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Abstract
Ontologies store semantic knowledge in a machine-readable way and represent domain
knowledge in controlled vocabulary. In this work, a workflow is set up to derive classes
from a text dataset using natural language processing (NLP) methods. Furthermore, ontolo-
gies and thesauri are browsed for those classes and corresponding existing textual definitions
are extracted. A base ontology is selected to be extended with knowledge from catalysis
science, while word similarity is used to introduce new classes to the ontology based on
the class candidates. Relations are introduced to automatically reference them to already
existing classes in the selected ontology. The workflow is conducted for a text dataset related
to catalysis research on methanation of CO2 and seven semantic artifacts assisting ontology
extension by domain experts. Undefined concepts and unstructured relations can be more
easily introduced automatically into existing ontologies. Domain experts can then revise
the resulting extended ontology by choosing the best fitting definition of a class and spec-
ifying suggested relations between concepts of catalyst research. A structured extension of
ontologies supported by NLP methods is made possible to facilitate a Findable, Accessible,
Interoperable, Reusable (FAIR) data management workflow.

Keywords Ontology · Natural language processing · Automated ontology annotation ·
Information extraction · CO2 methanation · Catalytic conversion

1 Introduction

In the current research data management, interconnection of the data produced and its inter-
pretation are essential for comprehensible deductions of new knowledge. Research data need
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to be FAIR (Findable, Accessible, Interoperable, and Reusable) by humans and machines
in order to make proper use of data recorded in experiments, e.g., in electronic laboratory
notebooks [1, 2]. While a researcher can easily grasp and interpret semantics expressed in
texts using their implicit knowledge [3], a machine cannot perform this without having a
representation of such knowledge embedded. Here, ontologies are used to describe implicit
knowledge in an explicit way as they represent explicit specifications of conceptualizations
[4]. Ontologies are informatic constructs used to represent relations among classes, such as
catalyst or reactor.

As classification is an important concept of ontologies, the hierarchic sorting of the classes
in turn represents the backbone of the ontologies. While the connection of classes within
ontologies is important for their definition, short definition sentences (definition strings) are
used as class annotation. This helps humans using the ontology to define and understand the
classes of the ontology properly. Not only ontologies can be used to obtain definition strings
for classes. Thesauri also provides classes with respective definition strings, such as the
NCIT [5]. While they do not necessarily have semantic relations between their concepts like
ontologies, they often containmore concepts and respective definition strings than ontologies.

For a domain expert who wants to represent the domain knowledge in an ontology, the
hurdle to include ontology classes in the correct form into an ontology might be quite chal-
lenging and time consuming. Being experts in certain scientific fields, domain experts might
also omit some knowledge because it is considered as trivial. Extending an ontology for
own needs often is tedious work [6, 7]; thus, approaches are desired to simplify extension
of ontologies and reduce consumed time for domain experts in order to raise acceptance of
ontologies.

Since already existing ontologies do not necessarily contain all classes essential to describe
the respective knowledge domain, an automated extension of ontologies is desirable. In
addition, plenty of information is presented in scientific research in textual form, e.g., research
papers by many domain experts. Those research papers contain a high number of domain-
specific vocabulary. Using techniques fromNatural Language Processing (NLP), in turn, can
help to automate the setup of ontologies based on unstructured (natural) text as contained in
research papers [8]. Exemplarily, by using Part of Speech (POS) tagging, nouns can be sorted
out automatically from a given text and afterward be brought to their nominative singular
form by lemmatizing.

Whilemethods exist to extract ontologies fromdocuments fully automatically, they usually
provide ontologies that are not really useful for further reuse [9]. The ConTrOn (continuously
trained ontology) project shows how user feedback can be integrated by a human-in-the-loop
system [10, 11]. Here, a domain-specific ontology is augmented automatically and extended
on basis of textual data and external sources of knowledge such as Wikidata and WordNet
[12]. While the approach represents a solution to integrate information from data sheets
to ontologies, the extraction of knowledge and relations between ontology classes from
text is missing. In addition, a comparison of classes and their definitions with WikiData is
done, while a comparison of classes and their definitions with other ontologies also would
make sense. This is due to the fact that other ontologies also might contain knowledge not
represented in WikiData, as ontologies focus more on expert knowledge.

