
Knowledge and Information Systems (2023) 65:2991–3022
https://doi.org/10.1007/s10115-023-01854-1

REGULAR PAPER

BPF: a novel cluster boundary points detection method for
static and streaming data

Vijdan Khalique1 · Hiroyuki Kitagawa2,3 · Toshiyuki Amagasa4

Received: 3 October 2022 / Revised: 19 December 2022 / Accepted: 27 February 2023 /
Published online: 21 March 2023
© The Author(s) 2023

Abstract
Data points situated near a cluster boundary are called boundary points and they can represent
useful information about the process generating this data. The existing methods of boundary
points detection cannot differentiate boundary points from outliers as they are affected by
the presence of outliers as well as by the size and density of clusters in the dataset. Also,
they require tuning of one or more parameters and prior knowledge of the number of outliers
in the dataset for tuning. In this research, a boundary points detection method called BPF is
proposed which can effectively differentiate boundary points from outliers and core points.
BPF combines the well-known outlier detection method Local Outlier Factor (LOF) with
Gravity value to calculate the BPF score. Our proposed algorithm StaticBPF can detect
the top-m boundary points in the given dataset. Importantly, StaticBPF requires tuning of
only one parameter i.e. the number of nearest neighbors (k) and can employ the same k
used by LOF for outlier detection. This paper also extends BPF for streaming data and
proposes StreamBPF. StreamBPF employs a grid structure for improving k-nearest neighbor
computation and an incremental method of calculating BPF scores of a subset of data points
in a sliding window over data streams. In evaluation, the accuracy of StaticBPF and the
runtime efficiency ofStreamBPF are evaluated on synthetic and real datawhere they generally
performed better than their competitors.

B Hiroyuki Kitagawa
kitagawa@cs.tsukuba.ac.jp

Vijdan Khalique
khalique.vijdan@kde.cs.tsukuba.ac.jp

Toshiyuki Amagasa
amagasa@cs.tsukuba.ac.jp

1 Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba, Ibaraki 305-8573, Japan

2 International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai,
Tsukuba, Ibaraki 305-8573, Japan

3 National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo
135-0064, Japan

4 Center for Computational Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki
305-8573, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01854-1&domain=pdf
http://orcid.org/0000-0002-3573-267X
http://orcid.org/0000-0002-2984-2258
http://orcid.org/0000-0003-0595-2230

2992 V. Khalique et al.

Keywords Boundary points detection · Streaming data · Data mining · Cluster boundary

1 Introduction

Clustering is one of the data mining techniques that divides a dataset into subsets such that
data belonging to each subset have some similar properties [24]. These clusters of data may
represent a useful phenomenon. In cluster analysis useful features of data is extracted. For
example, in a customer dataset, a cluster of data objects may represent a specific behavior of
customers, or in an image dataset, a cluster of images may share similar properties.

Outlier detection is related to clustering as an outlier is defined as a data object that does
not belong to any cluster and deviates from the majority of the data objects [15]. An outlier
is often situated in an isolated region of the data space. Many techniques have been proposed
for outlier detection based on different properties of the dataset. For example, distance [3,
20], density [5, 17], angle [23, 32] and isolation [14, 28].

There are several research efforts targeting the problem of clustering [1, 7, 12] and outlier
detection [5, 29, 33, 39] in static and streaming data. However, a limited research has been
dedicated to the boundary points detection. In [26], border or boundary points are defined as
points which are located at the extremes of a class region or near free pattern space. In other
words, boundary points are located at the border of a cluster forming its boundary. Hence,
boundary points detection can be defined as the task of detecting the points which are situated
at the boundary of a cluster [41].

Detecting boundary points may provide useful information about the systemwhich is gen-
erating this data. Consider the example of a disease detection system inwhich the normal data
objects may represent healthy patients and the patient who have contracted a certain disease
may be represented by outliers. In this example, the boundary points may represent normal
patients showing abnormal symptoms but somehow have not yet developed the disease. Con-
sequently, closely monitoring such boundary cases may reveal interesting information about
the disease. Similar motivating examples have been presented in the related papers [9, 27,
34, 41].

Amongst many outlier detection techniques [21, 23, 28, 30], Local Outlier Factor (LOF)
[5] is one of the most popular and competitive density-based outlier detection methods
[43]. It can detect outliers based on relative density of a target object according to its local
neighborhood. Core points are situated in the inner region of the cluster, whereas the outliers
are isolated points in the less dense regions. LOF can detect outliers by calculating the LOF
scores where outliers get larger LOF scores (> 1) than other points.

The problem of boundary points detection requires the detection of boundary points while
ignoring the core points and outliers. In our previous work [19] , we proposedBoundary Point
Factor (BPF)methodwhich calculates a boundary point score called BPF score to effectively
identify boundary points. In a nutshell, BPF calculates the BPF score of a given point by
taking the ratio of its Gravity value and LOF score. The Gravity value is calculated by the
norm of the average of unit vectors from the given point to its k-nearest neighbors. Based
on our proposed formulation, BPF scores of boundary points tend to be greater than outliers
and core points. As a result, the boundary points can be distinguished from the outliers and
core points based on the BPF scores. We propose BPF algorithm for static datasets which
calculates BPF scores and output the top-m boundary points. Followings are the advantages
of our proposed method [19]:

• BPF is robust to the presence of outliers and clusters of different sizes and densities.

123

BPF : a novel cluster boundary points detection method… 2993

• BPF can be used with LOF for detecting boundary points and outliers as BPF shares the
k-nearest neighbors and LOF computation.

• BPF has one tune-able parameter k (number of nearest neighbors) where the value of
k tuned for boundary points detection with BPF can also be used for outlier detection
with LOF.

This paper extends BPF to the problem of boundary points detection over data streams
and provides more intensive experimental results to verify the effectiveness of BPF. It is
important to clarify that in our previous work, BPF combinedly represented the method of
calculating the BPF score, and the algorithm that output the top-m boundary points in a static
dataset. In this work, we refer to the algorithm of detecting the top-m boundary points via
BPF as StaticBPF, whereas BPF refers to the method of calculating BPF score by combining
Gravity and LOF.

In streaming data, the task of boundary points detection becomes more challenging due to
high arrival rate of data. As a result, a faster method is desirable which can calculate the BPF
scores of new arrival points and update the BPF scores of points affected by arrival of new
points or expiration of old points. This paper proposes a grid-based runtime efficient method
to address the problem of fast boundary points detection over data streams. The challenges
are to improve the computation of the k-nearest neighbors and BPF scores of the new arrival
points and the points affected by arrival and expiration of points due to window slide. To
address this problem, we propose StreamBPF which employs a grid structure to efficiently
compute the k-nearest neighbors and uses an incremental method of computing BPF scores.
This paper is an extension of our previous work [19], and followings are the key extensions
in this work:

• Quantitative evaluation of StaticBPF on 2- and high-dimensional synthetic and real data.
In our previous work, we demonstrated the accuracy by showing the detected boundary
points on 2-d synthetic data and real data. In this paper, in addition to the previous results,
the accuracy results are shown quantitatively w.r.t. precision, recall, F1 score, area under
precision-recall curve (AUC PR) and area under ROC curve (AUC ROC) on all datasets.

• Proposal of a boundary points detectionmethod over data stream named StreamBPF. Our
previous contribution is suitable for static datasets, and it is computationally expensive
to use it for streaming data. Therefore, in this paper, we propose StreamBPF that:

1. uses a grid structure to improve the k-nearest neighbors computation, and
2. incrementally computes BPF scores adopting observations in [33].

• Runtime performance evaluation of StreamBPF on synthetic and real data, and
comparison with StaticBPF and other methods.

2 Related work

BORDER [41] is one of the boundary points detection algorithms. It exploits the observation
that boundary points have smaller number of reverse k-nearest neighbors (RNk) than core
points and identifies boundary points. However, the computation of RNk is expensive, and
therefore they proposed to use G-ordering kNN join method [40] to improve the computation
of RNk . BORDER was found to be effective in datasets which do not have outliers. In the
case of dataset with outliers, BORDER cannot differentiate between outliers and boundary
points, as both of them tend to have a smaller number of RNk . To address the shortcoming
of BORDER, BRIM [35] proposed to consider eps-neighborhood to successfully detect

123

2994 V. Khalique et al.

the boundary points in datasets with many outliers. Given a distance eps, BRIM uses the
observation that since a boundary point is located at the edge of a dense region, its eps-
neighborhood can be distributed in either positive or negative direction based on the diameter
line which divides its eps-neighborhood into two parts. Furthermore, boundary points tend to
have denser eps-neighborhood than outliers. The major drawback of BRIM is that it cannot
perform well in datasets with clusters of different densities and scales due to the fixed eps
value.

Recently, Li et al. proposed BPDAD [27] for detecting outliers and boundary points
based on geometrical measures. BPDAD exploits two important observations that outliers
and boundary points have lower local densities and smaller variance of angles than their
neighbors. Consequently, BPDAD output outliers and boundary points together and it does
not specifically detect boundary points. BorderShift [9] is another boundary points detection
algorithm which uses similar observations regarding the densities of outliers, boundary and
core points. BorderShift employs Parzen Window (kernel density estimation) to estimate the
local density of a point and MeanShift vector to determine the direction of dense region. It
effectively detects boundary points provided that its three parameters (k, λ1 and λ2) are tuned
appropriately. Particularly, tuning λ1 and λ2 can be difficult as it requires prior information
about the number of outliers in the dataset.

For high-dimensional data, [6, 34] project high-dimensional data onto lower dimensions
for boundary points detection. However, similar to BorderShift [9], their parameter tuning
depends on the prior knowledge of the number of outliers in datasets. A more desirable
technique is easy to tune and does not require any prior information about the data distribution
of the given dataset. It should take a dataset with or without outliers as input and output the
top-m boundary points.

