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Abstract
Traditionally, recommender systems use collaborative filtering or content-based approaches
based on ratings and item descriptions. However, this information is unavailable in many
domains and applications, and recommender systems can only tackle the problem using infor-
mation about interactions or implicit knowledge. Within this scenario, this work proposes
a novel approach based on link prediction techniques over graph structures that exclusively
considers interactions between users and items to provide recommendations. We present and
evaluate two alternative recommendation methods: one item-based and one user-based that
apply the edge weight, common neighbours, Jaccard neighbours, Adar/Adamic, and Prefer-
ential Attachment link prediction techniques. This approach has two significant advantages,
which are the novelty of our proposal. First, it is suitable for minimal knowledge scenarios
where explicit data such as ratings or preferences are not available. However, as our evalua-
tion demonstrates, this approach outperforms state-of-the-art techniques using a similar level
of interaction knowledge. Second, our approach has another relevant feature regarding one of
the most significant concerns in current artificial intelligence research: the recommendation
methods presented in this paper are easily interpretable for the users, improving their trust
in the recommendations.
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1 Introduction

It is becoming common to employ recommendation technologies to aid users in finding
interesting items on the Web. Due to the overwhelming amount of information, there is a
wide range of products such as books, music, games, and trips that are difficult to discover on
the Web. Recommender systems [1] enable users to find items according to their preferences
and needs.

Classic techniques to implement recommender systems use information about explicit
data, such as ratings (collaborative filtering [14]) and preferences (content-based [31]). How-
ever, in some cases, we cannot use that information because it is unavailable: we are in a
minimal knowledge scenario. Then, we need to implement recommender systems based on
minimal knowledge, such as the implicit information obtained from the user’s interaction
with the system. We propose using the implicit information in the interactions between
users and items, representing them in a knowledge graph, which is analysed to find rec-
ommendations. This recommendation approach presents advantages compared to traditional
implementations since it only needs interaction knowledge without other explicit data, such
as preferences and ratings. In a recent survey by Ji et al [22], the authors focussed on the
wide use of knowledge representations and reasoning based on graphs to solve complex tasks.
Furthermore, the authors classified recommender systems as a knowledge-aware application
where integrating knowledge graphs can enhance the reasoning behind the recommendation
and, therefore, its interpretability. In the context of a recommender system, interpretability
can help users comprehend the output of the system and encourage goals such as trust, con-
fidence in the decision-making, or utility of the system [51]. A recent survey by Guo et al
[19] claimed that knowledge graphs are a valuable technique to make recommendations with
the advantage of being more understandable than classic techniques. This way, knowledge
graphs are interpretable by the target users, increasing their trust in the recommendation.

In this work, we propose a novel approach that can be included in this group of inter-
pretable recommender systems based on knowledge graphs modelling users’ behaviour. To
tackle the problem of providing and explaining recommendations, we infer and model the
knowledge within the interactions between users and items as graphs that are later analysed
using link prediction techniques, which are Social Network Analysis technologies [36, 47].
Concretely, we propose two different approaches—a user-based and item-based interaction
graphs—where we apply link prediction techniques to compute similarities and generate
recommendations.

However, common recommendation approaches, such as collaborative filtering (matrix
factorisation, decision trees, naive Bayes, neural networks), can also be adapted to provide
recommendations only using interaction knowledge. Therefore, a comparison regarding per-
formance and interpretability is required to clarify the potential of our proposal. Primarily,
our approach can be considered a local method that focuses on the neighbourhood of the
target user in the interaction graph. In contrast, standard recommender systems create global
models with all the available knowledge in the system. It impacts the interpretability of the
models, as local approaches are more understandable than global ones [5, 44, 50]. Explain-
ability and interpretability are concepts that do not mean the same. Interpretability is the
property of an artificial intelligence model that allows understanding its functionality [3, 15].
Explainability refers to the feature of the artificial intelligence system to show the reasons
behind the decision of the system, which allows users to understand that system and trust
in it [3, 15]. Therefore, when an intelligent system is interpretable, users can understand
the system itself. However, if the system is explainable, users understand the decisions of
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the system and accept its prediction, which affects the users’ decision-making [18]. The
graph-based method we propose in this paper is interpretable: users can understand why a
recommendation has been made.

The main goal of this work is to demonstrate that the performance of our proposal is
comparable to these recommendation techniques when there is only minimal knowledge
available but has the advantage of interpretability. We provide an experimental evaluation
to compare our proposal with state-of-the-art recommendation techniques in a large and
well-known data set such as MovieLens, which contains user ratings about movies.

In Sect. 2, we comment on some related work to our proposal, and afterwards, in Sect. 3,
we describe our methods: both recommender approaches are based on interaction graphs.
Then, we explain the experiments carried out with our approaches and classic techniques and
how we compare them using MovieLens in Sect. 4. Moreover, in Sect. 4.6, we discuss the
results to conclude which are the best methods. Finally, in Sect. 5, wemake some conclusions
about this work.

2 Related work

These days, recommender systems are necessary due to the incredible offer of products
available on some platforms, such as Amazon, eBay, or Netflix [1]. Some systems show
non-personalised information; for example, the best sellers in a category are shown to the
user as a recommendation. However, the best recommendations are the personalised ones
that are adapted to each user [45]. That is why the research in this field has a remarkable
presence in artificial intelligence investigation [7, 24]. Traditionally, several techniques are
used to make recommendations. According to the literature, we can include these techniques
into three main groups: collaborative filtering (based on ratings), content-based (based on
descriptions of users and items) and knowledge-based approaches (based on descriptions,
domain knowledge and restrictions) [1, 7, 32]. There are also hybrid recommender systems
that combine different methods to get better recommendations, mitigating the weaknesses
of individual techniques. Moreover, there are two types of collaborative filtering methods.
The first one is memory-based and can be divided into two main groups: based on users or
based on items. Memory-based collaborative filtering is based on similar users to the target
user [1, 14, 20, 37, 48, 49]. The other type of collaborative filtering is the model-based one.
These methods are more complex than previous ones but, at the same time, achieve excellent
results. Thesemethods encompassmachine learning and datamining techniques as predictive
models, like decision trees, naive Bayes, neural networks or support vector machines. One of
the most popular implementations within this group is matrix factorisation, which is widely
used due to its proven effectiveness [8, 25, 26].

In the literature, we can also determine that some of these techniques are adapted for rec-
ommending new itemswhen there is aminimal knowledge scenario.Mainly, these techniques
are model-based collaborative filtering methods, although memory-based collaborative fil-
tering can also be used to solve this problem. We can find reviews and some examples of this
application in the literature [2, 39, 52, 53].

These collaborative filtering techniques adapted to minimal knowledge scenarios use the
users’ interactions with the items of the system. They do not consider additional knowledge
about the interaction itself (explicit preferences), such as the value of the ratings, for example,
or about the content, such as user preferences and item descriptions, because this knowledge
does not exist or is unavailable. Therefore, they use explicit knowledge instead of implicit
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information. They are helpful when users can only express their like or dislike for an item.
According to this, we can consider two types of interaction definitions: binary interactions
or unary interactions [1, 45]. In binary interactions, users can express a liking for one item
as a positive interaction or dislike for an item as a negative interaction. If the user does not
express the like, the interaction does not exist. For example, we can consider a like for an
item if the user rates this item with 4 or 5 stars. A dislike would be a value of 1, 2 or 3.
However, the users only can like one item in the case of unary ratings. It exists only for
positive interactions. One example of unary ratings is the purchase of one item. So, the user
has interacted with this item. If she does not buy an item, then the interaction does not exist;
it is not a negative interaction. Minimal knowledge scenarios are the ones where we have
unary ratings. The book by Aggarwal [1] and the work by Lü et al [35] are where we can find
the most comprehensive compilation of collaborative filtering solutions applied on binary or
unary ratings.

