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Abstract
Graph embedding methods are effective techniques for representing nodes and their relations
in a continuous space. Specifically, the hyperbolic space is more effective than the Euclidean
space for embedding graphs with tree-like structures. Thus, it is critical how to select the
best dimensionality for the hyperbolic space in which a graph is embedded. This is because
we cannot distinguish nodes well with dimensionality that is considerably low, whereas the
embedded relations are affected by irregularities in datawith excessively high dimensionality.
We consider this problem from the viewpoint of statistical model selection for latent variable
models. Thereafter, we propose a novel methodology for dimensionality selection based on
the minimum description length principle. We aim to introduce a latent variable modeling of
hyperbolic embeddings and apply the decomposed normalized maximum likelihood code-
length to latent variable model selection. We empirically demonstrated the effectiveness of
our method using both synthetic and real-world datasets.
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1 Introduction

1.1 Motivation

Graphs are convenient tools for knowledge representation and can be used to represent various
types of real-world data. Consequently, graph analysis has garnered significant attention
in various fields, such as biology (e.g., protein–protein interaction networks) [1], social
sciences (e.g., friendship networks) [2], and linguistics (e.g., word co-occurrence networks)
[3], in recent years. Generally, tasks in graph analysis are classified into the following four
categories: (1) node classification, (2) link prediction, (3) node clustering, and (4) graph
visualization [4].

Graph embeddings, which convert discrete representations into continuous ones, such
as vectors in Euclidean space, have become popular tools in graph analysis [5–8]. They
provide effective solutions for the aforementioned tasks, as continuous representations can
be used as the input in tasks of types (1), (2), and (3), whereas two-dimensional continuous
representations are used directly in tasks of type (4).

Dimensionality is one of the most important hyperparameters in graph embeddings. First,
the node classification, link prediction, and node clustering performance depend on it. Intu-
itively, we cannot distinguish nodes well with considerably low dimensionality, while the
embedded relations are significantly affected by irregularities of data with considerably high
dimensionality. Second, the training time and computational expenses directly depend on it.
Therefore, the issue of dimensionality selection for graph and word embedding has garnered
significant attention [9–13]. However, most of existing studies have focused on Euclidean
space, although hyperbolic space is a viable alternative embedding space.

The hyperbolic space is a Riemannian manifold with negative constant curvature. In
network science, a hyperbolic space is suitable for modeling hierarchical structures [14, 15].
In a tree at level h, the number of leaves and nodes is exponential in h. The analogies of the
two aforementioned concepts in hyperbolic and Euclidean space are the circumference and
area of a circle, respectively. In the two-dimensional hyperbolic spacewith constant curvature
K = −1, the circumference of a circle is provided by 2π sinh r and its area is 2π(cosh r −1)
with hyperbolic radius r , both increasing exponentially with r . This analogy demonstrates
that the hyperbolic space has an affinity for the hierarchical structure. However, in the two-
dimensional Euclidean space,R2, the circumference of a circle is provided by 2πr and its area
is given by πr2, both increasing polynomially with r . Thus, increasing the dimensionality
is essential for embedding a hierarchical structure in the Euclidean space. Owing to these
properties, hyperbolic embeddings have been extensively studied in recent years [16–18].
However, to the best of our knowledge, there has been no previous research except [19] on
dimensionality selection in the hyperbolic space.

In this study, we propose a novel methodology for dimensionality selection of hyperbolic
graph embeddings. We address this issue from the viewpoint of statistical model selection.
First, we demonstrate that there is a non-identifiability problem in the conventional prob-
abilistic model of hyperbolic embeddings; that is, there is no one-to-one correspondence
between the parameter and the probability distribution. This problem invalidates the use of
the conventional model selection criteria, such as Akaike’s information criterion (AIC) [20]
and the Bayesian information criterion (BIC) [21]. To overcome this difficulty, we employ
two latent variablemodels of hyperbolic embeddings following pseudo-uniform distributions
(PUDs) [14, 15] and wrapped normal distributions (WNDs) in a hyperbolic space [22]. We
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thereby introduce a criterion for dimensionality selection based on the minimum description
length (MDL) principle [23].

The MDL principle asserts that the best model minimizes the total code-length required
for encoding the particular data. It exhibits several advantages, such as consistency [24] and
rapid convergence in the framework of probably approximately correct (PAC) learning [25].
Although the MDL-based dimensionality selection was developed for Word2Vec-type word
embeddings into the Euclidean space by Hung and Yamanishi [12], their techniques cannot
straightforwardly be applied to hyperbolic graph embeddings.

TheDNML criterion [26] is a model selection criterion for latent variable models based on
the MDL principle, where the non-identifiability problem is resolved by jointly encoding the
observed and latent variables. The shorter the DNML criterion, the better the dimensionality.
Herein, we propose to apply DNML into the problem of dimensionality selection for hyper-
bolic embeddings. The DNML criteria obtained by applying to PUD and WND are called
decomposed normalized maximum likelihood code-length for pseudo-uniform distributions
(DNML-PUD) and DNML code-length for wrapped normal distributions (DNML-WND),
respectively.

The novelty and significance of this study are summarized as follows.

• Proposal of a novel methodology of dimensionality selection for hyperbolic embeddings
We propose DNML-PUD and DNML-WND for selecting the best dimensionality of
hyperbolic graph embeddings. We aim to introduce latent variable models of hyperbolic
embeddings with PUDs and WNDs and then apply the DNML criterion to its dimen-
sionality selection, based on the MDL principle. One of our significant contributions is
to derive explicit formulas of DNML for specific cases of PUDs and WNDs.

• Empirical demonstration of the effectiveness of our methodology We evaluated the pro-
posed method using both synthetic and real-world datasets. For synthetic datasets, firstly,
graphs with their true dimensionality were generated. We then performed the identifi-
cation of the true dimensionality. For real-world datasets, we examine a relationship
between the selected dimensionality and performance of link prediction. Furthermore,
we quantified to what extent the hierarchical structure of a graph was preserved using
WordNet (WN) [27] dataset. Overall, our experimental results confirmed the effective-
ness of our method.

The preliminary version of this paper appeared in [28]. The major updates of this paper
are summarized below:

• We introduced a new latent variable model called wrapped normal distributions in hyper-
bolic space [22] and derived the upper bound on its DNML criterion, which we call
DNML-WND.

• Besides, the evaluation of DNML-WND was added in the experimental results.
• We added the new metric called conciseness in the evaluation of the link prediction task

in Sect. 4.3.1.

1.2 Related work

Conventionally, the dimensionality is determined heuristically based on domain knowledge.
However, in recent years, several studies have proposed more principled approaches for this
purpose.

Yin and Shen [9] proposed a pairwise inner product (PIP) loss, which quantifies the
performance of embeddings based on the bias-variance trade-off. PIP loss is applicable to
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embeddings that can be formulated as low-rank matrix approximations, and its theoretical
aspects have been investigated extensively. However, it is not known if hyperbolic embed-
dings satisfy this condition; thus, PIP loss cannot be directly used for hyperbolic embeddings.
Gu et al. [10] extended PIP loss to normalized embedding loss. It is applicable to hyperbolic
embeddings after defining their normalized embedding loss of hyperbolic embeddings. How-
ever, empirical observations (for example, normalized embedding loss following Eq. (2) in
[10]) are limited to the Euclidean space, and it is still unknown whether such observations
are also valid or not for hyperbolic embeddings.

Luo et al. [11] proposed minimum graph entropy (MinGE) to select a dimensionality that
minimizes graph entropy, which is a weighted sum of feature entropy and structure entropy.
However, feature entropy depends on a certain probability distribution in the Euclidean
space, and its extension to hyperbolic space is not straightforward. Moreover, although it
was demonstrated to exhibit excellent experimental performance, there was no particular
rationale with respect to the selected dimensionality. Wang [13] proposed a method that
first learns embeddings in a sufficiently high-dimensional Euclidean space (e.g., the 1000-
dimensional Euclidean space) and then applies principal component analysis (PCA) to the
embeddings and selects the dimensionality that minimizes the predefined score function.
Recently, several hyperbolic dimensionality reduction methods have also been proposed
[29–31], which indicates the possibility of extending the method to the hyperbolic space. To
extend the method to the hyperbolic case, the following two points should be discussed: (1)
how to define the score function and (2) which dimensionality reduction method should be
used.

Recently, the graph neural architecture search method (GraphNAS) has been proposed
in [32]. GraphNAS selects the best architecture of graph neural networks, including their
dimensionality, using reinforcement learning. The most important difference between the
proposed method and GraphNAS is that GraphNAS determines the architecture in a task-
dependent manner (e.g., the accuracy in node classification), while the proposed method
is task-independent and estimates universal dimensionalities based on the MDL principle.
Another difference is that the proposed method targets hyperbolic embeddings, while Graph-
NAS targets Euclidean embeddings. Thus, it is potentially possible to extend GraphNAS to
hyperbolic neural networks and compare their performance with the proposed method. How-
ever, to the best of our knowledge, there are no papers that addressed this extension, and the
extension is not straightforward.