Our previous work [19] introduced BPF method and experimentally showed its effective-
ness for static datasets. However, in [19], we did not consider the problem to detect boundary
points occurring in streaming data. To the best of our knowledge, there is no proposedmethod
of boundary points detection for streaming data. Since, LOF is one of the key components
of BPF, incremental computation of LOF can improve the runtime performance of BPF and
may make it suitable for streaming data.

There are many outlier detection methods based on different observations for streaming
data [2, 8, 16, 18, 22, 39, 42]. ILOF is the extension of LOF for data streams which can
incrementally update the LOF scores of the points [33]. ILOF proposed two algorithms:
Insertion and Deletion which are used when a new point is inserted and deleted from the
dataset, respectively. One disadvantage of ILOF is that it requires a large amount of memory.
Consequently, to improve the space complexity, [37] proposed a memory efficient method
calledMiLOFwhich stores the summary of past data to improvememory consumption. Since
MiLOF stores the summary of past data as cluster centers, its accuracy may degrade with
time. DILOF [29] addressed this problem by preserving the density information of past data.
Another attempt to improve LOF for streaming data is [13] which employs a cube-based
method to approximate the LOF scores of incoming points. All these proposed methods are
approximation of ILOF algorithm. ILOF is related to our proposed method for streaming
data as we need to update LOF scores in order to update the BPF scores of points. Hence,
we adopt the observations given in [33] to update the LOF scores. Furthermore, we propose
a grid structure to improve the runtime of the k-nearest neighbors computation.

123

BPF : a novel cluster boundary points detection method… 2995

Table 1 List of important
symbols

Symbols Description

k # Nearest neighbors

n # Points in dataset or window

m # Boundary points

d Dimensionality of data

D Dataset of d-dimensional data points

Wt Window at time step t

w Slide size of a count-based window

Nk (p) Set of k-nearest neighbors of point p

RNk (p) Set of reverse k-neighbors of point p

kdist(p) Distance of p with its kth nearest neighbor

dist(p, q) Distance between point p and q

G(p) Gravity value of point p

LOF(p) LOF score of point p

l Grid cell length

Gt Grid at time step t

Ci Ci = (Ki , Si) represents a cell in Gt

Ki Cell key of cell Ci

Si Subset of points in Wt belonging to cell Ci

3 Preliminaries

This section briefly introduces the definitions related to Local Outlier Factor (LOF). The
readers may refer to [5] for further details. Furthermore, (Table 1) shows the list of important
symbols used in this paper.

Given a d-dimensional point p in the dataset D, let k represent the number of nearest
neighbors. The LOF score of p (LOF(p)) can be calculated using two key concepts: Reach-
ability Distance reach-distk(p, o) and Local Reachability Density lrdk(p). The following
definitions present these concepts followed by the definition of LOF.

Definition 1 (Reachability distance) Reachability Distance of a point p w.r.t. point o is
defined as:

reach-distk(p, o) = max{kdist(o), dist(p, o)}, (1)

where kdist(o) is the distance from o to its kth neighbor and dist(p, o) is the distance between
point p and o.

Definition 2 (Local reachability density) Local Reachability Density of a point p denoted
as lrdk(p) is defined as:

lrdk(p) = 1/

(∑
o∈Nk (p) reach-distk(p, o)

|Nk(p)|

)
, (2)

where Nk(p) is the set of k-nearest neighbors of p and |Nk(p)| represents the cardinality of
Nk(p).

Intuitively, the local reachability density is the estimation of density of pw.r.t. its neighbors
o ∈ Nk(p). More concretely, lrdk(p) is the reciprocal of average reachability distance from p

123

2996 V. Khalique et al.

Fig. 1 Core and boundary points
form the dense region, and
outliers are isolated (color figure
online)

to its k-nearest neighbors. Therefore, larger the reachability distances of p, smaller is lrdk(p).
Based on Definitions 1 and 2, we can define the local outlier factor (LOF).

Definition 3 (Local Outlier Factor (LOF)) Local Outlier Factor of a point p is defined as:

LOF(p) =
∑

o∈Nk (p)
lrdk (o)
lrdk (p)

|Nk(p)| . (3)

LOF(p) is the outlier factor of the point p which indicates its degree of outlierness. If p is a
core point then LOF(p) is close to 1, and if p is a boundary point, then LOF(p) is slightly
greater than core points but still close to 1. In case p is an outlier, LOF(p) is greater than 1.
The details about the range of LOF score are explained in [5].

4 Boundary point factor (BPF)

This section introduces the definitions related to the Boundary Point Factor (BPF) method
and explains the basic observations about it. Firstly, the definition of Gravity G(p) of a point
is given.

Definition 4 (Gravity) Given a point p ∈ D, the set of k-nearest neighbors of p Nk(p), and
the norm ‖ · ‖, Gravity of p can be defined as:

G(p) = 1

|Nk(p)|

∥∥∥∥∥∥
∑

o∈Nk (p)

−→po∥∥−→po∥∥
∥∥∥∥∥∥ . (4)

Intuitively, Gravity (G(p)) is a scalar value which indicates how the neighborhood of p is
distributed. Consider the boundary point p shown in Fig. 1. Taking the average of unit vectors
originating from p to its k-nearest neighbors will result in a single vector (blue arrow). Then,
calculating G(p) will result in a larger Gravity value than the core point q as it is surrounded
by points in all directions which will result in a smaller G(q). Generally, the Gravity value
of an outlier depends on the data distribution. Hence, the following inequality is expected to

123

BPF : a novel cluster boundary points detection method… 2997

hold for boundary and core points:

G(q) < G(p). (5)

Similarly, the LOF scores of data points w.r.t. their k-neighborhood can be calculated
using Definition 3. As shown in [5], LOF scores of core and boundary points are close to 1
(LOF(q),LOF(p) ≈ 1) and LOF scores of outliers are greater than 1. Consequently, for the
points p, q and r shown in Fig. 1, the following inequality is expected to hold:

LOF(q),LOF(p) < LOF(r). (6)

Based on these observations, Boundary Point Factor (BPF) score is defined as follows.

Definition 5 (Boundary Points Factor (BPF) score) Given a point p ∈ D, LOF(p) and
Gravity G(p), Boundary Point Factor score of p BPF(p) can be calculated as follows:

BPF(p) = G(p)

LOF(p)
. (7)

From Definition 5, the following inequality is expected to hold:

BPF(q),BPF(r) < BPF(p). (8)

Namely, BPF scores of boundary points are more likely to be greater than core points and
outliers. Hence, boundary points in a dataset can be identified using BPF scores.

5 StaticBPF

BPF can be applied on static datasets for boundary points detection. The algorithm that uses
BPF for detecting the top-m boundary points from static datasets is named as StaticBPF.
This section presents the algorithm steps and runtime complexity of StaticBPF, and shows
the results of accuracy evaluation.

5.1 Algorithm

The main idea of StaticBPF algorithm is to calculate BPF scores of all points in the dataset
D. Firstly, the algorithm calculates k-neighborhood of all points in D. Next, for each point
in D, it calculates BPF score based on LOF and Gravity according to Definition 5. After
calculating BPF scores, the algorithm sorts all points in the descending order of the BPF
scores. Given the parameterm, StaticBPF will output the listC of the top-m boundary points
in D. The steps are given in Algorithm 1.

5.2 Runtime complexity

Let n represent the number of points in a d-dimensional dataset. The most computationally
expensive task for StaticBPF is the k-nearest neighbors search for each point which have
the complexity of O(n2d). However, the runtime complexity can be improved to O(n log n)

by using a suitable indexing technique [31, 36]. This runtime complexity can be applied to
other boundary points detection methods like BORDER [41], BRIM [35], BPDAD [27] and
BorderShift [9] as well. As explained, BPF score is calculated based on the Gravity and LOF
scores of n points, where the complexity of calculating Gravity and LOF scores can be given

123

2998 V. Khalique et al.

Algorithm 1 StaticBPF
Require: Dataset D, #nearest neighbors k, #boundary points m
1: for p ∈ D do
2: Nk (p) ← k-nearest neighbors of p.
3: end for
4: for p ∈ D do
5: calculate BPF(p) using Definition 5 and store in B.
6: end for
7: Sort B in descending order of BPF scores.
8: C ← top-m points in B. /* list of top-m boundary points in D*/
return C

as O(nkd) and O(nk), respectively. Hence, the overall runtime complexity of StaticBPF
algorithm without using indexing structure is O(n2d + nkd + nk).

5.3 Evaluation of StaticBPF

In this section, we show experimental evaluation of StaticBPF. The experiments are
conducted on 2- and high-dimensional synthetic datasets as well as on real datasets.

5.3.1 Experimental setup

This section explains the steps of obtaining the ground truth and tuning the parameters for
all methods.

In order to perform quantitative evaluation, it is fundamental to have the ground truth
boundary points for all datasets. Therefore, we applied the following steps on each synthetic
and real dataset to obtain the ground truth:

1. Apply DBSCAN [12] to identify clusters/classes and outliers in the dataset. Remove the
outliers from the dataset.

2. Apply BORDER [41] on each identified cluster/class in the dataset. Consider the points as
boundary points which have the boundary scores less than or equal to α% of the average
boundary score of that cluster. Repeat this process for each cluster in the given dataset.

3. Consider all the points obtained in step 2 as the top m ground truth boundary points of
the dataset.

It may be noted that the outliers detected by DBSCAN are removed temporarily to apply
BORDER and detect the top-m boundary points. After that, the removed outliers are inserted
again in the dataset.