However, we must clarify the applicability of different approaches when we have unary
ratings. Collaborative filtering and other alternatives found in the literature to get recom-
mendations are not applicable in minimal knowledge scenarios (when we have only unary
ratings) in a straightforward way. To apply those techniques in this type of knowledge, as
Aggarwal [1] explains, we need to adapt the unary ratings and transform them into binary
or ternary ratings, as we have done in our evaluation. We can see that this transformation
is always done somehow in every technique found in the state-of-the-art when applied to
minimal knowledge scenarios. Next, we discussed three examples.

In references [40] and [21], interactions carried out are represented with 1, while no inter-
actions are represented with 0. In reference [40], Sect. 3.2, we can see that authors mention
that their approach is based on weighted low-rank approximation, which “is applied to a col-
laborative filtering problemwith a naive weighting scheme assigning 1 to observed examples
and 0 to missing (unobserved)”. A few lines below show that the approach starts working
from a matrix R, whose values are 0 and 1 (binary ratings obtained from the unary rating
transformation). In reference [21], Sect. 4, the authors say that the knowledge representation
they used is as follows: “if a user u consumed item i , then we have an indication that u likes
i (representation = 1). On the other hand, if u never consumed i , we believe no preference
(representation = 0)”.

Therefore, both references use binary ratings: “like” and not observed. They assume that
the items users have interacted with are the ones they like. However, they represent the
items that users have not interacted with a unique value that could represent two types of
items: items not interesting for users (so that is why users did not interact with them) or
items interesting for users (but not found by users yet). So, this type of representation could
introduce bias considering the inaccurate knowledge.

In reference [43], they transform the representation in ternary ratings. They explain how
they do that in Sect. 3.2. They have three values: ? for non-observed items, + for observed
items that the user likes, and − for observed items that users like less than + ones. In this
paper, we propose a method that has the advantage of using unary ratings straightforwardly
over the rest of the techniques. We do not make any transformation; we only use factual
information, so we avoid introducing bias in our knowledge.

Moreover, some recommender approaches are based ongraphswith orwithout the link pre-
diction techniques application in the literature. Liben-Nowell and Kleinberg [29] described
and compared different similarity metrics from link prediction techniques. Another interest-
ing work is the publication [11], which depicts an approach that considers patterns in a graph
to establish the proper order of recommendations. The paper by [4] proposes a recommenda-
tion approach using a knowledge representation similar to ours. To make recommendations,
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they combine the knowledge about: (1) the most popular items (the ones that participate in
more amount of interactions), and (2) the interactions carried out by users whose interactions
are similar to the ones carried out by the target user. The main goal of this approach is to
solve the problem of cold start and sparsity in traditional recommender systems. In the work
[12], we find an example of link prediction techniques used in bipartite graphs to solve a
recommendation problem. In the paper [57], the authors represented interactions and simi-
lar relations in a graph with complex numbers. They used this structure with link prediction
techniques to make recommendations. In the case of the work [58], the authors propose using
link prediction techniques on graphs to alleviate typical recommender systems problems like
sparsity and scalability. The publication by Li and Chen [28] introduces a methodology based
on graphs and link prediction techniques which uses random walks for getting recommenda-
tions. Using random walks over graphs is a recommendation algorithm we can find in other
papers in the literature. For example, [6] introduces this methodology to get context-aware
location recommendations. In the work [59], the authors propose using graphs to represent
different relationships in the graph and link prediction techniques to predict new relation-
ships, which could be applied to recommender systems. They use a Bayesian personalised
ranking-based optimisation technique to get these relationships. We can observe in the work
[61] that link prediction can be applied on bipartite graphs to get movie recommendations
representing the genre in the links. The graph representation in the work by [60] is more
complex because it uses graph features to represent latent features in a multi-step relation
path. This representation aims to discover new knowledge that can be used for recommender
systems. This graph representation is evaluated using link prediction techniques to predict
this new knowledge. As the last example, in the work [17], authors propose to use graphs and
link prediction techniques to recommend new research collaborations. The graph represents
a wide variety of knowledge about a scientist and her work.

The explainability of recommender systems is also a significant problem to be addressed,
as many of these systems act as a black box for the users. When users do not understand
the reasons behind a recommendation, they do not trust the system, so it is not useful for
them [16]. Some works explore graphs to make explainable recommendations, for example,
the work by Wang et al [55]. The authors describe a new model Knowledge-aware Path
Recurrent Network, which uses a knowledge graph to make recommendations. The graph
represents not only interactions between users and items but also their features. This proposal
improves the performance of other models like collaborative knowledge base embedding or
neural factorisation machines. Moreover, Knowledge-aware Path Recurrent Network stands
out because it is an interpretable model. However, it uses the whole model to get the paths
that get the recommendations and explanations, which means it is a global model. According
to the literature, this could make understanding the recommendations more difficult. We also
can encounter an example of an explainable recommender system that uses graphs in thework
byXian et al [56]. This proposal, called Policy-Guided Path Reasoning, considers the paths in
the graph to generate interpretable recommendations. In our previous work [9], we proposed
a graph-based recommender method that generates recommendations using an interaction
graph as the knowledge source. Furthermore, we also used this knowledge source based on
graphs to explain black-box recommender systems [10]. As we mentioned, there are surveys
[19, 22] that study the importance of using graphs to tackle the recommendation problem.
As they state, graphs are useful for making recommendations, increasing the interpretability
of the recommender system and the users’ trust.

In this work, we propose a methodology to make recommendations when there is not
enough knowledge to apply straightforward classic recommender techniques or other pro-
posals discussed in this section or found in the literature. Therefore, this new proposal can
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be advantageous when the lack of information is so high. Furthermore, the proposal is more
interpretable than classic techniques or other proposals from the literature. It can be more
effective than them because it can offer interpretability and explainability by itself, providing
satisfaction and trust to target users. These two key advantages are the main differences from
the works discussed in this section. In the next section, we detail how our proposed approach
works.

3 Recommendation with interaction graphs

Our approach is based on the basic premise that, at least, users interact with items in any
recommender system. We can represent these interactions as a tuple R = (t, u, i, x), where:

• t is the timestamp when the interaction was carried out,
• u ∈ U is the user that carried out the interaction,
• i ∈ I is the item with which u has interacted on t ,
• x is the value associated with the interaction. In many cases, x is the rating provided by

u to i in a specific interaction. For example, when a user u rates a book i in Goodreads, x
is the rating provided. Nevertheless, we can have other information in x besides ratings.
For instance, in online judges, x is the verdict provided by the platform to u for a solution
of the problem i .

Most current techniques exploit the value of x associated with the interaction to provide
a recommendation. However, in several scenarios, acquiring these values may be difficult
or even infeasible. Therefore, we propose a recommendation approach based on interac-
tion graphs and link prediction methods suitable for recommending items when the values
associated with the interaction are not available or helpful. It is important to note that these
interaction graphs do not require further information about users, item features, or ratings. As
we will prove in the evaluation section, this approach is much less information-demanding
than standard recommendation methods but can achieve similar performance. Furthermore,
it is more interpretable than these standard techniques because its underlying rationale is
more straightforward for users.

