in the Information and Knowledge Systems
branch, where he developed the master’s thesis “Automatic Handling
of Imbalanced Datasets for Classification”. Professor Fitima Rodrigues
supervised both theses.

@ Springer

https://archive.ics.uci.edu/
https://sci2s.ugr.es/keel/datasets.php
https://www.kaggle.com/datasets
https://datasetsearch.research.google.com/
https://docs.openml.org/APIs/
https://doi.org/10.48550/arXiv.1808.10406
https://pymfe.readthedocs.io/en/latest/auto_examples/index.html
https://pymfe.readthedocs.io/en/latest/auto_examples/index.html
https://doi.org/10.1007/978-3-030-88942-5_6
https://doi.org/10.1007/s10489-021-03041-7
https://doi.org/10.1007/s10489-021-03041-7
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/j.aci.2018.08.003
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://imbalanced-learn.org/stable/

An automated approach for binary classification... 2767

Fatima Rodrigues is currently an associate professor at ISEP, the Poly-
technic Institute of Porto, and a researcher in the Interdisciplinary Stud-
ies Research Centre (ISRC) at ISEP. Her main skills and expertise
are related to business analytics, data science, decision support sys-
tems, neural networks, and machine learning. She is the co-author of
more than 25 indexed (e.g., ISI, Scopus) publications in international
peer-reviewed journals. She has participated in more than seven R&D
projects and has supervised four PhD thesis, 35 MSc thesis, and 65 BSc
final graduation projects in the area of Intelligent Data Analysis. She
has been a regular reviewer of ISI JCR journals such as IEEE Trans.
Neural Networks and Learning Systems, Information Sciences, Deci-
sion Support Systems, and Data and Knowledge Engineering. More-
over, she has been program committee/reviewer of several international
conferences/workshops.

@ Springer

	An automated approach for binary classification on imbalanced data
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Imbalanced data
	2.2 Strategies for handling imbalanced data
	2.3 Automated Machine Learning

	3 Developed solution
	3.1 Learning module
	3.1.1 Datasets
	3.1.2 Dataset meta-features
	3.1.3 Evaluation metrics
	3.1.4 Sampling and classification algorithms
	3.1.5 Process of discarding the worst performant combinations

	3.2 Recommendation module

	4 Solution evaluation
	4.1 Internal evaluation
	4.2 External evaluation

	5 Conclusions
	5.1 Limitations and future work

	References

