
Knowledge and Information Systems (2023) 65:4359–4377
https://doi.org/10.1007/s10115-023-01891-w

REGULAR PAPER

Hybrid CPU/GPU/APU accelerated query, insert, update and
erase operations in hash tables with string keys

Tobias Groth1 · Sven Groppe1 · Thilo Pionteck2 · Franz Valdiek2 ·Martin Koppehel2

Received: 18 January 2023 / Revised: 14 April 2023 / Accepted: 22 April 2023 /
Published online: 26 May 2023
© The Author(s) 2023

Abstract
Modern computer systems can use different types of hardware acceleration to achievemassive
performance improvements. Some accelerators like FPGA and dedicated GPU (dGPU) need
optimized data structures for the best performance and often use dedicated memory. In
contrast, APUs, which are a combination of a CPU and an integrated GPU (iGPU), support
shared memory and allow the iGPU to work together with the CPU on pointer-based data
structures. First, we develop an approach for dGPU to accelerate queries in libcuckoo and
robin-map andwhen looking at accelerating insert, updates and erase operations in the original
libcuckoo using OneAPI on an APU.We evaluate the dGPU against the CPU variants and our
dGPU approach adapted for the CPU and also in a hybrid context by using longer keys on the
CPU and shorter keys on the dGPU. In comparison with the original libcuckoo algorithm, our
dGPU approach achieves a speed-up of 2.1, and in comparisonwith the robin-map a speed-up
of 1.5. For hybrid workloads, our approach is efficient if long keys are processed on the CPU
and short keys are processed on the dGPU. By processing a mixture of 20% long keys on the
CPU and 80% short keys on dGPU, our hybrid approach has a 40% higher throughput than
the CPU only approach. In addition, we develop a hybrid APU approach for insert, update
and erase operations in the original libcuckoo structure focusing on shared memory with
iGPU accelerated look-ups of the positions for insert, update and erase operations.

B Tobias Groth
t.groth@uni-luebeck.de

Sven Groppe
sven.groppe@uni-luebeck.de

Thilo Pionteck
thilo.pionteck@ovgu.de

Franz Valdiek
franz.valdiek@ovgu.de

Martin Koppehel
martin.koppehel@ovgu.de

1 Institute of Information Systems, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck,
Germany

2 Institute for Information Technology and Communications, Otto-von-Guericke University Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01891-w&domain=pdf


4360 T. Groth et al.

Keywords Hybrid · Hash table · Strings · GPU · APU · SYCL

1 Introduction

Modern computer hardware has a variety of hardware accelerators for different purposes.
For example, computers can have special compute units for video de-/encoding, artificial
intelligence or ray tracing. These accelerators allowefficient computing of special taskswhich
is important if higher performance or low power consumption is the goal. Therefore, modern
laptops usually have an APU which combines CPU and GPU for acceleration. Sometimes
these laptops also have a dedicated GPU for more performance in tasks like 3D rendering.
APUs and dedicated GPUs (dGPUs) differ in performance and memory layout but feature
similar compute units. Both hardware can be used in the database context to accelerate
hash tables in different ways. Hash tables are widely used as key-value stores. In different
applications and scenarios, strings are often used as keys like in semantic web contexts.
Therefore, it is beneficial if GPUs could accelerate the querying of string keys in hash tables
using high end dedicated GPUs. But there is a problem because these GPUs are optimized
for handling fixed size data rather than dynamically sized strings. Thus, handling variable
long string keys directly in the dGPU memory organization has the drawback of decreased
performance, because the processing of each string takes as long as processing the longest of
the currently processed strings. Hence, it is not a surprise that current approaches for GPU
hash tables focus on integer keys only and do not support string keys of variable size [1]. To
overcome the discussed drawback, we propose a hybrid approach, such that string keys up to
a maximum length are stored and handled on the dGPU, and longer string keys are stored in
themainmemory and processed by the CPU. In addition to dGPUs, the previouslymentioned
APUs can handle pointer-based structures in shared memory and can be used in a different
scenario where CPU and iGPU work together to speed up operations. In this scenario, we
look at the insert, update and erase operations in the libcuckoo hash table. The iGPU finds
the entries where the operation should take place and this operation can be performed either
on the CPU or on the iGPU.

Our dGPU approach takes advantage of both processing architectures because the CPU
is best suited to handle variable length data and the GPU is tailored to massive parallelism
of fixed size data and it is optimized to achieve the best performance. Our APU approach for
insert, update and erase focuses on the important flexibility and adaptability of sharedmemory
based pointer structures which allows operation on the same libcuckoo data structure.

Our main contributions are

• a direct fast look-up of string queries on the GPU,
• hybrid scenarios handling shorter keys up to a fixed maximum length on GPU and longer

keys on CPU, and
• an extensive evaluation of these approaches on a high performance computing system

running recent many-core CPUs and GPUs for scientific calculations.
• APU-based search with SYCL and APU look-up of the insert position and separate

CPU/GPU insertion for libcuckoo.

This contribution is an extension paper of Groth et al. [2]. In this extension, we shift the
focus toward heterogeneous computing [3] with an accelerated processing unit (APU). This
allows the combination of resources for the search without transferring the index structure.
Also, we consider insertions into the original libcuckoo index structure supported by the
APU. Thereby we focus on GPU-based look-ups of the insert position in shared memory and

123



Hybrid CPU/GPU/APU accelerated query, insert, update and... 4361

the actual insert is done via the CPU or GPU part of the APU. We also implement update
and erase operations with the same position finding.