Then, when x values are unavailable, we can only access the information about whether
u has interacted with i . Through this abstraction, we can build a graph representing the
interactions as a non-weighted bipartite graph: G〈N , L〉. The nodes in N belong either to the
user set U or to the item set I . The links L are created when a node representing the user u
has interacted with a node representing an item i . We can also represent G as an adjacency
matrix A, where A[i, u] is equal to 1 if user u has interacted with the item i , ∅ otherwise.
Therefore, our graph-based model describes the unary interactions in the system. We do not
minimise the graph: it is inherently minimal because it represents minimal knowledge. The
main idea of our recommendation methods is to use this graph and link prediction techniques
to get similarities between nodes. With these similarities, we can find the most interesting
items for the target user.

To enable the application of link prediction techniques, we can perform a bipartite network
projection and obtain two different weighted graphs: an item–item graph GI and a user–user
graph GU . In Fig. 1, we can see an example of a bipartite network projection. This figure
is also a diagram to illustrate the minimal scenario where our approach is suitable to be
applied. With the adjacency matrix, we could see an example of the interactions carried out
for a particular situation. That matrix can be transformed on an interaction graph as we can
see in the figure. For example, on YouTube, those interactions could represent the videos
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Fig. 1 Transformation of a bipartite graph into a non-bipartite graph through bipartite network projection
[62]. We obtained two different graphs—user-based (left) and item-based (right)—from the original graph

watched by the users. This is an example of a minimal scenario because users do not rate the
videos that they watch. Moreover, the recommender system does not know what is the video
content or explicit user preferences. Another example could be online judges. Online judges
are systems where users can solve programming problems getting a verdict from the system
according to their solution. In this scenario, users do not rate the problems that they solve
and we do not have useful information about the problems to make recommendations. These
are motivating examples that illustrate the recommendation task that we want to figure out
in this work.

Because users may generate many interactions with items, the resulting graph may be
very dense. For this reason, we must also apply filtering techniques to reduce the density
and reduce the computing cost without losing sensible data. This filtering is performed by
removing the links whose weight is lower than a threshold value denoted as θ .

From the two graphs resulting from the bipartite network projection, we can make
recommendations in two different ways as described next.

3.1 Item-based recommendation process

The item-based recommendation approach uses the graph where nodes represent items. This
process recommends a target user u themost similar items to thosewithwhich u has interacted
previously. We define graph GI = 〈NI , L I 〉, where NI = {ni , n j , . . .} is the set of nodes
representing the items I of the recommender system and L I = {(ni , n j )} are the links
between items according to the bipartite projection. In this approach, two nodes are linked if
they have at least one user in common that has interacted with both items. The weight of the
link, wi j , represents the number of users who have interacted with them. In addition, as we
mentioned, we remove the links whose weight is lower than a threshold value of θ to reduce
the density of the graph.
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Fig. 2 Overview of the recommendation process using the item-based graph

The process to make recommendations for a target user u using the item-based graph is
(also illustrated in Fig. 2):

1. Step 1. Build a similarity matrix SI that stores all the similarity values between all of the
pairs of nodes in the graph GI using one of the link prediction methods, LinkPred(),
described later in Sect. 3.3. This matrix represents the similarities between the items
within the recommender system.

2. Step 2. Obtain the set I+
u ⊂ I with the items that user u has interacted with.

Complementary, I−
u = I\I+

u is the set of items that user u has not yet interacted with.
3. Step 3. Considering function i tem(ni ) returns the item represented by node ni , for every

node ni that i tem(ni ) ∈ I+
u , obtain a list simu(ni ) containing the most similar items

to the item represented by ni , and u has not interacted yet, ordered according to their
similarity in SI . This list is defined as:

simu(ni ) = {(i j , si j ), (ik, sik), . . . |si j ≥ sik}
where, ∀(ix , six ) ∈ simu(ni ) : ix = i tem(nx )

ix ∈ I−
u

six = SI [ni , nx ]

(1)

4. Step 4. Join the simu(ni ) lists for every ni that i tem(ni ) ∈ I+
u and obtain a global list

gsimu containing all the similar to I+
u items (and associated similarity), which u has not

interacted with. This list may contain repeated entries with different similarity values for
any item:

gsimu =
⋃

i tem(ni )∈I+
u

simu(ni ) (2)

5. Step 5. Aggregate the similarity weights six for those items that are repeated in list
gsimu . We have experimented with different aggregation methods, Aggr(), described in
Sect. 3.4. As a result, we obtain the following final ordered list recu :

6. Step 6. Finally, from rec(u) recommend the first k elements.
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Algorithm 1 Optimised algorithm for the computation of the recommendation list using the
item-based approach.

Input: GI = {I , L I }, I+u , LinkPred(), Aggr()
Output: rec

1 foreach ni ∈ I do
2 foreach n j 	= ni ∈ I do
3 SI [ni , n j ] = LinkPred(GI , ni , n j )

4 end
5 end
6 I−u = I \ I+u
rec = {}, gsim = {}
foreach i tem(nx ) ∈ I+u do

7 foreach i tem(ni ) ∈ I−u do
8 sx = SI [ni , nx ]

insert(gsim, (i tem(nx ), sx ))
9 end

10 end
11 foreach (ix , ?) ∈ gsim do
12 sims = {}

foreach (ix , s) ∈ gsim do
13 insert(sims, s)

14 end
15 Sx = Aggr(sims)

ordered Insert(rec, (ix , Sx ))
16 end
17 return rec

Algorithm 1 shows the optimised algorithm used to compute the item-based recommen-
dation list according to the previous steps. Next, we describe the alternative user-based
approach.

3.2 User-based recommendation process

In this case, the user-based recommendation approach is based on the graph with users
as nodes. This approach recommends to u those items which the most similar users have
interacted with, but u has not interacted with yet. We define our graph as Gu = 〈NU , LU 〉,
where NU = {nu, nv, . . .} are the nodes representing the users U of the system and LU =
{(nu, nv)} are the links between users according to the bipartite projection. In this case, two
nodes are linked if they have at least one item with which both users have interacted. We
compute the weight of a link, wuv , as the number of common items with which both users
have interacted. The link does not exist if the pair of users has not interacted with at least one
common item. Furthermore, as we did in the previous approach, we filter the links whose
weight is lower than a threshold value of θ .

We follow the steps to make recommendations to a target user u with a user-based process
analogously to the item-based approach. However, in this case, user u is directly represented
in the graph through its corresponding node nu , and function user(nu) returns the user
represented by the graph node. In Fig. 3, we show the recommendation process.