Almagro and Boguna [19] proposed a dimensionality selection method for hyperbolic
embeddings. In [19], dimensionality was inferred using predictive models, such as the k-
nearest neighbors algorithm or deep learning, where the input is the triplet of the mean
densities of chordless cycles, squares, and pentagons of a given graph.

Hung and Yamanishi [12] proposed a dimensionality selection method for Word2Vec.
They applied the MDL principle to select the optimal dimensionality. However, contrary to
ourmethod, they did not employ latent variablemodels for embeddings and used sequentially
normalized maximum code-length rather than DNML code-length.

The remainder of this paper is organized as follows. Section2 introduces hyperbolic
geometry, the non-identifiability problem, and latent variable models of hyperbolic graph
embeddings. Section3 explains theDNMLcriteria and algorithms used for optimization. Sec-
tion4 presents the results obtained using artificial and real-world datasets. Section5 presents
the conclusions and future work. “Appendix” section provides the derivation of the DNML
code-lengths and experimental details.
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2 Preliminaries

In this section, we first introduce the hyperbolic geometry following [18]. Subsequently, the
non-identifiability problem of hyperbolic embeddings is discussed. Finally, we introduce two
latent variable models for hyperbolic graph embeddings.

2.1 Hyperbolic geometry

2.1.1 Definition of hyperbolic space

There are severalmodels for representing hyperbolic space1 (e.g., thePoincaré diskmodel, the
Beltrami–Klein model, and the Poincaré half-plane model) [33]. In this study, a hyperboloid
model was used. Since all the models introduced above are isometric to each other, the
discussion of the distance structure is the same for the other models. Let HD = (HD, gD)

be the D-dimensional hyperbolic space, where

gD =

⎛
⎜⎜⎜⎜⎝

−1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

⎞
⎟⎟⎟⎟⎠

∈ R
(D+1)×(D+1),

H
D := {x = (x0, x1, . . . , xD)� | x ∈ R

D+1, 〈x, x〉L = −1, x0 > 0} and 〈u, v〉L =
u�gDv. The associated distance between u, v ∈ H

D is provided by duv = arcosh
(−〈u, v〉L

)
,

where arcosh(x) := log(x + √
x2 − 1). Note that x0 is determined by

x0 =
√
1 + x21 + · · · + x2D . (1)

Thus, only D variables are independent.

2.1.2 Coordinate system of hyperbolic space

Next, we explain the coordinate system of the hyperbolic space. The Cartesian coordinate
system of the ambient Euclidean space was used as an element of the hyperbolic space (i.e.,
x = (x0, x1, . . . , xD)� ∈ H

D). Alternatively, for a maximum hyperbolic radius R > 0, the
polar coordinate system (r , θ1, . . . , θD−1)

� introduced in [34] was used, where r ∈ [0, R],
θ1, θ2, . . . , θD−2 ∈ [0, π), and θD−1 ∈ [0, 2π). The coordinate transformation is expressed
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = cosh r ,

x1 = sinh r cos θ1,

x2 = sinh r sin θ1 cos θ2,

...

xD−1 = sinh r sin θ1 sin θ2 . . . sin θD−2 cos θD−1,

xD = sinh r sin θ1 sin θ2 . . . sin θD−2 sin θD−1.

(2)

1 Throughout this paper, the value of the curvature K in hyperbolic space is assumed to be K = −1 because,
as described in [15], the effect of changing the curvature in hyperbolic space can be expressed by scaling the
other parameters.
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In this study, we specify the coordinate system we use when we introduce the notation of
elements in the hyperbolic space.

2.1.3 Tangent space and exponential map

When we introduce wrapped normal distributions and the optimization algorithm, the con-
cepts of tangent space TxHD and exponential map Expx(·) are necessary.

For x ∈ H
D , the tangent space TxHD is defined as the set of vectors orthogonal to x with

respect to the inner product 〈·, ·〉L. Hence,
TxHD := {v | v ∈ R

D+1, 〈x, v〉L = 0}.
Thereafter, the exponential map Expx(·) : TxHD → H

D maps a tangent vector v ∈ TxHD

onto H
D along the geodesic, where the geodesics are the generalizations of straight lines to

Riemannian manifolds. The explicit forms of the exponential map and its inverse are well
known (e.g., [22]) and are defined as follows:

Expx(v) := cosh
(√〈v, v〉L

)
x + sinh

(√〈v, v〉L
) v√〈v, v〉L ,

Exp−1
x ( y) = arcosh (−〈x, y〉L)√

〈x, y〉2L − 1
( y + 〈x, y〉Lx) . (3)

2.2 Non-identifiability problem of hyperbolic embeddings

In a non-identifiable model, as pointed out in [26], the central limit theorem (CLT) does not
hold for the maximum likelihood estimator uniformly over the parameter space. Thus, under
these circumstances, neither AIC nor BIC can be applied to latent variable models because
they are derived under the CLT assumption uniformly over the parameter space.

For notational simplicity, we omit D from the probability distribution, unless noted oth-
erwise. We focus on undirected, unweighted, and simple graphs. Let n ∈ Z≥2 be the
number of nodes. For k ∈ Z≥2, [k] and �k are defined as follows: [k] := {1, 2, . . . , k}
and �k := {(i, j) | i, j ∈ [k], i < j}. For (i, j) ∈ �n , let yi j = y ji ∈ {0, 1} be a random
variable that assumes the value 1 if the i-th node is connected to the j-th node and 0 otherwise.

For D = 2 and i ∈ [n], let φi := (ri , θi )� ∈ H
D be the polar coordinates of the i-th

node, where ri ∈ [0, R] and θi ∈ [0, 2π). In this model, y := {yi j }(i, j)∈�n is an observable
variable,whereasφ := {φi }i∈[n] is a probability distribution parameter. Forβmax > βmin > 0,
γmax > γmin > 0, β ∈ [βmin, βmax], and γ ∈ [γmin, γmax], we assume that a random variable
y is drawn from the following distribution:

p( y;φ, β, γ ) :=
∏

(i, j)∈�n

p(yi j ;φi , φ j , β, γ ),

p(yi j ;φi , φ j , β, γ ) :=
⎧⎨
⎩

1
1+exp(βdφi φ j −γ )

(yi j = 1),

1 − 1
1+exp(βdφi φ j −γ )

(yi j = 0).
(4)

Then, the following lemma holds.

Lemma 1 We assume that r j 	= 0 for some j ∈ [n]. For α ∈ (0, 2π), we define φ′
i :=

(ri , θi + α)� for all i ∈ [n]. Then, φ 	= φ′ := {φ′
i }i∈[n], and the following equation holds:

p( y;φ, β, γ ) = p( y;φ′, β, γ ).
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Therefore, the probability distribution of hyperbolic embeddings is non-identifiable.

Proof Since φ j 	= φ′
j holds for some j ∈ [n] such that r j 	= 0, we have φ 	= φ′. For all

(i, j) ∈ �n , dφiφ j = dφ′
iφ

′
j
because a simple calculation yields 〈φi , φ j 〉L := 〈φ′

i , φ
′
j 〉L.

Thus, the result follows from Eq. (4). ��
For D ≥ 3, non-identifiability can be proved by a similar transformation to the (D−1)-th

angular coordinate.

2.3 Latent variable models of hyperbolic embeddings with PUDs andWNDs

To resolve the non-identifiability problem,we introduce two latent variablemodels, following
work on PUDs [14, 15, 34] and WNDs [22]. In PUDs and WNDs, an embedding is regarded
as a set of latent variables and edges as observed variables. Among several latent variable
models, we chose two for the following reasons.

• For PUDs, in [14, 15, 34], it has been demonstrated that the graphs generated with PUDs
have two properties: the power law for the degree of a node and high clustering coefficient.
These properties are common in real-world graphs [35].

• ForWNDs, it has been demonstrated that the experimental performance of various down-
streaming tasks has been improved.

In these models, we consider φ = {φi }i∈[n] as latent random variables rather than param-
eters. Thus, we rewrite it as z := {zi }i∈[n], where zi := (zi,0, zi,1, . . . , zi,D)� denotes its
Cartesian coordinates.

2.3.1 Latent variable model with PUDs

The generation process of y, z with PUDs can be summarized as follows:

1. For vertex i ∈ [n]:
(a) Generate ui := (ri , θi,1, . . . , θi,D−1)

� ∼ p(ui ; σ, R).
(b) Transform ui to zi through Eq. (2).

2. For vertices (i, j) ∈ �n :

(a) Generate an observable variable yi j ∼ p(yi j | zi , z j ;β, γ ) using Eq. (4).