The scope of this work is to use NLP techniques to extract vocabulary relevant to a domain
of knowledge represented in a set of scientific papers. This vocabulary then is annotated
by definitions derived from existing semantic artifacts (such as ontologies and thesauri) to
help domain experts in later steps with sorting out the classes best fitting to the domain
of knowledge. In addition, NLP is used to assist domain experts by including suggested
classes automatically into an existing ontology and suggesting semantic relations between
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the classes based on text vectorization models of the texts. As classes should be only defined
once to avoid ambiguities, already existing definitions of the added classes are included in
the resulting extended ontology to later aid domain experts with selection of the most fitting
definition to the automatically added classes. Thus, words necessary to describe a knowledge
domain are included in a holistic, automated way into an ontology by including knowledge
from a variety of scientific papers on a certain topic of interest.

2 Methodological background

This section describes the text dataset and the semantic artifacts used later to apply the
workflow. Furthermore, the vectorization withWord2Vec is explained as its cosine similarity
and min_count parameter serve as key classificators of later results.

2.1 Text dataset

The dataset deals with scientific publications focusing on catalytic methanation reactions.
Here, a total of 25 research papers and three review papers are collected on research topics
of methanation of CO2. Besides continuous text, the dataset also contains other data, such as
figures, diagrams, tables, and chemical formulas. In addition, the header and footer of pages
often contains text with no further domain-specific information. Thus, preprocessing of the
scientific publications focuses on extraction of token of the continuous text of the text dataset
and omitting data waste. The method of preprocessing is described further in Sect. 3.1. The
publications used as text dataset in this work are presented in Table A1 in Appendix A.

2.2 Semantic artifacts

For extension and annotation of ontologies, five ontologies and two thesauri are selected
based on the set of ontologies deemed as important to the catalysis research domain by the
NFDI4Cat project [1, 13, 14]. The Allotrope Foundation Ontology (AFO) [15], Chemical
Entities of Biological Interest (CHEBI) [16], and Chemical Methods Ontology (CHMO)
[17] are closely related to the chemical domain and contain concepts related to chemical
experiments in laboratories. In contrast, the BioAssay Ontology (BAO) [18] focuses on
biological screening assays and their results. While the scope of the BAO might not be
intuitively fitting to the chosen text dataset, certain concepts are contained in the BAO such
as chemical roles of substances (e.g., catalyst), which also play a role in the text dataset.
Similar to that, the scope of the Systems Biology Ontology (SBO) [19] is system biology
and computational modelling. Similar to the BAO, it is chosen as it also contains relations
regarding substances and also general laboratory contexts, which also are contained in the
text dataset.

In addition to these ontologies, two thesauri are used: the IUPAC Compendium of Chem-
ical Terminology (IUPAC-Goldbook) [20] and the National Cancer Institute Thesaurus
(NCIT) [5]. They cover vast amounts of chemical species and domain-specific words of
the chemical domain of knowledge while also providing definition strings for the respective
words. In order to be processed properly, all ontologies and the NCIT were used in the OWL
file format in RDF/XML syntax and converted to OWL (RDF/XML), when only available
in, e.g., TTL-serialization using Protégé [21]. IUPAC-Goldbook was used in json-file format
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Table 1 Semantic artifacts used
in this work

Ontology Classes

AFO 2894

BAO 7514

CHEBI 176,873

CHMO 3084

SBO 694

Thesaurus Concepts

IUPAC-Goldbook 7038

NCIT 166,212

as provided by the homepage [20]. The semantic artifacts discussed and used in this work
are listed in Table 1 along with the number of classes or concepts they contain.

2.3 Vectorization withWord2Vec

After preprocessing the data, it is further used to get semantic similarity of the token extracted.
For this, the algorithm Word2Vec implemented in the python module gensim is used [22]. It
vectorizes words to learn relations between token and thus, represents a statistical method.
Using the preprocessed text as input, Word2Vec creates a vocabulary, vectorizing each word
to a vector of user defined length. While a longer vector corresponds to a higher dimension
of the vector space used for the vectorization, it also results in longer computational time
resulting in a trade-off between computational time and expressivity of the vectors [23].
The similarity of two concepts can be calculated with the help of the cosine similarity by
calculating the cosine of the angle ϕ between two vectors �a and �b using the equation

cos(ϕ) = �a · �b
‖�a‖ · ‖�b‖ (1)

resulting in a value close to one for token close to each other and close to minus one for token
far away from each other. Because this is a statistical method, the frequency of occurrence of
the token within the text corpus is important to consider. This is reflected in the Word2Vec
parametermin_count setting the number of occurrences in the text corpus, a token must have
at least to be considered by the model. The higher this number is set, the smaller the overall
considered number of words gets; thus, the model focuses only on the most occurring words.
A lower min_count is more prone to include token based on, e.g., typing errors or are those
of less relevance to the overall domain of knowledge represented in the text corpus.