The remainder is organized as follows. In the Sect. 2, we look at related work in the GPU,
APU and hash table acceleration context. Then in Sect. 3, we look at the basics of hash
tables and GPU acceleration. Then in Sect. 4, we present our approach for parallel queries in
hash tables with string keys. We start with the idea and continue with the details of the data
structure and the search. In Sect. 5, we evaluate the data structure on a dedicated GPU. We
first explain our benchmark framework and then continue with our benchmark environment
before we present our evaluation results. Now we switch our focus to the APU in Sect. 6 and
start with the general APU architecture and continue with the shared memory and end with
the implementation of insert, update and erase operations. In Sect. 7, we look at the APU
results for the query data structure and insert, update and erase operations. We finish with a
summary and conclusion in Sect. 8.

2 Related work

Several papers related to hash tables focus on the acceleration of hash table algorithms by
using modern hardware and technologies. An overview of GPU accelerated hash tables is
shown in Fig. 1, where we add the column about supporting string keys on GPUs and our
approach for comparison matters. One important aspect of the hash table performance is
efficient hashing. Therefore, [4] describes efficient hashing with SIMD in OpenCL.1 There
are many papers with efficient GPU algorithms like Warpcore [5] which is a fast library
of hash tables on GPU. It reaches 1.6 billion inserts and up to 4.3 billion retrievals per
second on an Nvidia Quadro GV100. It is also faster than cuDPP [6], SlabHash [7] and
NVIDIA RAPIDS cuDF.2 HashGraph [8] uses sparse graph representations for scalable
hash tables. This highly parallel data structure uses information from their value-chain for a
high performance collision management. DyCuckoo [9] is a dynamic cuckoo table that has a
trade-off between GPU memory size and search performance. It is very efficient and enables
fine-grained memory control. There are also hybrid hash tables on CPU and integrated GPU
developed with modern program techniques like DPC++ [10]. Reference [11] implements a
fully concurrent dynamic hash table that runs on GPUs. Also, they show a warp-cooperative
work sharing strategy, which reduces the per-thread assignment and processing overhead.

For APU acceleration, the contribution [12] focuses on accelerating queries in B+-Tress.
Reference [13] focuses on accelerating group-by and aggregation with CPU-GPU platforms.
Other papers focus ondifferent aspects ofAPUcomputing like software transactionalmemory
[14] or hash-joins in DBMSwith SYCL [15]. Reference [16] uses OneAPI or SYCL for other
tasks like distributed k-nearest neighbors.

To the best of our knowledge, all existing contributions to hash tables accelerated by
dGPUs do not support variable length string keys. Hence, our contribution is the first to
investigate hash tableswith string keys of variable length. Furthermore,we show that a parallel
hybrid dGPU/CPU hash table overcomes the drawbacks of dGPUs designed to process data
of fixed size and promises high performance. Also to the best of our knowledge, no work
uses accelerated hybrid insert, update and erase operations in cuckoo hash tables on the APU
using shared memory. Therefore as an additional contribution, we propose APU accelerated
look-up based insert, update and erase operation for libcuckoo based on OneAPI and SYCL.

1 https://www.khronos.org/opencl/, accessed on March 08, 2022.
2 https://github.com/rapidsai/cudf, accessed on March 13, 2022.

123

https://www.khronos.org/opencl/
https://github.com/rapidsai/cudf


4362 T. Groth et al.

Table 1 Overview of different GPU accelerated hash table algorithms and their features [1] compared with
our approach [2]

3 Basics

In this section, we look at the basics of hash tables and CPU and GPU acceleration.

3.1 Hash tables

Hashing is a widely used technique to quickly store data inside a structure like for example a
hash table. Therefore, we can use one or multiple different hash functions to translate a value
into a hash. Hash tables often use a prime number for the size and the hash function includes
a modulo operation with the prime number to shrink the range of values into the hash table
size.

A hash table without collisions maps the key to a field in O(1) because we just calculate
the hash value and access this position. The hash is ideally unique because collisions would
lead to overwritten fields. However, hash functions are not collision free for arbitrary input,
and we, therefore, need strategies to resolve these conflicts. There exist different strategies
like linear probing [17], quadratic probing [17] or double hashing [18]. Another solution is,
e.g., to use cuckoo hashing with multiple tables.

Cuckoo hashing [19] uses two or more tables and a hash function for each table: First,
we try to insert the key into the first table by using the corresponding hash function. If the
position is already occupied, we relocate the element which occupies the space from the
first table into the second table and insert the element. If the position in the second table is
already occupied, we insert the element there and move the previous element of this table to
the next table and so on. Cuckoo hashing has a high memory efficiency [20] which is good
for fast data transfer to the GPU. Additionally, cuckoo hashing has an amortized insertion
and retrieval time of O(1) [20].