DBSCAN is used to detect the outliers fromall datasets. In synthetic datasets, we randomly
introduced afixednumber of outliers.However, theremay exist outliers relative to the clusters.
Therefore, we applied DBSCAN to obtain all outliers in the given dataset. The parameters
MinPts and eps of DBSCAN are tuned using the k-distance plot as suggested in [38]. We
checked the “elbow” values of eps at fixedMinDist and chose the appropriate eps such that the
number of outliers detected byDBSCANare greater or equal to the number of randomly intro-
duced outliers. In real datasets, we chose a large value of eps to detect the outstanding outliers.

In order to obtain the ground truth boundary points via BORDER, we need to choose an
appropriate value of its parameter k. To do so, we tuned k of BORDER for detecting the
outliers according to the ground truth outliers obtained by DBSCAN in step 1. The value
of k which gives the best accuracy in terms of precision, recall and F1 is used to obtain the

123

BPF : a novel cluster boundary points detection method… 2999

Table 2 Range of parameter
values used for tuning all
methods

Method Range

StaticBPF k = [50, 100, 150, 200, 250]
BorderShift k = [5, 10, 50, 100]
BRIM eps = [min_distance, avg_distance]

BORDER k = [50, 100, 150, 200, 250]

ground truth boundary points in step 2. It is reasonable as BORDER uses the observation that
boundary points have a smaller number of reverse k-neighbors than core points. However,
this observation is also true for outliers. Hence, tuning k of BORDER for outlier detection on
a dataset and then applying BORDER with the tuned k on the same dataset after removing
the outliers can detect the boundary points with reasonable accuracy.

For synthetic 2-d and high-dimensional datasets α = 80% and α = 60%, respectively.
For 2-d data, we further checked if the ground truth boundary points cover the boundary
regions of the cluster by visual inspection. In real data, we considered α = 80% for Biomed
[10] and Cancer [11] datasets, respectively.

We compared the accuracy of StaticBPF with BorderShift [9], BPDAD [27], BRIM [35]
and BORDER [41]. For all methods, we chose the parameter value ranges as shown in
Table 2. BPDAD uses fixed parameter values and automatically outputs the boundary points.
Therefore, we mention the number of boundary points output by BPDAD for all datasets.
For BRIM, there are no suggested range for eps which is a distance parameter and the points
within eps distance are considered as the neighborhood of a target point. We considered 5
values for eps within the range of the minimum and average distance between all points
in the given dataset. For BorderShift, we tuned its k parameter according to the suggested
range. However, tuning its λ1 and λ2 parameters requires prior knowledge of the number of
outliers in the dataset. Since in our experiments the number of outliers are known, we show
the results of BorderShift for the best λ1 and λ2. However, without the knowledge of the
number of outliers in the dataset, tuning λ1 and λ2 can be challenging.

For quantitative evaluation, precision, recall, F1 score, area under ROC curve (AUCROC)
and area under precision-recall curve (AUCPR) are used.AUCROCandAUCPRare affected
by ranking of points w.r.t. their scores. In BorderShift, λ1 and λ2 are start and end pointers,
respectively, to the boundary points occurring in the list of points sorted in ascending order
of the scores. We considered the ranking from λ2 until the start of the list (backwards) to
calculate AUC ROC and AUC PR. This ranking is reasonable as, given that λ1 and λ2 are
tuned, points occurring before λ1 are likely nearer to the core points. Similarly, points after
λ2 are likely farther from the core points or can be outliers. For StaticBPF, BORDER and
BRIM, we considered ranking of points according to the calculated scores. AUC ROC and
AUC PR for BPDAD cannot be included as its output is not based on ranking.

5.3.2 2-Dimensional synthetic data

The evaluation of StaticBPF on 2-d synthetic datasets are of two types: (1) visual demon-
stration of the detected boundary points, and (2) quantitative evaluation of accuracy in terms
of various metrics. The details of 2-d datasets are given in Table 3.

Figures 2, 3, 4 and 5 show the results of the top-m boundary points (red points) detected
by all methods and their corresponding quantitative accuracy in Tables 4, 5, 6 and 7at the
optimal parameter values where the bold numbers represent the best results.

123

3000 V. Khalique et al.

Table 3 Details of 2- and high-dimensional synthetic datasets

Dataset name Dataset size (n) #outliers #boundary points (m)

Diamonds 3300 220 528

Rings 4200 172 567

Mix1 3800 262 838

Mix2 1710 47 479

Mix3 1800 127 484

Mix4 2400 200 298

10d 3300 372 939

20d 3300 401 997

50d 3300 400 1140

Fig. 2 Diamonds dataset: n = 3300, #outliers = 220,m = 528

Table 4 Accuracy on diamonds dataset

Method Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 100 0.75 0.75 0.75 0.96 0.75

BPDAD #boundaries = 362 0.33 0.23 0.27 – –

BRIM eps = 0.96 0.71 0.71 0.71 0.95 0.75

BORDER k = 100 0.55 0.55 0.55 0.86 0.41

BorderShift k = 50 0.83 0.83 0.83 0.97 0.85

λ1 = 2552, λ2 = 3080

123

BPF : a novel cluster boundary points detection method… 3001

Fig. 3 Rings dataset: n = 4200, #outliers = 172,m = 567

Fig. 4 Mix1 dataset: n = 3800, #outliers = 262,m = 838

123

3002 V. Khalique et al.

Fig. 5 Mix2 dataset n = 1710, #outliers = 47,m = 479

Table 5 Accuracy on rings dataset

Method Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 200 0.79 0.79 0.79 0.97 0.71

BPDAD #boundaries = 915 0.33 0.53 0.4 – –

BRIM eps = 0.094 0.53 0.53 0.53 0.78 0.59

BORDER k = 100 0.69 0.69 0.69 0.95 0.55

BorderShift k = 100 0.66 0.66 0.66 0.93 0.69

λ1 = 3461, λ2 = 4028

Table 6 Accuracy on Mix1 dataset

Method Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 100 0.72 0.72 0.72 0.91 0.73

BPDAD #boundaries = 716 0.49 0.42 0.45 – –

BRIM eps = 1.13 0.39 0.39 0.39 0.69 0.45

BORDER k = 50 0.65 0.65 0.65 0.86 0.51

BorderShift k = 100 0.69 0.69 0.69 0.88 0.69

λ1 = 2700, λ2 = 3538

123

BPF : a novel cluster boundary points detection method… 3003

Table 7 Accuracy on Mix2 dataset

Method Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 100 0.85 0.85 0.85 0.96 0.81

BPDAD #boundaries = 689 0.32 0.46 0.38 – –

BRIM eps = 1.19 0.63 0.63 0.63 0.75 0.69

BORDER k = 100 0.9 0.9 0.9 0.96 0.79

BorderShift k = 50 0.71 0.71 0.71 0.89 0.76

λ1 = 1184, λ2 = 1663

Table 8 Accuracy on Mix3 dataset

Method Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 100 0.84 0.84 0.84 0.96 0.82

BPDAD #boundaries = 453 0.35 0.33 0.34 – –

BRIM eps = 1.2 0.65 0.65 0.65 0.74 0.65

BORDER k = 100 0.71 0.71 0.71 0.89 0.58

BorderShift k = 50 0.72 0.72 0.72 0.9 0.79

λ1 = 1189, λ2 = 1673

Figure 2 shows the results on Diamonds dataset (used in [9, 35, 41]). StaticBPF and
BorderShift can clearly detect the boundary points while other methods are not as accurate.
However, few outliers are also detected as boundary points by StaticBPF but most of the
points lie on the clear boundaries of the shapes. Referring to the quantitative accuracy shown
in Table 4, StaticBPF shows comparable performance to BorderShift. However, tuning the
best parameter of BorderShift is a difficult task if the number of outliers are not known.
Moreover, BRIM shows a comparable accuracy to StaticBPF and BorderShift while the
accuracy of BORDER and BPDAD are influenced by outliers. On rings [34] dataset (Fig. 3
and Table 5), StaticBPF performs better than other methods.

Mix1, Mix2 and Mix3 dataset consists of shapes having different number of points. Mix2
and Mix3 are similar to the dataset used in the LOF paper [5] with clusters having points
from uniform and normal distribution. However, the difference between Mix2 and Mix3 is
the number of outliers. The purpose of using these datasets is to demonstrate the robustness of
StaticBPF on datasets having clusters of arbitrary shapes and densities. On Mix1 (Fig. 4 and
Table 6), StaticBPF performs better than othermethods,whileBorderShift shows comparable
performance. In Mix2 (Fig. 5 and Table 7), BORDER performs better than StaticBPF in
terms of precision, recall and F1 score. This is due to the presence of small number of
outliers (only 19). However, when we increased the number of outliers in Mix3 (84 outliers),
the performance of BORDER dropped due to the presence of outliers, whereas StaticBPF
showed almost consistent performance as shown in Table 8. We omit the boundary points
detected by all methods on Mix3 dataset to avoid redundancy. The results on Mix2 and Mix3
suggest that StaticBPF is robust to outliers. For other methods, the parameters were adjusted
to give consistent results.