Below we provide an explicit form of the probability distribution of z for PUDs.
For σmax > σmin ≥ 0, the random variable u := {ui }i∈[n] is drawn according to the

following distribution with the parameter σ ∈ [σmin, σmax]:
p(u; σ, R) :=

∏
i∈[n]

p(ui ; σ, R),

p(ui ; σ, R) := p(ri ; σ, R)

D−1∏
j=1

p(θi, j ),

p(θi, j ) :=
{

sinD−1− j θi, j
ID, j

( j 	= D − 1),
1
2π ( j = D − 1),

p(ri ; σ, R) := sinhD−1(σri )

CD(σ )
,
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where ID, j := ∫ π

0 sinD−1− j θdθ and CD(σ ) := ∫ R
0 sinhD−1(σr)dr denote the normaliza-

tion constants. For p(z; σ, R), because zi,0 is determined by the other D variables in Eq. (1),
we have

p(z; σ, R) :=
∏
i∈[n]

p(zi ; σ, R),

p(zi ; σ, R) := 1

J (zi,1:D : ui ) p(ui , σ, R),

where zi,1:D := (zi,1, . . . , zi,D)� and J (zi,1:D : ui ) is the Jacobian of the transformation
from ui to zi,1:D , which is given as

J (zi,1:D : ui ) = cosh(ri )sinh
D−1(ri )

D−2∏
j=1

sinD− j−1 θi, j .

The derivation is provided in “Appendix A.” The probability distribution p(z; σ, R) is called
the pseudo-uniform distribution because it is reduced to the uniformdistribution in hyperbolic
space when σ = 1.

In the following discussion, the value of R is assumed to be constant and satisfies R =
O(log n) where n is the number of nodes, and it is omitted from the description of the
probability distribution. This is because the maximum average degree satisfies kmax = O(n),
and the minimum average degree satisfies kmin = O(1) under certain conditions, which is a
common property of real-world complex networks [34].

In the aforementioned distribution, σ, β, and γ are parameters, and D denotes the model
of the probability distribution.

2.3.2 Probability distribution of WNDs

WNDs are a generalization of EuclideanGaussian distributions to the hyperbolic space. Thus,
WNDs have two parameters: a mean in hyperbolic space μ ∈ H

D and a positive-definite
covariance matrix 
 ∈ R

D×D . In our model, we set μ to μ0, where μ0 := (1, 0, . . . , 0)�
denote the origin ofHD . We assume this because a tree-like graph is considered to be radially
distributed around the origin μ0.

The generation process of y and z with the WNDs is summarized as follows:

1. For a vertex i ∈ [n]:
(a) Generate vi := (vi,1, . . . , vi,D)� ∼ p(vi ;
).
(b) Transform vi to ṽi := [0, v�

i ]�, which is a tangent vector at μ0.
(c) Transform ṽi to zi through the exponential map Expμ0

(ṽi ).

2. For a pair of vertices (i, j) ∈ �n :

(a) Generate an observable variable yi j ∼ p(yi j | zi , z j ;β, γ ) using Eq. (4).

Note that the second step is the same as that of the model with the PUDs. Below we provide
an explicit form of the probability distribution of z with the WNDs.

A random variable v := {vi }i∈[n] is drawn according to the following distribution:

p(v;
) :=
∏
i∈[n]

p(vi ;
),
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p(vi ;
) := 1

(2π)
D
2 |
| 12

exp

(
−1

2
v�
i 
−1vi

)
.

For p(z;
), we have that

p(z;
) :=
∏
i∈[n]

p(zi ;
),

p(zi ;
) := 1

J (zi,1:D : vi )
p(vi , 
),

where J (zi,1:D : vi ) is the Jacobian of the transformation from vi to zi,1:D , which is provided
by

J (zi,1:D : vi ) =
{
sinh ‖vi‖L

‖vi‖L
}D−1

.

The derivation of the Jacobian is obtained from [22].

3 Dimensionality selection using DNML code-lengths

In this section, we present the calculation of the DNML code-lengths for two latent variable
models. Thereafter, we present the optimization algorithm.

3.1 DNML code-lengths with PUDs andWNDs

According to the MDL principle [24], the probabilistic model that minimizes the total code-
length required to encode the given data is selected. Data may be encoded using multiple
methods. Although the NML code-length [36] is one of the most common encodingmethods,
its calculation is quite difficult for complex probability distributions such asPUDs andWNDs.
Therefore, we employ the DNML code-length [26], whose calculation for latent variable
models is relatively easier.

Let D := {D1, D2, . . . DN } denote a finite set of candidates of dimensionalities (Di ∈
Z≥2). We estimate optimal dimensionality D̂ ∈ D and the optimal embedding ẑ that mini-
mizes the following criterion, which we call DNML-PUD:

LDNML-PUD( y, z) := LNML( y | z) + LNML(z),

LNML( y | z) := − log p( y | z; β̂( y, z), γ̂ ( y, z))

+ log
∑
ȳ

p( ȳ | z; β̂( ȳ, z), γ̂ ( ȳ, z)),

LNML(z) := − log p(z; σ̂ (z)) + log
∫

p( z̄; σ̂ ( z̄))d z̄1:D, (5)

where β̂(·, ·), γ̂ (·, ·), and σ̂ (·) denote the maximum likelihood estimators, z̄1:D :=
{z̄i,1:D}i∈[n], and the sum and integral are obtained over all possible data in the predefined
data domain. The second term in each NML code-length is called parametric complexity. As
the exact value of the integral is analytically intractable, we approximate LNML( y | z) and
LNML(z) as follows:

LNML( y | z) ≈ − log p( y | z; β̂( y, z), γ̂ ( y, z))
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Fig. 1 Example of DNML-PUD.
The selected dimensionality and
true dimensionality are D = 8.
The graph was generated with
parameters n = 6400, β = 0.6,
γ = β log n, and σ = 1.0. The
scores LDNML( y, z) and
LNML( y | z) follow the left
scale, whereas LNML(z) follows
the right scale

+ log
n(n − 1)

4π
+ log

∫ γmax

γmin

∫ βmax

βmin

√|In(β, γ )|dβdγ,

LNML(z) ≈ − log p(z; σ̂ (z)) + 1

2
log

n

2π
+ log

∫ σmax

σmin

√|I (σ )|dσ,

where In(β, γ ) and I (σ ) denote Fisher information, which is computed as

In(β, γ ) = 2

n(n − 1)

⎛
⎜⎜⎜⎝

∑
(i, j)∈�n

d2zi z j

4 cosh2
( βdzi z j −γ

2

) ∑
(i, j)∈�n

−dzi z j

4 cosh2
( βdzi z j −γ

2

)
∑

(i, j)∈�n

−dzi z j

4 cosh2
( βdzi z j −γ

2

) ∑
(i, j)∈�n

1

4 cosh2
( βdzi z j −γ

2

)

⎞
⎟⎟⎟⎠ ,

I (σ ) =(D − 1)2
∫ R
0 r2 cosh2(σr) sinhD−3(σr)dr

CD(σ )

−
{∫ R

0 (D − 1)r cosh(σr) sinhD−2(σr)dr

CD(σ )

}2

.

The derivation is presented in “Appendix B.” Practically, In(β, γ ) and I (σ ) are calculated
numerically because the analytic solution of the integral terms is not trivial.

For WNDs, the DNML criterion is defined as follows:

LDNML-WND( y, z) :=LNML( y | z) + LNML(z),

LNML(z) := − log p(z; 
̂(z)) + log
∫

p( z̄; 
̂( z̄))d z̄1:D, (6)

where 
̂ denotes the maximum likelihood estimator of 
. Since the exact value of∫
p( z̄; 
̂( z̄))d z̄1:D is analytically intractable, we employ the following upper bound.

∫
p( z̄; 
̂( z̄))d z̄1:D ≤ π

D2
2
∏

i∈[D−1] ε
D−i
2i

∏
j∈[D] ε

1−D
2

1 j

�D
( D
2

)
�D

( n
2

)
(

n

2e

) nD
2
(

2

D − 1

)D

.

The derivation is presented in “Appendix B.”
We provide a more detailed explanation of DNML-PUD and DNML-WND. Figures1

and 2 show LNML( y | z), LNML(z) and LDNML( y, z) of an artificially generated graph with
the true dimensionality Dtrue = 8 and n = 6400. The value of LNML( y | z) decreases as
dimensionality increases. This implies that as the dimensionality increases, the graph can be
reconstructed more accurately. However, the value of LNML(z) increases as dimensionality
increases. This is because more code-length is required to encode the extra dimension of
the embedding; that is, the model becomes more complex, and LNML(z) acts as a penalty
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Fig. 2 Example of DNML-WND. The selected dimensionality and true dimensionality are D = 8. The graph
was generated with parameters n = 6400, β = 1.2, γ = β log n, and 
 = (0.35 log n)2 I , where I ∈ R

D×D

is the identity matrix. The scores LDNML( y, z) and LNML( y | z) follow the left scale, whereas LNML(z)
follows the right scale

term. Hence, minimizing LDNML( y, z) implies that dimensionality is chosen by considering
both the accuracy of the reconstruction and the complexity of the model. Therefore, the
DNML-PUD and DNML-WND select the true dimensionality Dtrue = 8.