1. Step 1. Build a similarity matrix SU that stores all the similarity values between every
pair of nodes in the graph GU using a link prediction method LinkPred . This matrix
contains the similarity between users of the recommender system.
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Fig. 3 Overview of the recommendation process using the user-based graph

Algorithm 2 Optimised algorithm for the computation of the recommendation list using the
user-based approach

Input: GU = 〈U , LU 〉, nu , I−u , I+v ∀v 	= u, LinkPred(), Aggr()
Output: rec

18 gsim = {}
foreach nv 	= nu ∈ U do

19 sv = SU [nu , nv] = LinkPred(GU , nu , nv)

foreach ix ∈ I−u ∩ I+v do
20 insert(gsim, (ix , sv))

21 end
22 end
23 foreach (ix , ?) ∈ gsim do
24 sims = {}

foreach (ix , s) ∈ gsim do
25 insert(sims, s)

26 end
27 Sx = Aggr(sims)

ordered Insert(rec, (ix , Sx ))
28 end
29 return rec

2. Step 2. Obtain the set Uu ⊂ U containing the users whose representing nodes nv are
similar to nu according to SU . Also, compute the I−

u set and all the I+
v sets for every

v ∈ Uu .
3. Step 3. For every node nv that v ∈ Uu obtain the list simu(nv) with the items that user

nv has interacted but user nu has not interacted yet. In this case, all of the items have the
same similarity value, sv , corresponding to the similarity between both users SU [nu, nv].
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This list is defined as:

simu(nv) = {(i j , sv), (ik, sv), . . .}
where, ∀(ix , sv) ∈ simu(nv) : ix ∈ I+

v ∩ I−
u

sv = SU [nu, nv]
(3)

4. Step 4. Join the simu(nv) lists for every v ∈ Uu and obtain a global list gsimu containing
all the items (and associated similarity) with which u has not interacted. This list may
contain repeated entries with different similarity values for any item i j :

gsimu =
⋃

user(nv)∈Uu

simu(nv) (4)

5. Step 5. Next, aggregate the similarity values for those items that are repeated in the
gsimu list using an aggregation function Aggr(). As a result, we obtain the following
final ordered list recu :

6. Step 6. Finally, recommend the first k items in rec(nu).

Algorithm 2 presents the algorithm corresponding to the user-based recommendation
process.

Both graph-based recommendation approaches define two hook functions which enrich
our proposalwithmultiple alternatives. These functions represent the link predictionmethods,
LinkPred(), employed in the first step of the algorithms, and the aggregation strategies,
Aggr(), to join the item lists. The following subsections will detail the alternatives that can
be applied for both functions.

3.3 Link predictionmethods

Link prediction techniques are a set of methods from the Social Network Analysis field that
allow finding new links that will appear or have disappeared in a graph [34, 36, 47, 54]. Being
Gt a graph at time t , link prediction techniques focus on predicting the evolution of links at
Gt+1.

As described before, our method requires a similarity matrix S that stores the similar-
ity values between every pair of nodes in the graph. However, we can predict undefined
scores corresponding to non-connected pairs of nodes using link prediction techniques. This
way, S[na, nb] = LinkPred(G, na, nb) is the similarity value between the node na and
the node nb computed by the link prediction method LinkPred() applied to graph G. The
higher LinkPred(G, na, nb) is, the more willing to recommend nb to a target user who
has not interacted with nb yet if the user has also interacted with na , and vice versa. Con-
sequently, the pairs of nodes with the highest LinkPred(G, na, nb) scoring will be linked
(and recommended). The link prediction methods to compute matrix S can be classified as:

• Node-based methods. The similarity between a pair of nodes is computed using the
features or attributes of the nodes.

• Neighbour-based methods. The similarity between a pair of nodes na and nb is computed
using the data about the neighbourhoods of na and nb.

• Path-based methods. They exploit the available information about the neighbours of each
pair of nodes and the possible paths between both nodes.

• Random walk-based methods. They use transition probabilities from a node to its
neighbours and non-connected nodes to simulate social interactions.
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In previous research about graph-based recommendation techniques [9, 23],we proposed a
variation of the classic link prediction methods from the literature [29, 30, 33, 36, 47, 54]. We
defined these methods by taking into account their interpretability. Concretely, we require
link prediction methods that turn our methods into a local model to provide interpretable
recommendations. Local models in Explainable Artificial Intelligence are based on only
using a part of the model knowledge or a subset of the data set to provide explanations
instead of the more complex global model, which uses knowledge from the whole data set
or the whole model. This subset is obtained from the elements of the neighbourhood to
be explained [5, 44, 50]. Local models fit perfectly with our graph-based recommendation
approach because we are not interested in recommendations far from the target nodes we
are considering. In the item-based graph, we cannot recommend items that are too far from
the items with which the target user has interacted. Similarly, we must discard users who
are not in the local neighbourhood of the target user for the user-based approach. This way,
although path- and random walks-based methods can also achieve good performances, they
are not considered in this work because they must be applied to the whole graph, belonging,
therefore, to the global model category regarding their explainability. Hence, the proper
methods to provide interpretable recommendations are the node- and neighbourhood-based
ones because they only require a local subgraph around the target node.

To define these methods, we need some preliminary notation:N (n) represents the neigh-
bours of node n. |N (n)| represents the number of neighbours (or node degree) of node n.
wab represents the weight of the link between nodes na and nb (0 if no link between both
nodes). W(na) = ∑

wax : nx 	= na ∈ N represents the weighted node degree of node na ,
which is the sum of the weights in the links directly connected to na .

Next, we detail the link prediction metrics that we consider to estimate the possibility of a
connection between twonodes.Wehave selected thesemetrics due to their performance in our
previous findings [9, 23] and because they belong to the local model category regarding their
explicability. Most of them have two versions—a weighted and an unweighted version—and
do not need to be normalised.

Edge weight (EW). This metric estimates the similarity between two nodes as the weight
of the link.

EW (G, na, nb) = wab (5)

An unweighted version of this metric is also defined as EW (G, na, nb) = 1 if wab 	= 0,
but we discarded it because of its evident simplicity.
Common Neighbours (CN). The similarity between the two nodes is the number of
neighbours they have in common. The rationale behind this metric is that the greater
the intersection of the neighbour sets of any two nodes, the greater the chance of future
association between them.WeightedCommonNeighbours (WCN) is theweighted version
of this metric.

CN (G, na, nb) = |N (na) ∩ N (nb)| (6)

WCN (G, na, nb) =
∑

nz∈{N (na)∩N (nb)}
waz + wzb (7)

Jaccard Neighbours (JN). This metric is an improvement of CN (na, nb) as it measures
the number of common neighbours of na and nb compared with the number of total
neighbours of both nodes. It does not have a weighted metric version.

J N (G, na, nb) = |N (na) ∩ N (nb)|
|N (na) ∪ N (nb)| (8)
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Adar/Adamic (AA). This metric also measures the intersection of neighbour sets of two
nodes in the graph but emphasises the smaller overlap. The weighted version of this
metric is Weighted Adar/Adamic (WAA).

AA(G, na, nb) =
∑

nz∈{N (na)∩N (nb)}

1

log|N (nz)| (9)

W AA(G, na, nb) =
∑

nz∈{N (na)∩N (nb)}

waz + wzb

log(1 + W((nz))
(10)

Preferential Attachment (PA). It is based on the consideration that there is a higher
probability of creating links between nodes that already have many links. The probability
of creating a link between nodes na and nb is computed as the product of their link output
degree. Thus, the higher the degree of both nodes, the higher the likelihood of linking.
This metric has the drawback of leading to high probability values for highly connected
nodes to the detriment of the less connected ones in the network. Weighted Preferential
Attachment (WPA) is its weighted version, where the link weights are considered when
computing the degree of nodes na and nb.

PA(G, na, nb) = |N (na)| · |N (nb)| (11)

WPA(G, na, nb) = W(na) · W(nb) (12)

Once we have presented the link prediction methods, the following section introduces the
aggregation strategies used by the algorithms described in Sects. 3.1 and 3.2.