123



Hybrid CPU/GPU/APU accelerated query, insert, update and... 4363

3.2 Hardware acceleration

Modern CPUs and GPUs are designed for high parallelism and high bandwidth. There are
many different vendors for graphics hardware and each vendor develops its own API for their
hardware, but some also support other hardware fromother vendors. In addition, cross-vendor
APIs are developed by hardware independent developers. On modern multi-core and many-
core systems, there are a variety of different approaches for high-performance computing.
The first solution is to use multiple threads and distribute the workload onto the threads. A
second idea is to use libraries like OpenMP3 and Intel Threading Building Blocks4 for loop
and algorithm parallelism. Another technique uses asynchronous computation with tasks and
coroutines. Each approach has different advantages and disadvantages like threads have an
overhead and need synchronization, but allow manual optimization and custom parallelism.
As an additional challenge, there are multiple different implementations for the same concept
in different languages. An interface for GPU acceleration is the widely used CUDA Toolkit,5

but it is limited to NVIDIA GPUs. CUDA offers high performance and extensive tooling and
documentation. Another advantage is that many different frameworks and solutions are based
on CUDA. For cross-platform GPU acceleration there are OpenCL and Vulkan6 which are
both developed by the Khronos Group. OpenCL is designed for cross-platform computing in
contrast to Vulkan primarily designed for 3D rendering, but can also be used for computing.
Furthermore, there exist other enterprise solutions likeAMD’sROCm7 forAMD’s datacenter
cards. Intel’s OneAPI is a hybrid concept for CPU, APU, FPGA and GPU computing and
also allows cross-platform development for different hardware.

4 Parallel hybrid GPU/CPU hash table for string keys

In this section, we introduce our acceleration design. We start with the approach followed by
the data structure and how rollout and search-methods are designed. In the last subsection,
we look at hybrid approaches to combine CPU and GPU compute power.

4.1 Approach

For our design, we choose an already implemented and well-known hash table implemen-
tation. Therefore, the robin-map8 is used as a representative for a basic hash table. This
implementation is based on robin hood hashing [21] and is also faster than the C++ build-
in unordered_map. Robin hood hashing solves collisions by superseding existing elements
which are closer to their original index position and these elements have to be relocated to
indexes further away. As an example of a high performance well-known variant of hash-
ing, we choose the libcuckoo library which already has been considered by several different
scientific contributions like [22] and [20]. This library implements the widely used cuckoo
hashing.

3 https://www.openmp.org/, accessed on March 08, 2022.
4 https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html, accessed on March 08,
2022.
5 https://developer.nvidia.com/cuda-toolkit, accessed on March 08, 2022.
6 https://www.vulkan.org/, accessed on March 08, 2022.
7 https://rocmdocs.amd.com/en/latest/#, accessed on March 08, 2022.
8 https://github.com/Tessil/robin-map, accessed on March 08, 2022.

123

https://www.openmp.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html
https://developer.nvidia.com/cuda-toolkit
https://www.vulkan.org/
https://rocmdocs.amd.com/en/latest/#
https://github.com/Tessil/robin-map


4364 T. Groth et al.

Fig. 1 This figure presents the steps that are necessary to process a search in a hybrid hash table. First terms
are inserted in the index, then a prime number and powers are randomly generated. In the next step, the index
of the terms is copied to the OpenCL buffer before the hash is mapped to the buffer index and the content
is the position in the key/values buffer. In step 5, all buffer content is transferred to the GPU. The terms are
split into long and short keys and are transferred to the corresponding computation device. Finally, we start
the search and transfer the results back to the host [2]

The main difference between the existing algorithms and our approach is the support of
string keys. For these string keys, we need a hash algorithm to convert the keys to a hash.
The requirements for this hash algorithm are that it is simple, efficient and has a relatively
low collision rate. A simple approach is to use a polynomial rolling hash function like the
Rabin–Karp algorithm [23]. Another advantage is that these kinds of algorithms can also
be accelerated by GPUs [24]. Therefore, we define and implement the polynomial rolling
hash function. The following parameters are provided: S = [s0, ..., sn−1] is the string key
composed of the characters si , n is the number of characters in S, P = [p0, ..., pn−1] is an
array of random powers, and M is a prime number. We define the hash HM (S, P) of S as:

HM (S, P) =
{
(s0 ∗ p0) mod M n = 1

(HM ([s0, ..., sn−2], [p0, ..., pn−2]) + sn−1 ∗ pn−1) mod M n > 1

The operation in a hybrid search is shown in Fig. 1. We first fill our hash table and then
generate an OpenCL data structure before transferring this structure. When we split the
requests into batches and distribute the batches by different metrics on CPU and GPU, one
metric can be the length of the keys. Afterward, we start the search on both accelerators and
if these searches are finished, then we collect the results of both searches.

4.2 Data structure and search

Our GPU approach provides a generic interface for different hash tables. Therefore, we can
use the same OpenCL implementation for robin-map and libcuckoo. To support this, we also
need a generic OpenCL data structure for the GPU memory. OpenCL uses 1-dimensional
buffers for data transfer and each buffer element can store custom or built-in types. Further-
more, OpenCL has an image type for 2- or 3-dimensional data. For the hash map itself, we
work with a 1d-buffer storing the key-value pairs separated by a NULL byte. Because our
values are 64 bit long values, every value takes up 8 bytes. We call this the terms buffer as