On Mix4 dataset, the ground truth is obtained by considering the shape of the clusters.
Mix4 dataset has two circular clusters of uniformly distributed points with different radii and
number of points. The small and large clusters have radius r1 = 1 and r2 = 2 with 1400 and

123

3004 V. Khalique et al.

Table 9 Accuracy comparison on Mix4 dataset with ground truth obtained with BORDER

Methods Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 50 0.74 0.74 0.74 0.97 0.78

k = 100 0.72 0.72 0.72 0.97 0.76

k = 150 0.67 0.67 0.67 0.97 0.72

BorderShift k = 50, λ1 = 2102, λ2 = 2400 0.33 0.33 0.33 0.86 0.31

k = 50, λ1 = 1902, λ2 = 2200 0.6 0.6 0.6 0.91 0.67

k = 50, λ1 = 1702, λ2 = 2000 0.42 0.42 0.42 0.55 0.25

BRIM eps = 0.58 0.52 0.52 0.52 0.82 0.57

eps = 1.15 0.56 0.56 0.56 0.76 0.53

eps = 1.73 0.39 0.39 0.39 0.76 0.5

BORDER k = 100 0.32 0.32 0.32 0.82 0.29

k = 150 0.35 0.35 0.35 0.86 0.32

k = 200 0.37 0.37 0.37 0.87 0.34

BPDAD #boundary pts=740 0.15 0.37 0.21 – –

Table 10 Accuracy comparison on Mix4 dataset with ground truth obtained by using radii of the circular
clusters

Methods Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 50 0.75 0.75 0.75 0.97 0.8

k = 100 0.75 0.75 0.75 0.97 0.8

k = 150 0.7 0.7 0.7 0.97 0.76

BorderShift k = 50, λ1 = 2010, λ2 = 2300 0.49 0.49 0.49 0.92 0.44

k = 50, λ1 = 1810, λ2 = 2100 0.48 0.48 0.48 0.63 0.31

k = 50, λ1 = 1610, λ2 = 1900 0.25 0.25 0.25 0.3 0.12

BRIM eps = 0.74 0.46 0.46 0.46 0.76 0.53

eps = 1.4 0.44 0.44 0.44 0.74 0.38

eps = 2.16 0.25 0.25 0.25 0.68 0.26

BORDER k = 50 0.33 0.33 0.33 0.74 0.24

k = 100 0.31 0.31 0.31 0.81 0.29

k = 150 0.33 0.33 0.33 0.85 0.31

BPDAD #boundary pts=740 0.16 0.42 0.23 – –

800 points, respectively. We obtained the boundary points ground truth using two methods:
(i) applying BORDER (as explained in Sect. 5.3.1), and (ii) adjust β to cover the region close
to the boundary of the circular clusters where the points within r1−(r1−β) and r2−(r2−β)

in the small and large clusters, respectively, are considered boundary points of the circular
clusters. β = 0.05 for small and β = 0.2 for large cluster. The results are in Tables 9 and 10
for the ground truth obtained via BORDER and by adjusting β, respectively. Moreover, we
show the change in accuracy w.r.t. the change in parameters where the best and sub-optimal
results are shown for each method.

123

BPF : a novel cluster boundary points detection method… 3005

Table 11 Comparison of accuracy on 10-dimensional dataset

Methods Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 150 0.78 0.78 0.78 0.94 0.78

k = 200 0.79 0.79 0.79 0.94 0.79

k = 250 0.8 0.8 0.8 0.94 0.8

BorderShift k = 100, λ1 = 2189, λ2 = 3128 0.54 0.54 0.54 0.74 0.61

k = 100, λ1 = 1989, λ2 = 2928 0.53 0.53 0.53 0.62 0.43

k = 100, λ1 = 1789, λ2 = 2728 0.36 0.36 0.36 0.48 0.21

BRIM eps = 0.38 0.5 0.5 0.5 0.69 0.54

eps = 0.58 0.62 0.62 0.62 0.79 0.62

eps = 0.77 0.43 0.43 0.43 0.59 0.4

BORDER k = 100 0.58 0.58 0.58 0.83 0.49

k = 150 0.59 0.59 0.59 0.83 0.49

k = 200 0.6 0.6 0.6 0.83 0.49

BPDAD #boundary pts=872 0.23 0.21 0.22 – –

Referring to the overall results in Tables 9 and 10, StaticBPF outperforms all methods
and shows almost consistent accuracy on different k values. Similarly, accuracy of BORDER
is also consistent with changing k. On the other hand, accuracy of BRIM and BorderShift
changes with the change in eps, and λ1 and λ2 at fixed k, respectively. λ1 and λ2 cover
the top m points and their values were changed with the interval of 200 points. Hence, the
results suggest that tuning λ1 and λ2 is difficult when the number of outliers is not known.
Also, the ground truth obtained via BORDER is reasonable as the accuracy does not change
significantly when we consider the shapes of clusters to obtain the ground truth.

Furthermore, on Mix4 dataset we show that the k value tuned for StaticBPF for boundary
points detection canbeusedwithLOF for outlier detection.LOFshoweda consistent accuracy
w.r.t. precision, recall and F1 score of 0.94 for detecting 200 outliers at k = 50, 100, 150.
This shows that LOF and StaticBPF can work with the same k value.

5.3.3 High-dimensional synthetic data

This subsection shows the results of accuracy evaluation on synthetic high-dimensional data
of dimensionality 10, 20 and 50. In order to obtain the clusters of different sizes and densities,
the generated high-dimensional data have three spherical clusters of different radii with data
points from Gaussian distribution. The details are shown in Table 3. The results are shown
in Tables 11, 12 and 13 and the accuracy is shown for different parameter values to show the
change in accuracy w.r.t. change in parameters.

Overall, StaticBPF performs consistently better than other methods on high dimensional
data. It can be observed that larger k gives better results for StaticBPF according to all
metrics. On the other hand, BORDER shows a consistent accuracy upon increasing k on
all dimensionality. However, BorderShift struggles to detect the boundary points in high-
dimensional data and choosing appropriate λ1 and λ2 affects its accuracy. Similarly, tuning
eps of BRIM is also difficult as the accuracy changes with the change in eps.

123

3006 V. Khalique et al.

Table 12 Comparison of accuracy on 20-dimensional dataset

Methods Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 100 0.7 0.7 0.7 0.82 0.69

k = 200 0.72 0.72 0.72 0.83 0.71

k = 250 0.74 0.74 0.74 0.83 0.83

BorderShift k = 100, λ1 = 1902, λ2 = 2899 0.47 0.47 0.47 0.64 0.37

k = 100, λ1 = 1702, λ2 = 2699 0.37 0.37 0.37 0.69 0.45

k = 100, λ1 = 1502, λ2 = 2499 0.36 0.36 0.36 0.67 0.51

BRIM eps = 0.55 0.59 0.59 0.59 0.76 0.63

eps = 0.82 0.62 0.62 0.62 0.78 0.66

eps = 1.1 0.41 0.41 0.41 0.63 0.47

BORDER k = 100 0.57 0.57 0.57 0.72 0.44

k = 150 0.59 0.59 0.59 0.72 0.45

k = 200 0.61 0.61 0.61 0.75 0.42

BPDAD #boundary pts=1033 0.22 0.23 0.22 – –

Table 13 Comparison of accuracy on 50-dimensional dataset

Methods Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 150 0.81 0.81 0.81 0.93 0.78

k = 200 0.83 0.83 0.83 0.94 0.78

k = 250 0.84 0.84 0.84 0.94 0.78

BorderShift k = 100, λ1 = 1760, λ2 = 2900 0.69 0.69 0.69 0.71 0.49

k = 100, λ1 = 1560, λ2 = 2700 0.74 0.74 0.74 0.78 0.65

k = 100, λ1 = 1360, λ2 = 2500 0.68 0.68 0.68 0.78 0.75

BRIM eps = 1.2 0.55 0.55 0.55 0.79 0.72

eps = 1.72 0.48 0.48 0.48 0.71 0.53

eps = 2.15 0.36 0.36 0.36 0.53 0.37

BORDER k = 100 0.65 0.65 0.65 0.81 0.53

k = 150 0.65 0.65 0.65 0.81 0.52

k = 200 0.65 0.65 0.65 0.81 0.53

BPDAD #boundary pts=1100 0.23 0.22 0.22 – –

Furthermore, we measured the outlier detection accuracy of LOF in terms of precision,
recall and F1 score on high dimensional datasets. On 10-d dataset, LOF’s accuracy is 0.82
for k = 150, 200, 250. Moreover, on 20-d dataset the accuracy is 0.79, 0.78, 0.77 for k =
100, 200, 250, respectively. On 50-d dataset, the accuracy is 0.79 for k = 150, 200, 250.
Hence, the results suggest that k appropriate for BPF for boundary points detection can be
used with LOF for outlier detection on high-dimensional datasets.

123

BPF : a novel cluster boundary points detection method… 3007

Table 14 Details of real datasets for quantitative accuracy evaluation

Dataset name Dataset size (n) Dimensions (d) #Outliers #Boundaries (m)

Biomed [10] 194 4 14 42

Cancer [11] 449 9 88 129

Table 15 Accuracy on Biomed dataset

Methods Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 150 0.64 0.64 0.64 0.92 0.73

k = 160 0.69 0.69 0.69 0.95 0.79

k = 170 0.86 0.86 0.86 0.97 0.95

BorderShift k = 100, λ1 = 138, λ2 = 180 0.83 0.83 0.83 0.96 0.88

k = 100, λ1 = 118, λ2 = 160 0.52 0.52 0.52 0.59 0.42

k = 100, λ1 = 98, λ2 = 140 0.14 0.14 0.14 0.18 0.034

BRIM eps = 0.54 0.64 0.64 0.64 0.91 0.69

eps = 0.6 0.69 0.69 0.60 0.91 0.76

eps = 0.64 0.67 0.67 0.67 0.91 0.75

BORDER k = 150 0.67 0.67 0.67 0.91 0.56

k = 160 0.69 0.69 0.69 0.91 0.55

k = 170 0.71 0.71 0.71 0.82 0.51

BPDAD #boundary pts=49 0.53 0.62 0.57 – –

5.3.4 Real data

This section presents the results of evaluating accuracy on real datasets. Unlike outlier detec-
tion, there are no benchmark real datasets available for verifying the performance of boundary
point detection. Therefore, we use the same datasets used in the related work for evaluation.

Firstly, we show the accuracy of StaticBPF and its competitors quantitatively on real
datasetsBiomed [10] andCancer [11] as used in [6, 9, 34]. The ground truth labels of boundary
points are not available for these datasets. Therefore, we applied the method explained in
Sect. 5.3.1 to obtain the ground truth.Moreover, the duplicate points are removed fromCancer
data prior to ground truth extraction.