3 Method

To obtain information from scientific papers, the text corpus first needs to be extracted and
preprocessed to be viable in further steps. Part of Speech tagging (POS-tagging) is used to
extract only nouns as candidates for new ontological classes. Searching for these extracted
concepts (token) in already existing semantic artifacts (ontologies or thesauri) yields token
annotated with definition strings and linkage to the respective semantic artifact, the definition
was taken from. To extend an already existing ontology with concepts based on the found
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Fig. 1 Overall workflow conducted in this work to extract token from text, supply them with definitions based
on ontologies and extend ontologies with new classes. The red box denotes the start of the workflow, while
the output boxes are colored green (Color figure online)

token, a Word2Vec model is trained that vectorizes the text data. This in turn allows to
output tokens with small cosine similarity to the already contained classes of an ontology
and introducing those as new classes in the ontology. In addition, relations to denote semantic
relation of these classes are posed, to connect the already contained ontology class to the
automatically created classes based onWord2Vec. This overall workflow is depicted in Fig. 1
with the start of the workflow denoted in red and the output of the workflow in green. The
following sections explain the main three steps of this general workflow in more detail. First,
the text extraction is explained in detail, as the text corpus first needs to be extracted and
preprocessed to be useful in further steps. Then, POS-tagging and search of the token in
already existing ontologies takes place to annotate the extracted token. In the final step, the
extension of an ontology by new classes based on the text dataset is explained.

3.1 Text extraction

Data from the text dataset contains, besides textual information, also information that is
either non-textual or meaningless. Non-textual information, such as figures, can be neglected
to reduce the file size. Text fragments without further domain-specific information also can
be deleted to get a more condensed text dataset.

Thus, all figures, tables, and diagrams that do not contain complete sentences are removed
first by hand with acrobat reader [24] and using the python module pdfminer [25]. Annota-
tions and tables containing text in bullet point form are considered individually. Furthermore,
lists such as references, table of figures, and table of nomenclature are removed, as these
usually represent a list of individual words and symbols that do not reflect any context or
relations. However, definition directories containing technical terms explained by short sen-
tences are not removed, since they can contain relevant information. Subsequently, textual
content that occurs repeatedly is removed, such as a DOI contained in the footer of each
page or the journal name in the header of each page. These have no informative value and
would negatively influence the creation of the model. Captions are also removed, since their
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Fig. 2 Workflow of the code constructed for the annotation of extracted token. The red elements denote the
input of the workflow, while the output boxes are colored green (Color figure online)

information content is marginal and repeat often without enhancement of the textual dataset
(such as“Introduction” or“Conclusion”). Those cleaned files of the dataset are read in as
strings using python code as a singular string such that each dataset contains a single string.
The module SpaCy [26] is used to apply POS-tagging. This transforms the read-in string
into a nested list, where each sentence is represented as list entry in a separate list. Using
interpunction and space characters as separators, token are extracted and lemmatized using
the vocabulary en_core_web_sm. This categorizes each word contained in each sentence
regarding its lexical category (e.g., noun, verb, number,...).

3.2 Annotation of extracted token

As ontology classes are mostly nouns, only token with categories “noun” and “proper noun”
are retained from the dataset and used in further procedures. Thus, a search of those token
in ontologies is performed to determine the amount of token contained in each ontology as
a class. The result helps to decide, which ontology can be taken as basis in further extension
steps. Further help is provided by extraction of definitions of classes contained as string
values in the ontologies, enabling for an easy determination of the best definition by domain
experts in later steps.

