
Knowledge and Information Systems (2023) 65:2455–2483
https://doi.org/10.1007/s10115-023-01836-3

REGULAR PAPER

Density of states for fast embedding node-attributed graphs

Lingxiao Zhao1 · Saurabh Sawlani2 · Leman Akoglu1

Received: 27 January 2022 / Revised: 17 January 2023 / Accepted: 18 January 2023 /
Published online: 20 February 2023
© The Author(s) 2023

Abstract
Given a node-attributed graph, how can we efficiently represent it with few numerical fea-
tures that expressively reflect its topology and attribute information? We propose A- DOGE,
for attributed DOS-based graph embedding, based on density of states (DOS, a.k.a. spectral
density) to tackle this problem. A- DOGE is designed to fulfill a long desiderata of desirable
characteristics. Most notably, it capitalizes on efficient approximation algorithms for DOS,
that we extend to blend in node labels and attributes for the first time, making it fast and scal-
able for large attributed graphs and graph databases. Being based on the entire eigenspectrum
of a graph, A- DOGE can capture structural and attribute properties at multiple (“glocal”)
scales. Moreover, it is unsupervised (i.e., agnostic to any specific objective) and lends itself to
various interpretations, which makes it suitable for exploratory graph mining tasks. Finally,
it processes each graph independent of others, making it amenable for streaming settings
as well as parallelization. Through extensive experiments, we show the efficacy and effi-
ciency of A- DOGE on exploratory graph analysis and graph classification tasks, where it
significantly outperforms unsupervised baselines and achieves competitive performancewith
modern supervised GNNs, while achieving the best trade-off between accuracy and runtime.

Keywords Attributed graphs · Spectral embedding · Graph filters · Band-pass · Density of
states

1 Introduction

Graphs are widely used to model structured data from different domains such as chemistry
[1], biology [2], cybersecurity [3], finance [4]. The effectiveness and popularity of data-
driven machine learning algorithms has necessitated expressive vector representations of

B Lingxiao Zhao
lingxiao@cmu.edu

Saurabh Sawlani
saurabh.sawlani@gmail.com

Leman Akoglu
lakoglu@andrew.cmu.edu

1 Heinz College, Carnegie Mellon University, Pittsburgh, PA, USA

2 SoundHound Inc., Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-023-01836-3&domain=pdf

2456 L. Zhao et al.

different kinds of complex data, and graphs are no exception. Different from images or text,
graphs pose novel challenges in finding effective representations as graph databases may
contain graphs that vary in size and structure, and do not necessarily exhibit alignment (i.e.,
correspondence) between the nodes of different graphs.

Formally, we want to design a function R : G �→ zG ∈ R
D , where D is a fixed embedding

size that does not depend on the input graph size. Ideally, given a graph database with N
graphs (with n nodes andm edges per graph on average), wewant R to be (i) permutation and
size invariant, where graphswith similar structure and label/attribute distribution have similar
embeddings irrespective of node ordering and number of nodes, (i i) flexible; that leverages
information from node labels and/or multi-attributes as well as edge weights, (i i i) multi-
scale/glocal; that can capture local/microscopic, mesoscopic, as well as global/macroscopic
properties of a graph, and (iv) task-agnostic/unsupervised; that can produce embeddings
independent of any downstream task or related class labels, where not being tied to a specific
task allows embeddings to be general-purpose for use, e.g., in graph mining and exploratory
data analysis. In addition, as with any algorithm, we want R to be (v) efficient and scalable to
large graphs (large n,m) as well as large databases (large N). Finally, R that can produce one
embedding at a time (vi) independently per graph (as opposed to “collective processing”)may
be desirable, which allows on-the-fly embedding per incoming graph in streaming settings,
as well as embarrassing parallelization for speed.

Spectrally designed embeddings are a popular class of techniques based on the graph
eigenspectrum [5], as it captures key structural graph properties, such as cuts [6], random
walk stationarity [7], dynamical processes and epidemic thresholds [8], diameter, con-
nectedness, clustering [9]. However, the high complexity of computing the eigenspectrum
exactly has proven to be a barrier for creating spectrum-based graph embeddings. Moreover,
while the eigenspectrum can capture important topological properties, blending in node
attributes/labels into spectrally designed embeddings is non-trivial.

In this paper, we leverage fast algorithms for approximating the spectral density of a
graph [10] and use it to independently construct unsupervised graph embeddings that are
permutation and size invariant, flexible and multi-scale. Here, the focus is on representing
the entire spectrum of the graph, which helps capture any arbitrary “band” of eigenvalues
(band-pass), rather than only the extremal eigenpairs (low/high pass).

1.1 Prior work

Table 1 gives a comparison with three categories of relevant prior work in the context of
desired properties for a graph embedding. These existing work do not satisfy one or more of
the aforementioned properties (ii)–(vi) as we discuss next.

Unsupervised explicit graph embedding (UEGE)

Several unsupervised methods construct an explicit vector representation for each graph.
Among those, spectrum-based methods have gained popularity in recent years. FGSD [11]
treats a graph as a collection of spectral distances between its vertices.NetLSD [12] represents
a graph as a collection of heat traces of the graph at several time points. Both methods are
effective at capturing local and global structural properties of a graph; however, they ignore
node labels and attributes. graph2vec [13] creates Weisfeiler–Lehman (WL) subtree-based
features and learns an embedding of the graph trained to predict the existence of subtrees in
the graph. It admits node labels, but ignores node attributes as well as edge weights.

123

Density of states for fast embedding node-attributed graphs 2457

Ta
bl
e
1

A
-
D
O
G
E
sa
tis
fie

s
al
lp

ro
pe
rt
ie
s,
w
hi
le
pr
io
r
w
or
k
m
is
s
on

e
or

m
or
e
of

th
e
in
pu

tg
ra
ph

or
em

be
dd

in
g
pr
op

er
tie

s

M
et
ho

d
In
p.
gr
ap
h
pr
op

er
ty

E
m
be
dd

in
g

N
od
e
la
be
ls

N
od
e
at
tr
ib
ut
es

E
dg
e
w
ei
gh
ts

B
an
d-
pa
ss

Ta
sk
-a
gn
os
tic

Sc
al
ab
le

In
dp
t.
pe
r
gr
ap
h

U
E
G
E

FG
SD

[1
1]
,N

et
L
SD

[1
2]

�
�

�
�

g
2v

ec
[1
3]

�
�

�
G
K

W
L
[1
4]
,W

L
-
O
A
[1
5]

�
�

SA
G
E
[1
6]
,P

K
[1
7]

�
�

�
�

R
et
G
K
[1
8]

�
�

D
O
SG

K
[1
9]

�
�

�
G
N
N

G
C
N
[2
0]
,G

IN
[2
1]

�
�

�
�

C
h
eb

N
et

[2
2]
,C

a
le
y
N
et

[2
3]

�
�

�
�

�
A
-
D
O
G
E
[t
hi
s
pa
pe
r]

�
�

�
�

�
�

�

123

2458 L. Zhao et al.

Graph kernels (GK)

Due to the existence of many effective distance measures between graphs, graph kernels are
a more widely studied method of graph representations [24]. While most popular kernels
are effective at capturing characteristics of the graph structure, only a few, including the
Propagation Kernel (PK) [17] are able to factor in edge weights, node labels and continuous
node attributes (see Table 1 in [24]).

Several graph kernels which use spectral properties have been developed in recent years.
RetGK [18] represents each graph as a collection of node embeddings, where the node
features are the return-probabilities of random walks of varying lengths. SAGE [16] extends
this idea to graphs with labeled and attributed nodes by appending each node embedding with
its one-hot encoded label and/or attributes. However, both these methods do not scale well
for large graphs. Moreover, computing return probabilities of random walks tends to over-
represent local features near a node, and often fails to capture global properties of the graph
[19]. These issues are addressed by the density of states (DOS) GK, and its point-wise (i.e.,
node-level) extension (PDOS),1 which uses Chebyshev polynomials to efficiently capture
global properties of random walks, and uses fast approximation techniques [10]. However,
despite their efficiency, they are limited to plain graphs and do not admit node labels or
attributes.

Moreover, although graph kernels have proven effective at modeling graph structure, and
in some cases node labels and attributes, for many kernel methods, computing an N×N -sized
kernel matrix can be restrictive in terms of both time and space, which do not scale to large
databases with many graphs.

Graph neural networks (GNNs)

While most existing unsupervised embedding and kernel methods are ill-equipped to handle
continuous node attributes, GNNs are able to leverage such data to a great extent. However,
deep parameterized models come with their own drawbacks. They are resource-hungry, not
task-agnostic, and can be slow to train. Moreover, when viewed through a spectral lens [25],
most neighborhood-aggregation based GNNs such as GCN [20] and GIN [26] can only act
as low-pass or high-pass filters on a graph spectrum. Only spectrally designed GNNs such
as ChebNet [22] and CaleyNet [23] can act as band-pass filters.

A perhaps subtle characteristic of graph embeddingmethods is independent versus depen-
dent/collective processing of the graphs. By design, all GNN-based methods including
graph2vec require collective processing due to end-to-end training. WL and PK, respec-
tively, obtain the compressed labels and histogrambins based on all graphswhichmakes them
dependent. RetGK, DOSGK, and SAGE obtain graph-level embeddings through kernelizing
the set of node-level embeddings, which is of different sizes across graphs, and hence they are
inherently bound to create N×N pairwise kernel values rather than an explicit/independent
embedding for each graph.

1 This is called LDOS in their paper, but we use PDOS to avoid confusion with our definition of LDOS in
this paper.

123

Density of states for fast embedding node-attributed graphs 2459

1.2 Our contributions

We propose A- DOGE (Attributed DOS-based Graph Embedding), for extremely fast unsu-
pervised embedding of attributed graphs that is permutation and size invariant, flexible, and
multi-scale, which is produced independently per graph.

Our main technical contributions are as follows:

• New graph-level embedding algorithm:We introduce a new spectrally designed graph
embedding approach, called A- DOGE, that leverages the whole (eigen)spectrum of a
graph. A- DOGE capitalizes on recent algorithms that can efficiently approximate the
(local) density of states (L)DOS [10], extending to attributed graphs for the first time.