123



Hybrid CPU/GPU/APU accelerated query, insert, update and... 4365

Fig. 2 This is the memory layout of the hash table on the GPU.We use three OpenCL buffers and three values.
The values are the number of tables, the maximum size of the table and the prime number for hashing. The first
buffer term contains the key-value pairs separated by null bytes. The second buffer contains the start offsets
for the key-value pairs and the index corresponds to the hash of a key. The third and final buffer contains the
generated powers for the hash algorithm [2]

shown in Fig. 2. Now we have a buffer with data, but for efficiency, we use an offset buffer
for random access of each key-value pair. This 1d-buffer for the offsets has a special order
which is generated throughout a rollout. The indexes of this buffer correspond to the hash
value of the key which is located behind the stored offset. The last buffer contains the powers
for the hash algorithm and can be stored and transferred in different ways. We need enough
space for the maximum string length multiplied by the number of tables. For this memory, we
can use a simple flat 1d-buffer like is shown in Fig. 2. Alternatively, we can use the OpenCL
built-in vector types for the number of tables, which has the advantage that we can calculate
the hash for a single character in all tables with one vector operation. A disadvantage is
that the OpenCL kernel has to be constructed during initialization because we do not know
the number of tables beforehand. Furthermore, we also need a prime number for the hash
algorithm which is randomly generated and transferred to the OpenCL kernel as an argument
alongside the number of tables and the tables size.

After we transferred the buffers to the GPU, we use the hash function to calculate the hash
for each key and look in the offsets buffer to find the position in the terms buffer. Then, we
compare the keys with each other. If we have amatch, then we return the result and otherwise,
we continue with the next table. If the last table does not have the key, it is not in the structure
and we return not found. A performance benefit can be achieved by the host OpenCL control
structure. We are processing the requests in batches and use a simple form of pipelining by
splitting the batch into two halves. We start by converting the keys of the first half to a GPU
structure which consists of a character buffer and an offset buffer for the start position of
each key. Then, we transfer these data and start the search by inserting the write, execute and
read operations into a queue. Meanwhile, the second half is prepared and transferred and the
OpenCL operations are inserted into a second queue. Afterward, we wait until both queues
are finished.

5 Evaluation

In this section, we evaluate our approach. We start with the environment and the different
benchmark mods, then we look at the results.

5.1 Benchmark framework

For benchmarking and comparing different hash implementations and other data structures,
we develop a hybrid multi-threaded framework called H2. The reason for this framework
is to load or generate random workloads for testing and measure the execution times over

123



4366 T. Groth et al.

Fig. 3 Benchmark Framework Structure: the framework consists of three different parts, first the data and
batch generators followed by the controller for each individual hybrid configuration (package) and then specific
algorithms with index and accelerators [2]

multiple runs in different data structures. It is possible to switch between different data
structures during runtime to compare different implementations in one run. Also, the H2

framework can process complete series where each point can be executed multiple times to
reduce statistic variance.

For performance purposes, we use modern C++ with Boost for the H2 framework. For
acceleration, H2 can support different devices and APIs. Currently, CPU, GPU and FPGA
are supported devices and OpenCL, CUDA and OneAPI9 are supported APIs. The general
architecture is shown in Fig. 3. The key-value pairs are either generated inside the framework
or are loaded from a flat text file with one pair per line. H2 is optimized for batch processing
and supports different hybrid and non-hybrid scenarios. The currently supported scenarios
are all batches onCPU, all batches onGPU and split batches according to a certain percentage
or a certain maximum length. The H2 framework has the ability to validate the results and
to log resources like RAM, GPU memory and utilization usage. H2 supports Linux and
Windows operating systems.

Each benchmark run is split into two different phases, the loading or fill phase and the run
phase. First, the key-value store is initially filled with a certain number of pairs and an initial
rollout to the accelerator is done. In the next phase, batch requests are sent multi-threaded
to the different accelerators and H2 waits for the completion of each thread. Afterward,
the execution time and throughput are written to an output file and the key-value store and
accelerator are reset to the initial state. Now another pass-through or a different configuration
can be executed. Also, we use a Node.js10 application written in TypeScript11 for result
aggregation and diagram generation. The basic configuration and benchmark setup can be
handled via one single JSON file. Each file can store multiple series and these are combined
into a single diagram.

9 https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html, accessed on March 08,
2022.
10 https://nodejs.org/en/, accessed on March 13, 2022.
11 https://www.typescriptlang.org/.

123

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://nodejs.org/en/
https://www.typescriptlang.org/


Hybrid CPU/GPU/APU accelerated query, insert, update and... 4367

Fig. 4 Benchmark with throughput in case of a increasing number of threads, b batch size, c key length and
d number of queries with BTC data [2]

5.2 Benchmark environment

We use a modern many-core high-performance computing NUMA systems for scientific
computations. This system contains two AMD EPYC 7542 processors with 32-Cores each
and a core can handle two threads (Hyper-Threading). Furthermore, the system has 2 TiB of
high bandwidth RAM for Big Data computing. For acceleration, we use an NVIDIA A100
graphics card with 40 GiB memory. For real-world data, we use the complete triples data
(btc2019-triples.nt.gz) from the 2019 Billion Triple Challenge12 (BTC) and filter the data
after key length requirements.

5.3 Benchmark results

We start by comparing the variants against each other in Fig. 4. Therefore, we use abbrevia-
tions to avoid ambiguity as follows:

• libcuckoo CPU/libcuckoo GPU (LC /LG ),
• robin-map CPU/robin-map GPU (RC /RG ),
• libcuckoo GPU approach on CPU (LGC ),
• robin-map GPU approach on CPU (RGC ).

In Fig. 4a, we compare different numbers of threads. We use a thread pool with the
same size as the threads but capped it at 128 threads, which is the maximum number of
parallel threads. All approaches benefit from more threads, but LG and RG have the highest

12 https://zenodo.org/record/2634588, accessed on March 13, 2022.