3.4 Aggregationmethods

The last requirement of our graph-based recommendation approaches is the aggregation
strategy to join the list of retrieved items. The goal is to aggregate the similarity of those nodes
that are repeated in list gsimu = {(n j , s j ), (nk, sk), . . .}. As we described previously, we
compute this list either from the item-based approach or the user-based approach (Eqs. 2 and
4). Here, {s j , ..., sk} are the similarity values from the S matrix. The gsimu list results from
joining sets simu(n∗); therefore, it may contain repeated items. We propose the following
aggregation strategies:

Highest Similarity. The simplest aggregation method that we propose is based on the
highest similarity. The aggregation value is the highest similarity value sx that nx has in
all of its appearances in the gsimu list.

s̄x = max(sx ) (13)

Simple voting. The aggregated similarity value s̄x is the number of times that the node
nx appears in the list of items gsimu .

s̄x = count(nx ) (14)

Weighted voting. The aggregated similarity value s̄x is the weighted addition of the
similarity values of the item nx in the list, where wi is every weight of nx ∈ gsimu .

s̄x =
∑ sx∑

wi
(15)
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Table 1 Example of applying different aggregation methods to a user-based graph

Uu simu(nv∗) SU [nu , nv]
nv3 {i1, i2, i5} 5

nv1 {i1, i2, i4} 4

nv2 {i2, i3, i5} 2

nv4 {i1, i2, i3} 1

Simple voting Weighted voting Positional voting

s̄1 1 + 1 + 1 = 3 5/12 + 4/12 + 1/12 = 0.83 1/1 + 1/2 + 1/4 = 1.75

s̄2 1 + 1 + 1 + 1 = 4 5/12 + 4/12 + 2/12 + 1/12 = 1 1/1 + 1/2 + 1/3 + 1/4 = 2.08

s̄3 1 + 1 = 2 2/12 + 1/12 = 0.25 1/3 + 1/4 = 0.58

s̄4 1 4/12 = 0.33 1/2 = 0.5

s̄5 1 + 1 = 2 5/12 + 2/12 = 0.58 1/1 + 1/3 = 1.33

rec(nu) [i2, i1, i3, i5, i4] [i2, i1, i3, i5, i4] [i2, i1, i5, i3, i4]

(Top) describes the information obtained from the graph and the similarity methods where Uu : Similar users
to nu ; simu(nv): items that each nv∗ user has interacted; SU [nu , nv]: similarity between nu and every nv

computed using a link prediction metric. (Bottom) the result of applying the aggregation methods

Positional voting. In this case, the aggregated similarity value s̄x depends on the position
pos() of nx in the list gsimu sorted by similarity value in decreasing order:

s̄x = 1∑
pos(nx )

(16)

To illustrate how the voting systems work, we provide an example (see Table 1) based
on a simple user graph. We have four users nv similar to our target user nu and gsimu =
{i1, i2, i3, i4, i5} contains the item candidates that those users have interacted with, but nu has
not interacted yet with repeated weights. As we can observe, each voting system generates
different ranked lists of items. For example, ifwe choose k = 2, the list of items recommended
to u is [i2, i1] for all voting systems. However, if we choose k = 3, we obtain two different
lists: [i2, i1, i3] for the simple voting system and [i2, i1, i5] for the weighted and positional
voting systems. This way, we illustrate that the choice of the voting system to use in our
recommender system has a relevant impact on the result.

Taking into account the similarity metrics and aggregation methods proposed here, we
could consider memory-based collaborative filtering adapted to the minimal knowledge
scenario as one of the specific configurations of our interaction graph-based methods.
Memory-based collaborative filtering behaviour is based on (1) finding the most similar
items to those liked by the user or (2) finding the items liked by the most similar users to the
target user. However, in the minimal knowledge scenario, we only have unary ratings to gen-
erate recommendations, i.e. interactions with no value associated with the rating. Therefore,
we could redefine memory-based methods to work in the minimal knowledge scenario if we
only consider: (1) the number of users who have interacted with two items (in the item-based
model) or; (2) the number of items with which two users have interacted (in the user-based
model). Actually, this approach is equivalent to the EWmeasure defined for our graph-based
models. The memory-based collaborative filtering adapted to the minimum knowledge sce-
nario will subsequently recommend the items with the highest similarity. In that case, it is
equivalent to the interaction graph-based models configured with the EW similarity metric
and the aggregation method based on the maximum similarity.
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4 Evaluation

This paper aims to demonstrate that our graph-based recommendation approach using link
prediction techniques achieves better performance than state-of-the-art recommenders in a
scenario of minimal knowledge availability. Therefore, we compare with those techniques
that can be adapted to use only the user-item interaction information.

According to the literature, several recommendation methods are suitable to this sce-
nario when ratings or other associated values to the interaction are not available [1, 35, 39,
52]. Most likely, the most popular recommendation techniques are collaborative filtering
approaches based on neighbours (item-based or user-based). We do not consider the matrix
factorisation method because it is highly focused on the rating values. We have also selected
other representative techniques of model-based collaborative filtering that can be adapted to
only work with information about interactions [2, 45]: decision trees, naive Bayes, neural
networks, random forest, and support vector machines. To compare these techniques in a
minimal knowledge scenario, we reduce the knowledge they use to create the associated
prediction model.

This evaluation also considers and discusses the inherent interpretability of these collab-
orative filtering methods. We demonstrate that the local models used by our graph-based
proposals are generally more interpretable than the global models built by these recommen-
dation techniques [19, 22]. The implementation of the graph-based models, their evaluation,
and the code generated to analyse the data set are available at GitHub.1

After presenting the data set (Sect. 4.1) and the experimental set-up (Sect. 4.2), we deter-
mine the knowledge requirement of each technique involved in the evaluation (Sect. 4.3) and
the evaluation metrics we used (Sect. 4.4). Later, we analyse the results obtained with our
graph-based approaches (Sect. 4.5.1) and compare themwith the results obtained with classic
techniques (Sect. 4.5.2). We also compare their interpretability (Sect. 4.5.3). Finally, we dis-
cuss the results obtained in both experiments and the comparison between their performances
(Sect. 4.6).

4.1 Data set analysis

The data set chosen for the evaluation is the MovieLens 100K data set2 as it is widely used
in the literature. It includes 100K ratings in tuple form R = (t, u, i, x), where u is the user, i
is the movie that u has watched, x is the rating that u has provided to i and t is the timestamp
when u rated i .

However, the original data set is too sparse to get significant results with any recom-
mendermethod. Consequently, we performed a preliminary analysis to define a sub-sampling
approach that increases its density without losing relevant knowledge. We follow the model
proposed in the work [13] for data set benchmarking as we did in our previous works [9, 10,
23].