• Desired characteristics:Thanks to efficient approximations,A- DOGE is extremely fast.
It can handle node labels, continuous multi-attributes, and edge weights. Leveraging the
whole spectrum, it enables variable band-pass filtering as well as features that capture
multi-scale properties. Further, it processes each graph independently of others, which
makes it amenable for streaming scenarios as well as parallelization.

• Exploratory graph analysis: A- DOGE is not tied to any specific objective, which
makes it suitable for both un/supervised tasks. In fact, our embedding features lend
themselves to various interpretations, related to graph signal convolution, random walks,
and band-filters, which prove useful in datamining and exploratory analysis of real-world
graph datasets as we show through experiments.

• Efficacy and Efficiency: Extensive experiments show that A- DOGE is on par with or
superior to all unsupervised baselines, and competitive against modern supervised GNNs
on graph classification tasks. Notably, it achieves the best runtime–accuracy trade-off.
(See Fig. 1.)

Reproducibility and Resources: We share all datasets and source code at https://github.
com/sawlani/A-DOGE.

2 Problem statement and preliminaries

Notation. Wedenote scalars, vectors, matrices and sets by lowercase (x), lowercase boldface
(x), uppercase boldface (X), and calligraphic (X) letters, respectively. X: j and Xi j refer to
the j-th column and the (i, j)-th entry of a matrix.

We consider undirected, weighted node-attributed graphs G = (V, E,X,A) where V =
{v1, . . . , vn} denotes the set of n nodes, and E ⊆ V×V denotes the set ofm edges.W depicts
the weighted adjacency matrix whereWi j > 0 if (vi , v j) ∈ E , and 0 otherwise.X is the n×d
node-attribute matrix, whereA = {a1, . . . , ad} denotes the set of d attributes, with dom(a j)

depicting the domain of attribute a j . In terms of graph signal processing (GSP) terminology,
any x = X: j can be thought as a graph signal on the nodes, with one scalar per node.

Problem 1 (Unsupervised Graph-level Embedding)Given a set of undirected, weighted and
node-attributed/labeled graphs G = {G1, . . . ,GN }, for Gi = (Vi , Ei ,Xi ,A), where

(i) graphs in G can be of varying sizes, (i i) there exists no particular correspondence
between the nodes of different graphs, and (i i i) the (categorical and/or continuous)
attributes and their domain are shared among all graphs,

Find D-dimensional graph-level embedding zG ∈ R
D for each G ∈ G that captures both

structural and attribute information.

123

https://github.com/sawlani/A-DOGE
https://github.com/sawlani/A-DOGE

2460 L. Zhao et al.

Fig. 1 A- DOGE achieves superior runtime–performance trade-off as compared to 9 graph classification
baselines (SeeSect. 4.1). (left) Runtime (log-scale) vs. accuracy on three individual datasets:REDDIT-5Kwith
largest N , COLLABwith largest avg(m) and the largest synthetic dataset Congress-Lw.r.t. avg(n). Colors
correspond to separate datasets. (right) Average runtime vs. graph classification accuracy across datasets.
Symbols depict different methods (Symbol A stands for A- DOGE)

Let ˜W = D−1/2WD−1/2 denote the symmetrically normalized adjacency matrix, where
D is the diagonal degree matrix with Di,i = ∑

j Wi, j . Let˜L = I − ˜W denote the Laplacian

matrix, and P = D−1W the random walk matrix. For a connected graph, ˜W has eigenvalues
−1 = λ0 < λ1 ≤ . . . ≤ λn−1 = 1 with corresponding eigenvectors {uk}n−1

k=0. ˜W has the same
set of eigenvectors as ˜L whose eigenvalues are the shifted set {μk = 1 − λk}n−1

k=0 ∈ [0, 2].
˜W also shares the same eigenvalues as P. As such, the spectral density function has bounded
support for these graph matrices. Following GSP convention, we refer to the eigenvalues as
the graph frequencies.

In this work, we use ˜W as the so-called graph shift operator S which generalizes to
any symmetric matrix of a graph. Let S = U�UT depict the eigendecomposition, where
� := diag([λ1 . . . λn]) and U = [u1 . . . un].
Definition 1 (Graph spectrum) The spectrum of a graph is composed of the set of the graph
eigenvalues, together with their multiplicities, of the (normalized) adjacency matrix.

Graph Fourier transform. The graph Fourier transform (GFT) of a graph signal x ∈ R
n is

defined as the projection

ŷ = F(x) = UT x

and the inverse GFT of ŷ ∈ R
n is given as

x = F−1(̂y) = Uŷ

Graph filtering. A graph filter is an operation on a graph signal with output in the graph
frequency domain, that is,

ŷ f lt = φ(�)̂y , (1)

whereφ(�) is a diagonalmatrixwithfilter frequency response values as its diagonal elements.

Definition 2 (Frequency Response Function (FRF)) The frequency response function of a
graph filter is written as

φ : C �→ R, λi → φ(λi) , (2)

123

Density of states for fast embedding node-attributed graphs 2461

which, simply put, assigns a scalar value φ(λi) to each graph frequency (i.e., eigenvalue) λi .

By applying the inverse GFT on both sides of Eq. (1), we can get the filter output in the
node domain as

x f lt = Uφ(�)̂y = Uφ(�)UT x = φ(S)x .

Signal convolution. Graph convolution of two signals, say x and x′, each in R
n , yields

another signal c ∈ R
n as

cx,x′ = x ∗G x′ = U(UT x 	 UT x′) =
n

∑

i=1

ui (uTi x)(u
T
i x

′)

where	 depicts theHadamard product.We canwrite the Fourier transformof the convolution
as

F(cx,x′) = ĉx,x′ = {(uTi x)(uTi x′)}ni=1 . (3)

Density of States. Spectral density is the overall distribution of the eigenvalues as induced
by any symmetric n×n graph matrix S = U�UT . It is also referred to as the density of states
(DOS) in the physics literature, reflecting the number of states at different energy levels [27].
Formally,

Definition 3 (Density of States (DOS)) DOS or the spectral density induced by S is the
density function

f (λ) = 1

n

n
∑

i=1

δ(λ − λi) , (4)

where δ(·) is the Dirac delta function.
Definition 4 (Local Density of States (LDOS)) Likewise, for any input vector v ∈ R

n , LDOS
is given as

f (λ; v) =
n

∑

i=1

(vT ui)2δ(λ − λi) . (5)

The following related equalities can be derived easily, respectively, for DOS and LDOS.

f (λ) = 1

n
f (λ;

n
∑

i=1

ui) (6)

f (λ) = 1

n
Ez∼N (0,1)[f (λ;z)] (7)

∫

φ(λ) f (λ) = 1

n

n
∑

i=1

φ(λi) = trace(φ(S))

n
(8)

∫

φ(λ) f (λ; v) =
n

∑

i=1

φ(λi)(vT ui)(uTi v) = vTφ(S)v (9)

Scaling (L)DOS. The extremal (i.e., a few top largest or smallest) eigenpairs of various
graph matrices have been associated with important graph characteristics, such as small-cut
partitions [6], convergence rate of random walks to stationarity [7], unfolding of dynamical
processes and epidemic thresholds [8], etc. Obtaining those few eigenpairs is also compu-
tationally easy. On the other hand, (L)DOS provides the distribution of the entire spectrum,

123

2462 L. Zhao et al.

which opens the door for the analysis of graph properties that are not evident from only the
extremal eigenpairs. However, computing all n eigenvalues and eigenvectors of a graph with
n nodes is considerably more demanding. Therefore, analyzing large graphs through their
density of states has been obstructed by the lack of scalable algorithms, until recently.

In their award-winning work, Dong et al. [10] introduced highly efficient approximation
algorithms to compute spectral densities, scalable to graphs with as large as tens of millions
of nodes and billions of edges. Their main focus has been scaling the computation of these
functions, with approximation-error analysis on plain graphs. In this paper, we capitalize on
their work for speed and extend it to leverage node attributes for the first time toward fast,
attributed graph-level embedding.
FastApproximation of (L)DOS. As introduced in [10], there are twomethods for estimating
spectral densities: the kernel polynomial method (KPM) and the Gauss quadrature via Lanc-
zos iteration (GQL). KPM expands the (L)DOS with orthogonal polynomial base functions,
and the typical polynomial basis is the Chebyshev polynomials. Chebyshev approximation
requires the eigenvalues of input matrix to be supported on [−1, 1], which is satisfied by the
graph shift operator S. In practice, only a finite number of moments are needed to approxi-
mate the (L)DOS well, especially for smooth (L)DOS. Dong et al. [10] also proposed some
pre-conditioning step to accelerate the error decay with respect to the number of moments.
In this paper we use GQL to estimate (L)DOS which we introduce in detail as follows.

Gauss quadrature (GQ) is a numerical method to estimate definite integral of a function
with a weighted sum of function values at specified points, and it has been applied to com-
puting uT g(A)u for an arbitrary vector u, a symmetric positive-definite n × n matrix A and
a matrix function g(·). Note that uT g(A)u can be re-written as Riemann–Stieltjes integral
[28]; letting A = QT�Q upon eigen-decomposition and ũ = Qu:

uT g(A)u = ũT g(�)ũ =
n

∑

i=1

g(λi)ũ2i =
∫ λmax

λmin

g(λ)dα(λ) (10)

where α(λ) is a piece-wise constant function defined as

α(λ) =

⎧

⎪

⎨

⎪

⎩

0 λ < λ1
∑k

i=1 ũ
2
i λk ≤ λ < λk+1, k = 1, . . . , n − 1

∑n
i=1 ũ

2
i λ ≥ λn

(11)

Using GQ, we can approximate the integral as uT g(A)u = ∫ λmax
λmin

g(λ)dα(λ) ≈
∑p

i=1 wi g(θi) with some weights {wi }pi=1 and points {θi }pi=1. Different ways of computing
{wi }pi=1 and {θi }pi=1 have been summarized in [28], and one way is called Gauss quadrature
via Lanczos iteration (GQL).

Before introducing GQL, let us build the connection between (L)DOS and computing
uT g(A)u. Expanding the definition of LDOS in Eq. (5), we can write

f (λ; v) =
n

∑

i=1

(vT ui)2δ(λ − λi) = (Uv)T δ(λ − �)(Uv) = vT δ(λ − S)v . (12)

The above formulation indicates that LDOS can be represented in the form of uT g(A)u by
substituting u ← v, A ← S, and g(x) ← δ(λ − x), and hence can be approximated via
GQL.