123

https://zenodo.org/record/2634588


4368 T. Groth et al.

Fig. 5 Hybrid throughput with increase in long string amount, 128 Threads GPU, 128 Threads CPU, a, c short
string length 8 and (b, d )32, (a, b) long string length 128 and (c, d) 256, b shows the long key range between
0 and 40% in detail [2]

throughput. LC is on the same level as LGC and the same is true for RC and RGC . In Fig. 4b,
we consider the batch size. We see that high batch size is important for GPU acceleration
because LG and RG increase their throughput significantly with larger batches and reach a
plateau by 30,000 operations. We can see that we need a certain amount of operations to be
efficient because we have some overhead at the start and the end of the pipeline. The third
diagram (Fig. 4c) shows the effect of the key length. If the keys get longer, all approaches
need more time for comparing the keys and the throughput is decreasing. We can also see
that for short strings, RC and RGC are faster. In the fourth diagram (Fig. 4d), we look at
the real-world BTC data with key length 32. We increase the number of queries for better
utilization and see that both LG and RG are the fastest and that there is also a gap to RC .
LGC , RGC and LC are even slower as RC and on the same level. The speed-up is 2.1 between
LC and LG and 1.5 between RC and RG .

Now we compare different query splittings and thread counts in a hybrid scenario. The
parameter for splitting is the key length and we have a limit after which we distribute the
terms to the CPU approach. In the following chapter, we define long strings as strings that are
longer than a certain threshold and are moved to the CPU if not specified differently. We start
with zero percent long strings in our query set and increase the amount until all keys are long
strings. In Fig. 5, we compare the performance of a single approach with all queries against
the hybrid combinations of two approaches split between them. We can see in the graphs
that with an increasing amount of long strings all hybrid implementations lose throughput
and tend toward the all CPU and GPU performances. But for a medium percentage, the
combination of both approaches is faster than CPU or GPU approach alone.

123



Hybrid CPU/GPU/APU accelerated query, insert, update and... 4369

Fig. 6 Further hybrid results with a percentage of (a) queries processed on the CPU and with a constant load
on the GPU and (b) additional queries added to the CPU [2]

In Fig. 6a, we simply increase the share of CPU queries in percent but leave the total
number of queries constant. We see that this does not change the performance very much,
but the throughput of all approaches drops with all queries on the CPU. In Fig. 6b, we have a
constant amount of short length keys and add additional longer keys. The throughput of the
hybrid variants LC /LG and RC /RG increases at the beginning, but they reach a maximum
at 25% additional queries and make a slight drop after. This is the case because LC and RC

slow the algorithm down. We check this by simply removing the workload on LC and RC

and keeping the workload on LG and RG . One reason is that the parallelism of GPUs is much
more efficient than a high number of CPU threads.

6 APU acceleration

In this section, we look at the architecture of the APU in comparison with the dedicated GPU.

6.1 Overview

APUs are a combination of a GPU and a CPU in one chip and can be used for heterogeneous
computing [3, 25]. APUs feature more efficient communication and resource sharing. They
are typically used in embedded systems, smartphones and laptops. But some light forms of
integrated GPUs are also existing in desktop processors like Intels Raptor Lake or AMDs
Ryzen 7000 series. Integrated graphics (iGPU) usually have lower parallelism and raw com-
pute power in comparison with dedicated graphics cards (dGPU) because they are designed
for mobile devices with battery power. For example, the Intel 1165g7 can process 512 work
items in parallel but the Nvidia A100 can process 1024 work items in 1-dimension and also
the number of compute units and the clock speed are reduced. Another performance impact
is related to the memory speed because iGPU and CPU use relatively slow memory like
DDR4 or LPDDR4 and dGPUs use very fast memory like GDDR6, GDDR6x or HBM2. In

123



4370 T. Groth et al.

Fig. 7 Simplified APU memory
layout, a part of the RAM is
exclusively reserved for the iGPU
and other parts of the memory
can be shared between CPU and
iGPU

the APU case, there is usually a part of the main memory assigned dedicated to the iGPU
and the rest of the memory can be shared with the CPU.

6.2 Sharedmemory

Unlike dGPUswhich send and receive data through the PCI-Express bus and feature their own
dedicated very fastmemory on the card, theAPUcan share the samememory (see Fig. 7). This
shared memory can be accessed by the CPU and iGPU without coping or remapping. This
enables more possibilities for inter-operation between CPU and GPU like sharing the same
address space. If CPU and GPU use the same address space, pointers stay valid between both
units. This makes the memory very flexible because it allows using pointer base structures
on the iGPU and the CPU by also avoiding data copy or duplication. But naturally shared
memory requires synchronization to avoid data races.

6.3 APU implementation

We realize the algorithm for searching in hash tables with the Intel OneAPI Toolkit. It is
a platform independent toolkit for different devices like CPU, GPU, APU and FPGA and
provides a unified method to use the acceleration. Therefore, it uses the SYCL language
which is developed by the Khronos Group. The toolkit features three different memory types
host, device and shared. Host memory is located in the host memory, device memory is
located on the accelerator device, and shared memory can be located in each of them. Also,
SYCL supports universal shared memory (USM) which allows pointers to be valid across
host and device. But in our benchmark case, all three memory types and USM are located in
the same main memory.