Table 14shows the details of these datasets. Similar to the synthetic dataset, we show three
measurements for three parameter values for all methods to show the fluctuation in accuracy
w.r.t. parameter values.We tunedBORDERandStaticBPF in the range [50, 190]with interval
of 10 on Biomed dataset. On Cancer dataset, the range of k = [50, 250]with interval of 10 for
both methods. The results in Tables Tables 15 and 16show that StaticBPF has comparable or
better accuracy than its competitors on Biomed and Cancer datasets. Moreover, our method
shows better accuracy with larger k and a similar trend may be observed with BORDER.
However, BorderShift’s accuracy depends on how λ1 and λ2 are tuned for the fixed k.

The outlier detection accuracy of LOF in terms of precision, recall and F1 score onBiomed
data is 0.86 on k = 150, 160, 170. On Cancer data, the accuracy of LOF is 0.37, 0.43 and
0.57 for k = 190, 200, 210, respectively.

Secondly,wedemonstrate the accuracyofStaticBPF visually onMNISTandORLdatasets
as used in [9, 34]. For both datasets, we show the BPF and LOF scores respectively, at the

123

3008 V. Khalique et al.

Table 16 Accuracy on cancer dataset

Methods Parameter Prec. Rec. F1 ROC PR

StaticBPF k = 190 0.53 0.53 0.53 0.75 0.69

k = 200 0.59 0.59 0.59 0.79 0.72

k = 210 0.59 0.59 0.59 0.83 0.73

BorderShift k = 50, λ1 = 232, λ2 = 361 0.26 0.26 0.26 0.76 0.59

k = 50, λ1 = 212, λ2 = 341 0.3 0.3 0.3 0.7 0.56

k = 50, λ1 = 192, λ2 = 321 0.21 0.21 0.21 0.59 0.41

BRIM eps = 0.75 0.49 0.49 0.49 0.66 0.5

eps = 1 0.51 0.51 0.51 0.75 0.52

eps = 1.25 0.46 0.46 0.46 0.64 0.49

BORDER k = 90 0.54 0.54 0.54 0.81 0.56

k = 100 0.53 0.53 0.53 0.82 0.56

k = 110 0.52 0.52 0.52 0.82 0.56

BPDAD #boundary pts=244 0.29 0.54 0.37 – –

Fig. 6 a Top and b bottom 40 faces detected by StaticBPF (k = 50) labeled with BPF and LOF scores

top of each image. Similar to [9, 34], the goal of this experiment is to show the top boundary
points w.r.t. the BPF scores.

TheOlivetti ResearchLaboratory (ORL) face dataset [4] consists of 400 images of 92×112
pixels of frontal faces of 40 people where each pixel represents the gray value in the range
of 0–255. The images of frontal faces are considered as core images, while the images with
left and right profile faces are considered as the boundary images. Each image is transformed
from 92 × 112 to 1 × 10,304 by concatenating each subsequent row to the previous row
of the image. Figure6a, b shows the top 40 images with largest and smallest BPF scores,
respectively. It may be observed that majority of the top 40 faces are the non-frontal images.
The bottom 40 images are shown for comparison between frontal and non-frontal images.

We further showed the effectiveness of StaticBPF visually on MNIST [25] dataset of
handwritten digits as used in [9, 34]. The dataset contains 60,000 images in training and
10,000 images in testing set of 28×28 pixels.We selected digit ‘3’ from testing set ofMNIST
dataset. It contains 1010 images of digit ‘3’ which are considered as core and boundary
images. The easily recognizable 3s can be regarded as cores and distorted 3s can be boundary
images. We also selected 100 random images from digits 0, 2, 4, 6, 7 and 9 from testing set

123

BPF : a novel cluster boundary points detection method… 3009

Fig. 7 a Top and b bottom 50 digits detected by StaticBPF (k = 50) labeled with BPF and LOF scores

which may be considered outliers. The preprocessing is performed in the same way as done
for the ORL dataset.

Figure 7a shows the top 50 boundary points detected by StaticBPF having larger BPF
scores. The boundary images are distorted 3s and they are ranked higher, while core and
outlier images are assigned smaller BPF scores. Consequently, as can be seen in Fig. 7b, the
bottom 50 digits are a mix of core and outliers digits. Hence, StaticBPF can discriminate
boundary points from core points and outliers based on the BPF scores. It can be observed
that LOF scores of core and boundary points are close to 1 and outliers have LOF scores> 1.

6 StreamBPF

Applying StaticBPF on data stream can be computationally expensive. To address this prob-
lem, this section presents StreamBPF. Firstly, the problem of detecting boundary points in
streaming data is defined and then the proposed method is explained.

6.1 Problem definition

Data streams and sliding windows are defined in the following definitions.

Definition 6 (Data stream) A data stream is defined as an unbounded sequence of
d-dimensional data points p1, p2, . . . , pt , pt+1,, where pt ∈ Rd .

In order to bound the unbounded data stream, we define a count-based sliding window
which maintains a fixed number of the recent points (n).

Definition 7 (Count-based sliding window) A count-based sliding window Wt of size n at
time step t is a set of points pt−n+1, pt−n+2, . . . , pt−1, pt .

The proposed method is not restricted to the count-based sliding window and other types
of window may be used. However, for simplicity, we focus on a count-based sliding window
of a fixed size n which slides at every time step. Hence, the problem of detecting boundary
points in streaming data can be defined as follows.

123

3010 V. Khalique et al.

Definition 8 (Boundary points detection in data stream) Given a window of size n which
slides at every time step and a parameter m, boundary points detection over the data stream
is the problem of identifying the top-m boundary points having the largest BPF scores in the
current window Wt whenever the window slides.

At time step t , givenWt and a new arrival point p, we need to calculateBPF(p) and update
BPF scores of each existing point q ∈ Wt\{p}. BPF(p) can be calculated from scratch by
calculating Nk(p),G(p) and LOF(p). Similarly for each remaining point q ∈ Wt\{p},G(q),
LOF(q) and BPF(q) are calculated. A naïve approach is to calculate the BPF scores of all
points in Wt from scratch and repeat this computation for each window slide. However, this
approach is computationally expensive and not tolerable for streaming data.

To drastically improve the overall runtime performance, StreamBPF employs (1) grid-
based k-nearest neighbors computation and (2) incremental computation.Wediscuss the grid-
based approach in Sect. 6.2 and present the incremental computation in Sect. 6.3. StreamBPF
is presented in Sect. 6.4.

6.2 Grid structure

We propose a grid structure to improve the runtime performance of the k-nearest neighbors
computation which can contribute to overall improvement of the runtime performance. The
following subsections present the definitions and algorithm.

6.2.1 Definitions

The grid is a cell-based structure that divides a multi-dimensional data space into cells of
equal size. Consider that data in d-dimensional space is normalized in the range [0, 1] in
each dimension. The grid cell length can be defined as follows:

Definition 9 (Cell length) Cell Length l is the length of each side of a d-dimensional cell.

The value of l determines the resolution of the grid and it can affect the runtime perfor-
mance of our proposed method. Given an appropriate value of l, each point in the window
can be assigned a specific cell identified by a unique cell key.

Definition 10 (Cell key) Given a point p = (p1, p2, . . . , pd) ∈ Wt and cell length l, p
belongs to a cell addressed by a d-dimensional key called Cell key denoted as K where:

K =
(⌊ p1

l

⌋
,
⌊ p2

l

⌋
, . . . ,

⌊ pd
l

⌋)
. (9)

Hence, the cell key K is actually the address of a cell in the grid which groups a subset
Si of points in Wt . Next, the grid of cells can be defined as the following.

Definition 11 (Grid) Given a window Wt at time step t , the grid Gt can be given as:

Gt = {Ci = (Ki ,Si) | Si �= {}, i = 1, 2, 3 . . .}, (10)

where Ki is a d-dimensional cell key of the i th cell containing a subset Si of points in Wt .

The proposed method maintains the grid structure Gt where a cell Ci ∈ Gt exists only
if it contains at least one point. Therefore, depending on the cell length l, Gt will contain
no more than n cells. Basically, the proposed grid structure considers only those cells that
are populated by points and the maximum number of cells will not exceed n. The number of
points in a cell Ci is represented as |Si |. Next, the definition of minimum distance (MinDist)
is given as follows.

123

BPF : a novel cluster boundary points detection method… 3011

Fig. 8 Example 2-dimensional
grid with each dimension
partitioned into equal number of
bins of equal length

Definition 12 (MinDist) Given the coordinates of the bottom-left and top-right corners of
a cell Ci X = (x1, x2, . . . , xd) and Y = (y1, y2, . . . , yd), respectively, and a point p =
(p1, p2, . . . , pd), the MinDist between p and Ci MinDist(p,Ci) can be defined as:

MinDist(p,Ci) =
√√√√ d∑

j=1

|p j − a j |2 (11)

where,

a j =

⎧⎪⎨
⎪⎩
x j p j < x j
y j p j > y j
p j otherwise.

(12)

The MinDist(p,Ci) is the distance between a point p and the closest edge of the cell
represented by its cell key Ci . This is illustrated in Fig. 8 as an example of 2-dimensional
data mapped onto gridGt .Gt contains the populated cells (C1,C2,C3,C4,C5,C6,C7) and
no other cells need to be initialized or stored. The point p is mapped to the cell C1 = (1, 1)
and itsMinDist is represented as the length of arrows originating from p to the closest edges
of the nearby cells.