To generate {wi }pi=1 and {θi }pi=1 for GQ approximation of vT δ(λ−S)v, Lanczos algorithm
is first conducted to decomposeS into a tridiagonalmatrixTk ∈ R

k×k with k being the number

123

Density of states for fast embedding node-attributed graphs 2463

of iterations of Lanczos algorithm. Given a matrix S and an initial vector z1 with ‖z1‖2 = 1,
Lanczos algorithm iteratively generates k orthogonal unit vectors z1, . . . , zk and outputs a
tridiagonal matrix Tk . Let Z = [z1, . . . , zk] ∈ R

n×k , ZTZ = Ik , then

SZ = ZTk + R (13)

where R ∈ R
n×k is the residual term and each column vector of R is orthogonal to zi ,∀i .

Hence ZTR = 0k .
A well-known theorem characterizes the relationship between Lanczos algorithm and GQ

approximation, as stated below.

Theorem 1 ([29, 30]) The eigenvalues of Tk form the points {θi }ki=1 of Gauss quadrature,
and the weights {wi }ki=1 are given by the squares of the first elements of the eigenvectors of
Tk .

The eigendecomposition for tridiagnoal matrix Tk is fast with complexity O(k2). Let
{(τ1, ci), . . . , (τk , ck)} be the eigenvalues and eigenvectors of Tk . Theorem 1 implies that
zT1 g(S)z1 ≈ ∑k

i=1(e
T
1 ci)

2 g(τi) = ∑k
i=1 c

2
i1 g(τi). Replacing the starting vector z1 of Lanc-

zos to v
‖v‖ and g(x) to δ(λ − x) we can get the approximation of LDOS as follows

f (λ; v) = vT δ(λ − S)v ≈ ‖v‖2
k

∑

i=1

c2i1δ(λ − τi) (14)

Following Eq. (7), DOS can be computed as

f (λ) = 1

n
Ez∼N (0,1)[f (λ; z)] = 1

n × p

p
∑

i=1

f (λ; zi) (15)

where z1, . . . , zp are p random vectors from normal distribution.

3 Graph-level embedding withA- DOGE

3.1 Motivation

Our spectrally designed A- DOGE derives graph-level features based on the node attributes
and the entire spectrum of ˜W (can be other symmetric graph matrix, w.l.o.g. referred as S,
see Sect. 2), where the spectrum is composed of all of the eigenvalues. Before delving into
details, we discuss the motive for using the full spectrum and present an illustrative example.

Why the entire spectrum? We design graph-level features based on all of the eigen-
pairs of a graph matrix for two primary reasons. First, a large number of studies have found
that the full eigenvalue spectra of different classes of real-world networks differ consider-
ably [9, 31–33]. This suggests that the spectra can play a key discriminative role. Second,
real-world networks are observed to exhibit localization on low-order eigenvectors, which
are those eigenvectors associated with the non-extremal eigenvalues (in the sense of being
the largest or smallest), but that are “buried” further down in the eigenvalue spectrum [34].
Notably, they capture mesoscopic inhomogeneity in networks which is defined as topologi-
cally distinct groupings of nodes, from few nodes to large modules, communities, or different
interconnected subnetworks [35].

Illustrative example: To illustrate the valuable information that non-extremal eigenpairs
carry, we present a visual analysis of low-order eigenvector localization using the MIG graph

123

2464 L. Zhao et al.

Fig. 2 (top) Eigenvector entries (y-axis) versus node (i.e., US county) index (x-axis) for (from left to right) the
top 2nd, 29th, 41st, 55th, 89th, and 128th eigenvector of the MIG graph (See Sect. 4.1); (bottom) Eigenvector
entries as heatmap (red: high to blue: low) for nodes (US counties) shown in 2-d coordinates, solid black lines
depict official US state borders (best in color)

(See Sect. 4.1). It consists of the counties across 49 mainland US states as nodes, and an edge
depicts the total number of people that migrated between two counties during 1995–2000
[34].

Eigenvector localization arises when most of the entries of an eigenvector are zero or
near-zero and implies that the nonzero components of the eigenvector coincide with a partic-
ular set of geometrically distinguished nodes in the graph. Extremal eigenvectors typically
exhibit low localization; as shown in Fig. 2(i), the 2nd eigenvector has many nonzeros and
mainly captures macroscopic properties, in this case, the graph cut depicting relatively fewer
migrations between west- and east-coasts. Lower-order eigenvectors, as shown in (ii)–(iv),
reflect mesoscopic structure in terms of migration patterns. For example, the 41st eigenvector
depicts migration in and around South Dakota. On the other hand, even lower eigenvectors
localize increasingly, narrowing in a few counties, as shown in (v) and (vi). For example,
the 128th eigenvector has localized to a few counties within Texas near Austin, reflecting
microscopic patterns. It is remarkable that the low-order eigenvectors alignwith geographical
and political boundaries, carrying useful information at multiple scales.

3.2 Spectrum as histogram: DOS, LDOS, cLDOS features

3.2.1 Density of states (DOS)

DOS or spectral density as given in Eq. (4) is a continuous probability density function f (λ)

of the eigenvalues. We represent it with a histogram density estimator, denoted hDOS(λ) that
partitions the eigenvalue range [−1, 1] for ˜W into B = 2/	 disjoint bins of equal width 	.
Let us denote their centers by ˜λb for b ∈ {1, . . . , B}. For any i ∈ {1, . . . , n}, let Bin(λi)
denote the bin that λi belongs to. We define our DOS histogram features for a graph as
follows.

Definition 5 (DOS histogram features) DOS histogram is a B-dimensional vector, denoted
hDOS ∈ R

B , where

hDOS(˜λb) = 1

	

∑n
i=1 I(λi ∈ Bin(˜λb))

n
, b ∈ {1, . . . , B} (16)

123

Density of states for fast embedding node-attributed graphs 2465

3.2.2 Local density of states (LDOS)

We also represent the local density of states (LDOS) in Eq. (5) similarly and define LDOS
histogram features.

Definition 6 (LDOS histogram features) For a given vector v ∈ R
n , the LDOS histogram is

a B-dimensional vector, denoted hLDOSv ∈ R
B , where

hLDOSv (˜λb) = 1

	

∑n
i=1(v

T ui)2 I(λi ∈ Bin(˜λb))

n
,∀b (17)

Note that by abusing convention slightly, we use the word histogram to refer to Eq. (17)
although it is not a normalized density mass function. Figure3 shows examples to DOS (top)
and LDOS (middle & bottom) histograms with B = 40 each.

Computing both DOS and LDOS histograms requires all of the eigenvalues λi , i =
{1 . . . n} for a graph with n nodes. Further, LDOS requires all the corresponding eigen-
vectors ui ’s. For even moderate size graphs, computing the complete set of eigenpairs is
prohibitive. Most recently, Dong et al. [10] introduced fast and scalable approximation algo-
rithms to estimate these spectral densities. Our work is inspired by and builds on their work to
efficiently obtain both hDOS and hLDOS based on the Gauss Quadrature and Lanczos (GQL)
algorithm [36].

On the other hand, both in [10] and their follow-up work [19], v = ei is used in Eq.
(5) to capture the spectral information about each particular node i = {1, . . . , n}, called
point-wise density of states (PDOS), where ei is the i-th standard basis vector with i-th entry
equal to 1 and 0 elsewhere. As such, both works are limited to plain graphs without node
labels/attributes. We extend the use of LDOS to attributed graphs for the first time, by setting
v ∈ R

n in Eq. (17) to capture a graph signal on the nodes associated with an attribute.
Specifically, given a categorical or binary attribute a j , we create a separate v for each

unique value val ∈ dom(a j) where vi := 1 if Xi j = val and 0 otherwise. For numerical
attributes, we set v := X: j where X denotes the column-wise standardized attribute matrix.
Notably, LDOS can be extended to structural node-level attributes, such as degree or other
node centrality measures and eccentricity.

Interpreting LDOS. There is an intuitive interpretation of a LDOS feature in Eq. (17).
The term vT ui , that is the dot product between an attribute vector and a graph eigenvector, is
to reflect the alignment between attribute values and the structurally distinct group of nodes
that the eigenvector captures. The better the alignment, the larger is the LDOS feature value
for the bin that the corresponding eigenvalue falls into.

Why the attribute-based LDOS? We provide an illustrative example, motivating the
use of LDOS besides DOS-based histogram features. To this end, we use our Congress
graph, as described in experiments Sect. 4.1. It consists of US senators as nodes across 41 US
Senates from the 70th to 110th Congress, where weighted edges capture voting agreement.
Each node is labeledwith party affiliation; asDemocrat, Republican, or Other. Figure4a gives
the spy plot for the adjacency matrix, where the dense blocks on the diagonal correspond
to each one of 41 Senates. Cross-senate edges connect the same senator who appear across
multiple senates.

From the Congress graph, we create two variants. We first select only one Senate at
random. Next, we add noise edges between the same-party nodes in the first variant, called
Congress-within, and among random nodes in the second variant, called Congress-
rand. As such, the structural difference between the variants is associated with node labels.
The edge weights are chosen uniformly at random from [0.25, 1]. The total weight of edges

123

2466 L. Zhao et al.

Fig. 3 Example (top) histogram density estimator of the spectral density, a.k.a. density of states (DOS), of
a graph for symmetrically normalized ˜W with eigenvalues (i.e., frequencies) in [−1, 1], and local density of
states (LDOS) histogram for two different vectors (middle) v and (bottom) v′. Also shown (in color) on LDOS
plots are three different frequency response functions over the spectrum; low-pass (blue dotted), both low-
and high-pass (orange dashed), and mid-pass (red solid)

Fig. 4 From the Congress graph in (a) we create two variants: to Congress-within (blue) we add noise
edges among same-party nodes from one (out of 41) Senate only, whereas to Congress-rand (orange) we
add noise edges among randomly chosen nodes from the same Senate. As topology is perturbed only slightly,
their DOS histograms in (b) are very similar, while LDOS histogram features in (c) reflect key differences, as
highlighted in red ellipses

added to each graph is exactly the same. As we only perturb one of 41 senates in this way, the
two variants share mostly the same topology. As a result, their DOS histograms are hard to
distinguish, as shown in Fig. 4b, where the right-most bump depicts the top 41 eigenvectors
(each close to 1) capturing the 41 dense subgraphs per Senate. In contrast, LDOS histograms
(using party affiliation Democrat, Republican is similar) reflect clear differences as shown
in Fig. 4c.