3.2 Optimization

To derive the optimal dimensionality, Eqs. (5) and (6) should be optimized with respect
to z, β, γ and σ for each dimensionality D ∈ D. However, direct optimization is dif-
ficult because of the analytical intractability of the parametric complexity of LNML( y |
z). Instead, we optimize L(z, β, γ, σ ) := − log p( y, z;β, γ, σ ) and L(z, β, γ,
) :=
− log p( y, z;β, γ,
), which are lower bounds of Eqs. (5) and (6), respectively.

First, we explain how to optimize L(z, β, γ, σ ). We rewrite it as

L(z, β, γ, σ ) = −
∑

(i, j)∈�n

log p(yi j | zi , z j ;β, γ ) −
∑
i∈[n]

log p(zi ; σ)

=
∑

(i, j)∈�n

{
− log p(yi j | zi , z j ;β, γ ) − 1

n − 1
log p(zi ; σ)

− 1

n − 1
log p(z j ; σ)

}
.

We applied the stochastic update rule at iteration t using the following equation:

L(t)(z, β, γ, σ ) := 1

|B(t)|
∑

(i, j)∈B(t)

{
− log p(yi j | zi , z j ;β, γ )

− 1

n − 1
log p(zi ; σ) − 1

n − 1
log p(z j ; σ)

}
,

where B(t) ⊂ �n is the mini-batch for each iteration and |·| denotes the number of elements
in a set.

For zi , we used the geodesic update in the hyperboloid model [18]. The update rule for z
is given as follows:

z(t+1)
i ← proj

H
D
R

(
Exp

z(t)i

(
−η(t)

z π
z(t)i

(
g−1
D

∂L(t)

∂z(t)i

)))
, (7)
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where η
(t)
z denotes the learning rate, πz(·) denotes the projection from the Euclidean gradient

to the Riemannian gradient, proj
H

D
R
(·) denotes the projection from H

D to H
D
R := {x | x ∈

H
D, dμ0x ≤ R}, and Expz(·) is given by Eq. (3). The functions πz(·) and proj

H
D
R
(·) are

defined as follows:

πz(u) := u − 〈z, u〉L
〈z, z〉L z = u + 〈z, u〉Lz,

proj
H

D
R
(z) :=

{
z (dμ0 z ≤ R),(
cosh R, sinh R

‖z1:D‖ z1, · · · , sinh R
‖z1:D‖ zD

)�
(dμ0 z > R),

where ‖ · ‖ denotes the Euclidean norm.
With the learning rates η

(t)
β and η

(t)
σ , the update rules of β and γ are provided as

β(t+1) ← proj[βmin,βmax]
(

β(t) − η
(t)
β

∂L(t)

∂β(t)

)
, (8)

γ (t+1) ← proj[γmin,γmax]
(

γ (t) − η(t)
γ

∂L(t)

∂γ (t)

)
, (9)

proj[a,b](x) =

⎧⎪⎨
⎪⎩

b (x ≥ b),

x (a ≤ x ≤ b),

a (x < a).

Through a preliminary experiment using synthetic datasets, we confirmed that σ rarely con-
verges to the true value when using the gradient descent method. Thus, for each epoch, we
numerically calculated σ̂ (z) as

σ̂ (z) = arg min
σ∈S

{− log p(z; σ)
}
, (10)

where S = {σmin, σmin + 1
C (σmax − σmin), . . . , σmin + C−1

C (σmax − σmin), σmax}, and C + 1
denote the number of candidates.

For the optimization of L(z, β, γ,
), we define L(t)(z, β, γ,
) in a similar manner. The
update rules for zi , β, γ are provided by Eqs. (7), (8), and (9), respectively. For each epoch,
we optimized 
 using the following equation:


̂(z) = arg min



{− log p(z;
)
}

= 1

n

∑
i∈[n]

viv
�
i , (11)

where vi := Exp−1
μ0

(zi ) for all i ∈ [n]. The optimization procedure is summarized in Algo-
rithm 1.

Subsequently, we analyze the time efficiency of the proposed algorithms. For sufficiently
large n, the update of z(t) := {z(t)i }i∈[n] is dominant. We assume that |B(t)| takes a constant
value B for all iteration. Since at most 2B nodes are used in each iteration to compute L(t),
we only need to update O(B) nodes. Thus, z(t) will be updated O(ET B) times in total.
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Algorithm 1 Riemannian Gradient Descent for DNML criteria
1: Given: n: number of nodes, D: dimensionality, βmin and βmax: hyperparameters for β, γmin and

γmax: hyperparameters for γ , σmin and σmax: hyperparameters for σ , R: maximum hyperbolic radius,

η
(t)
z , η

(t)
β , η

(t)
γ > 0: learning rates, C : number of candidate points for σ , E : number of epochs, T : number

of iterations.
2: Initialize {z(t)i }i∈[n], β(t), and γ (t).

3: Initialize σ (t) if we calculate DNML-PUD; initialize 
(t) if DNML-WND.
4: for e = 1 to E do
5: for t = 1 to T do
6: for i = 1 to n do
7: if z(t)i is used for calculating L(t)(z, β, γ, σ ) or L(t)(z, β, γ, 
) then

8: Update z(t)i using Eq. (7).
9: end if
10: end for
11: Update β(t) using Eq. (8).
12: Update γ (t) using Eq. (9).
13: end for
14: Update σ (t) using Eq.(10) if we calculateDNML-PUD, and update
(t) using Eq.(11) if DNML-WND.
15: end for
16: return {z(T )

i }i∈[n], β(T ), γ (T ), σ (T ), 
(t).

4 Experimental results

This section presents a comparison between the proposed criteria and conventional methods
using artificial and real-world datasets. The details of code, data, and training details are
presented in “Appendix C.”

4.1 Methods for comparison

We used three criteria—AIC,BIC, and MinGE—for a comparative analysis of the perfor-
mance of the proposed method. Here, the AIC and BIC with respect to the non-identifiable
model, that is, β, γ , and z, are interpreted as parameters and are defined as follows:

AIC( y; D) := − log p( y | z; β̂( y, z), γ̂ ( y, z)) + (nD + 2),

BIC( y; D) := − log p( y | z; β̂( y, z), γ̂ ( y, z)) + nD + 2

2
log

n(n − 1)

2
.

Note that these criteria are not guaranteed to work for this model because of the non-
identifiability. MinGE [11] is a dimensionality selection criterion for Euclidean graph
embeddings. We set the weighting factor λ = 1 and selected the dimensionality, where
MinGE was closest to 0.

Furthermore, we did not consider the cross-validation (CV) for comparison. This is
because CV requires considerable computation time, particularly, when learning graph
embeddings.

It should be noted that we optimized − log p( y, z;β, γ, σ ) for DNML-PUD, − log p( y,
z;β, γ,
) for DNML-WND, and− log p( y | z;β, γ ) for AIC and BIC. Thus, three embed-
dings were generated for each graph.
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Table 1 Average MAPs on PUD-8. The bold indicates either the maximum MAP or MAP within a 10%
decrease from the maximum one (average estimated dimensionality in the parentheses)

# of nodes DNML-PUD DNML-WND AIC BIC MinGE

800 0.500 (4.0) 0.500 (4.0) 0.666 (5.3) 0.333 (4.0) 0.250 (64.0)

1600 0.500 (4.0) 0.500 (4.0) 1.000 (8.0) 0.486 (4.0) 0.250 (64.0)

3200 0.500 (4.0) 1.000 (8.0) 1.000 (8.0) 0.500 (4.0) 0.250 (64.0)

6400 0.958 (8.7) 0.569 (14.7) 0.486 (16.0) 0.500 (4.0) 0.250 (64.0)

Table 2 Average MAPs on PUD-16. The bold indicates either the maximum MAP or MAP within a 10%
decrease from the maximum one (average estimated dimensionality in the parentheses)

# of nodes DNML-PUD DNML-WND AIC BIC MinGE

800 0.250 (4.0) 0.271 (4.0) 0.333 (4.7) 0.250 (4.0) 0.333 (64.0)

1600 0.326 (4.0) 0.333 (4.0) 0.333 (8.0) 0.250 (4.0) 0.333 (64.0)

3200 0.333 (4.0) 0.333 (8.0) 0.500 (8.0) 0.250 (4.0) 0.333 (64.0)

6400 0.541 (10.0) 1.000 (16.0) 1.000 (16.0) 0.250 (4.0) 0.333 (64.0)

4.2 Artificial dataset

In this experiment, we verified whether the proposed DNML criteria could estimate the true
dimensionality.

4.2.1 Dataset detail

We considered the case of Dtrue = 8, where Dtrue is the true dimensionality of the PUDs.
We generated a graph for each combination of parameters from the following candidates:
n ∈ {800, 1600, 3200, 6400}, β ∈ {0.5, 0.6, 0.7, 0.8}, and σ ∈ {0.5, 1.0, 2.0}. Furthermore,
we set R = log n and γ = β log n. Consequently, we obtained 48 graphs in total, which we
call PUD-8. Similarly, we generated PUD-16 with the true dimensionality which was 16.
The other parameters are the same as those of PUD-8.