To choose a fitting ontology to the dataset and enrich it by the concepts gathered by pre-
processing, existing definitions of token contained in the ontologies should be known. Thus,
python code is produced, which loads ontologies based on a local database using owlready2
[27]. Then, all class labels as well as their definition strings are read in from the ontologies
and stored as key-value pairs in dictionaries. Nested dictionaries are used to store all classes
and their definitions of a single ontology in a dictionary with the ontology name as key and
the dictionary containing class names and their definitions as value. Token found by text
extraction, as discussed in Sect. 3.1, is read in, and the dictionary is browsed for those token
in class names. Finally, the number of found token per ontology can be accessed. In addition,
the token is stored in a table along with the respective definitions, each assigned to its source
ontology for later review of domain experts. The workflow of the code constructed for the
annotation of extracted token is depicted in Fig. 2. The red elements denote the needed input
of the workflow, i.e., the ontology database and the token obtained by text extraction, while
the output boxes are colored green.
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3.3 Extension of an ontology by new classes based on text dataset

The Word2Vec model is trained on the textual data obtained by the methods discussed in
Sect. 3.1. Following [23], a vector size of 300 was set. While the Word2Vec model could
be used for hierarchic clustering, the resulting clusters would not yield hierarchies in an
ontological, semantic way. This is due to the nature of relations between token extracted by
vectorization of concepts. As the text-clusters contain semantic similarities of words impor-
tant for domains of knowledge, no classification and hierarchical information is obtained
from the Word2Vec model. Thus, hierarchical clustering with, e.g., dendrograms, would not
necessarily yield classifications (ontology classes and respective subclasses) of concepts.
However, Word2Vec is able to give token with high cosine similarity to an initial input
concept.

To use this functionality of similar token, the output of the workflow presented in Sect. 3.2
is used. The workflow not only annotates token of a text dataset with definitions contained
in ontologies, but also can be used to output which token already are contained in each
investigated ontology.

Picking the ontology with most common classes, these already contained classes are used
as input for theWord2Vecmodel trained on the text dataset. Themodel then is used to retrieve
the closest n token regarding cosine similarity of the input word. This is accompanied by
a threshold value, restricting the amount of output token also with regards to the minimal
cosine similarity allowed. This would allow for, e.g., setting a necessary minimal cosine
similarity of 0.999, which would in turn only yield token very close to the input, while a
minimal similarity of 0.8 would also include broader token, farther away in the vector space.
As those token are most similar to the already contained ontology class, the ontology class
and the token retrieved in this way byWord2Vec are assumed to have some kind of a semantic
relationship.

If a token output by Word2Vec in this way is not already contained in the ontology, a new
class has to be created, reflecting the token. To have an overarching class of newly included
classes, not yet defined properly by semantic means, a class called w2vConcept is created as
a subclass of owl:Thing class. Token output by the Word2Vec model and not yet contained
in the ontology are then created as class. In addition, they are set to be subclasses of the
also automatically created class w2vConcept, which in turn is set as subclass of the ontology
root class owl:Thing. This is done to help in the later revision of the automatically created
classes as they are more easy to find using an ontology editor, e.g., Protégé, when listed as
subclass of the same class. Furthermore, this ensures that the integration of new classes does
not disturb the semantic integrity of the ontology. The unique classes are also connected
via an automatically created relationship to the classes deemed as similar by the Word2Vec
model. This object property is called conceptually related to and is intended to ease the later
definition of the exact relation between the two classes. To annotate the classes with missing
definition strings, the workflow presented in Sect. 3.2 is used to search for definition strings
of the newly created classes in other semantic artifacts. The code cannot decide by itself
which definition might be more fitting when multiple definition strings are found. Thus, each
definition string obtained is listed in a separate rdfs:comment of the class along with a note
on the source of the definition.

After storing the resulting extended ontology, domain experts thus can go through newly
added classes and easily accept or neglect the classes and modify the conceptually related to
relation to a relation more fitting. This workflow of code to extend an ontology automatically
is depicted in Fig. 3. The ontology used as input is denoted red, while the extended ontology,
which poses the output of the workflow, is colored green.
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Fig. 3 Workflow of code to extend an ontology by new classes based on text dataset. The ontology used as
input is denoted red, while the extended ontology, which poses the output of the workflow, is colored green
(Color figure online)

Fig. 4 Number of tokenobtained from the text dataset of 28 scientific papers for differentmin_count parameters

4 Results and discussion

The textual data of 28 scientific texts are preprocessed and extracted according to Sect. 3.1.
This yields a dataset of overall 858,014 symbols which result in 4,170 noun token identified
for further use in theworkflows proposed in Sect. 3. Applying differentmin_count parameters
in the rangemin_count = [1...25] yields different amounts of token as shown in Fig. 4.While
higher min_count parameters yield lower amounts of token, the token contained is deemed
the more important ones, as they occur more often in the dataset.