The result of this descriptive analysis is reported in Table 2and graphically represented in
Fig. 4. This figure shows the users–item ratio according to the following stratification: users
that have interacted at least with 100% (blue), 75% (red), 50% (green), 25% (purple) and
12.5% (orange) of the most popular items. Taking into account the work [13] as well, the

1 https://github.com/martcaro/Graph-Recommendations
2 https://grouplens.org/datasets/movielens/100k/
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Table 2 Descriptive analysis of the data set used for the evaluation

Metric D_Original D_50 D_25 D_12

# Ratings 100,000 15,954 34,030 42,482

# Items 1,682 200 200 200

# Users 943 129 376 611

Density 0.063 0.618 0.453 0.348

Items

Maximum # ratings per item 583 126 348 499

Median # ratings per item 27 80 162.5 197.5

Average # ratings per item 59.453 79.77 170.15 212.41

Minimum # ratings per item 1 22 54 84

Users

Maximum # ratings per user 737 173 173 173

Median # ratings per user 65 121 86 63

Average # ratings per user 106.045 123.674 90.505 69.529

Minimum # ratings per user 20 100 50 25

Ratings

% Ratings ≥ 4 55.375 62.774 64.331 64.672

% Ratings ≤ 4 44.625 37.226 35.669 35.328

Fig. 4 Study of MovieLens data set to define a sub-sampling approach that increases its density without losing
relevant knowledge. Lines show the number of users that interacted with at least the 100% (blue), 75% (red),
50% (green) and 25% (purple) of the most popular movies (Color figure online)

density was calculated as follows:

densi ty = #interactions

#users · #i tems
(17)

From this study, we can consider 75% a high density but lacking enough users to perform
a significant evaluation. However, other percentages let us explore the performance of the

123



A graph-based approach for minimising knowledge requirement 4395

recommendation approaches with different data set densities. To obtain relatively small sub-
samples that let us perform the large number of simulations required to compare all the
approaches presented in this paper, we decided to limit the data set to the 200 most popular
items. This way, we can explore different significant data set densities by selecting the
users that interacted at least with the 50%, 25% and 12.5% of the 200 most popular items.
Concretely, their densities are 0.61, 0.45, and 0.34, respectively (see Table 2).

4.2 Experimental set-up

To find out whether the recommendations provided by our methods were interesting to the
target users, we needed to build a model for each user ut . First, we needed to split the set to
obtain the appropriate training and test sets to measure the accuracy of the recommendation
methods. We decided to obtain them in the same way for each of the three data sets obtained
from the analysis: through cross-validation, randomly choosing 10%of the items (a total of 20
movies out of the 200most popular ones) to create the test set and the remaining 90% to build
the training set. Therefore, the test set considers all those interactions carried out by the target
user ut with those 20 randomly chosen movies. In turn, the interactions carried out by ut with
these movies are removed from the training set. With the interactions from the training set,
we built our graph-based models (considering the process described in Sects. 3.1 and 3.2), or
the collaborative filtering models used in the evaluation. In the experimentation process, the
recommendationmethods will only be able to recommend items from this test set. Target user
ut has not interacted with those items. However, those items appear in interactions carried
out by other users in the training set. Therefore, we have information about these items to be
able to check if we are going to recommend them to ut .

In the next series of experiments, we compare the accuracy of graph-based methods with
other recommendation techniques, namely with memory-based collaborative filtering algo-
rithms (based on users or items) and model-based collaborative filtering (machine learning
techniques). We implement memory-based methods with the Pearson correlation coefficient
as a similarity metric since it is one of the most commonly used metrics. However, it exploits
rating values to obtain similarities between items, so we wanted to check how it behaves with
implicit rating values in minimal knowledge scenarios.

4.3 Minimal knowledge scenarios

As explained above,wemust adapt the data set so that thesemodels provide recommendations
in a minimal knowledge scenario by transforming the original ratings to represent only the
interactions between the item and the user. This process is illustrated in Table 3.

We should note that memory-based recommenders (denoted as CF from now on) cannot
work with unknown values, having to use, at least, the ternary representation. They need to
represent positive interactions (with ratings of either 4 or 5), negative interactions (ratings
with a value lower than 4) and non-interactions. However, collaborative filtering based on
models or machine learning models (denoted as ML from now on) can at least work with
the binary representation in which positive ratings are encoded as 1, negative ratings are 0,
and unknown values are not included in the model. As we discussed in Sect. 2, according
to Aggarwal [1], there is an alternative representation that encodes negative and unknown
ratings with the same value (usually 0). However, it introduces a critical bias. Finally, the
unary representations only represent positive ratings with 1. If the user has not interacted
with or did not like a product, the corresponding value is not specified.
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Table 3 Incremental minimisation of the knowledge required to create the prediction model

Original rating Ternary Binary Unary

5-4 1 1 1

3-1 0 0 –

No rating −1 – –

Minimal knowledge representation CF ML Graphs

CF and ML require ternary or binary representations, respectively, whereas graph-based approaches can be
applied to the unary scenario

The graph-based methods are the only ones suitable for the unary scenario, which consid-
erably reduces the knowledge required by the recommender. This means that, of the models
studied in this evaluation, the graph-based ones are the only ones that can be implemented
in scenarios where only positive interactions exist, as in the case of online judges. Thus, the
comparison must be made considering that it is impossible to evaluate these techniques with
the same level of knowledge. Graph-based methods are evaluated with the most minimal
knowledge scenario (unary representation). However, the explicit representation of negative
and unknown knowledge enhances the accuracy of machine learning and memory-based
models.

In the following, we present the evaluation metrics used to compare accuracy.

4.4 Evaluationmetrics

For every target user, recommendation methods output an ordered list with k items. There-
fore, to evaluate their performance, we apply the following metrics commonly found in the
literature [20, 38, 41, 42, 46], where r are the relevant items contained by the recommendation
list with size k:

One-hit@k. It is the percentage of recommendations that contain at least a relevant item
for the target user. It is defined as:

1H@k =
{
1, if |r | ≥ 1

0, otherwise

Precision@k. This metric shows the proportion of items relevant to the target user in the
recommended list. The precision at k is computed as:

P@k = |r |
k

Precision@R (R-precision). Precision at k has the disadvantage that the total number of
relevant items in the collection strongly influences this metric. This number is important
for our evaluation as we are working with local models to provide interpretability. This
way, the relevant items are those nodes accessible by the local neighbourhood in the
graph. R-precision solves that issue: it points out the proportion of relevant items to the
target user among the total relevant items of the test set, denoted as R. This metric is
equivalent to P@R:

P@R = |r |
|R|
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R represents the accessible items in the evaluation set. In the item-based graph, R contains
the nodes linked to the item with which the target user has interacted. However, in the
user-based graph, R contains the items with which the users whose nodes are linked to
the target user node have interacted.

We have not considered recall to evaluate the performance of our recommenders as we
are proposing interpretable local models that only retrieve items from the neighbourhood
of the target item/user. Therefore, evaluating their exhaustiveness when recommending any
relevant item makes no sense, as they are only accessible by a global approach.

Whenwe designed the evaluation set-up, we also considered rankingmetrics, for example,
Mean Reciprocal Rank. However, we believe that using them does not make sense. Some of
the techniques being evaluated (our graph-based methods and collaborative filtering based
on neighbours) do rank the recommendation list. But, the machine learning techniques do
not rank the recommended items. These techniques implement the recommendation task as
a classification task, so they only predict if the items will be interesting for the target user,
not determining which is the grade of the user’s interest in the item. Therefore, we decided
to use only precision-based metrics to evaluate the results obtained in the evaluation.

The following section describes the results obtained from evaluating our graph-based
methods.