Subsequently, we made WND-8. For the true dimensionality Dtrue = 8, we gener-
ated a graph for each combination of parameters from the following candidates: n ∈
{800, 1600, 3200, 6400}, β ∈ {0.5, 0.6, 0.7, 0.8}, and 
 ∈ {(0.35 log n)2 I , (0.375 log n)2 I ,
(0.40 log n)2 I }, where I ∈ R

D×D is the identity matrix. Furthermore, we also set R =
log n and γ = β log n. Similarly, we generated WND-16 with 
 ∈ {(0.225 log n)2 I ,
(0.25 log n)2 I , (0.275 log n)2 I }. The other parameters are the same as those of WND-8.
The set of candidates for the dimensionalities was D = {2, 4, 8, 16, 32, 64}.

In the above generation process, the parameters were set such that the generated graphs
were sparse; that is, the average degree is low with respect to the number of nodes.

4.2.2 Results

To provide an illustrative example for each criterion, we first compared the selected dimen-
sionality of PUD-8 and WND-8 with n = 800, 6400. Figures3 and 4 show the normalized
values for each criterion.
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Table 3 Average MAPs on WND-8. The bold indicates either the maximum MAP or MAP within a 10%
decrease from the maximum one (average estimated dimensionality in the parentheses)

# of nodes DNML-PUD DNML-WND AIC BIC MinGE

800 0.500 (4.0) 0.500 (4.0) 0.708 (5.7) 0.347 (4.0) 0.250 (64.0)

1600 0.500 (4.0) 0.500 (4.0) 1.000 (8.0) 0.500 (4.0) 0.250 (64.0)

3200 0.542 (4.3) 1.000 (8.0) 1.000 (8.0) 0.500 (4.0) 0.250 (64.0)

6400 1.000 (8.0) 0.917 (9.3) 0.667 (13.3) 0.500 (4.0) 0.250 (64.0)

Table 4 Average MAPs on WND-16. The bold indicates either the maximum MAP or MAP within a 10%
decrease from the maximum one (average estimated dimensionality in the parentheses)

# of nodes DNML-PUD DNML-WND AIC BIC MinGE

800 0.264 (4.0) 0.306 (4.0) 0.333 (5.7) 0.250 (4.0) 0.333 (64.0)

1600 0.326 (4.0) 0.333 (4.3) 0.347 (8.0) 0.250 (4.0) 0.333 (64.0)

3200 0.333 (4.3) 0.333 (8.0) 0.500 (8.0) 0.250 (4.0) 0.333 (64.0)

6400 0.389 (8.0) 0.917 (14.7) 0.958 (15.3) 0.250 (4.0) 0.333 (64.0)

Fig. 3 Results on PUD-8. Left: n = 800. Right: n = 6400

Fig. 4 Results on WND-8. Left: n = 800. Right: n = 6400

For n = 800, AIC, BIC, and DNML selected D = 4. Intuitively, a graph with a few
nodes is expected to be embedded in low dimensionality, even if its true dimensionality is
high. For n = 6400, DNML selected the correct dimensionality D = 8, whereas AIC and
BIC selected incorrect dimensionalities. This implies that the DNML criteria can select the
true dimensionality with a sufficient amount of data. For MinGE, it selected the maximum
dimensionality D = 64 for all cases. This is possibly because MinGE was designed for
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Euclidean embeddings, which require larger dimensionality than hyperbolic embeddings for
hierarchical structures, as discussed in Sect. 1.1.

Next, we provide a quantitative comparison in terms of mean average precision (MAP)
[37]. A MAP is calculated using the ranking of the dimensionalities, which was created in
ascending order for each criterion. Furthermore, we applied DNML-PUD to WND dataset
and DNML-WND to PUD dataset.

Tables1, 2, 3, and 4 present the results for PUD-8, PUD-16, WND-8, and WND-16,
respectively. Firstly, theMAPs of BIC andMinGEwere not so high, and they always selected
D = 4 and D = 64, respectively. Since the selected dimensionalities were constant, BIC
and MinGE are less reliable.

For AIC, we observed good performance in many cases; however, it tends to overestimate
the true dimensionality for PUD-8 and WND-8 with n = 6400. This is because the penalty
term of AIC is smaller than those of other criteria. For DNML criteria, in general, when
the sample size is sufficiently large, DNML-PUD identifies the true dimensionality of the
PUD dataset and the same tendency holds for DNML-WND and the WND dataset. Thus,
we concluded that the proposed DNML criteria are more effective than AIC when the true
dimensionality of the given graph is low.

Note that, in general, the performance of DNML-PUD in the WND dataset varied, some-
times being better and sometimes worse compared to DNML-WND. Similarly, in the PUD
dataset, the performance of DNML-WNDalso varied, sometimes being better and sometimes
worse compared to DNML-PUD. This is because the theoretical properties of the MDL prin-
ciple are not valid when the generation process of the given data and the assumed generation
process for calculating DNML code-length are different from each other. Therefore, this
observation is an expected result of the mismatch of the generation process.

4.3 Real-world datasets

We used scientific collaboration networks from [38–40], flight network from https://
openflights.org, protein–protein interaction network from [41], and theWNdatasets from [27]
for our study because they were employed in [16, 42, 43], which are representative studies in
the field of hyperbolic embeddings. The experimental results in [16, 42, 43] demonstrated that
hyperbolic embeddings outperformed Euclidean embeddings in several graph mining tasks
performed on the networks. Therefore, we concluded that they are suitable for comparing
our proposed method with others.

4.3.1 Link prediction

The DNML-PUD, DNML-WND, and other model selection criteria were applied to eight
real-world graphs. In real-world graphs, the true dimensionality is unknown. Therefore, in
this experiment, the link prediction performance for the selected dimensions was evaluated.

Dataset detail We listed the details of eight graphs below.

• Scientific collaboration networks. We used AstroPh, CondMat, GrQc, and HepPh
from [40], Cora from [38], and PubMed from [39]. These graphs are networks that
represent the co-authorship of papers, where an edge exists between two people if they
are co-authors.

• Flight networks. We used Airport from https://openflights.org/. In this graph, nodes
represent airports, and edges represent airline routes.
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Table 5 Statistics of scientific
collaboration networks

Network # Nodes # Edges

AstroPh 18,772 198,080

CondMat 23,133 93,468

GrQc 5242 14,490

HepPh 12,008 118,505

Cora 2708 5278

PubMed 19,717 44,327

Airport 3188 18,630

PPI 1870 2240

Table 6 Selected dimensionalities of each method

Network DNML-PUD DNML-WND AIC BIC MinGE

AstroPh 9 14 16 7 64

CondMat 11 14 16 7 64

GrQc 7 13 10 4 64

HepPh 9 12 12 5 64

Cora 4 4 6 3 64

PubMed 8 13 14 6 64

Airport 5 5 8 4 64

PPI 4 4 5 3 64

• Protein–protein interaction (PPI) networks. We further used PPI from [41]. This graph
represents the protein interactions in yeast bacteria.

Furthermore, Table5 summarizes the statistics of these graphs.
Then, each graph was split into a training set ytrain ⊂ y and test set ytest ⊂ y. The

test set ytest comprises the positive and negative samples. First, we sampled 10% of the
positive samples from a graph. Subsequently, to generate negative samples, we sampled an
equal number of node pairs with no edge connection. Finally, we obtained the training set
ytrain := y\ ytest.

For ytest, we calculated the area under the curve (AUC), which we define as follows. We
first calculated the distance of each samples in ytest . Subsequently, we calculated the true
positive rate and false positive rate with fixed threshold of the distance. Finally, we obtained
the receiver operating characteristic (ROC) curve by varying the threshold, and the AUC is
defined as the area under the ROC curve.

The AUCwas used to quantify the link prediction performance. The candidates of dimen-
sionalities were D = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, 64}.
Results
Figure5 shows the AUCs of the optimal embeddings associated with − log p( y, z;β, γ, σ ),
− log p( y, z;β, γ,
), and − log p( y | z;β, γ ). Figure6 shows the normalized values of
each criterion, and Table 6 shows the selected dimensionalities. The performance at the
selected dimensionalities by DNML-PUD and DNML-WND was not the best, and higher
dimensionalities tended to yield higher AUCs.
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Fig. 5 AUCs on link prediction. First row: AstroPh and CondMat. Second row: GrQc and HepPh. Third
row: Cora and PubMed. Fourth row: Airport and PPI

According to [24], the consistency of the MDL model selection is theoretically guaran-
teed; that is, the model with the shortest code-length would converge to the true one if it
exists. Therefore, the dimensionalities selected by DNML were considered to be close to
the dimensionalities of the true probabilistic models that generated the data. However, our
results suggest that such dimensionality of the true probabilistic model is not necessarily the
best one for link prediction.