The resulting sets of token are then used as concept names to search for fitting classes in
the seven semantic artifacts proposed in Sect. 2.2. This yields the number of token already
contained in the respective ontology as classes as well as textual definitions of the classes in
an automated way. In addition to this, the count of classes already contained can be used to
suggest the ontology most fitting with regards to the respective text dataset.

Table 2 lists the resulting numbers of found classes in semantic artifacts of the performed
annotation for six different min_count in the range [1...100]. Each token only needs to be
annotated with a textual definition at least once; thus, the overall sum of annotated token
is calculated for each set of token. Thus, if a token has annotations from multiple semantic
artifacts, it is counted each respective row, while it only gets counted once in the row of sum
of annotated token. Dividing the sum of annotated token by the overall amount of token then
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Table 2 Amount of token contained as classes in semantic artifacts for token sets derived by different
min_count, sum of annotated token, overall amount of token, and rate of annotated token

min_count

1 5 10 25 50 100

AFO 218 130 97 62 42 27

BAO 100 56 37 25 15 9

CHEBI 107 42 27 23 16 5

CHMO 57 30 21 9 7 3

SBO 37 29 24 21 19 10

IUPAC-Goldbook 365 194 145 94 60 37

NCIT 935 440 300 172 103 54

Sum of annotated token 1178 537 364 211 125 65

Overall amount of token 4170 861 525 276 153 74

Rate of annotated token (in %) 28.25 62.37 69.33 76.45 81.70 87.84

yields the rate of annotated token. A high rate of annotated token is desired in order to reduce
later workload in revising the ontology, as coming up with definitions for classes is more
difficult than agreeing on an already existing one. However, a high sum of annotated token
also is desired as integrating more classes into an ontology results in a higher expressivity of
the latter.

While sets obtained by setting a lowmin_count contain more token than those with higher
min_count, the rate of annotated token rises with higher min_count parameters. This also
might indicate a higher relevance of the token contained in the sets with high min_count
parameters. In addition, the rate of annotated token for a min_count = 1 is quite low with
28.25 % compared to the other rates. This might be due to the inclusion of typing mistakes
and non-domain relevant token at lower min_count, as one occurrence would suffice for the
token to be contained in the text dataset. On the other hand, lowermin_count parameters take
into account more concepts not yet defined in the ontologies. These concepts in turn allow
for generation of more new candidates of classes in the respective ontologies. The ontologies
themselves have lower amounts of token contained compared to the thesauri. However, the
AFO is expected to be the ontology best fitting to the dataset as it has the highest number
of annotated token while not having the highest amount of classes compared to the other
ontologies. This indicates an intersection of topics represented in the text dataset and the
AFO.

Plotting the rate of annotated token against the min_count parameters, as in Fig. 5, the
largest jump in the rate occurs between min_count = 1 and min_count = 2.

Taking into account the number of token found in each ontology, the AFO contains the
most token for each min_count. Thus, the AFO is deemed as most fitting ontology of the
five ontologies for the description of the knowledge domain contained in the text dataset and
accordingly chosen as ontology to be extended by the method elucidated in Sect. 3.3.

Word2Vec models are trained on token sets based on min_count parameters in the range
min_count = [1...25]. Then, class labels from the AFO that are also contained in the token
set are used as input to determine the most similar words. As the similarity of the words is
determined by the cosine similarity, thresholds can be set to confine the amount of output
words with regards to their similarity to the input word. A maximum amount of five output
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Fig. 5 Rate of annotated token for different min_count

Fig. 6 Amount of unique token output by Word2Vec for classes of AFO with different min_count and cosine
similarity thresholds varied between [0.8, ..., 0.999]

words per input word is set, and the threshold varied in the range of [0.8, ..., 0.999]. As
some words are contained in multiple output sets for different input words, the amount of
unique token generated by Word2Vec is calculated by only counting each word generated
as a class candidate of the ontology once. With the AFO as ontology to be extended, Fig. 6
shows the amount of unique token found for different min_count parameters and different
cosine similarity thresholds.

