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Abstract
This paper contributes multivariate versions of seven commonly used elastic similarity and
distance measures for time series data analytics. Elastic similarity and distance measures can
compensate for misalignments in the time axis of time series data. We adapt two existing
strategies used in a multivariate version of the well-known Dynamic Time Warping (DTW),
namely, Independent and Dependent DTW, to these seven measures. While these measures
canbe applied to various time series analysis tasks,wedemonstrate their utility onmultivariate
time series classification using the nearest neighbor classifier. On 23well-known datasets, we
demonstrate that each of the measures but one achieves the highest accuracy relative to others
on at least one dataset, supporting the value of developing a suite of multivariate similarity
and distance measures. We also demonstrate that there are datasets for which either the
dependent versions of all measures are more accurate than their independent counterparts or
vice versa. In addition, we also construct a nearest neighbor-based ensemble of the measures
and show that it is competitive to other state-of-the-art single-strategymultivariate time series
classifiers.
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series classification · Elastic similarity measures · Elastic distance measures · Dynamic
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1 Introduction

Elastic similarity and distance measures, such as the well-known Dynamic Time Warping
(DTW) [1], are a key tool in many forms of time series analytics. Elastic similarity and
distance measures can align temporal misalignments between two series while computing
the similarity or distance between them. Examples of their application include clustering
[2–4], classification [5, 6], anomaly detection [7, 8], indexing [9], subsequence search [10]
and segmentation [11].

While numerous elastic similarity and distance measures have been developed [6, 12, 13],
most of these measures have been defined only for univariate time series. One elastic measure
that has previously been extended to the multivariate case is DTW [14]. That work identified
twokey strategies for such extension. The independent strategy applies the univariatemeasure
to each dimension and then sums the resulting distances. The dependent strategy treats the
multivariate series as a single series in which each time step has a single multidimensional
point. DTW is then applied using Euclidean distances between the multidimensional points
of the two series.

This paper extends seven further key univariate similarity and distancemeasures, presented
in Table 1, to the multivariate case. We choose these seven specific measures because our
research is largely focused on classification and these measures have been used in many
well-known univariate similarity and distance-based classifiers such as Elastic Ensemble [5],
Proximity Forest [15], and two state-of-the-art univariate time series classifiers HIVE-COTE
1.0 [16] and TS-CHIEF [17].

This extension is important, because many real-world time series are multidimensional.
For some measures, it is straightforward, but non-trivial for three measures, LCSS, MSM,
and TWE. We show that each measure except one provides more accurate nearest neighbor
classification than any alternative for at least one dataset. This demonstrates the importance
of having a range of multivariate elastic measures.

It has been shown that the dependent and independent strategies each outperformed the
other on some tasks when applied to DTW [14]. One of this paper’s significant outcomes

Table 1 Measures used in this paper

Measure Parameters Time complexity References

Lp (e.g. Euclidean) N/A O(L · D) N/A

DTWFI , DTWFD N/A (full window) O(L2 · D) [1, 14]

DTWI , DTWD window size w O(L · w · D) [1]

DDTWFI , DDTWFD N/A (full window) O(L2 · D) [18]

DDTWI , DDTWD window size w O(L · w · D) [18]

WDTWI , WDTWD N/A O(L2 · D) [19]

WDDTWI , WDDTWD N/A O(L2 · D) [5]

LCSSI , LCSSD window size w, ε O(L · w · D) [20, 21]

ERPI , ERPD window size w, penalty g O(L · w · D) [22, 23]

MSMI , MSMD cost c O(L2 · D) [24]

TW EI , TW ED stiffness ν, penalty λ O(L2 · D) [25]

Measure namewith subscript I indicates independentmeasures and subscript D indicates dependentmeasures.
L is the length of the time series and D is the number of dimensions. The seven measures we extend to the
multivariate case in this paper are: DDTW, WDTW, WDDTW, LCSS, ERP, MSM and TWE
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is to demonstrate that there are some tasks for which the independent strategy is superior
across all measures and others for which the dependent strategy is better. This establishes
a fundamental relationship between the two strategies and different tasks, countering the
possibility that differing performance for the two strategies when applied to DTW might
have been coincidental.