6.2.2 Grid-based k-nearest neighbor computation algorithm

A naïve way of calculating the k-nearest neighbors of a point p ∈ Wt is to consider the
pairwise distances dist(p, q) (where q ∈ Wt\{p}) with n − 1 points in Wt . Consequently,
n−1 points have to be scanned to calculate distances, sorting them in the ascending order and
then obtaining the k-nearest points. However, the proposed grid structure groups all points
in cells by partitioning the space where the number of cells is much smaller than n.

Consider the example in Fig. 8 where the target point p belongs to the cell C1 = (1, 1)
for which k-nearest neighbors have to be calculated where k = 5.MinDist from p and other

123

3012 V. Khalique et al.

cells (excluding C1) can be calculated according to Definition 12. The cells are sorted in the
ascending order ofMinDist and the number of points are summed for each cell till k or more
points are collected. For example, the cells shown in Fig. 8 sorted by MinDist from p are
given as C4,C2,C5,C7,C3,C6 and the 5th neighbor of p lies in C5 (|S4|+ |S2|+ |S5| = 8).
Next, the distance from p and all points in C4, C2 and C5 are calculated and sorted in the
ascending order. The distance from p to the 5th nearest neighbor is set to current_kdist(p).
We need to note that current_kdist(p) is not necessarily kdist(p). For example, the point
in cell C7 is within the 5 nearest neighbor of p, but C7 is at a larger MinDist value than
C4, C2 and C5. To address this, referring to the example in Fig. 8, we need to check the
remaining cells (i.e. C3,C6,C7) whose MinDists from p are within current_kdist(p). As
current_kdist(p) is the maximum possible value of kdist , we need to check the cells which
lie under this current_kdist(p). If any cell Ci ∈ Gt\{C1,C2,C4,C5} hasMinDist(p,Ci) <

current_kdist(p), then we calculate the distances from p and the points in Ci and update
current_kdist(p). Therefore, we continue this process until a cell appears that has MinDist
greater than current_kdist(p), and consider current_kdist(p) as kdist(p). Hence, k-nearest
neighbors of p can be obtained in this manner.

The proposed grid structure can significantly reduce the time complexity. The grid uses
MinDist to each cell Ci ∈ Gt instead of n points in the window where number of cells in the
grid (|Gt |) can be much smaller than n (|Gt | � n), provided that an appropriate cell length
l is chosen. In addition, MinDist(p,Ci) < current_kdist(p) does not hold for most of the
cells, which means that we do not need to check points inside these cells.

Algorithm 2 represents the grid-based k-nearest neighbor computation method. Given an
input point p, the algorithm obtains the cell key K j of the target point p using Definition 10
(line 1). If the cell key already exists in Gt , then p is inserted in that cell, otherwise a new
cell is initialized and inserted inGt (line 3–8). TheMinDists of p with all cells are calculated
and they are sorted in the ascending order of MinDists (line 10–12). After that, the sorted
cells are traversed and the sum of number of points in each cell (count) is obtained. Also,
each traversed cell is inserted in N (line 15–17). If count becomes greater than or equal to
k (line 18), then the distance of p with each point in cells in N is calculated (line 19–21).
The distances with p are sorted in the ascending order and current_kdist(p) is obtained (line
22). Thereafter, the remaining cells that are within current_kdist(p) are checked to update
current_kdist(p). In case, a cell Ci have MinDist(p,Ci) ≤ current_kdist(p) (line 27), the
distances between p and points in Si are calculated and current_kdist(p) is updated (line
28–30). If a cell is encountered withMinDist ≥ current_kdist(p), the algorithm stops and no
further cells are checked (line 32). Finally, Algorithm 2 returns the k-nearest neighbor of p.

In case a point p expires from Wt , the cell address of p is calculated and it is removed
from this cell. If the cell becomes empty after the removal of p then the cell is deleted from
Gt .

Another important observation is that the k-neighborhood of a limited points in Wt have
to be updated. Refer to Fig. 9a, where k = 5 and r is the 5th-neighbor of q . Consider that p
arrives in the neighborhood Nold

k (q) (indicated by solid circle in Fig. 9a) of an existing point
q ∈ Wt\{p}. Consequently, dist(q, p) < kdist(q) is true in this case, and therefore the neigh-
borhood can be updated as Nnew

k (q)where r is removed and o becomes the new kth neighbor
of q (indicated by dotted circle in Fig. 9a). On the other hand, no k-neighborhood update is
required for all the pointsq ∈ Wt\{p}which donot satisfy the conditiondist(q, p) < kdist(q)

(indicated by square points). Therefore, the k-neighborhood of all the points affected by
arrival of p can be updated in this way. However, if a point p expires from Nk(q) (as shown
in Fig. 9b), then Algorithm 2 is invoked for finding the new k-neighborhood of q . Hence,
Algorithm 2 is invoked for a limited number of points in the Wt .

123

BPF : a novel cluster boundary points detection method… 3013

Algorithm 2 Grid
Require: Data point p, #neighbors k, Grid cell length l
1: Obtain the cell key K j for p using Definition 10.
2: if p /∈ Gt then
3: if K j /∈ Gt then /*Initialize and insert a new cell in Gt*/
4: Insert p in S j .
5: Insert C j = (K j , S j) in Gt .
6: else/*Insert p in existing cell C j*/
7: Insert p in S j .
8: end if
9: end if
10: for Ci ∈ Gt do
11: Insert (MinDist(p,Ci),Ci) in M. /*Calculate MinDist using Def.12*/
12: end for
13: Sort cells in M in ascending order ofMinDist.
14: Initialize count ← 0.
15: for Ci ∈ M do /*Visiting cells sorted w.r.t. MinDist*/
16: count ← count + |Si |.
17: Insert Ci in N. /* Collecting the visited cells */
18: if k ≤ count then
19: for Ci ∈ N and q ∈ Si do
20: Insert (q, dist(p, q)) in L.
21: end for
22: Sort L by distances in ascending order and obtain current_kdist(p).
23: Break
24: end if
25: end for
26: for remaining cells Ci ∈ M \ N do
27: if MinDist(p,Ci) ≤ current_kdist(p) then
28: For all q ∈ Si calculate (q, dist(p, q)) and insert in L.
29: Sort L by distances in ascending order.
30: Update current_kdist(p).
31: else
32: Break /* do not process the remaining cells */
33: end if
34: end for
35: K ← top-k points in L. /*assign k-nearest points in L to K */
return K

Fig. 9 a k-neighborhood affected by the arrival of p. b k-neighborhood affected by the expiration of p

123

3014 V. Khalique et al.

6.3 Incremental computation

The BPF scores of a subset of points inWt are affected by window slide due to the change in
their k-neighbors which affects their Gravity values and LOF scores. As a result, the affected
points should be identified and their BPF scores should be calculated. In a window of n
points, the Gravity values of those points have to be updated whose k-neighborhood have
changed due to window slide. However, the window slide affects the LOF scores of a larger
number of points.

For a point q ∈ Wt whose k-neighborhood has changed, the LOF score of q as well as
the points which contain q in their k-neighborhood should also be calculated. The detailed
explanation and analysis related to the change in LOF scores is presented in [33]. We adopt
the same observations in [33] and collect the affected points whose LOF scores should be
calculated. Following is the summary of these observations.

• Given that p arrives and r expires fromWt , the k-neighborhood of the points affected by
the arrival of p and expiration of r have to be updated. The update of k-neighborhood
will result in the update of their kdist. Consequently, the update of kdist will require the
update of reach-distk , lrdk and LOF according to Definitions 1, 2 and 3, respectively.
Let U represent all points whose k-neighborhood have changed, then LOF scores of all
points in U should be updated.

• GivenU the set of points whose k-neighborhood have changed. Let q ∈ U and o ∈ Nk(q),
according to Definition 1, if q ∈ Nk(o), then it will affect the reachability distance of
o w.r.t. q (reach-dist(o, q)). Subsequently, the reach-dist(o, q) will affect the lrd(o) and
LOF(o). Therefore, o is also considered as an affected point.

• According to Definition 3, LOF score of a point q should be updated if lrd(q) or any
of its k-nearest neighbors o ∈ Nk(q) changes. If lrd(o) have changed then, all points
containing o in their k-nearest neighborhood should be considered affected and their
LOF scores should be updated.

The subset of points which have their LOF scores affected due to the window slide can be
obtained by the observations given above. Consequently, the BPF scores of all the affected
points should be updated.

6.4 Algorithm

This section presents the overall algorithm StreamBPF that uses a grid structure to calculate
k-nearest neighbors and an incremental method to update BPF scores. The algorithm steps
are given as Algorithm 3.