4.5 Evaluation results

Once we have seen what methodology we have carried out to perform the evaluation, we
analyse the results in this section. In Sect. 4.5.1, we detail the precision achieved with the
graph-based methods, while in Sect. 4.5.2, we compare the accuracies of the graph-based
methods with those obtained with the classical techniques. Finally, in Sect. 4.5.3 we discuss
the interpretability of the evaluated models. All the results achieved in this evaluation can be
accessed on the GitHub repository indicated above.3

4.5.1 Performance of the graph-based approaches

The first step in our evaluation is to assess the performance of the graph-based recommenda-
tion approaches. To do so, we evaluate all possible link prediction methods and aggregation
strategy set-ups. For the sake of readability, this section only presents the results obtained
with the sub-sample corresponding to users that interacted with at least the 50% of the most
popular items and a recommendations list size of k = 10. However, an exhaustive compar-
ison with the remaining configurations (k = [3, 5, 10]) and sub-samples (25% and 12.5%)
will be discussed in Sects. 4.5.2 and 4.6.

As a representative configuration, Table 4presents the results of the evaluation carried out
with k = 10 and filtering threshold θ = 5. The results shown in that table are the mean of the
values obtained for all the users involved in the test set, considering each evaluation metric.
That is why the 1H@10 value is not 1 or 0 because for some users the 1H@10 value is 1,
and for other users, the 1H@10 is 0. Therefore, the mean value has to be in [0, 1]. In general,
we can conclude that results with graph-based approaches are quite heterogeneous regarding
the model (item graph or user graph), the aggregation method, the similarity metric, and the
recommendation list size. However, we can find several patterns and highlight some partic-
ularities. Graph-based methods generally obtain excellent results when we use the one hit

3 https://github.com/martcaro/Graph-Recommendations/tree/main/results
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Table 4 Mean results got from the item-based and user-based approaches when k = 10, θ = 5 and users have
interacted with at least 50% of the movies

Item User

Sim Agg 1H@10 P@10 P@R 1H@10 P@k P@R

AA Similarity 1.00*+ 0.66* 0.66*+ 1.00*+ 0.64 0.43

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.66*+ 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00 0.65 0.40

CN Similarity 1.00*+ 0.66* 0.66*+ 1.00*+ 0.64 0.43

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.66*+ 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00*+ 0.65 0.44*

EW Similarity 1.00*+ 0.66* 0.65 1.00*+ 0.66 0.22

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.66*+ 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00*+ 0.68*+ 0.31

JN Similarity 1.00*+ 0.66* 0.66*+ 1.00*+ 0.63 0.41

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.66*+ 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00*+ 0.65 0.43

PA Similarity 1.00*+ 0.66* 0.66*+ 1.00*+ 0.64 0.44*

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.66*+ 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00*+ 0.66 0.39

WAA Similarity 1.00*+ 0.66* 0.65 1.00*+ 0.62 0.40

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.65 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00*+ 0.66 0.42

WCN Similarity 1.00*+ 0.66* 0.65 1.00*+ 0.62 0.40

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.65 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00*+ 0.66 0.42

WPA Similarity 1.00*+ 0.66* 0.65 1.00*+ 0.62 0.40

Simple 1.00*+ 0.56 0.57 1.00*+ 0.66 0.36

Weighted 1.00*+ 0.66* 0.65 1.00*+ 0.66 0.36

Positional 0.99 0.55 0.53 1.00*+ 0.66 0.42

The best results among aggregation methods are in bold. The best evaluation metric values are marked with
*. The best results of metrics between approaches are denoted with +. Sim means the similarity metric used
and Agg is the aggregation method used
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metric. This good result is independent of the similarity measure or the graph approach (item
or user-based). Therefore, we can conclude that it is inherent to the graph-based approach.
Later, in Sect. 4.5.2 we present that other recommendation methods do not achieve such a
good performance with this evaluation metric.

Regarding precision@k and r-precision, graph-based approaches are quite heterogeneous,
although they are significant enough. While the precision@k values are very alike for all the
link prediction methods in the item-based approach, we can highlight the performance of the
weighted voting and the highest similarity aggregation strategies. The reason behind these
results could be associated with using the similarity values to aggregate the estimations of the
link predictionmethods, which seems to be a helpful tool for getting successful recommenda-
tions.We can observe a similar pattern from the obtained scores with r-precision. The highest
similarity and weighted voting work better than simple and positional voting (0.66 over 0.57
and 0.53, respectively). We can also note that WAA, WCN and WPA perform slightly worse
than the other link prediction measures, although the difference is not remarkable.

The most significant difference between precision@k and r-precision emerges in the user-
based method. The obtained values are not as good as the ones achieved with the item-based
model. Moreover, it is not clear which aggregation method, and similarity metric performs
the best. PA with the highest similarity and CN with the positional voting achieve the best
results (0.44). However, JN also gets similar scores (0.43 with positional voting and 0.41 with
the highest similarity). This behaviour could be related to the fact that PA considers the nodes
at the ends of the edge. CN and JN take into account the relationships in neighbourhoods. In
contrast, the rest of the similarity metrics use edge weights. WAA, WCN and WPA, achieve
0.42, all using the positional voting. They use weights but also use the knowledge from
their simpler versions. From this, we could also conclude that the positional voting is the
aggregation method that works better in most cases with the highest scores, although it is not
the best aggregation method if we use AA, EW and PA. Therefore, positional voting sorts the
list of recommendations better, which is understandable because of the nature of their work.

In conclusion, we can confirm that the item and user-based approaches perform equally
well when finding relevant recommendations from the list of available items. However, if we
only consider the local items represented by the neighbourhood of the graph, the item-based
approach achieves better results. The item-based model seems to perform better when using
knowledge about the weights of the graph. Nevertheless, the user-based approach is more
uniform regarding this kind of knowledge, and it seems to work better with the positional
voting.

4.5.2 Comparative evaluation with other recommendation techniques

In the next series of experiments, we compare the performance of the graph-based approaches
to other recommendation techniques, specifically collaborative filtering algorithms (user
and item-based approaches using Pearson coefficient as similarity measure), decision trees
(DT), naive Bayes (NB), neural networks (NN), random forest (RF) and support vector
machines (SVM). As explained previously, we must adapt them to provide recommendations
in a minimal knowledge scenario by transforming the original ratings to represent only the
item–user interactions. This process is illustrated by Table 3.

In Fig. 5 , we compare the performance of all the considered approaches regarding the
size of the recommended list. These mean results were computed using the data set whose
users have interacted with at least 50% of the movies, being similar to the results obtained
with other sub-samplings. The graph-based recommenders are those that achieved the best
performance according to Sect. 4.5.1. We can observe that graph-based approaches perform
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Fig. 5 Mean results obtained by P@k with k ∈ [3, 5, 10, R] in both Item–Item and User–User configurations
using the 50% sub-sample

better than other ML techniques. The item graph-based approach improves the performance
of the ML techniques at 22% (using precision@k when k = 10) or 28% (using r-precision).
In the case of the user graph-based approach, our proposal improves the performance of the
ML techniques at 24% (using precision@k when k = 10) or 33% (using r-precision). CF
is the only exception, achieving the same performance for the item–item configuration (0%
of improvement when k = 10) but a higher precision for user–user (2% of improvement
with precision@k and 28% with r-precision). However, it is essential to note that this CF
algorithm is boosted by the inclusion of negative and unknown knowledge in the ternary
representation.

Tables 5 and 6 summarise the results comparing different sub-samples. These values
shown in those tables are the mean values for each evaluation metric calculated with the
scores obtained from the test set. We also show the percentage improvements between our
graph-based approaches and ML or CF (always comparing the best results achieved for each
approach).