123

Density of states for fast embedding node-attributed graphs 2467

3.2.3 Coupled local density of states (cLDOS)

In addition to the original LDOS, we also create interaction features between pairs of node
attributes. Accordingly, the coupled-LDOS histogram features are defined as follows.

Definition 7 (cLDOS histogram features) For two input vectors v, v′ ∈ R
n , the coupled-

LDOS histogram is a B-dimensional vector, denoted hcLDOSv,v′ ∈ R
B , where

hcLDOSv,v′ (˜λb) = 1

	

∑n
i=1(v

T ui)(uTi v
′) I(λi ∈ Bin(˜λb))

n
,∀b (18)

Note that (vT ui)(uTi v
′) is the i-th entry of ĉv,v′ (from Eq.3). Hence hcLDOSv,v′ can simply

be viewed as ĉv,v′ , binned according to the corresponding eigenvalues of each entry.
Moreover, recall that we use the GQL algorithm to approximate the LDOS features,

where the terms vT ui or uTi v
′ are not computed using the individual eigenvectors explicitly.

Nevertheless it is easy to acquire cLDOS features in Eq. (18) using the LDOS features in
Eq.17 and simple algebra. Given the separate LDOS features for v and v′, we also create
those for (v + v′). Then,

hcLDOSv,v′ = [

hLDOSv+v′ − hLDOSv − hLDOSv′
]

/2. (19)

3.3 Functions over the spectrum: aggregate features

DOS, LDOS and cLDOS histograms provide “raw” information about the graph spectrum
and the attributes. In addition, we define aggregate scalar features by specifying various
frequency response functions (FRF) [25] (Eq. (2)) over these histograms.

Definition 8 ((cL)DOS aggregate features) Given a DOS, LDOS or cLDOS histogram h ∈
R

B , and a frequency response func. φ(·), a (cL)DOS aggregate feature gφ ∈ R is written as

gφ =
B

∑

b=1

h(˜λb) φ(˜λb) (20)

Each FRF φ(·) focuses on a different part of the spectrum, inducing a variety of graph
filters. In Fig. 3 (bottom), we show three example FRFs; a low-pass one (blue) that has high
values for smaller eigenvalues, a mid-pass one (red) as well as one that is both low-and-high
pass (orange). To extract graph connectivity and attribute information broadly, we construct
a portfolio of these graph filters, i.e., associated FRF’s {φ(·)}, called a filterbank.

Before delving into the details of our filterbank, we make a few remarks. First, note that
the sum in Eq. (20) is an approximation of the integral in Eq. (8) for hDOS, that of Eq.
(9) for hLDOS, and accordingly an approximation of vTφ(S)v′ for hcLDOS. Second, given
the efficiently computed histograms thanks to the GQL algorithm, computing the aggregate
features by Eq. (20) is extremely fast and simply involves a weighted sum. This allows us
to employ a large filterbank containing many different FRF’s almost for “free”. Finally, we
have seen that our cLDOS aggregate features relate to graph signal convolution. Denoting
the vector of frequency responses by φ := {φ(λi)}ni=1, based on Eqs. (9) and (3),

∫

φ(λ) f (λ; v, v′) =
n

∑

i=1

φ(λi)(vT ui)(uTi v) = φT ĉv,v′ (21)

In the following, we present two classes of FRF’s that A- DOGE employs to extract
(cL)DOS aggregate features.

123

2468 L. Zhao et al.

Fig. 5 Frequency response functions φk (λ). Note that magnitude is in absolute values

3.3.1 Chebyshev polynomials

We use the series of Chebyshev polynomials as a set of FRF’s defined by the recurrence
φ1(λ) = 1, φ2(λ) = 2(λ/λmax) − 1, and φk(λ) = 2φ2(λ)φk−1(λ) − φk−2(λ), where λmax

is the maximum eigenvalue.
Interpretation. As shown in Fig. 5a, Chebyshev polynomials provide frequency profiles

that cover various parts of the spectrum. For example, the 2nd one is mostly a low- and
high-pass filter and stops the middle band, while the 3rd one passes the middle bands as well
as very high and very low bands of the spectrum, and so on. Given a number of these FRF’s,
emphasis can be put on passing/stopping specific bands by a weighted combination of them.

The flexibility of any-band filtering by A- DOGE is favorable over several modern graph
neural networks (GNNs). GCN [20], for instance, works as a low-pass-only filter and hence
does not cover the whole spectrum. GIN [21] has a learnable scalar parameter ε that deter-
mines which band to stop, however its FRF is a linearly decreasing function, which is not
a strong low-pass or high-pass filter. (See Fig. 2 in [25].) In contrast, spectrally designed
ChebNet [22] is more expressive and also employs the Chebyshev polynomials. We compare
to these modern GNNs in the experiments on graph classification tasks.

3.3.2 Power functions

The second class of FRF’s in our filterbank uses (both positive and negative) powers of the
spectrum, that is,

φk(λ) = λk , k = ±{1, . . . , K/2}
Interpretation. Our aggregate features using the power functions relate to ran-

dom walks on the graph. Consider positive values of k and S = ˜W. Recall that for
hDOS, Eq. (20) is an approximation of trace(φ(S)), which is equal to the total return-
probability of a k-step random walk to a node. For hLDOS, aggregate features approximate
vTφ(S)v. For a binary/categorical attribute where v depicts a certain value, e.g., val :=
(party_affiliation:democrat), it corresponds to the probability that a k-step ran-
dom walk starting at any node with value val “hits”/reaches another node with the same
value. For hcLDOS, similarly, it is the probability that such a walk starting at any node with
a certain val will reach another node with a different val ′. Moreover, for two continuous
attributes v and v′, approximating vTφ(S)v′ via hcLDOS would capture the covariance of the
attributes over “k-hop connected” pairs of nodes that can reach each other within k-steps.

123

Density of states for fast embedding node-attributed graphs 2469

Table 2 Summary of A- DOGE graph-level features based on spectral densities (cL)DOS, organized as (a)
histogram features, resp. forDOS (Definition 5), LDOS (Definition 6), cLDOS (Definition 7), and (b) aggregate
features (Definition 8) using (b.i) Chebyshev polynomials and (b.ii) power functions

DOS LDOS cLDOS

hist agg. gφ hist agg. gφ hist agg. gφ

Cheb Pow Cheb Pow Cheb Pow

B K K BD K D K D B
(D
2
)

K
(D
2
)

K
(D
2
)

B: # of histogram bins, K : # of FRF’s, D: # of node attributes

The interpretations extend to the negative powers aswell, which correspond tomanywalks
of different lengths in the limit. In that respect, aggregate features using power functions
depict multi-scale properties, where increasingly positive values of k capture microscopic to
mesoscopic properties related to short/local random walks, whereas negative powers relate
to the long-range walks and thereby macroscopic structure.

3.4 A- DOGE: overall summary

We conclude with an overview of all the graph-level features described in this section. Table
2 gives the number of features by category, where B is the number of histogram bins, K is the
number of Chebyshev or power frequency response functions (FRF’s), and D ≥ d is the total
number of attributes upon one-hot-encoding the categorical and binary attributes. A- DOGE
yields (B+2K)(1+D+(D

2

)

) features in total for an attributed graph, which are permutation-
and size-invariant, task-agnostic, variable band-pass, multi-scale, and extremely efficient to
compute. We outline the steps in Fig. 6 and give detailed complexity analysis next.

Extension to more features. We note that one may expand the set of A- DOGE features
in two possible ways. First, the input vector(s) to (c)LDOS, denoted v (and v′) in Defini-
tion 6 (and in Definition 7), are flexible. Besides a vector depicting one node attribute at a
time, one can design features of features or even include other topological properties of the
nodes. Second, one can define FRF’s of other forms, aiming to capture different functions
of the spectrum. Those could include very flexible yet perhaps less interpretable functions,
especially if the downstream task is more performance-oriented and less human-centered.

Extension to directed graphs. The original method is designed based on eigendecom-
position of symmetric matrix, and the fast computation of DOS and LDOS also relies on
symmetric matrix. For directed graph, directly using the eigenvalues and eigenvectors of the
directed adjacency matrix introduces complex numbers that are hard to define its distribu-
tions, and the fast algorithm of computing eigenvectors is not available yet. To avoid the
problem and still extend the designed method to directed graphs, one can apply the proposed
method over a transformed undirected graph of the directed graph, instead of working with
its directed adjacency matrix. Specifically, one can transform a directed graph to a undi-
rected graph reversibly, by replacing each directed edge e = (x, y) with 5 new vertices
ve1, . . . , v

e
5 and new edges (x, ve1), (v

e
3, y), (v

e
1, v

e
3), (v

e
3, v

e
4), (v

e
4, v

e
5). Notice that the gener-

ated undirected graph can be transform back to original directed graph by identifying all
added new nodes with degree information.2 With the help of the injective transformation
between directed graph and undirected graph, our method can be used to encode directed
graph, with introducing some computational cost.

2 https://cs.stackexchange.com/questions/19744/converting-a-digraph-to-an-undirected-graph-in-a-
reversible-way.

123

https://cs.stackexchange.com/questions/19744/converting-a-digraph-to-an-undirected-graph-in-a-reversible-way
https://cs.stackexchange.com/questions/19744/converting-a-digraph-to-an-undirected-graph-in-a-reversible-way

2470 L. Zhao et al.

Fig. 6 Steps to generate all A- DOGE features (See Table 2)

3.5 Computational complexity

SinceA- DOGE computes an embedding for each graph independently, it scales linearly with
the number of graphs in the dataset, i.e., N .