In the case of the implemented libcuckoo hash table, we separate the data structure from
the table logic. This data structure can be stored in the USM and we accessed it via the
separated logic which is slightly modified for each different accelerator. Because we can use
a pointer base structure on the APUwe can also support insert, update and erase operations in
the libcuckoo data structure but we limit the initial implementation to a single thread to avoid
extensive dependency handling. The sharedmemory handling and operation flow of insertion
is shown in Fig. 8 for each accelerator. We also improve the structure of our benchmark
framework slightly and group the hardware accelerator and algorithm combinations into
shared libraries, because it makes the handling of different compilers and build tool chains
easier. Also, it allows special optimization for each accelerator, API and data structure.

123



Hybrid CPU/GPU/APU accelerated query, insert, update and... 4371

Fig. 8 Insertion in libcuckoo hash table stored in shared memory through the APU in different modes, a only
through the CPU, b finding the insert position on the iGPU and insert on CPU, c only through the iGPU

7 APU benchmark results

In this section, we look at the results for each proposed APU idea.We run our experiments on
a fast laptop with Intel i7-1165G7, 32 Gigabyte of RAM and an Intel Iris Xe Graphics with 96
compute units. As compilers, we use Clang/LLVM 15 and the Intel DPCPP compiler. We run
the following six benchmarks with synthetic data and the ported OpenCL variant libcuckoo
DPCPP (LDB ) and the original index structureDPCPP variant (LDI ). The previous libcuckoo
GPU variant (LG ) is measured on the iGPU and called L IG in this context. For libcuckoo
inserts (L I ), updates (LU ) and erases (LE), we have four different algorithms. These are
the algorithms explained for inserts and updates/erases are analogous:

• Original insert on CPU (L IC ).
• Finding on iGPU and insert on CPU (L IGC ).
• Finding on iGPU and insert on iGPU separate kernels (L IGGS).
• Finding on iGPU and insert on iGPU in one kernel (L IGGC ).

In Fig. 9a, we see that L IG is much faster when LC is processed on a larger number of
requests. Both algorithms (LDB , LDI ) are the slowest in the current implementations. The
buffer implementation is also faster than the pointer base index structure. Then, we look at
the key length in Fig. 9b: we can see that with increase in length the throughput of L IG

drops fast to the LC performance level. L IG is also heavily profiting from larger batch sizes
(Fig. 10a). If we look at inserts (Fig. 10b) the CPU is much faster than both the GPU position
look-up and insertion on the CPU or GPU. But the insertion on the GPU is faster than the
look-up on the GPU and insert on the CPU. For update operations (Fig. 11a), the results are
similar: the original CPU variant LC is the fastest and the iGPU look-up of the position is
slower but processing the updates completely on the iGPU is faster as iGPU look-up and
CPU update. This result is also true for erase operations (Fig. 11b).

In hybrid benchmarks (see Fig. 12), we can see that at the beginning Hybrid LC/LDB

and Hybrid LGC/LDB are slower as Hybrid LC/LG and Hybrid LGC/LG . If we increase
the number of processed long strings Hybrid LC/LDB passes Hybrid LGC/LG between
60 and 80% and reaches Hybrid LC/LG with 100% long strings. Also, our original hybrid
algorithm with CPU and GPU combined (see Fig. 13) is faster than the CPU and GPU alone
if the number of long strings is below 20–25%.

123



4372 T. Groth et al.

Fig. 9 Benchmarks with number of requests and key length

Fig. 10 Batch size throughput and insert throughput benchmarks

Fig. 11 Update and erase throughput benchmarks

123



Hybrid CPU/GPU/APU accelerated query, insert, update and... 4373

Fig. 12 Hybrid benchmarks in range 0–100% with short strings of length 8 (a) and 32 (b) and long strings of
length 256 (a) and 128 (b), the amount of short and long strings in the table is 50%

Fig. 13 Hybrid benchmarks in range 0–30% long strings, with short strings of length 8 (a) and 32 (b) and
long strings of length 256 (a) and 128 (b), the amount of short and long strings in the table is 50%

8 Summary and conclusions

We design a GPU acceleration string-based GPU implementation for robin-map and
libcuckoo and integrate it into our hybrid benchmark framework H2. Furthermore, we pro-
pose a parallel hybrid GPU/CPU hash table for string keys of variable length. OpenCL is
used for GPU acceleration and we use traditional thread in a thread pool for CPU parallelism.
Then, we evaluate our implementation against the original CPU variants. Our approach has a
higher throughput than theCPUvariant and achieves a speed-up of 2.1 compared to libcuckoo
and 1.5 compared to robin-map. For long strings on the CPU and short strings on the GPU,
our proposed hybrid approach is faster and has a 40% higher throughput with 20% long keys
on the CPU.

In addition, we analyze hybrid approaches with libcuckoo in an APU laptop context
both with our buffer structure and also with the original architecture. Also, we implement
sequential inserts, updates and erase operations through the APU in shared memory. Further
iGPU look-ups and CPU/iGPU inserts, updates and erase operations are implemented.

123



4374 T. Groth et al.

In future work, the modified hash tables could be merged with the already existing GPU
structure to minimize the amount of data that has to be transferred. Another direction is the
use FPGAs, and to investigate different types of basic indices for hybrid index structures.