At each time step, StreamBPF maintains the k-neighbors of each point as KNNt =
{Nk(q)|q ∈ Wt }. Also, it maintains local reachability densities, LOF scores, Gravity val-
ues and BPF score as Bt= {(lrd(q),LOF(q),G(q),BPF(q)) |q ∈ Wt }. Given a window Wt

of size n, a new arrival point p and an expired point r , StreamBPF removes r from KNNt and
Bt (line 1). For the remaining points, which satisfy the condition given on line 4, StreamBPF
updates the neighborhood of these points (line 5–6). For the points which satisfy condition on
line 8, StreamBPF invokes Algorithm 2 (line 9). All of those points whose k-neighborhood
have been updated are stored in U. The algorithm calculates the Gravity values of all points
whose neighborhood have changed (line 14). Next, reverse k-nearest neighbors of all points
are calculated (line 16). Thereafter, all the points having LOF scores affected by window
slide are collected (line 17–25) and lrds of these points are calculated using Definition 2 (line
26–28). Also, lrd of p is calculated (line 29). Finally, the LOF scores, Gravity values and

123

BPF : a novel cluster boundary points detection method… 3015

Algorithm 3 StreamBPF
Require: New arrival point p, #neighbors k, #boundary points m
1: Remove Nk (r) from KNNt and (lrd(r), LOF(r),G(r),BPF(x)) from Bt .
2: Obtain Nk (p) ← Grid(p, k, l) and insert Nk (p) in KNNt .
3: for q ∈ Wt\{p} do
4: if dist(q, p) < kdist(q) then /* point arrives in k-neighbors*/
5: update Nk (q) in KNNt .
6: Insert q in U.
7: else
8: if dist(q, r) ≤ kdist(q) then /* point expires from k-neighbors*/
9: Nk (q) ← Grid(q, k, l) and update Nk (q) in KNNt .
10: Insert q in U.
11: end if
12: end if
13: end for
14: Calculate G(q) of all q ∈ U and update G(q) in Bt .
15: Uaffected ← U.
16: calculate RNk reverse k-nearest neighbors of all points in Wt .
17: for q ∈ U and o ∈ Nk (q) do
18: if q ∈ Nk (o) then
19: Insert o in Uaffected.
20: end if
21: end for
22: Uupdate ← Uaffected
23: for q ∈ Uaffected do
24: Insert RNk (q) in Uupdate.
25: end for
26: for q ∈ Uupdate do
27: Calculate lrd(q) and update in Bt .
28: end for
29: Calculate lrd(p) and insert in Bt .
30: for q ∈ Uupdate do
31: Calculate LOF(q), G(q), BPF(q) and update in Bt .
32: end for
33: Calculate LOF(p), G(p), BPF(p) and insert in Bt .
34: Sort points in Bt in descending order of BPF scores.
35: Ct ← top-m points in Bt .
return Ct

BPF scores of p and the affected points are calculated (line 30–33). The scores are sorted in
the descending order of BPF scores and the top-m boundary points in Wt are returned (line
34–35).

The Algorithm 3 considers the arrival and expiration of one point at each time step.
However, this algorithm can be easily extended to the case in which more than one points
arrive and expire at each time step.

6.5 Evaluation of StreamBPF

In this section, the runtime performance evaluation of StreamBPF is performed on synthetic
and real data. Since the accuracy evaluation StaticBPF is already given in Sect. 5.3, we do
not further evaluate the accuracy of StreamBPF as it computes the exact BPF scores like
StaticBPF. Moreover, to the best of our knowledge, there are no other methods of boundary
points detection for streaming data. Therefore, we compare StreamBPF with its variants, as
summarized in Table 17, in order to demonstrate the performance improvement achieved due

123

3016 V. Khalique et al.

Table 17 Description of StreamBPF and its variants used for runtime evaluation

Method name Description

StaticBPF Apply StaticBPF (Algorithm 1) on each window

IncBPF Incrementally computes BPF scores of the affected points in
each window

GridBPF Uses grid for k-neighborhood computation and computes BPF
scores of all points in each window

StreamBPF Apply StreamBPF (Algorithm 3) on each window

Table 18 Parameter settings for
runtime evaluation

Parameter Values

#Nearest neighbors (k) 50, 100, 150, 200, 250

Slide size (w) 1, 10, 20, 30, 40, 50

Window size (n) 3000, 6000, 9000, 12,000, 15,000

Dimensions (d) 2, 10, 20, 50, 100

to the proposed grid structure and incremental method.
All algorithms are implemented on Java 1.8 and experimentswere executed onworkstation

with 32GB memory and Intel Core i7-7700 CPU with Windows 10 Pro 64-bits installed.

6.5.1 Synthetic data streams

We evaluated CPU runtime by changing the number of nearest neighbors (k), slide size
(w), window size (n) and dimensionality (d) on synthetic data streams. Table 18shows the
range of parameters where the bold and underlined values are default unless otherwise stated.
The synthetic data stream consists of 3 Gaussian clusters of different means and standard
deviations, and randomly generated outliers. In the initial window W0, n randomly sampled
points from the three Gaussian clusters and outliers are loaded, and their BPF scores are
calculated. Thereafter, w oldest points are deleted from the window and w new points are
inserted in thewindow randomly drawn from the same distribution at each time step. TheCPU
runtime of eachwindow is recorded fromW1 till all points in the data stream have arrived. For
all experiments, thewindow slides 100 times and averageCPU runtime is reported in seconds.
Moreover, all datasets are normalized in the range [0,1] and the default value of the grid cell
size is l = 0.05. In the experiments wherewe evaluated the effect of changing dimensionality,
we adjusted the cell length (l) as 0.05, 0.2, 0.45, 0.45 and 0.45 for dimensionality 2, 10, 20,
50 and 100, respectively. The results are shown in Fig. 10.

Figure 10a shows the effect of increasing the slide size (w) on CPU runtime in logarithmic
scale. At w = 1, StreamBPF performs more than 2× faster than GridBPF and IncBPF, and
more than 150× faster than StaticBPF . This is because, the expiration and arrival of one
point affects the k-nearest neighborhoods and LOF scores of a small fraction of points.
Consequently, BPF scores of a small number of points have to be updated. Moreover, the
grid structure aids in reducing the runtime of the k-nearest neighbor computation. However,
when w increases, the runtime of StreamBPF and GridBPF becomes comparable as BPF
scores of a larger number of points have to be updated. Hence, the incremental computation
becomes less useful at larger w. Similarly, the runtime of IncBPF increases with w due to

123

BPF : a novel cluster boundary points detection method… 3017

Fig. 10 CPU runtime performance evaluation of the effect of changing parameters

the same reason. However, StreamBPF still performs better than IncBPF due to the proposed
grid structure.

In Fig. 10b–d, the results of StaticBPF are not included for clarity and the runtime is shown
in linear scale.

Figure 10b shows the impact of increasing the number of nearest neighbors k to calculate
BPF scores. Overall, the runtime of all methods increases with k as more points have to be
processed to calculate BPF scores. However, StreamBPF consistently performs better than
other methods due to the proposed grid structure and incremental computation.

Figure 10c, d shows the impact of increasing window size (n) and dimensionality (d),
respectively. It may be observed that the runtime of StreamBPF improves as parameters n
and d increase. This is because when n is increased at fixed k and w, the k-neighborhood
and LOF scores of smaller number of points have to be updated in comparison with with the
total number of points in the window. Consequently, BPF scores of a small fraction of points
have to be updated. Furthermore, StreamBPF’s runtime does not increase drastically due to
increase in d as the incremental computation avoids redundant computation unlikeGridBPF.

123

3018 V. Khalique et al.

Fig. 11 CPU runtime performance evaluation on real data

6.5.2 Real data streams

For evaluation on real data streams, we simulated the data stream from real datasets MNIST
and ORL. Originally, MNIST and ORL datasets have 1010 and 400 data points, respectively.
We preprocessed these datasets as explained in Sect. 5.3.4. Hence, the dimensionalities of
MNIST and ORL are 784 and 10,304, respectively. We scaled these datasets by random
sampling of points where data points were allowed to repeat in order to simulate streaming
data.We set window size n = 3000 and the grid cell length l = 0.01 forMNIST and l = 0.02
for ORL. Also, we set k = 50 as StaticBPF showed reasonable accuracy onORL andMNIST
at this value. The results of runtime evaluation are shown in Fig. 11.

OnMNIST, StreamBPF performs 8× and 1.9× faster thanGridBPF and IncBPF, respec-
tively. On the other hand, IncBPF performs 4× faster than GridBPF. On ORL, StreamBPF
performs 10× and 3× faster thanGridBPF and IncBPF, respectively, while IncBPF performs
2.5× faster than GridBPF. The performance improvement of StreamBPF and IncBPF com-
pared with StaticBPF and GridBPF can be attributed to the incremental computation which
allowed the update of BPF scores of the points affected by window slide. As w = 1 and
k = 50, a small fraction of point are affected by the window slide, and therefore smaller num-
ber of BPF scores have to be updated. Hence, the incremental computationmainly contributed
in the performance improvement of StreamBPF and IncBPF. The further improvement in
StreamBPF’s performance is due to the grid structure. Since these data streams contained
duplicate points, same points were mapped onto the same cells. As a result, the grid structure
used less number of cells to cover all the points in the window. Hence, to calculate the k-
nearest neighbors of a target point, lesser number of cells were processed resulting in faster
performance as observed in these experiments.

7 Conclusion

In conclusion, this paper has targeted the problem of detecting boundary points from static
and streaming data. Firstly, we proposed a boundary points detection method called BPF
which calculates BPF scores based on Gravity and LOF scores to identify boundary points
in a dataset. The boundary points get larger BPF scores than core points and outliers. Based

123

BPF : a novel cluster boundary points detection method… 3019

on BPF, we proposed StaticBPF, which can detect the top-m boundary points in a static
dataset. We evaluated StaticBPF on synthetic and real data where we showed its accuracy
visually and quantitatively using various metrics. StaticBPF showed comparable or better
results compared with other methods on synthetic and real datasets. Overall, StaticBPF was
found robust to the presence of clusters of different shapes, sizes and densities. Furthermore,
we showed experimentally that k parameter tuned for StaticBPF can be used with LOF for
outlier detection.

Secondly, this paper proposed StreamBPF for boundary points detection over streaming
data. StreamBPF employed a grid structure for the k-nearest neighbors computation and
an incremental computation method to update BPF scores of the points affected by window
slide. The experiment results showed that the proposed grid structure can effectively improve
the k-nearest neighbors computation. Also, the incremental computation method was found
to be advantageous if the number of affected points due to window slide are small. Overall,
the results suggest that StreamBPF can be used for boundary points detection in streaming
data.

As the future direction, working on an approximate method of detecting boundary points
can be an interesting direction to extend this work.

Acknowledgements This work was partly supported by JSPS KAKENHI Grant Numbers JP19H04114,
JP22H03694 and JP22K19802, JST CREST Grant Number JP-JCR22M2, NEDOGrant Number JPNP20006,
and AMED Grant Number JP21zf0127005.