We analyze the asymptotic runtime of A- DOGE on a single graph G with n nodes,
m edges, and D total node attributes (including one-hot encoded labels and categorical
attributes). We use the Gauss quadrature and Lanczos algorithm described by Dong et al.
[10] to compute a (cL)DOS histogram. This involves (i) running ηL Lanczos iterations, each
requiring O(ηL(n+m)) operations, followed by (i i) the eigendecomposition of a tridiagonal
ηL×ηL matrix, with O(η2L) operations. Note that although a tridiagonal matrix eigendecom-
position has a quadratic worst-case complexity theoretically, this operation is extremely fast
in practice—especially for real-worldmatrices. Each aggregate feature requires a dot product
of two vectors of size B for O(B),

where we use 2K different frequency response functions (i.e., φ(·)’s) in total (K each
for Chebyshev and powers). Then, the total complexity of computing one histogram and
its related aggregate features is O(η2L + ηLm + ηLn + K B). This gives a total runtime
of O

(

(η2L + ηLm + ηLn + K B) · α
)

, where α denotes the number of desired graph-level
features (i.e., embedding size) in A- DOGE.

Notably, A- DOGE is modular and can include any subset of the features in Table 2. For
datasets with a large number of node attributes, one can skip cLDOS features, or only choose
important attribute-pairs to ensure α = O(D). Also note that each aggregate feature for a
given φ(·) can be computed independently, and hence can be easily parallelized.

4 Experiments

To evaluate A- DOGE, we design both quantitative and qualitative experiments to answer
the following questions.

Q1. Graph Classification How does A- DOGE (unsupervised) compare to the modern
GNNs and graph kernels (un/supervised) on benchmark graph classification tasks?

Q2. Exploratory Graph Analysis Can A- DOGE provide insights for mining real-world
attributed graphs?

Q3. Efficiency How fast and scalable is A- DOGE?
Q4. Boosting GNNs Can the unsupervised features generated by A-DOGE help improve

the expressiveness of modern GNNs further?

123

Density of states for fast embedding node-attributed graphs 2471

Table 3 Datasets used in experiments and summary statistics

N Cls Avg. n Avg. m Lbl Attr

REDDIT-B 2000 2 429.6 497.7 – –

REDDIT-5K 5000 5 508.5 594.8 – –

COLLAB 5000 3 74.5 2457.8 – –

IMDB-BIN 1000 2 19.8 96.5 – –

IMDB-MUL 1500 3 13.0 65.9 – –

DD 1178 2 284.3 715.7 78 –

PROTEINS 1113 2 39.1 72.8 – 1

AIDS 2000 2 15.7 16.2 38 4

BandPass 5000 2 200 1072.6 – 1

Congress 200 2 4196 450662.5 3 –

MIG 200 2 3075 1092282.0 19 –

Facebook100 100 n/a 12083.2 469845.4 – 7

BorderStates 49 n/a 367.4 21633.9 2 –

CountingSub 5000 4 18.8 62.6 – –

GraphProp 7040 3 19.5 101.1 – –

4.1 Experiment setup

Datasets. The list of all datasets used in the experiments and summary statistics are given
in Table 3.

Graph classification benchmark datasets For graph classification, we use eight bench-

mark datasets from TUDataset repository.3 Five are commonly used social network datasets,
REDDIT-B,REDDIT-5K,COLLAB,IMDB-BIN and IMDB-MUL. These contain only plain
graphs—a setting with which all the baselines are compatible.

• REDDIT-B is a balanced dataset, used in [37], where each graph is an online thread
with nodes being users and edges representing the existence of direct response between
two users. The task is to classify the thread (graph) as a Q&A-based community or
discussion-based community. REDDIT-5K is similar to REDDIT-B but has 5 different
community types.

• COLLAB [37] is a scientific collaboration dataset coming from three research fields: high
energy physics, condensedmatter physics, and astrophysics. Each graph represents a col-
laboration networkwith nodes being researchers and edges representing the collaborating
relations.

• IMDB-BIN [37] is a movie collaboration dataset where each graph is a movie col-
laboration network with nodes being actors/actresses and edges representing that two
actors/actresses have appeared in the same movie. The task is to classify a graph into two
genres: action and romance. IMDB-MUL is a 3-class version IMDB-BIN.

The other three are biochemistry datasets, PROTEINS, DD and AIDS, which have node
labels and/or attributes.

3 https://chrsmrrs.github.io/datasets/docs/datasets/.

123

https://chrsmrrs.github.io/datasets/docs/datasets/

2472 L. Zhao et al.

• PROTEINS [38] and DD [39] are two biochemistry datasets where each graph is a molec-
ular structure of a protein. The task is to classify a graph to two categories: enzyme and
non-enzyme.

• AIDS [40] contains many molecular graphs where nodes represent atoms and edges
indicate the valence between two atoms. The task is to predict whether the molecular is
useful for treating AIDS or not.

Graph classification band-pass datasetsWe also use four other graph datasets to specifi-
cally showcase the strengths of A- DOGE in leveraging the full graph spectrum.

• BandPass is a synthetic dataset consisting of images generated via sinusoidal patterns
from two frequency ranges, as used in [25].

• Congress is based on the voting patterns in 41USSenates (1927–2008), as used in [34],
where nodes represent senators (labeled by party affiliation) and edge weights represent
voting agreement. Nodes depicting the same senator who appear across multiple years
are also connected with an edge. To create separate classes of graphs, we add noise to
edge weights between same-party senators (class 1), and randomly picked senators (class
2) in one randomly picked Senate. We repeat this process to obtain 100 graphs for each
class.

• Congress-L is generated by picking one Senate at random and shuffling the labels
of senators via random swaps; 50 swaps in class 1, and 300 in class 2. We repeat this
process to obtain 100 graphs for each class.

• MIG is based on the county-to-county migration in the USA, also used in [34]. Each node
is a county (labeled using its state), and edge weights represent the amount of migration.4

Of these, we pick two bordering states at random and add a small amount of noise to
edge weights. For class 1, we add noise between same-state counties, and for class 2,
we add noise between randomly picked counties. We repeat this process to obtain 100
graphs for each class.

Exploratory graph mining datasets In addition to the above datasets, we perform graph
exploratory analysis using A- DOGE on two more datasets:

• Facebook100 consists of Facebook college social networks from 100 American insti-
tutions [41], with student demographic information (major, dorm, status, class-year, etc.)
as node attributes.

• BorderStates is built from the MIG dataset, by inducing 49 separate graphs—one
for each mainland state and its bordering states. We label counties of the selected state
as 0 and the counties of the neighbors as 1.

GNN expressiveness datasets Furthermore, to additionally test whether the unsupervised
features can help improve expressiveness or the separation power of graph neural networks
(GNNs), we use two additional datasets with tasks related their expressiveness.

• CountingSub [42] is a simulated dataset with random graphs, and for each graph its
number of triangles, tailed triangles, stars, and 4-cycles are pre-computed as target values
for regression. The task is to count number of substructures for any input graph.

• GraphProp [43] is also a simulated dataset with random graphs. The task is to regress a
graph to some graph-level properties, including the connectedness (binary), the diameter,
and the radius of the graph.

4 Note that the migration graph is originally directed. We create an undirected graph with edge weights wi j

set to
(mi j+m ji)

2

pi p j
, where mi j is the total migration from county i to county j and pi depicts county i’s total

population.

123

Density of states for fast embedding node-attributed graphs 2473

These substructure counting tasks and graph property regressing tasks are closely related to
expressiveness measurement of GNNs.

Baselines. We compare A- DOGE quantitatively to various unsupervised and supervised
graph embedding, graph kernel, and graph neural network methods on graph classification
tasks.

Unsupervised explicit graph embeddings are in the same category asA- DOGE and hence
are the most comparable. As baselines from this category, we compare to

• FGSD [11], • NetLSD [12] and • g2vec [13], which we described briefly in Sect. 1.1.

Graph kernels are also unsupervised; here, we use three of the best performing kernels on
classification benchmarks, as well as a recent DOS-based graph kernel.

• WL [14]: the Weisfeiler–Lehman graph kernel,
• WL- OA [15]: the Weisfeiler–Lehman Optimal Assignment kernel,
• PK [17]: the Propagation Kernel, and
• DOSGK [19], the Density of States Graph Kernel.

GNN baselines include state-of-the-art supervised models, such as

• ChebNet [22], • GCN [20], and • GIN [21].

Note that FGSD, NetLSD, and DOSGK are for plain graphs only. g2vec, WL, and
WL- OA admit node labels but not (continuous) attributes. Therefore, they input only the
admissible parts of a graph dataset for classification.

Model configuration. In our experiments with A- DOGE, we set ηL = 100, B = 200
and K = 100 (see Table 2). For plain datasets, we use node degree as a continuous attribute.
For FGSD, we use L−1 as the distance function and 0.001 as the binwidth. For NetLSD, we
use heat trace signatures at 250 different values of t logarithmically spaced in [10−2, 102].
For g2vec, we set the WL iteration count to 5 and output dimension to 1024. For the
kernelsWL,WL- OA and PK, we use the implementation from the GraKel package,5 and the
default parameters suggested. ForDOSGK, same as withA- DOGE, we use 200 bins and 100
Chebyshevmoments. For all the GNNs, we use mean-pooling as the readout function. Notice
that A-DOGE uses all designed features presented in Sect. 3 as input. These features can be
directly input to SVM for graph classification and can be transformed to a fixed dimension
embedding by a 2-layer MLP, which is then used for augmenting GNN’s embedding space.

System configuration. We run all non-GNNexperiments on one core of Intel(R)Xeon(R)
CPUE5-2667 v3 CPU@3.20GHz. GNN experiments are run on a server with NVIDIATesla
V100 GPU and one core of Intel(R) Xeon(R) Gold 6248 CPU @2.50GHz.

4.2 Graph classification

Classifier configurations. For classificationwith the embeddings produced by unsupervised
methods, we use the kernel-SVM6 classifier with the regularization parameterC chosen from
{10−3, 10−2, . . . , 103} via 10-fold cross-validation. We perform this experiment 10 times
using random splits. For explicit embeddings, we normalize each feature, and set γ to be
the inverse of the median of pairwise 2 distances between all embeddings. For A- DOGE,
we also set the option of using LDOS, cLDOS features, and the option of using aggregate
FRFs as hyperparameters. We normalize all kernels symmetrically. For GNNs, we train them

5 https://ysig.github.io/GraKeL/.
6 SVM facilitates comparable results between implicit and explicit kernels.