Funding Open Access funding enabled and organized by Projekt DEAL. This work is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 422742661.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Lessley B, Childs H (2020) Data-parallel hashing techniques for GPU architectures. IEEE Trans Parallel
Distrib Syst 31(1):237–250. https://doi.org/10.1109/TPDS.2019.2929768

2. Groth T, Groppe,S, Pionteck T, Koppehel M, Valdiek F (2022) Accelerated parallel hybrid GPU/CPU
hash table queries with string keys. In: The 33rd international conference on database and expert systems
applications (DEXA), Vienna, Austria .This paper received the Norman Revell Best Paper Award. https://
doi.org/10.1007/978-3-031-12426-6_15

3. Mittal S, Vetter JS (2015) A survey of CPU-GPU heterogeneous computing techniques. ACM Comput
Surv. https://doi.org/10.1145/2788396

4. Behrens T, Rosenfeld V, Traub J, Breß S, Markl V (2018) Efficient simd vectorization for hashing in
opencl. In: EDBT, pp 489–492

5. Jünger D, Kobus R, Müller A, Hundt C, Xu K, Liu W, Schmidt B (2020) Warpcore: a library for fast hash
tables on GPUs. In: 2020 IEEE 27th international conference on high performance computing, data, and
analytics (HiPC), pp 11–20. https://doi.org/10.1109/HiPC50609.2020.00015

6. Merrill DG, Grimshaw AS (2010) Revisiting sorting for GPGPU stream architectures. In: Proceedings of
the 19th international conference on parallel architectures and compilation techniques. PACT ’10. Asso-
ciation for Computing Machinery, New York, pp 545–546. https://doi.org/10.1145/1854273.1854344

7. Ashkiani S, Farach-Colton M, Owens JD (2018) A dynamic hash table for the GPU. In: 2018 IEEE
international parallel and distributed processing symposium (IPDPS), pp 419–429. https://doi.org/10.
1109/IPDPS.2018.00052

8. Green O (2021) Hashgraph-scalable hash tables using a sparse graph data structure. ACM Trans Parallel
Comput. https://doi.org/10.1145/3460872

9. Li Y, Zhu Q, Lyu Z, Huang Z, Sun J (2021) Dycuckoo: Dynamic hash tables on GPUs. In: 2021 IEEE 37th
international conference on data engineering (ICDE), pp 744–755. https://doi.org/10.1109/ICDE51399.
2021.00070

10. Lupescu G, Tapus N (2021) Design of hashtable for heterogeneous architectures. In: 2021 23rd inter-
national conference on control systems and computer science (CSCS), pp 172–177. https://doi.org/10.
1109/CSCS52396.2021.00035

11. Ashkiani S, Farach-Colton M, Owens JD (2018) A dynamic hash table for the GPU. In: 2018 IEEE
international parallel and distributed processing symposium (IPDPS), pp 419–429. https://doi.org/10.
1109/IPDPS.2018.00052

12. Daga M, Nutter M (2012) Exploiting coarse-grained parallelism in b+ tree searches on an APU. In: 2012
SC companion: high performance computing, networking storage and analysis, pp 240–247. https://doi.
org/10.1109/SC.Companion.2012.40

13. Luan H, Fu Y (2022) Accelerating group-by and aggregation on heterogeneous CPU–GPU platforms.
In: Xie Q, Zhao L, Li K, Yadav A, Wang L (eds) Advances in natural computation, fuzzy systems and
knowledge discovery. Springer, Cham, pp 980–990

14. Villegas A, Navarro A, Asenjo R, Plata O (2019) Toward a software transactional memory for heteroge-
neous CPU–GPU processors. J Supercomput 75(8):4177–4192

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TPDS.2019.2929768
https://doi.org/10.1007/978-3-031-12426-6_15
https://doi.org/10.1007/978-3-031-12426-6_15
https://doi.org/10.1145/2788396
https://doi.org/10.1109/HiPC50609.2020.00015
https://doi.org/10.1145/1854273.1854344
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1145/3460872
https://doi.org/10.1109/ICDE51399.2021.00070
https://doi.org/10.1109/ICDE51399.2021.00070
https://doi.org/10.1109/CSCS52396.2021.00035
https://doi.org/10.1109/CSCS52396.2021.00035
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1109/SC.Companion.2012.40
https://doi.org/10.1109/SC.Companion.2012.40


Hybrid CPU/GPU/APU accelerated query, insert, update and... 4375

15. Kulikov D, Nikolskaia D, Kurapov P (2021) Efficient hardware-agnostic DBMs operator implementation
using SYCL. In: 2021 international conference engineering and telecommunication (En&T), pp 1–5.
https://doi.org/10.1109/EnT50460.2021.9681747

16. Breyer M, Daiß G, Pflüger D (2021) Performance-portable distributed k-nearest neighbors using locality-
sensitive hashing and SYCL. In: IWOCL’21. Association for ComputingMachinery, NewYork. NY, USA
https://doi.org/10.1145/3456669.3456692

17. Knuth DE (1974) The art of computer programming, vol. 3: sorting and searching. Addison–Wesley
18. Guibas LJ, Szemeredi E (1978) The analysis of double hashing. J Comput Syst Sci 16(2):226–274. https://

doi.org/10.1016/0022-0000(78)90046-6
19. PaghR,Rodler FF (2001)Cuckoo hashing. In: auf derHeide, F.M. (ed.)Algorithms—ESA2001. Springer,