Funding This work was partly supported by JSPS KAKENHI Grant Numbers JP19H04114, JP22H03694
and JP22K19802, JST CREST Grant Number JP-JCR22M2, NEDO Grant Number JPNP20006, and AMED
Grant Number JP21zf0127005.

Declarations

Conflict of interest The authors have no competing interest to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. AckermannMR,MärtensM, Raupach C et al (2012) Streamkm++ a clustering algorithm for data streams.
J Exp Algorithmics (JEA) 17:2–1

2. Angiulli F, Fassetti F (2007) Detecting distance-based outliers in streams of data. In: Proceedings of the
16th ACM conference on information and knowledge management, pp 811–820

3. Angiulli F, Pizzuti C (2005) Outlier mining in large high-dimensional data sets. IEEE Trans Knowl Data
Eng 17(2):203–215

4. AT&T The ORL database of faces. https://cam-orl.co.uk/facedatabase.html
5. Breunig MM, Kriegel HP, Ng RT et al (2000) LOF: identifying density-based local outliers. In: Proc.

2000 ACM SIGMOD international conference on management of data, pp 93–104
6. Cao X (2021) High-dimensional cluster boundary detection using directed Markov tree. Pattern Anal

Appl 24(1):35–47

123

http://creativecommons.org/licenses/by/4.0/
https://cam-orl.co.uk/facedatabase.html

3020 V. Khalique et al.

7. Cao F, Estert M, Qian W et al (2006) Density-based clustering over an evolving data stream with noise.
In: Proceedings of the 2006 SIAM international conference on data mining. SIAM, pp 328–339

8. Cao L, Yang D, Wang Q et al (2014) Scalable distance-based outlier detection over high-volume data
streams. In: 2014 IEEE 30th International conference on data engineering. IEEE, pp 76–87

9. Cao X, Qiu B, Xu G (2019) Bordershift: toward optimal meanshift vector for cluster boundary detection
in high-dimensional data. Pattern Anal Appl 22(3):1015–1027

10. Cox L. Bio medical data. http://lib.stat.cmu.edu/datasets/
11. Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
12. Ester M, Kriegel HP, Sander J et al (1996) A density-based algorithm for discovering clusters in large

spatial databases with noise. In: KDD, pp 226–231
13. Gao J, Ji W, Zhang L et al (2020) Cube-based incremental outlier detection for streaming computing. Inf

Sci 517:361–376
14. Hariri S,KindMC,BrunnerRJ (2019)Extended isolation forest. IEEETransKnowlDataEng33(4):1479–

1489
15. Hawkins DM (1980) Identification of outliers, vol 11. Springer, Berlin
16. Ishida K, Kitagawa H (2008) Detecting current outliers: Continuous outlier detection over time-series

data streams. In: International conference on database and expert systems applications. Springer, Berlin,
pp 255–268

17. JinW, Tung AK, Han J (2001)Mining top-n local outliers in large databases. In: Proc. 7th ACMSIGKDD
international conference on knowledge discovery and data mining, pp 293–298

18. Khalique V, Kitagawa H (2021) VOA*: fast angle-based outlier detection over high-dimensional data
streams. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 40–52

19. Khalique V, Kitagawa H (2022) BPF: an effective cluster boundary points detection technique. In: Strauss
C, Cuzzocrea A, Kotsis G et al (eds) Database and expert systems applications. Springer, Cham, pp
404–416

20. Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. Very Large
Data Bases J 8(3–4):237–253

21. Knox EM, Ng RT (1998) Algorithms for mining distancebased outliers in large datasets. In: Proceedings
of the international conference on very large data bases, pp 392–403

22. Kontaki M, Gounaris A, Papadopoulos AN et al (2011) Continuous monitoring of distance-based outliers
over data streams. In: 2011 IEEE 27th International conference on data engineering. IEEE, pp 135–146

23. KriegelHP, SchubertM, ZimekA (2008)Angle-based outlier detection in high-dimensional data. In: Proc.
14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 444–452

24. Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering,
pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data (TKDD) 3(1):1–58

25. LeCun Y, Cortes C. Mnist. http://yann.lecun.com/exdb/mnist/
26. Li Y, Maguire L (2010) Selecting critical patterns based on local geometrical and statistical information.

IEEE Trans Pattern Anal Mach Intell 33(6):1189–1201
27. LiX,WuX,Lv J et al (2018)Automatic detection of boundary points based on local geometricalmeasures.

Soft Comput 22(11):3663–3674
28. Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: 2008 eighth IEEE international conference on

data mining. IEEE, pp 413–422
29. Na GS, Kim D, Yu H (2018) Dilof: effective and memory efficient local outlier detection in data streams.

In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp 1993–2002

30. Papadimitriou S, Kitagawa H, Gibbons PB et al (2003) LOCI: fast outlier detection using the local
correlation integral. In: Proceedings 19th international conference on data engineering. IEEE, pp 315–326

31. Papadopoulos A, Manolopoulos Y (1997) Performance of nearest neighbor queries in r-trees. In:
International conference on database theory. Springer, Berlin, pp 394–408

32. Pham N, Pagh R (2012) A near-linear time approximation algorithm for angle-based outlier detection in
high-dimensional data. In: Proc. 18th ACM SIGKDD international conference on knowledge discovery
and data mining, pp 877–885

33. Pokrajac D, Lazarevic A, Latecki LJ (2007) Incremental local outlier detection for data streams. In: 2007
IEEE symposium on computational intelligence and data mining. IEEE, pp 504–515

34. Qiu B, Cao X (2016) Clustering boundary detection for high dimensional space based on space inversion
and Hopkins statistics. Knowl Based Syst 98:216–225

35. Qiu BZ, Yue F, Shen JY (2007) BRIM: an efficient boundary points detecting algorithm. In: Pacific-Asia
conference on knowledge discovery and data mining. Springer, Berlin, pp 761–768

36. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proceedings of the 1995 ACM
SIGMOD international conference on management of data, pp 71–79

123

http://lib.stat.cmu.edu/datasets/
http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist/

BPF : a novel cluster boundary points detection method… 3021

37. Salehi M, Leckie C, Bezdek JC et al (2016) Fast memory efficient local outlier detection in data streams.
IEEE Trans Knowl Data Eng 28(12):3246–3260

38. Schubert E, Sander J, Ester M et al (2017) DBSCAN revisited, revisited: why and how you should (still)
use DBSCAN. ACM Trans Database Syst (TODS) 42(3):1–21

39. Tran L, Fan L, Shahabi C (2016) Distance-based outlier detection in data streams. Proc VLDB Endow
9(12):1089–1100

40. Xia C, Lu H, Ooi BC et al (2004) Gorder: an efficient method for KNN join processing. In: Proc. 30th
international conference on very large data bases, vol 30, pp 756–767

41. Xia C, Hsu W, Lee ML et al (2006) Border: efficient computation of boundary points. IEEE Trans Knowl
Data Eng 18(3):289–303

42. Yoon S, Lee JG, Lee BS (2019) NETS: extremely fast outlier detection from a data stream via set-based
processing. Proc VLDB Endow 12(11):1303–1315

43. Zimek A, Schubert E, Kriegel HP (2012) A survey on unsupervised outlier detection in high-dimensional
numerical data. Stat Anal Data Min ASA Data Sci J 5(5):363–387

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Vijdan Khalique received his B.Eng. and M.Eng. degrees in Software
Engineering from Mehran University of Engineering and Technology
(MUET), Pakistan. He served as a Lecturer in the department of Soft-
ware Engineering MUET, Pakistan. Currently, he is a Ph.D candidate
working under the supervision of Prof. Hiroyuki Kitagawa in Knowl-
edge and Data Engineering (KDE) Lab at the University of Tsukuba,
Japan. He is a member of Information Processing Society Japan (IPSJ),
IEEE Computer Society and Pakistan Engineering Council (PEC). His
research interests include data mining and deep neural networks for
data analysis.

Hiroyuki Kitagawa received the B.Sc. degree in physics and the M.Sc.
and Dr.Sc. degrees in computer science, all from the University of
Tokyo. He is currently a full professor at International Institute for
Integrative Sleep Medicine, University of Tsukuba. He is also a Col-
laborative Fellow at Center for Computational Sciences, University of
Tsukuba and an Invited Researcher at Artificial Intelligence Research
Center, National Institute of Advanced Industrial Science and Tech-
nology. His research interests include databases, data mining, stream
processing, and sleep data analysis. He is an IEICE Fellow, an IPSJ
Fellow, a member of ACM and IEEE, and an Associate Member of the
Science Council of Japan.

123

3022 V. Khalique et al.

Toshiyuki Amagasa received B.E., M.E., and Ph.D from the Depart-
ment of Computer Science, Gunma University in 1994, 1996, and
1999, respectively. He is currently a full professor at the Center for
Computational Sciences, University of Tsukuba. His research interests
cover database systems, data mining, and database application in sci-
entific domains. He is a senior member of IEICE and IEEE, and a
member of DBSJ, IPSJ, and ACM.

123

	BPF: a novel cluster boundary points detection method for static and streaming data
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Boundary point factor (BPF)
	5 StaticBPF
	5.1 Algorithm
	5.2 Runtime complexity
	5.3 Evaluation of StaticBPF
	5.3.1 Experimental setup
	5.3.2 2-Dimensional synthetic data
	5.3.3 High-dimensional synthetic data
	5.3.4 Real data

	6 StreamBPF
	6.1 Problem definition
	6.2 Grid structure
	6.2.1 Definitions
	6.2.2 Grid-based k-nearest neighbor computation algorithm

	6.3 Incremental computation
	6.4 Algorithm
	6.5 Evaluation of StreamBPF
	6.5.1 Synthetic data streams
	6.5.2 Real data streams

	7 Conclusion
	Acknowledgements
	References