Again, we can conclude that the graph-based approaches are the methods that achieve
higher performance with less knowledge (unary representation). Their results are particularly
similar to CF with a ternary representation, especially in the item-based model. It is clear
that machine learning techniques work worse than collaborative filtering and graph-based
models. We cannot observe a significant difference if we observe the one hit results as it is
the simplest metric, but this difference is remarkable if we pay attention to precision@k and
r-precision.

There are no significant changes between sub-samples 50% and 25%. However, we can
observe a different pattern in the results with the data set where users only interacted with
12.5% of the items. Here, scores decrease significantly, and we can conclude that the per-
formance with this sub-sample is lower than the performance with more dense data sets,
independently of the recommendation approach. It corroborates our initial supposition about
the problem of sparsity when applying graph-based recommendation techniques. However,
it also confirms that this problem also impacts other recommenders in a similar way.

4.5.3 Discussion of interpretability

In terms of interpretability, we can draw some conclusions. According to the literature, global
methods are less interpretable than local methods. Thus, we can assume that our graph-based
methods aremore interpretable than the other evaluated recommendationmethods but require
less knowledge. In Fig. 6, we can see the graphical explanation of both models with a real
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Fig. 6 Visual explanation of a real item–item recommendation. Nodes represent items (item 1 is being recom-
mended), and link weights the number of common users. Left: Graph-based recommendation (local model).
Right: Collaborative filtering (global model)

example. On the one hand, memory-based collaborative filtering (on the right in the figure)
is a global method that makes predictions using the similarity of any element in the system.
Therefore, all elements are connected to the others in the graphical representation. However,
graph-based methods (on the left in the figure) are local. The link prediction-based similarity
metrics used by our methods only use the neighbourhood information, so only the similarity
between specific pairs of nodes is represented. This may be more understandable since the
connections refer to the probability of recommendation or similarity. Therefore, asmentioned
in the Introduction, we can consider our methods more explainable if the users understand
their functionality.

4.6 Results and discussion

From the previous evaluation,we can draw several interesting conclusions that are also related
to the requirement of interpretability:

• Performance of the graph-based approaches depends on the similarity measure and the
aggregation method. Their appropriate configuration is significant, although the results
are very similar in most cases.

• Item graph-based recommender performs better if we use Weighted Voting as the aggre-
gation method and Edge Weight as the similarity measure. In the user-based graph case,
theirmost effective configuration is not so explicit and depends on the information density
in the data set.

• Graph-based methods and CF perform better than ML techniques in their correspond-
ing minimal knowledge scenarios. Although machine learning techniques are used in
the literature to make recommendations when explicit knowledge does not exist, they
are not specific tools to tackle the problem of making recommendations with restricted
knowledge. Additionally, most ML approaches are not interpretable (decision trees are
the exception) as they are black boxes whose outcomes cannot be explained to the user.

• The similarity in the precision obtained between interaction graphs and memory-based
collaborative filtering lies in the fact that we can consider memory-based methods as
a specific configuration of interaction graphs in minimal knowledge scenarios. How-
ever, this scenario is different for both methods: graphs use a unary representation,
while collaborative filtering uses a ternary representation. Therefore, graphs require less
knowledge.
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• According to the literature, graph-based recommender systems are consideredmore inter-
pretable than traditional methods since the latter are global methods while graph-based
models are local methods.

• If we compare item-based and user-basedmodels (regardless of whether they are graph or
collaborativefiltering),we can conclude that item-basedmodels are better than user-based
models. It makes sense because, in item-based models, we obtain the recommendations
directly from the items with which the target user has interacted. On the other hand,
the user-based models first obtain a set of similar users and then the items to recom-
mend. If we still need a user-based model, the best option is to use graph-based methods
over collaborative filtering, as they provide better precision than the latter and are more
interpretable.

• Our work has some limitations too. First, our methods are local, so we cannot access
all the possible results available in the whole system. Therefore, we can have a lack of
variability and serendipity. Second, we could conduct online experiments with users to
find out their opinions about the explanations provided by our proposal and compare
them to the baseline methods. This way, we could confirm the conclusions we extracted
from the literature. Dispersion in the data set is the third limitation. It affects the precision
of the recommender system, regardless of the recommendation method used. The denser
the data set, the better the recommendations will be. This problem is not particular to
our approach but is also one of the biggest problems in the recommender systems field.
Finally, our approach computation complexity is quadratic (O(n2)), as we can observe
in Algorithm 1 and Algorithm 2. Collaborative filtering based on neighbours has the
same computation complexity due to they also have to find similarities between users
and items in a similar process to our approach. Although the collaborative filtering based
on models (the machine learning techniques) that we have studied in this work get a low
performance than our approach, their computation complexity is better, they have a linear
complexity (O(n)), as they have to apply the model itself without using similarities.

Summarising the evaluation, we can conclude that our proposal has two major fea-
tures: (1) it requires less knowledge but achieves a similar—or even higher—performance,
and (2) it is interpretable for the target users, letting them understand the rationale of the
recommendations.

5 Conclusions and future work

This paper presents a novel approach to provide interpretable and explainable recommenda-
tions on minimal knowledge scenarios. We develop two recommendation approaches based
on interaction graphs representing either item–item or user–user relationships. Then, we
use these data structures to find the similarities between graph nodes through several link
prediction and aggregation techniques.

The main advantage of these methods is that they only require minimal knowledge about
the user-item interaction, but the achieved performance is comparable to the standard rec-
ommendation techniques. Moreover, our approaches are easy to explain to the users, as they
are interpretable local models.

This paper provides an exhaustive evaluation to find the most suitable configuration of
the graph-based approach regarding link prediction and aggregation strategies. Then we
compare its performance with other standard recommendation approaches in a minimal
knowledge scenario: collaborative filtering based on memory, decision trees, naive Bayes,
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neural networks, random forest and support vector machines. This evaluation demonstrates
that our graph-based approaches require less knowledge but achieve similar or even higher
performance and are easily interpretable by the users.

In future work, we can further evaluate our recommender approaches with real users
to corroborate our conclusions. The evaluations with users can provide more reliable and
accurate results regarding user satisfaction and experience. We would also like to explore the
performance with different data set stratifications that let us explore the impact of sparsity
and cold start in the recommenders. Moreover, we could use other options to apply to our
approach instead of the similarity metrics and matrices obtained with them. For example,
we could use other quasi-local or global similarity metrics from link prediction techniques,
like Katx Index or random walks [27]. We do not know for sure how that could affect the
performance of our graph-based method. We could hypothesise that it could be better than
the performance obtained in this work though because using quasi-local or global metrics
requiresmore knowledge that is useful to get better predictions. However, these optionsmight
reduce the interpretability of our approach, as we discussed in this work. We would need
to do additional experimentation to confirm our hypothesis. Another option could be to use
learning-based approaches based on link prediction over our graphs. This type of approach
considers the link prediction problem as a binary classification task [27, 54]. So we could
reconsider our recommendation task as the prediction of what links between users and items
are going to appear, i.e. our future recommendations. We have also to study this approach to
know how this option could influence the results presented in this work. Finally, we could also
combine our two approaches, the user-based and the item-based, to try to solve the cold-start
problem and the sparsity that our approach suffers as well, in a similar same way Arthur et
al [4] did in their work.
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