123

https://ysig.github.io/GraKeL/

2474 L. Zhao et al.

Ta
bl
e
4

G
ra
ph

cl
as
si
fic
at
io
n
pe
rf
or
m
an
ce

by
A
-
D
O
G
E
an
d
its

D
O
S-
on
ly

(i
.e
.,
no

at
tr
ib
ut
es
)
va
ri
an
tD

O
G
E
,c
om

pa
re
d
w
ith

th
re
e
ty
pe
s
of

ba
se
lin

es

G
ra
ph

em
be
dd

in
g
(u
ns
up

er
vi
se
d)

G
ra
ph

ke
rn
el
s
(u
ns
up

er
vi
se
d)

G
N
N
s
(s
up

er
vi
se
d)

A
-
D
O
G
E

D
O
G
E

FG
SD

N
et
L
SD

g
2v

ec
W
L

W
L
-
O
A

PK
D
O
SG

K
C
h
eb

N
et

G
C
N

G
IN

R
E
D
-
B

91
.6

(1
.5
)

90
.3
(1
.8
)

82
.4
(2
.6
)

85
.6
(2
.2
)

74
.2
(2
.7
)

83
.9
(0
.5
)‡

88
.9
(0
.1
)‡

85
.5
(0
.3
)‡

88
.8

(0
.3
)∗

90
.2
(2
.0
)

89
.9
(2
.0
)

91
.7
(1
.6
)

R
E
D
-
5
K

55
.6

(2
.2
)

53
.8
(2
.1
)

47
.0
(1
.8
)

45
.9
(2
.1
)

41
.5
(1
.6
)

51
.2
(0
.3
)∗

E
E

52
.8

(0
.2
)∗

55
.0
(2
.2
)

54
.2
(1
.7
)

54
.7
(2
.0
)

C
O
L
L
A
B

72
.2
(2
.0
)

72
.2
(2
.0
)

70
.2
(1
.8
)

68
.4
(1
.9
)

57
.9
(1
.5
)

74
.8
(0
.2
)∗

79
.8
(1
.6
)

77
.8
(1
.7
)

80
.8

(0
.2
)∗

84
.6
(1
.1
)

84
.2
(1
.2
)

83
.8
(1
.6
)

I
M
D
B
-
B

72
.6
(4
.3
)

71
.6
(4
.3
)

70
.6
(4
.1
)

69
.7
(4
.1
)

56
.0
(4
.1
)

71
.3
(1
.0
)‡

73
.5

(0
.6
)

71
.2
(0
.7
)‡

72
.8

(0
.9
)∗

80
.2
(3
.9
)

79
.9
(3
.7
)

80
.8
(4
.5
)

I
M
D
B
-
M

47
.8
(3
.5
)

47
.6
(3
.7
)

48
.6
(3
.4
)

47
.9
(3
.7
)

44
.4
(3
.8
)

50
.7
(0
.6
)‡

50
.7
(0
.5
)‡

51
.0

(0
.7
)‡

49
.4

(0
.5
)∗

55
.6
(2
.7
)

55
.2
(2
.7
)

56
.3
(3
.1
)

D
D

80
.1
(3
.5
)

76
.2
(3
.4
)

76
.5
(3
.5
)

76
.6
(3
.5
)

76
.2
(3
.5
)

80
.9
(0
.3
)

79
.9
(0
.5
)

81
.6

(0
.5
)

73
.4

(3
.7
)

78
.9
(1
.9
)

78
.0
(1
.8
)

79
.3
(1
.9
)

P
R
O
T
N

74
.9
(3
.5
)

74
.9
(3
.5
)

74
.2
(3
.3
)

74
.5
(4
.0
)

72
.1
(3
.1
)

73
.9
(0
.7
)‡

75
.9

(0
.6
)‡

74
.6
(0
.5
)‡

72
.1

(3
.9
)

78
.3
(2
.7
)

76
.7
(3
.5
)

78
.4
(3
.9
)

A
I
D
S

99
.8

(0
.3
)

99
.8
(0
.3
)

99
.6
(0
.4
)

99
.6
(0
.5
)

98
.8
(0
.7
)

99
.7
(0
.0
)‡

99
.7
(0
.0
)‡

99
.7
(0
.0
)‡

99
.1

(0
.7
)

96
.9
(1
.6
)

95
.5
(1
.3
)

98
.6
(0
.6
)

C
o
n
g

99
.5

(1
.5
)

54
.7
(1
1.
0)

95
.1
(4
.3
)

99
.5
(1
.5
)

86
.8
(7
.4
)

84
.8
(7
.3
)

81
.1
(7
.7
)

68
.6
(8
.3
)

60
.0

(1
0)

50
.0
(0
.0
)

50
.0
(0
.0
)

57
.0
(5
.9
)

C
o
n
g
-
l

78
.0

(8
.6
)

58
.9
(1
0.
0)

50
.0
(0
.0
)

60
.4
(9
.7
)

59
.8
(1
1)

62
.2
(1
0)

62
.3
(1
0)

58
.2
(1
0)

55
.7

(9
.7
)

50
.0
(0
.0
)

50
.0
(0
.0
)

71
.5
(9
.4
)

M
I
G

10
0.
0
(0
)

62
.3
(9
.7
)

99
.5
(1
.5
)

99
.9
(1
.1
)

50
.0
(0
.0
)

99
.8
(1
.4
)

99
.8
(1
.4
)

10
0
(0
.0
)

53
.5

(1
2)

10
0.
0
(0
.0
)

78
.5
(1
.7
)

10
0.
0
(0
.0
)

B
P
a
s
s

90
.8

51
.9

47
.9

51
.4

50
50

51
.6

70
.4

48
.5

98
.2
†

77
.9
†

87
.6
†

A
vg

82
.5

69
.1

74
.1

75
.8

66
.0

75
.6

76
.6

76
.3

68
.6

78
.4

74
.2

80
.5

T
he

hi
gh
es
tp

er
fo
rm

an
ce

pe
r
da
ta
se
ti
s
in

bo
ld
,a
nd

th
e
hi
gh

es
ta
m
on

g
un

su
pe
rv
is
ed

m
et
ho

ds
is
un

de
rl
in
ed
.E

de
no

te
s
th
e
co
de

ou
tp
ut
tin

g
an

er
ro
r;
T
he

nu
m
be
rs
w
ith

sy
m
bo

ls
de
no

te
th
e
pa
pe
r
fr
om

w
hi
ch

th
e
nu

m
be
rs
ar
e
ta
ke
n:

‡
[2
4]
,∗

[1
9]
,†
[2
5]

123

Density of states for fast embedding node-attributed graphs 2475

Fig. 7 LDOS histograms for all graphs in BandPass, plotted as lines. Each class can be characterized by
specific bands of eigenvalues

end-to-end using cross-entropy loss, and hyperparameters (learning-rate at 0.005, layers in
{2,3,5,7}, hidden sizes from {32,64,128} and epochs up to 200) selected via 10-fold cross-
validation. For each of the above methods, we report the mean test accuracy for the best
choice of hyperparameters, and the corresponding standard deviation on every dataset except
BandPass, for which we use the single train-validation-test split as specified in [25].

Results. Table 4 contains all the performance results of our classification experiments.
Among the benchmark datasets, A- DOGE achieves on par performance with the most com-
petitive unsupervised baselines and is often comparable to (supervised) GNNs, while being
considerably more resource-frugal.

On the other four datasets,A- DOGE significantly outperforms all baselinemethods due to
its ability to capture the alignment of labels and attributes with graph structure at amulti-scale
level, even in databases with as few as 200 graphs. Provided A- DOGE uses considerably
lower resources in comparison with kernels and GNNs, and considering that the latter are
trained end-to-end, we do not expect A- DOGE to exhibit state-of-the-art performance on
every dataset. Still,A- DOGE outperforms/equals all baselines on 7 of the datasets.Moreover,
A- DOGE stands out as the top choice based on average performance across all datasets.

On the BandPass dataset, only the spectrally designed ChebNet is able to outperform
A- DOGE. This can be attributed to the way that BandPass is created, wherein graph
classes are formed based on the frequency band used to generate the underlying image.
Figure7 depicts the LDOS histograms of the graphs in the BandPass dataset. We can
clearly see that capturing specific bands of the eigenspectrum suffices to characterize the
disparity between the two graph classes.

Feature ablation. Table 4 also shows the DOS-only version of A- DOGE without using
node labels and attributes, called DOGE. We observe that in the benchmark datasets, graph
structure seems to hold most of the useful information needed for classification, and hence,
there is only a small improvement in performance from using node attributes. In the rest
of the datasets, node attributes play an important role, causing significant improvements in
results for A- DOGE by using LDOS and cLDOS features.

4.3 Graph datamining

To demonstrate the interpretability of the A- DOGE features, we perform exploratory graph
analysis on three real-world datasets, Facebook100, Congress and BorderStates.

Facebook100. In Facebook100, we denote each categorical feature (e.g., major)
with its one-hot encoding, and hence, each particular value (e.g., Computer Science) has
its own (binary) attribute vector. We first visualize the Facebook100 graphs via LDOS

123

2476 L. Zhao et al.

Fig. 8 Average homophily w.r.t.
major vs. dorm in 100 Facebook
college social networks in the
USA, where vm and vd ,
respectively, refer to an attribute
vector corresponding to a
particular major m and dorm d

Fig. 9 (left) Homophily w.r.t. class_year based on k = 1 and k = 2-length paths over all 100 colleges.
vy refers to continuous attribute vector with class years. (right) Homophily within student and non-student
communities in all 100 colleges. Binary vector vs (vns) depicts student (non-student) status

aggregate features using these attribute vectors, with small positive power functions asFRF to
capture the assortativity (homophily) of different attributes across different college networks.
In each graph, we compute the aggregate feature that estimates vTmSvm for every major
captured by vm , and similarly vTd Svd for every dormitory captured by vd . Figure8 plots the
mean homophily with respect to major and dorm for each of the 100 colleges.

While Carnegie pops up as having the highest correlation between edges and students with
the same major, comparing the ranges of both axes suggests that dorm is a much stronger
indicator of students within a college being friends. Moreover, this tendency seems to be
more pronounced in Rice, Caltech and UCSC. This is also backed up by findings in [41] and
the real-world knowledge that Rice and Caltech are organized predominantly by dorms and
other on-campus housing.