In this section, we provide another perspective on the experimental results. As discussed
in Sect. 1.1, dimensionality also controls the computation time and memory. Therefore, it
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Fig. 6 Results of each criterion. First row: AstroPh and CondMat. Second row: GrQc and HepPh. Third
row: Cora and PubMed. Fourth row: Airport and PPI

is important to select a dimensionality at which a relatively high performance is achieved
while maintaining low computational resources (e.g., using embeddings in edge devices).
To quantify this, we introduce conciseness defined as follows: Let D := {D1, . . . , DN } be
the candidates of dimensionalities, AUCDi be the AUC at dimensionality Di , AUC be the
maximum AUC, and εmax be a maximum tolerance gap relative to AUC. For the selected

123



5620 R. Yuki et al.

Table 7 Average conciseness of each method with εmax = 0.050 and 0.100 (the bold text indicates either the
maximum conciseness or conciseness within a 10% decrease from the maximum one)

Network εmax DNML-PUD DNML-WND AIC BIC MinGE

AstroPh 0.050 0.494 0.504 0.469 0.453 0.000

0.100 0.556 0.512 0.475 0.560 0.000

CondMat 0.050 0.391 0.468 0.439 0.213 0.000

0.100 0.518 0.511 0.475 0.514 0.000

GrQc 0.050 0.000 0.000 0.000 0.000 0.000

0.100 0.000 0.000 0.000 0.000 0.000

HepPh 0.050 0.539 0.524 0.511 0.477 0.000

0.100 0.554 0.503 0.497 0.606 0.000

Cora 0.050 0.000 0.000 0.087 0.145 0.000

0.100 0.262 0.284 0.417 0.556 0.000

PubMed 0.050 0.000 0.060 0.000 0.000 0.000

0.100 0.300 0.272 0.219 0.318 0.000

Airport 0.050 0.122 0.106 0.165 0.059 0.000

0.100 0.458 0.438 0.404 0.458 0.000

PPI 0.050 0.000 0.000 0.000 0.000 0.000

0.100 0.351 0.247 0.053 0.204 0.000

Fig. 7 Typical example of
c(D̂, ε)

dimensionality D̂ of each criterion, the conciseness is provided by:

conciseness(D̂, εmax) := 1

εmaxP

∑
i=0,1,...,P

c

(
D̂,

i

P
εmax

)
,

c(D̂, ε) :=
{
1 − log2 D̂−log2 Dmin

log2 Dmax−log2 Dmin
(D̂ ∈ Dε),

0 (D̂ /∈ Dε),

where Dε := {Di ∈ D | AUC − AUCDi < ε}, Dmin := minDi∈Dε Di , Dmax :=
maxDi∈Dε Di , and P ∈ Z≥1 is the number of candidate points to calculate the concise-
ness.

Figure7 shows the typical example of c(D̂, ε). Firstly, the proposed conciseness measure
assumes a situation where the AUC improves by increasing the dimensionality, while the
extent of improvement diminishes, and with limited computational resource, we want to
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Table 8 Statistics of WN datasets Network # Nodes # is-a relationships

WN-mammal 1180 6540

WN-solid 1232 5696

WN-tree 1015 2681

WN-worker 1116 4344

WN-adult 633 2154

WN-instrument 657 2156

WN-leader 788 2505

WN-implement 727 2690

select lower dimensionality while achieving the maximum tolerate AUC. Based on this
motivation, the conciseness measure is designed to take high values when D̂ ∈ D is close to
Dmin.

Since the conciseness significantly depends on εmax, we computed it for εmax = 0.050 and
0.100. Table7 shows the average conciseness of the selected dimensionalities. To calculate
the conciseness, we used the embeddings associated with − log p( y, z;β, γ, σ ) for DNML-
PUD, − log p( y, z;β, γ,
) for DNML-WND, and − log p( y | z;β, γ ) for AIC, BIC, and
MinGE. Furthermore, we set AUC as the maximum AUC associated with three embeddings.

The best or second best performance was achieved by either DNML-PUD or DNML-
WND in many cases. For AIC, the performance was relatively high, but not the best in
many cases. For BIC, the performance was relatively high, specifically for εmax = 0.100.
This indicates that BIC is effective when the maximum tolerate gap is high. For MinGE,
the performance was close to 0 because the selected dimensionality was considerably high.
Overall, the proposed method works well in that it identifies dimensionality with a relatively
high AUC while maintaining low computational resources.

Note that all the performanceswere 0 for GrQc. This is because higher dimensions achieve
considerably higher AUC in GrQc, unlike most other networks where increasing dimensions
do not significantly improve AUC. In such scenarios, the conciseness measure does not take
positive values unless εmax is set to a considerably high value; however, setting an excessively
high tolerate gap (e.g., εmax = 0.300) lacks practical meaning, and it is sufficient to select
the maximum dimensionality within the given computational resources.

4.3.2 Preservation of hierarchy

To investigate the extent to which the hierarchical structure was preserved, we used a subset
of WordNet [27] closely following the setting in [16, 18].

Dataset detail We first considered the transitive closure of the is-a relationship for all the
nouns. Subsequently, we took the subset of the nouns that have “mammal” as a hypernym and
selected relations that have “mammal” as a hyponym or hypernym. Finally, we connected the
two nouns if they have an is-a relationship.We refer to this dataset asWN-mammal. Similarly,
we generated WN-mammal, WN-solid, WN-tree, WN-worker, WN-adult, WN-instrument,
WN-leader, and WN-implement. Table 8 summarizes the statistics for these datasets.

Each graph is expected to have a hierarchical structure because a hypernym is often related
to many hyponyms. We embedded eight graphs with various dimensionalities and calculated
each criterion.
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Fig. 8 Results on WN datasets. First row: WN-mammal, WN-solid. Second row: WN-tree and WN-worker.
Third row: WN-adult and WN-instrument. Fourth row: WN-leader and WN-implement

Result Figure8 shows the normalized criteria. The candidates of dimensionalities were D =
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, 64}.

Subsequently, we quantified the extent to which the obtained embeddings reflected the
true hierarchy of the is-a relation on the data. Following [16], we used the following score
function:
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Fig. 9 Is-a scores onWN dataset. First row: WN-mammal, WN-solid. Second row:WN-tree andWN-worker.
Third row: WN-adult and WN-instrument. Fourth row: WN-leader and WN-implement

is-a-score(u, v) := (α(ru − rv) − 1)duv,

where ru and rv are the radius coordinates of u and v, respectively, and α > 0 is a constant. In
general, it can be assumed that a hypernym has a lower radial coordinate than its hyponyms.
Thus,α(ru−rv) acts as a penaltywhen v, which is a hypernymof u, is lower in the embedding
hierarchy. Therefore, the score is expected to be high when the embedding reflects the true
hierarchy of data. Figure9 shows the average score over all is-a relation pairs for each
dimensionality with α = 100. Overall, the lower dimensionality achieved higher is-a scores.
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Table 9 Average benefits on WN
datasets (the bold text indicates
the maximum one)

DNML-PUD DNML-WND AIC BIC MinGE

0.604 0.708 0.440 0.708 0.000

Next, we provide a quantitative comparison of the benefits. With an estimated dimension-
ality D̂ and a maximum tolerance gap Tgap, the benefit is defined as follows:

b(D̂, Dbest) := max

{
0, 1 − |log2 D̂ − log2 Dbest|

Tgap

}
,

where Dbest is the dimensionality at which the best is-a score is achieved. It has a high value
when the estimated dimensionality is close to Dbest.

Table9 shows the average benefits over the WN datasets. Note that Dbest was 2 for all
datasets, and we set Tgap = 2 in the experiments. The DNML-WND and BIC achieved the
best results. This result implies that DNML-WND and BIC selected the dimensionality that
reflects the true hierarchical structure of the particular graph.

4.4 Discussion

We summarize the experimental results. Firstly, as a general trend, the AIC usually selects
higher dimensionality, the BIC lower dimensionality, and the DNML criteria middle dimen-
sionality. This is due to the relativemagnitude of the penalty terms.MinGEalways selected the
largest dimensionality in all the experiments. This is possibly because MinGE was designed
for Euclidean embeddings, which require higher dimensionality than hyperbolic embeddings
for hierarchical structures, as discussed in Sect. 1.1.

The performance of the AIC was relatively well on the first and second tasks, but not
on the third task. In contrast, the BIC showed high performance in the third task, but low
performance in the first and second tasks. The DNML criterion does not necessarily give the
best performance, but it often gives the best performance or the next-best performance for all
tasks. Therefore, it can be concluded that the performance of the proposed DNML criteria
was good on average for all tasks.