Berlin, Heidelberg, pp 121–133
20. Li X, Andersen DG, Kaminsky M, Freedman MJ (2014) Algorithmic improvements for fast concurrent

cuckoo hashing. In: Proceedings of the 9th European conference on computer systems. EuroSys ’14.
Association for Computing Machinery, New York. https://doi.org/10.1145/2592798.2592820

21. Celis P, Larson P-A, Munro JI (1985) Robin hood hashing. In: 26th annual symposium on foundations
of computer science (sfcs 1985), pp 281–288. https://doi.org/10.1109/SFCS.1985.48

22. Fan B, Andersen DG, Kaminsky M (2013) Memc3: Compact and concurrent memcache with dumber
caching and smarter hashing. In: 10th USENIX symposium on networked systems design and imple-
mentation (NSDI 13). USENIX Association, Lombard, pp 371–384. https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/fan

23. Karp RM, Rabin MO (1987) Efficient randomized pattern-matching algorithms. IBM J Res Dev
31(2):249–260. https://doi.org/10.1147/rd.312.0249

24. Dayarathne N, Ragel R (2014) Accelerating Rabin Karp on a graphics processing unit (GPU) using com-
pute unified device architecture (CUDA). In: 7th international conference on information and automation
for sustainability, pp 1–6. https://doi.org/10.1109/ICIAFS.2014.7069589

25. Daga M, Tschirhart ZS, Freitag C (2015) Exploring parallel programming models for heterogeneous
computing systems. In: 2015 IEEE international symposium on workload characterization, pp 98–107.
https://doi.org/10.1109/IISWC.2015.16

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Tobias Groth is a research assistant at the Institute of Information Sys-
tems, University of Lübeck. He received his Master of Science in 2019.
His research interests include GPU and APU acceleration, databases,
modern technologies and programming languages.

123

https://doi.org/10.1109/EnT50460.2021.9681747
https://doi.org/10.1145/3456669.3456692
https://doi.org/10.1016/0022-0000(78)90046-6
https://doi.org/10.1016/0022-0000(78)90046-6
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1109/SFCS.1985.48
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1109/ICIAFS.2014.7069589
https://doi.org/10.1109/IISWC.2015.16


4376 T. Groth et al.

Sven Groppe is a professor at the University of Lübeck. He received
7 project grants from DFG, BMBF and BMWi in the area of data
management including the DFG project “Hybrid2-Index Structures for
Main Memory Databases”, which is the funding source of this con-
tribution. He is the project coordinator of the BMBF funded QC4DB
project about accelerating relational database management systems via
quantum computing. He published more than 150 journal, conference
and workshop papers at top-ranked publication venues including SIG-
MOD, VLDB and ICPP with over 125 co-authors from 17 countries
all around the world. He is member of over 110 program commit-
tees of various conferences and workshops and reviewer of over 35
journals. He is a workshop chair of SBD@SIGMOD (2016-2020),
BiDEDE@SIGMOD (2021-2023), VLIoT@VLDB (2017-2022) and
QDSM@VLDB 2023. He is a general chair of the International Seman-
tic Intelligence Conference (ISIC) (2021-2022), International Health
Informatics Conference (IHIC) (2022- 2023) and the International

Conference on Applied Machine Learning and Data Analytics (AMLDA) in 2023. More information is avail-
able on https://www.ifis.uniluebeck. de/ groppe/.

Thilo Pionteck received his diploma and doctoral degrees in electri-
cal engineering from the Technische Universität Darmstadt, Germany,
in 1999 and 2005, respectively. In 2008, he was appointed as assis-
tant professor for Integrated Circuits and Systems at the University of
Lübeck, Germany. After a number of substitute professorships, in 2015
he was appointed as a professor at the chair of Organic Computing
at the University of Lübeck, with a research focus on adaptive digital
systems. Finally, in 2016 he was appointed to the Otto-von- Guericke
University, where he currently holds the chair of Hardware-Oriented
Technical Computer Science. In his research, Thilo Pionteck focuses
on new architectural concepts for the realization of runtime-adaptive,
performance- and energy-efficient digital systems. His research inter-
ests include NoCs, 3D SoCs, adaptive system design, and dynamic
partial reconfiguration of FPGAs.

Franz Valdiek is a research fellow at the Otto-von- Guericke Univer-
sity, Magdeburg. He received his master of science in 2022. Ever since,
he focused his research on database management systems and their
acceleration. Aside from that, he teaches basics of FPGA programming
to bachelor students.

123



Hybrid CPU/GPU/APU accelerated query, insert, update and... 4377

Martin Koppehel is a independent researcher at the Otto-von-Guericke
University of Magdeburg. He has a MSc in computer science. Research
interests include databases, site reliability engineering and machine
learning.

123


	Hybrid CPU/GPU/APU accelerated query, insert, update and erase operations in hash tables with string keys
	Abstract
	1 Introduction
	2 Related work
	3 Basics
	3.1 Hash tables
	3.2 Hardware acceleration

	4 Parallel hybrid GPU/CPU hash table for string keys
	4.1 Approach
	4.2 Data structure and search

	5 Evaluation
	5.1 Benchmark framework
	5.2 Benchmark environment
	5.3 Benchmark results

	6 APU acceleration
	6.1 Overview
	6.2 Shared memory
	6.3 APU implementation

	7 APU benchmark results
	8 Summary and conclusions
	References