We also analyze similar aggregate functions over the continuous attributes. Figure9(left)
plots the assortativity with respect to class_year for k = 1 and k = 2 for the power functions,
which capture 1- and 2-length paths. As we expect, these features are highly correlated in
most colleges—with the striking exception of Harvard, where it appears that 2-length paths
are common between individuals of similar class_year, but this is not the case with 1-length
paths. To investigate further, we plot homophilies for student and non-student populations for
all colleges in Fig. 9(right) and we learn that the Harvard network consists of a comparatively
higher number of edges amongst non-student members, most of whom have empty or very
disparate class_year. Even if edges between students are fewer, this is corrected when we
look at 2-length paths instead.

Congress. Next, we want to explore scenarios where interactions between attributes
prove important to understanding properties of a graph. To this end,we look at theCongress

123

Density of states for fast embedding node-attributed graphs 2477

Fig. 10 Voting agreement within (dashed curve, v1 = v2 = vd or vr) and across (solid curve, v1 = vd ,
v2 = vr) political parties over the years, for 41 Senates during 1927–2008

Fig. 11 Comparison of migration patterns for each US state—within its counties vs. across its borders;
migration (left) over a local range, and (right) on a global scale. vw and vb refer to binary vectors denoting
within and border-state counties, respectively. Node sizes correlate to size of state

graph,where the two attribute vectors are binary vectors vd and vr corresponding toDemocrat
and Republican senators, respectively (ignoring the small minority of independents). We plot
within-party agreement (vTd Svd+vTr Svr)/2 and cross-party agreement (vTd Svr) over the years
in Fig. 10.

We can observe that beginning from the 1990s, senators tend to agree among their parties,
and disagree with the opposite party to a higher extent, hinting at a growing polarization in
politics. We note that agreement across parties is also low in 1937 (see the “dip”); however,
this is better explained by the fact that this congress had overwhelmingly more number of
democrats. There is no hint of polarization for that instance, since there is no corresponding
rise in the dashed (within-party) curve. Figure10 shows that aggregate functions from A-
DOGE not only help us observe such phenomenon but also help quantify them to a relative
extent.

BorderStates. Lastly, we analyze BorderStates, comparing within-state migra-
tion against cross-border migration for each of the 49 mainland states in the USA. We focus
on LDOS aggregate features; this time using both positive and negative power functions in
order to analyze both short and long-range migration patterns. In other words, while small
positive powers (e.g., k = 1) capture local migration patterns, negative powers (e.g., k = −1)
capture paths of all lengths and thereby reflect long-range migration behavior on a relatively
global scale.

From Fig. 11(left), we observe that at the local scale, most states have greater within-state
migration than cross-border migration. Comparatively, NH and DE, being the states with
the least number of counties (10 and 3, respectively), exhibit lower within-state migration.
Moreover, due to NH’s geographical and political similarity with its bordering states, it
shows highest cross-border migration. On the other hand, larger states such as CA and

123

2478 L. Zhao et al.

Fig. 12 Migration graph of 4 states—NH (New Hampshire), CA (California), MI (Michigan), and DE
(Delaware)—from BorderStates, depictingmigration volume (in logarithm)within state aswell as across-
border states. Black lines separate counties (10, 58, 89, and 3, respectively, for NH, CA, MI, and DE) of the
state from those in border states

MI exhibit mostly within-state migrations on the local scale. However, on the global scale
(Fig. 11(right)), the difference between these is more pronounced, since CA is amore popular
long-range migration destination than MI. The ratio between the average within-state and
average across-border migration is 78.68 for MI—much larger as compared to DE, CA, and
NH with values 43.43, 34.40, and 14.17, respectively.

Figure12 helps explain this observed behavior visually, where we show via heatmaps
the total migration volume among the counties of each state as well as the counties in their
immediate neighbor/border states. DE and NH are small states with only a few counties,
which explains the small within-state migration volume in Fig. 11. On the other hand, NH
exhibits the highest cross-border traffic as compared to the others. In stark contrast to NH,
MI has relatively much less border traffic as compared to within-state migration. CA, on the
other hand, exhibits large-volume migration both within-state and across-state.

4.4 Efficiency

A- DOGE is not directly comparable to all the baselines in terms of resource requirements.
GNNs and g2vec need GPU processing, which make them incomparable to CPU-based A-
DOGE and the rest. Other differences, such as supervised training and collective processing
of the graphs via multiple passes over the dataset (in contrast to one-by-one/independent
processing by A- DOGE) put them in a different “league”.

On the other hand, kernel baselines need considerably more memory. WL, WL- OA and
PK compute intermediate data (e.g., compressed labels) based on all the graphs in memory.
These and DOSGK produce a N×N kernel matrix that is also memory-resident.

FGSD and NetLSD are comparable in the sense that, similar to A- DOGE, they process
the graphs independently one-by-one. Likewise, they are also unsupervised. However, they

123

Density of states for fast embedding node-attributed graphs 2479

Fig. 13 Runtimes per graph in
the REDDIT-5K dataset for each
of the A- DOGE and the two
baselines which can compute
embeddings independently

cannot handle node labels/attributes. Nevertheless, we provide running time and scalability
comparison in Fig. 13 that plots the runtime vs. size in number of nodes for individual
graphs in the REDDIT-5K dataset. For any graph from the dataset (up to 9500 edges), A-
DOGE does not take more than 1s to compute. Figure1 compares this runtime for 3 of our
largest datasets. We can see that A- DOGE achieves the best time-accuracy trade-off among
competing baselines. For methods with comparable or better accuracy scores (e.g., GIN),
A- DOGE is almost twice as fast on average. For baselines with similar runtime (e.g., WL),
A- DOGE achieves significantly higher accuracy.

4.5 Boosting GNNs

Modern GNNs have achieved significant success in both node-level and graph-level tasks,
with applications widely existing in many domains such as drug discovery, social network
analysis, image analysis and bioinformatics [44–46]. However, the widely used message-
passing-based graph neural networks are known to have limited expressiveness and are
specifically upper bounded by the first-order Weisfeiler–Leman [21]. Many research works
have been designed to improve the expressiveness of GNNs, and one direction is to use addi-
tional structural features [47, 48] or even random features [49, 50] to augment the input of
GNNs, which achieves noticeable improvement over many tasks.

In this section, we investigate whether the unsupervised features from A-DOGE can
help improve the expressiveness of GNNs. We focus on two categories of tasks related to
expressiveness: (1) counting the number of substructures and (2) regressing various graph-
level properties. To this end, we use two datasets, CountingSub and GraphProp, as
introduced in Sect. 4.

Model configurations. As the two datasets contain only plain graphs without node
and edge attributes,7 we only compute DOS and PDOS histograms from A-DOGE and
augment them into any GNN model. The architecture of GNN contains the stacking of
multiple message-passing layers that update node features, and a following pooling layer
that aggregates all nodes into a graph-level feature. We augment DOS and PDOS into GNN
as follows:

7 Node degree is used as a structural node feature as input.

123

2480 L. Zhao et al.

Table 5 Comparison between GNN with and without using DOS (graph-level) and PDOS (node-level) fea-
tures. (MAE: mean absolute error)

Method Counting substructures (MAE) Graph properties (log10(MAE))

Triangle Tailed Tri Star 4-Cycle IsConnected Diameter Radius

GCN 0.4186 0.3248 0.1798 0.2822 −1.7057 −2.4705 −3.9316

+ DOS/PDOS 0.3198 0.3360 0.3623 0.2784 −1.8511 −3.3207 −4.1816

GIN 0.3569 0.2373 0.0224 0.2185 −1.9239 −3.3079 −4.7584

+ DOS/PDOS 0.1355 0.1430 0.0260 0.0981 −1.9691 −3.2374 −4.6507

• DOS involves graph-level features. We pass DOS into a MLP and add the transformed
DOS to the final layer of a GNN (right after pooling layer).

• PDOS involves node-level features. We concatenate the original node features (i.e.,
degree) of the graph with the PDOS before input to a GNN.

In the experiments we focus on two types of GNN: GCN [20], and GIN [21]. For hyper-
parameters, we use 6 layers and hidden size 128. Batch normalization is applied after each
layer. We use Adam as optimizer with learning rate 0.001. For both DOS and PDOS the
histogram’s number of bins is set as 100.

The results are shown in Table 5. For both GIN and GCN, adding DOS and PDOS helps
boost the performance of counting substructures as well as regressing graph properties dra-
matically in most cases. The results support that the DOS and PDOS contain additional
information that cannot be extracted by GNNs; hence, adding them enhances the expres-
sive power of GNNs. Graph eigenspectrum captures important structural graph properties
like the diameter, connectedness, clustering, etc. [9]. DOS and LDOS contain rich spectral
information that are thus helpful for characterizing a graph.

Characterizing the expressiveness of DOS and LDOS theoretically is an interesting direc-
tion which we aim to investigate in the future. In fact, Huang et al. [19] proved that LDOS
contains all information regarding the return probabilities for each node. A broader research
question is to discover the relationship between the graph spectrum and the graph isomor-
phism test, which historically has only been studied under certain conditions [51].

5 Conclusion

We propose A- DOGE, an unsupervised graph embedding technique designed to efficiently
capture structural properties as well as node labels and attributes of a graph. To this end
A- DOGE uses spectral density, or density of states (DOS), derived from the eigenspectrum
of the graph, as a tool to capture both global and local properties of a graph. Further, we
extend local density of states to leverage node labels and attributes, and capitalize on fast
approximation algorithms making A- DOGE efficient and scalable to large graphs both in
terms of time and space. Being unsupervised, it is not only suitable for downstream supervised
graph classification tasks, but also applies well to exploratory graph analysis. Through both
quantitative and qualitative experiments, we show the efficacy and efficiency of A- DOGE,
where it outperforms unsupervised baselines and performs comparably to the supervised
GNNs on graph classification tasks, and provides various insights into the analysis of real-
world attributed graphs.

123

Density of states for fast embedding node-attributed graphs 2481

Acknowledgements This work is sponsored by NSF CAREER 1452425. We also thank PwC Risk and
Regulatory Services Innovation Center at CMU. Any conclusions expressed in this material are those of
the authors and do not necessarily reflect the views of the funding parties.