5 Conclusion and future work

In this study, we proposed a dimensionality selection method for hyperbolic embeddings
based on the MDL principle. We demonstrated that there is a non-identifiability problem
for hyperbolic embeddings. Therefore, we employed the latent variable model of hyperbolic
embeddings using PUDs and WNDs to formulate dimensionality selection as the statistical
model selection for latent variable models. Within this formulation, we proposed the DNML
code-length criterion for dimensionality selection based on the MDL principle. For artificial
datasets, we experimentally demonstrated that our method is effective when the true dimen-
sionality is low. For real-world datasets, we used the scientific collaboration networks and
WN datasets. For the scientific collaboration networks, we demonstrated that the proposed
method selected simple probabilistic models while maintaining AUCs. For the WN datasets,
we confirmed that the proposed method selects the dimensionality which preserves the true
hierarchy of graphs. Overall, the proposed method performed well in average.
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Note that we cannot directly use the dimensionality selected by the proposed method
in hyperbolic neural networks methods, such as [43, 44]. Because the probabilistic models
used in the proposed method differ from those used in [43, 44], the optimal dimensionalities
within them are inherently different. This implies that using the dimensionality selected by
the proposed method in [43, 44] rationales the rationales of the DNML code length andMDL
principle. However, we would like to emphasize that even in hyperbolic neural networks,
it is possible to consider latent variable models and derive DNML code-lengths following a
similar procedure to our study. Specifically, we can treat the parameters and outputs of hidden
layers of hyperbolic neural networks as latent variables. In this sense, the proposed method
can be generalized. However, as indicated in “Appendix B,” the derivation of the DNML
code-length requires significant effort and is not straightforward. Therefore, we consider the
extension of our proposed method to hyperbolic neural networks as future work.

The latent variable model approach adopted in this study is promising and is not limited to
hyperbolic space. In the future, we plan to build a methodology for dimensionality selection
in Euclidean and spherical embeddings by introducing latent variable for their corresponding
space [45, 46].
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Appendix A. Derivation of J(z1:D : ui)
For notational simplicity, we omit i from zi,1:D and ui in this section. To drive J (z1:D : u), we
introduce intermediate variable u′ := (r ′, θ ′

1, . . . , θ
′
D−1)

�. The coordinate transformations
are as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z1 = r ′ cos θ ′
1,

z2 = r ′ sin θ ′
1 cos θ ′

2,

...

zD−1 = r ′ sin θ ′
1 sin θ ′

2 · · · sin θ ′
D−2 cos θ ′

D−1,

zD = r ′ sin θ ′
1 sin θ ′

2 · · · sin θ ′
D−2 sin θ ′

D−1.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r ′ = sinh r ,

θ ′
1 = θ1,

θ ′
2 = θ2,

...

θ ′
D−1 = θD−1.

Subsequently, J (z1:D : u) = J (z1:D : u′)J (u′ : u), where J (z1:D : u′) and J (u′ : u) are the
corresponding Jacobians. Jacobian J (z1:D : u′) is well known (e.g., [47]):

J (z1:D : u′) = r ′D−1
D−2∏
i=1

sinD−i−1 θ ′
i .

Jacobian J (u′ : u) is calculated by definition as

J (u′ : u) = cosh r .

Thus, we obtain the following:

J (z1:D : u) = sinhD−1 r cosh r
D−2∏
i=1

sinD−i−1 θi .

Appendix B. Derivation of DNML code-length

B.1 Derivation of LNML( y | z)

For LNML( y | z), following Chap. 5 in [48], we approximate parametric complexity as
follows:

log
∑
ȳ

p( ȳ | z; β̂( ȳ, z), γ̂ ( ȳ, z))

≈ log
n(n − 1)

4π
+ log

∫ γmax

γmin

∫ βmax

βmin

√|In(β, γ )|dβdγ,

where

In(β, γ ) = Eβγ

⎡
⎣ 2

n(n − 1)

⎛
⎝

∂2

∂β2 L(β, γ ) ∂2

∂β∂γ
L(β, γ )

∂2

∂β∂γ
L(β, γ ) ∂2

∂γ 2 L(β, γ )

⎞
⎠
⎤
⎦ ,

where L(β, γ ) := log p( y | z;β, γ ) and Eβγ [·] is the expectation with respect to p( y |
z;β, γ ).

In the following, we calculate In(β, γ ): We rewrite p(yi j | zi , z j ;β, γ ) as

p(yi j | zi , z j ;β, γ ) = p
yi j
i j (1 − pi j )

(1−yi j )

= (1 − pi j )

(
pi j

1 − pi j

)yi j
,
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where pi j = 1/(1 + exp(βdzi z j − γ )). This form is a logistic function with the constraints
β ∈ [βmin, βmax] and γ ∈ [γmin, γmax]. Then, L(β, γ ) is rewritten as

L(β, γ ) =
∑

(i, j)∈�n

{
−yi j log(1 − pi j ) − log

pi j
1 − pi j

}

=
∑

(i, j)∈�n

{
log(1 + exp(−βdzi z j + γ )) + yi j (βdzi z j − γ )

}
.

Hence, we obtain

∂L(β, γ )

∂β
=

∑
(i, j)∈�n

{−dzi z j exp(−βdzi z j + γ )

1 + exp(−βdzi z j + γ )
+ yi j dzi z j

}

=
∑

(i, j)∈�n

{ −dzi z j
1 + exp(βdzi z j − γ )

+ yi j dzi z j

}
,

∂2L(β, γ )

∂β2 =
∑

(i, j)∈�n

d2zi z j exp(βdzi z j − γ )
(
1 + exp(βdzi z j − γ )

)2

=
∑

(i, j)∈�n

d2zi z j

4 cosh2
(βdzi z j −γ

2

) ,

∂2L(β, γ )

∂β∂γ
=

∑
(i, j)∈�n

−dzi z j exp(βdzi z j − γ )

1 + exp(βdzi z j − γ )

=
∑

(i, j)∈�n

−dzi z j

4 cosh2
(βdzi z j −γ

2

) ,

∂L(β, γ )

∂γ
=

∑
(i, j)∈�n

{
exp(−βdzi z j + γ )

1 + exp(−βdzi z j + γ )
− yi j

}

=
∑

(i, j)∈�n

{
1

1 + exp(βdzi z j − γ )
− yi j

}
,

∂2L(β, γ )

∂γ 2 =
∑

(i, j)∈�n

exp(βdzi z j − γ )
(
1 + exp(βdzi z j − γ )

)2

=
∑

(i, j)∈�n

1

4 cosh2
(βdzi z j −γ

2

) .

Since all terms are independent of yi j , we obtain

In(β, γ ) = 2

n(n − 1)

⎛
⎜⎜⎝

∑
(i, j)∈�n

d2zi z j

4 cosh2
( βdzi z j −γ

2

) ∑
(i, j)∈�n

−dzi z j

4 cosh2
( βdzi z j −γ

2

)
∑

(i, j)∈�n

−dzi z j

4 cosh2
( βdzi z j −γ

2

) ∑
(i, j)∈�n

1

4 cosh2
( βdzi z j −γ

2

)

⎞
⎟⎟⎠ .
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B.2 Derivation of LNML(z) of PUDs

For LNML(z), we first show that log
∫
p( z̄; σ̂ ( z̄))d z̄1:D := log

∫
p(ū; σ̂ (ū))dū, where ū =

{ūi }i∈[n], and ūi := (r̄i , θ̄i,1, . . . , θ̄i,D−1)
� is the polar coordinates of each datum. Since

J (z̄i,1:D : ūi ) does not depend on σ , the following equation holds.

σ̂ (ū) = arg max
σ∈[σmin,σmax]

p(ū; σ)

= arg max
σ∈[σmin,σmax]

p( z̄; σ)

n∏
i=1

J (z̄i,1:D : ūi )

= arg max
σ∈[σmin,σmax]

p( z̄; σ)

= σ̂ ( z̄).

Thus,

log
∫

p(ū; σ̂ (ū))dū = log
∫

p( z̄; σ̂ (ū))

n∏
i=1

J (z̄i,1:D : ui )dū

= log
∫

p( z̄; σ̂ ( z̄))
n∏

i=1

J (z̄i,1:D : ui )dū

= log
∫

p( z̄; σ̂ ( z̄))d z̄1:D .

Thereafter, we use the asymptotic approximation of parametric complexity according to
Rissanen [49]:

log
∫

p(ū; σ̂ (ū))dū ≈ 1

2
log

n

2π
+ log

∫ σmax

σmin

√|I (σ )|dσ,

where I (σ ) denotes Fisher information

I (σ ) := lim
n→∞

1

n
Eσ

[
−∂2 log p(u; σ)

∂σ 2

]
= Eσ

[
−∂2 log p(ui ; σ)

∂σ 2

]
.

In the following, we calculate I (σ ).
The negative logarithm of the likelihood for ui = (r , θ1, . . . , θD−1)

� is

L(σ ) := − log
sinhD−1(σr)

CD(σ )
−

D−2∑
j=1

log
sinD−1− j θ j

ID, j
− log

1

2π
.

By interchanging the derivative and integral, we obtain

∂L(σ )

∂σ
= −(D − 1)

r cosh σr

sinh σr
+

∫ R
0 (D − 1)r̄ cosh(σ r̄) sinhD−2(σ r̄)dr̄

CD(σ )
.