While the cosine similarity threshold has an impact on the amount of unique token
generated for low min_count, the effect seems to be mitigated for thresholds in the range
[0.8, ..., 0.995] andmin_count > 5. Using differentmin_count and a cosine similarity thresh-
old of 0.999, the AFO is extended automatically by new classes suggested by the Word2Vec
model. The new classes are furthermore annotated by respective textual definitions obtained
from the classes and concepts of the other semantic artifacts presented in Sect. 2.2. Object
properties conceptually related to are asserted, pointing to the respective ontology classes
already contained in the AFO before extension.

Table 3 lists the resulting number of new classes inserted into the AFO obtained by setting
the cosine similarity threshold to 0.999 and applying different min_count parameters in the
range [1, ..., 25]. In addition, the amount of annotated new classes is listed along with the
number of textual definitions according to the source of the textual definition related to the
corresponding semantic artifact. Here, amin_count of 10 seems to be themost promising one,
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Table 3 Number of new classes
and annotated new classes in
AFO created by the workflow
along with the number of
annotations obtained from each
respective semantic artifact

min_count 1 2 5 10 25

BAO 5 6 5 6 4

CHEBI 9 10 7 7 6

CHMO 4 3 3 3 2

SBO 6 9 6 9 7

IUPAC-Goldbook 28 24 26 28 29

NCIT 50 51 50 58 56

Annotated new classes 59 60 62 68 66

New classes 73 73 77 91 87

Extension of ontology conducted with cosine similarity threshold set to
0.999 and different min_count

as the number of new classes (91) and number of annotated new classes (68) are highest. Thus,
the AFO is extended by 91 classes which are created automatically based on the text dataset.
From these new classes, 68 are annotated based on the other semantic artifacts achieving
an annotation rate of 68/91 = 74.73%. Of these 68 annotated new classes, 6 are annotated
based on BAO class-definitions, 7 based on CHEBI, 3 based on CHMO, and 9 based on SBO
classes. Furthermore, 28 classes are annotated based on IUPAC-Goldbook concepts and 58
based on the NCIT. The sum of these annotations is greater than 68, indicating multiple
annotations for some new classes in the extended AFO.

The automatically added classes are concepts taken from the text dataset; thus, theymay be
used to describe the context represented in the 28 scientific texts. Furthermore, the semantic
artifacts chosen in this publication all deal somehow with the domain of chemistry or at least
are situated in the domain of natural sciences that deal with chemical substances. Thus, the
annotation of the classes is assumed to be in the correct domain as the source of the annotation
already is situated close to the needed domain of knowledge. As the annotations often only
vary in small details, the decision on (re-)use of specific ontology classes should be done by
domain experts.

To provide an example of the resulting extension, Protégé is used for visualization of the
resulting ontology. Figure7 shows the class hierarchy of the already contained AFO classes
concentration and rate using blue arrows for the hierarchical relation has subclass.

The new class flow is inserted based on the workflow as subclass of w2vConcept and gets
assigned the relation of conceptually related to (denoted by dashed orange arrows) connecting
it to the classes concentration and rate.

Furthermore, the new class flow gets annotated by the textual definition of the concept flow
found in the NCIT. The resulting annotations of the class flow are depicted in Fig. 8. The first
entry contains the label of the class, while the next two entries point to the word-input that
led to the generation of the class. The bottommost entry contains a textual definition found
in the NCIT. The remark ‘Found in [NCIT]’ gives the link to the underlying class of the
ontology, allowing for later reuse of the respective entity. As the new classes are generated
automatically, an arbitrary amount of such rdfs:comment can be assigned to a class, but only
one rdfs:label is assigned.