Funding Open Access funding provided by Carnegie Mellon University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Wale N, Watson IA, Karypis G (2008) Comparison of descriptor spaces for chemical compound retrieval
and classification. Knowl Inf Syst 14(3):347–375

2. Przulj N (2010) Biological network comparison using graphlet degree distribution. Bioinform 26(6):853–
854

3. Duen H, Carey N, Jeffrey W, AdamW, Christos F (2011) Polonium: tera-scale graph mining for malware
detection. In: SIAM SDM

4. Ribeiro B, Chen N, Kovacec A (2019) Shaping graph pattern mining for financial risk. Neurocomputing
326:123–131

5. Mieghem PV (2011) Graph spectra for complex networks. Cambridge University Press, Cambridge
6. Pothen A, Simon HD, Liou K-P (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM

J Matrix Anal Appl 11(3):430–452
7. Fill JA (1991) Eigenvalue bounds on convergence to stationarity for nonreversible markov chains, with

an application to the exclusion process. Ann Appl Probab 62–87
8. Chakrabarti D, Wang Y, Wang C, Leskovec J, Faloutsos C (2008) Epidemic thresholds in real networks.

ACM TISSEC 10(4):1–26
9. Jin S, Zafarani R (2020) The spectral zoo of networks: embedding and visualizing networks with spectral

moments. In: KDD, pp 1426–1434
10. Dong K, Benson AR, Bindel D (2019) Network density of states. In: KDD, pp 1152–1161
11. Verma S, Zhang Z-L (2017) Hunt for the unique, stable, sparse and fast feature learning on graphs. In:

NIPS, pp 88–98
12. Tsitsulin A, Mottin D, Karras P, Bronstein A, Müller E (2018) Netlsd: hearing the shape of a graph. In:

KDD, pp 2347–2356
13. Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec: learning

distributed representations of graphs. arXiv:1707.05005
14. Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler–Lehman

graph kernels. J Mach Learn Res 12:2539–2561
15. Kriege NM, Giscard P-L, Wilson RC (2016) On valid optimal assignment kernels and applications to

graph classification. In: NIPS, pp 1615–1623
16. WuL, ZhangZ,NehoraiA, ZhaoL,XuF, LearningAS (2019) Sage: Scalable attributed graph embeddings

for graph classification. In: ICLR workshop on representation learning on graphs and manifolds
17. Neumann M, Garnett R, Bauckhage C, Kersting K (2016) Propagation kernels: efficient graph kernels

from propagated information. Mach Learn 102(2):209–245
18. Zhang Z, Wang M, Xiang Y, Huang Y, Nehorai A (2018) RetGK: graph kernels based on return proba-

bilities of random walks. In: NeurIPS, pp 3968–3978
19. Huang L, Graven AJ, Bindel D (2021) Density of states graph kernels. In: SDM, pp 289–297. SIAM
20. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: ICLR
21. Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: ICLR, pp 1–17
22. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast

localized spectral filtering. In: NIPS, pp 3837–3845
23. Levie R, Monti F, Bresson X, Bronstein MM (2019) CayleyNets: graph convolutional neural networks

with complex rational spectral filters. IEEE Trans Sign Process 67(1):97–109

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1707.05005

2482 L. Zhao et al.

24. Kriege NM, Johansson FD, Morris C (2020) A survey on graph kernels. Appl Netw Sci 5(1):6
25. Balcilar M, Guillaume R, Héroux P, Gaüzère B, Adam S, Honeine P (2021) Analyzing the expressive

power of graph neural networks in a spectral perspective. In: ICLR
26. Xu K, Hu W, Leskovec J, Jegelka S (2019) How powerful are graph neural networks? In: ICLR
27. Wang F, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of

states. Phys Rev Lett 86(10):2050
28. Li C, Sra S, Jegelka S (2016) Gaussian quadrature for matrix inverse forms with applications. In: Inter-

national conference on machine learning. PMLR, pp 1766–1775
29. Golub GH, Welsch JH (1969) Calculation of gauss quadrature rules. Math Comput 23(106):221–230
30. Golub GH,Meurant G (1997)Matrices, moments and quadrature ii; how to compute the norm of the error

in iterative methods. BIT Numer Math 37(3):687–705
31. Farkas IJ, Derényi I, Barabási A-L, Vicsek T (2001) Spectra of real-world graphs: beyond the semicircle

law. Phys Rev E 64(2):026704
32. Banerjee A, Jost J (2008) Spectral plot properties: towards a qualitative classification of networks. Netw

Heterog Media 3(2):395
33. McGraw PN, Menzinger M (2008) Laplacian spectra as a diagnostic tool for network structure and

dynamics. Phys Rev E 77(3):031102
34. Cucuringu M, Mahoney MW (2011) Localization on low-order eigenvectors of data matrices.

arXiv:1109.1355
35. Mitrović M, Tadić B (2009) Spectral and dynamical properties in classes of sparse networks with meso-

scopic inhomogeneities. Phys Rev E 80(2):026123
36. Meurant G (2007)Matrices, moments, and quadrature. In: Milestones in matrix computation: the selected

works of Gene H. Golub with commentaries, p 380
37. Yanardag P, Vishwanathan S (2015) Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD

international conference on knowledge discovery and data mining, pp 1365–1374
38. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan S, Smola AJ, Kriegel H-P (2005) Protein function

prediction via graph kernels. Bioinformatics 21(suppl-1):47–56
39. Dobson PD, Doig AJ (2003) Distinguishing enzyme structures from non-enzymes without alignments. J

Mol Biol 330(4):771–783
40. RiesenK, BunkeH (2008) Iam graph database repository for graph based pattern recognition andmachine

learning. In: Joint IAPR international workshops on statistical techniques in pattern recognition (SPR)
and structural and syntactic pattern recognition (SSPR), pp 287–297. Springer

41. Traud AL,Mucha PJ, Porter MA (2012) Social structure of facebook networks. Physica A 391(16):4165–
4180

42. Zhengdao C, Lei C, Soledad V, Bruna J (2020) Can graph neural networks count substructures? Adv
Neural Inf Process Syst 33:10383–10395

43. Corso G, Cavalleri L, Beaini D, Liò P, Veličković P (2020) Principal neighbourhood aggregation for graph
nets. Adv Neural Inf Process Syst 33:13260–13271

44. Duvenaud DK, Maclaurin D, Aguilera-Iparraguirre J, Gómez-Bombarelli R, Hirzel T, Aspuru-Guzik A,
Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. Adv Neural inf
Process Syst 28

45. FanW,MaY, Li Q, HeY, Zhao E, Tang J, YinD (2019)Graph neural networks for social recommendation.
In: The world wide web conference, pp 417–426

46. Shi L, Zhang Y, Cheng J, Lu H (2019) Skeleton-based action recognition with directed graph neural
networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp
7912–7921

47. Bouritsas G, Frasca F, Zafeiriou S, Bronstein MM (2020) Improving graph neural network expressivity
via subgraph isomorphism counting. arXiv:2006.09252

48. Barceló P, Geerts F, Reutter JL, Ryschkov M (2021) Graph neural networks with local graph parameters.
Adv Neural Inf Process Syst 34:25280–25293

49. SatoR,YamadaM,KashimaH (2021)Random features strengthen graph neural networks. In: Proceedings
of the 2021 SIAM international conference on data mining (SDM), pp 333–341. SIAM

50. Abboud R, Ceylan İİ, Grohe M, Lukasiewicz T (2021) The surprising power of graph neural networks
with random node initialization. In: Proceedings of the thirtieth international joint conference on artifical
intelligence (IJCAI)

51. Babai L, Grigoryev DY, Mount DM (1982) Isomorphism of graphs with bounded eigenvalue multiplicity.
In: Proceedings of the fourteenth annual ACM symposium on theory of computing, pp 310–324

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1109.1355
http://arxiv.org/abs/2006.09252

Density of states for fast embedding node-attributed graphs 2483

Lingxiao Zhao received the B.E. degree in electrical engineering from
Xi’an Jiaotong University, Xi’an, China, in 2016, and the M.S. degree
in 2018 in electrical and computer engineering from Carnegie Mel-
lon University, Pittsburgh, PA, USA, where he is currently working
toward the Ph.D. degree in Machine Learning joint Public Policy with
Heinz College and Machine Learning Department. His research inter-
ests include deep learning on graphs and many applications with graph
structured data.

Saurabh Sawlani is a research engineer at SoundHound Berlin, special-
izing in Machine Learning algorithms for Voice AI. He holds a PhD in
Algorithms Combinatorics and Optimization from Georgia Institute of
Technology.

Leman Akoglu is the Heinz College Dean’s Associate Professor of
Information Systems at Carnegie Mellon University. She has also
received her Ph.D. from CSD/SCS of Carnegie Mellon University in
2012. Dr. Akoglu’s research interests broadly span machine learning
and data mining, and specifically graph mining, pattern discovery and
anomaly detection, with applications to fraud and event detection in
diverse real-world domains. Dr. Akoglu is a recipient of the SDM/IBM
Early Career Data Mining Research award (2020), National Science
Foundation CAREER award (2015) and US Army Research Office
Young Investigator award (2013). Her early work on graph anomalies
has been recognized with the Most Influential Paper (PAKDD 2020),
which was awarded the Best Paper (PAKDD 2010). Her research has
been supported by the NSF, US ARO, DARPA, Adobe, Capital One
Bank, Facebook, Northrop Grumman, PNC Bank, PwC, and Snap Inc.

123

	Density of states for fast embedding node-attributed graphs
	Abstract
	1 Introduction
	1.1 Prior work
	Unsupervised explicit graph embedding (UEGE)
	Graph kernels (GK)
	Graph neural networks (GNNs)

	1.2 Our contributions

	2 Problem statement and preliminaries
	3 Graph-level embedding with A-DOGE
	3.1 Motivation
	3.2 Spectrum as histogram: DOS, LDOS, cLDOS features
	3.2.1 Density of states (DOS)
	3.2.2 Local density of states (LDOS)
	3.2.3 Coupled local density of states (cLDOS)

	3.3 Functions over the spectrum: aggregate features
	3.3.1 Chebyshev polynomials
	3.3.2 Power functions

	3.4 A-DOGE: overall summary
	3.5 Computational complexity

	4 Experiments
	4.1 Experiment setup
	4.2 Graph classification
	4.3 Graph data mining
	4.4 Efficiency
	4.5 Boosting GNNs

	5 Conclusion
	Acknowledgements
	References