Similarly, we get

∂2L(σ )

∂σ 2 = (D − 1)
r2

sinh2(σr)

123



Dimensionality selection for hyperbolic embeddings using… 5629

+ (D − 1)

CD(σ )

∫ R

0

(
r̄2 sinhD−1(σ r̄) + (D − 2)r̄2 cosh2(σ r̄) sinhD−3(σ r̄)

)
dr̄

−
{∫ R

0 (D − 1)r̄ cosh(σ r̄) sinhD−2(σ r̄)dr̄

CD(σ )

}2

.

The second and third terms are independent of r . The expectation of the first termwith respect
to r is calculated as follows.

(D − 1)
∫ R

0

sinhD−1(σ r̄)

CD(σ )
· r̄2

sinh2(σ r̄)
dr̄ = D − 1

CD(σ )

∫ R

0
r̄2 sinhD−3(σ r̄)dr̄ .

Finally, we derive the following:

I (σ ) = (D − 1)2
∫ R
0 r2 cosh2(σr) sinhD−3(σr)dr

CD(σ )

−
{∫ R

0 (D − 1)r cosh(σr) sinhD−2(σr)dr

CD(σ )

}2

.

B.3 Derivation of LNML(z) ofWNDs

Similar to the discussion presented in Sect. B.2, we obtain log
∫
p( z̄; 
̂( z̄))d z̄1:D :=

log
∫
p(v̄; 
̂(v̄))dv̄, where v̄ := {v̄i }i∈[n], and v̄i := (v̄i,1, . . . v̄i,D)�. The following deriva-

tion of log
∫
p(v̄; 
̂(v̄))dv̄ depends heavily on [50, 51]: Let 
̂ := 1

n

∑
i∈[n] viv�

i be the

maximum likelihood estimator for 
. The probability density of 
̂ is well known (e.g.,
Example 2.7 in [47]) and is given by

g(
̂;
) = |
̂| n−D−1
2

2
nD
2 | 1n
| n2 �D

( n
2

) exp
(

−1

2
tr(n
−1
̂)

)
,

where �D(x) := π
D(D−1)

4
∏

j∈[D] �
(
x + 1− j

2

)
, and �(·) is the gamma function. Using Ris-

sanen’s g-function [24], the parametric complexity of LNML(z) can be rewritten as:
∫

p(v̄; 
̂(v̄))dv̄ =
∫

g(
̂; 
̂)d
̂,

where d
̂ = ∏D
i=1

∏D
j=i d
i j .

We also rewrite g(
̂; 
̂) as:

g(λ̂) := n
nD
2

2
nD
2 �D

( n
2

)
e
nD
2

∏
j∈[D]

λ̂
−D−1

2
j ,

where λ̂ := {λ̂i }i∈[D] is the set of the eigenvalues of 
̂ with 0 ≤ λ̂1 ≤ · · · ≤ λ̂D .
To avoid the divergence of parametric complexity, we restrict the data domain of v and z

as follows:

Z̄D(ε1, ε2) := {v | ∀i ∈ [n], vi ∈ R
D,∀ j ∈ [D], ε1 j ≤ λ̂ j (v) ≤ ε2 j },

ZD(ε1, ε2) := {z | ∀i ∈ [n], ∃vi ∈ Z̄D(ε1, ε2), zi = Expμ0
([0, v�

i ]�)}.
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We then obtain the following:

∫
g(
̂; 
̂)d
̂ ≤ π

D2
2

�D
( D
2

)
∫

g(λ̂)
∏

1≤i< j≤D

|λ̂i − λ̂ j |dλ̂

<
π

D2
2
∏

i∈[D−1] ε
D−i
2i

�D
( D
2

)
∫

g(λ̂)dλ̂

= π
D2
2
∏

i∈[D−1] ε
D−i
2i

�D
( D
2

)
�D

( n
2

)
( n

2e

) nD
2

∏
j∈[D]

∫ ε2 j

ε1 j

λ̂
−D−1

2
j dλ̂ j

= π
D2
2
∏

i∈[D−1] ε
D−i
2i

�D
( D
2

)
�D

( n
2

)
( n

2e

) nD
2
(

2

D − 1

)D ∏
j∈[D]

(
ε

1−D
2

1 j − ε
1−D
2

2 j

)

≤ π
D2
2
∏

i∈[D−1] ε
D−i
2i

∏
j∈[D] ε

1−D
2

1 j

�D
( D
2

)
�D

( n
2

)
( n

2e

) nD
2
(

2

D − 1

)D

.

The first inequality is derived from Thm. 2.13 [47].
The main difference between our upper bound and that in [50, 51] is as follows:

• We fixed the mean to the origin of the Euclidean space, whereas the previous studies did
not.

• We removed the restriction εmax < 1 and π
D2
2 ε

D(D−1)
max /�D( D2 ) < 1 from Z̄D(ε1, ε2),

where εmax > 0 is set such that ε2 j ≤ εmax for all j ∈ [D]. Below we explain the reason.
In the discussion in [51], the difference between the code-lengths of any two data is
scale-invariant in Gaussian mixture models (GMMs). In other words, the result of model
selection is scale-invariant. Thus, we can perform model selection on rescaled data on
GMMs, e.g., to multiply 1/α, etc. However, in hyperbolic embeddings, the difference
of the code-lengths is not scale-invariant due to its non-Euclidean nature. Thus, in our
model, it is necessary to remove the restrictions and set ε1 and ε2 to appropriate values
such that the raw data are included in Z̄D(ε1, ε2).

Appendix C Code and experimental details

C.1 Environment

Table10 lists the computing environments used in our experiments.

C.2 Code

The code used in our experiments can be found in the following GitHub repository
https://github.com/IbarakikenYukishi/poincare_embedding/tree/KAIS2023. Please refer to
the README for the instructions.

Heuristics for estimating likelihood and Fisher information
For the calculation of each criterion, because − log p( y | z; β̂( y, z), γ̂ ( y, z)) for large n
requires considerable computational time to calculate, we approximated it as follows:

− log p( y | z; β̂( y, z), γ̂ ( y, z)) ≈ − | y|
| y′| log p( y′ | z; β̂( y, z), γ̂ ( y, z)),
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Table 10 Computing environment in our experiments

Attribute Environment

OS Ubuntu 18.04 LTS

CPU AMD EPYC 7452 (32 core) 2.35GHz

GPU GeForce RTX 3090×4

Memory 512GB

Programming language Python: 3.6.9. with Anaconda

Library PyTorch v1.8.1 with CUDA 11.1

where y′ is sampled uniformly at random over y. Similarly, we approximated In(β, γ ) as
follows:

In(β, γ ) ≈ 2

n′(n′ − 1)

⎛
⎜⎜⎝

∑
(i, j)∈�Sn′

d2zi z j

4 cosh2
( βdzi z j −γ

2

) ∑
(i, j)∈�Sn′

−dzi z j

4 cosh2
( βdzi z j −γ

2

)
∑

(i, j)∈�Sn′
−dzi z j

4 cosh2
( βdzi z j −γ

2

) ∑
(i, j)∈�Sn′

1

4 cosh2
( βdzi z j −γ

2

)

⎞
⎟⎟⎠ ,

where Sn′ ⊂ [n] was sampled uniformly at random over [n], |Sn′ | = n′, and �Sn′ := {(i, j) |
(i, j) ∈ Sn′ × Sn′ , i < j}.

C.3 Training detail

For all experiments, the training details were the same.

Embeddings
First, the Cartesian coordinates of each node were independently initialized uniformly at
random in [−0.001, 0.001]D+1 ⊂ R

(D+1)×(D+1). They were then projected onto the hyper-
boloid plane using Eq. (1).

When learning the embeddings, ten negative samples were sampled per positive sample
for mini-batches. The number of epochs was 800, and we set η(t)

β = 0.001 and η
(t)
γ = 0.001

for all epochs. Similar to [16], the learning process of embeddings is composed of two steps.

• In the first step, − log p( y | z;β, γ ) was optimized for all models with learning rate
η

(t)
z = 0.1.

• In the second step, we optimized the joint likelihoods − log p( y, z;β, γ, σ ) and
− log p( y, z;β, γ,
) for DNML-PUD andDNML-WND, respectively, and− log p( y |
z;β, γ ) for the AIC and BIC. The learning rate η

(t)
z was 34.375.

The first step and second step are composed of 100 and 700 epochs, respectively, for the
embeddings associated with − log p( y | z;β, γ ) and − log p( y, z;β, γ, σ ). For the embed-
dings associated with − log p( y, z;β, γ,
), the first step and second step are composed of
110 and 690 epochs, respectively.

Parameters
We set the parameters as follows: σmax = 1.0, σmin = 0.1, βmax = 10.0, βmin = 0.1, γmax =
10.0, γmin = 0.1, β(0) = 1.0, γ (0) = log n, σ (0) = 1.0, and C = 1000. Then, R was taken
as the same value when the graph was generated for the artificial datasets. For real-world
datasets, R = log n + 5, where n denotes the number of nodes. To calculate the upper bound

123



5632 R. Yuki et al.

on parametric complexity, we set ε1 j = 0.000001 and ε2 j = 1000 for all j ∈ [D]. For
numerical integration, Gaussian quadrature [52] was used.
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