Thus, an existing ontology can be extended automatically by concepts based on scientific
texts. After extension of the ontology, an evaluation by domain experts should be conducted,
as not every resulting definition and relation might be correct.
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Fig. 7 Visualization of class hierarchy of new class flow in Protégé. Class flow and relations conceptually
related to to existing classes created automatically by the workflow withmin_count = 10 and cosine similarity
threshold = 0.999. Solid blue arrows indicate relation has subclass, dashed orange arrows denote relation
conceptually related to

Fig. 8 Annotations of new class flow visualized in Protégé for later review by domain experts

This in turn can be used for an automated, ontology aligned annotation of research data:
When a researcher uploads their research data and corresponding textual documentation to
a database, the workflow presented in this work can then be used to automatically choose
the best fitting ontology and extend it. The extended ontology could then in turn be used to
annotate the previous uploaded research data, linking data entries with relations as posed in
the textual documentation.
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5 Summary and outlook

5.1 Conclusion

Ontologies are used to describe knowledge in an explicit and machine-readable way, while
still being human-readable. Thus, they are used to model knowledge and semantic relations
between data and concepts of scientific knowledge domains.

In this contribution, a method is set up to automatically make use of natural language
processing (NLP) techniques to extract concepts contained in a text dataset in order to extend
existing ontologies by these concepts relevant to a domain of knowledge. A search for textual
concept definitions from different sources such as different ontologies and thesauri allows for
automated annotation of these concepts found. This also helps in picking the right ontology
to be extended in the second part of the workflow, where the extension of an ontology is
performed by newclasses based on the text dataset. Differentword vectorizationmodels using
Word2Vec are trainedbasedondifferent allowednumbers of repetitions of the tokenwithin the
preprocessed text dataset (min_count) and used to suggest new classes and relations between
them. Finally, the classes are annotated with textual definition based on other ontologies and
thesauri, where possible.

This workflow allows for automated extension of ontologies by classes contained as con-
cepts in a text dataset. A text dataset of 28 papers on the topic of catalytic methanation of
CO2 reactions, five ontologies and two thesauri are used as a proof-of-concept. While use of
a lowmin_count parameter results in higher numbers of new classes suggested, it also allows
for integration of concepts not that important to the domain of knowledge, as the lower rates
of annotated token suggest. Using a min_count parameter of 10, the Allotrope Foundation
Ontology (AFO) is extended automatically by 91 new classes obtained by the text dataset.
Of these classes, 68 classes are provided automatically with at least one textual definition
based on the other semantic artifacts (i.e., the other ontologies and thesauri) provided.

This workflow can easily be adapted for other ontologies and text datasets to extend
existing ontologies. Additionally, the database of semantic artifacts can be set for a larger
number of ontologies and thesauri. While this can be adjusted quickly, the use of other
definition databases such as WikiData can be implemented with some code adjustments.

5.2 Limitations and future work

The workflow only uses single-word tokens, thus only is able to search for and add single-
word classes to the ontology. Detecting multi-word concepts with the presented workflow is
not yet possible, but desirable as often ontology classes consist of more than one word. In the
future, manipulation of the applied POS-tagging is planned to mitigate the limitation of only
single-word classes being considered by the presentedworkflow.Here, e.g., neighboring noun
token could be combined to one class, such as “flow rate”, or pairs of neighboring adjective
and noun pairs, like “catalytic reaction.” Furthermore, the use ofmore sophisticatedmethods,
such as named entity recognition (NER) [28], can be used. However, this method requires
the pre-definition of categories. While this is already quite available for general categories,
the definition of catalysis-related categories for NER is yet to be implemented to the best
knowledge of the authors.

The second major limitation of the presented workflow is the missing refinement of the
“semantically related to” relation used to link existing and newly created classes. The rela-
tionships could not be further refined because the semantic relation of the concepts is not
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appropriately given by word2vec. For example, no distinction is made between a hierarchical
relationship or an object property. This is also due to the fact that only nouns are included
as classes into the ontology; thus, verbs and adjectives are not considered, which would be
the more fitting candidates for ontology properties and relations. In future work, relationship
extraction and entity linking, i.e., the Radbound Entity Linker [29] could be used to develop
more sophisticated relationship extraction. After extracting the relations, additional linking
to already existing ontology relationships is also in the scope.

To evaluate the usefulness of the workflow, an evaluation by domain experts should be
conducted, to classify the number of valuable classes and relations generated automatically
by the workflow. Extending an ontology by textual input as shown in this work also will help
domain experts in the future to automatically annotate research data when uploading a set of
research data together with a corresponding paper to a research database.

Supplementary information

The code developed in this work is available in a GitHub repository here: https://github.com/
TUDoAD/NLP-Based-Ontology-Extender.

The pre-processed pdf-files and the ontology files are available in a zenodo repository
here: https://zenodo.org/record/7956870.
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