We further illustrate the value of multiple measures by developing a multivariate version
of the Elastic Ensemble [5].We demonstrate that this ensemble of nearest neighbor classifiers
using all multivariate measures provides accuracy competitive with the state-of-the-art single
strategies in multivariate time series classification.

We organize the rest of the paper as follows. Section2 presents key definitions and a brief
review of existing methods. Section3 describes our new multivariate similarity and distance
measures. Section4 presents multivariate time series classification experiments on the UEA
multivariate time series archive, and includes discussion of the implications of the results.
Finally, we draw conclusions in Sect. 5, with suggestions for future work.

2 Related work

2.1 Definitions

We here present key notations and definitions.
A time series T of length L is an ordered sequence of L time-value pairs T =

〈(t1, x1), . . . , (tL , xL)〉, where ti is the timestamp at sequence index i , i ∈ {1, . . . , L}, and
xi is a D-dimensional point representing observations of D real-valued variables or features
at timestamp ti . Each time point xi ∈ R

D is defined by {x1i , . . . , xdi , . . . , xDi }.
Usually, timestamps ti are assumed to be equidistant, and thus omitted, which results in

a simpler representation where T = 〈x1, . . . , xL 〉.
A univariate (or single-dimensional) time series is a special case where a single variable

is observed (D = 1). Therefore, xi is a scalar, and consequently, T = 〈x1, . . . , xL 〉.
A labeled time series dataset S consists of n labeled time series indexed by k, where

k ∈ {1, . . . , n}. Each time series Tk in S is associated with a label yk ∈ {1, . . . , c}, where c
is the number of classes.

A similarity measure computes a real value that quantifies similarity between two sets of
values. A distance measure computes a real value that quantifies dissimilarity between two
sets of values. For time series Q and C , a similarity or distance measure M is defined as

M(Q,C) → R (1)

A measure M is a metric if it has the following properties:

1. Non-negativity: M(Q,C) ≥ 0,
2. Identity: M(Q,C) = 0, if and only if Q = C ,
3. Symmetry: M(Q,C) = M(C, Q),
4. Triangle Inequality: M(Q,C) ≤ M(Q, T ) + M(T ,C) for any time series Q,C and T .

In a Time Series Classification (TSC) task, a time series classifier is trained on a labeled
time series dataset, and then used to predict labels of unlabeled time series. The classifier is
a predictive mapping function that maps from the space of input variables to discrete class
labels.
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In this paper, to perform TSC tasks, we use 1-nearest neighbor (1-NN) classifiers, which
use time series-specific similarity and distance measures to compute the nearest neighbors
between each time series.

2.2 Univariate TSC

A comprehensive review of the most common univariate TSC methods developed prior to
2017 can be found in [6]. Herewe summarize key univariate TSCmethods following awidely
used categorization as follows:

– Similarity and distance-based methods compare whole time series using similarity and
distance measures, usually in conjunction with 1-NN classifiers. Particularly, 1-NN with
DTW [1, 26] was long considered as the de facto standard for univariate TSC. More
accurate similarity and distance-based methods combine multiple measures, including
1-NN-based ensemble Elastic Ensemble (EE) [5], and tree-based ensemble Proximity
Forest (PF) [15]. In Sect. 3 we will explore more details of several similarity and distance
measures used in TSC.

– Interval-based methods use summary statistics relating to subseries in conjunction with
location information as discriminatory features. Examples include Time Series Forest
(TSF) [27], Random Interval Spectral Ensemble (RISE) [16], Canonical Interval Forest
(CIF) [28] and Diverse Representation CIF (DrCIF) [28]. Currently, DrCIF is the most
accurate classifier in this category [29].

– Shapelet-based methods extract or learn a set of discriminative subseries for each class
which are then used as search keys for the particular classes. The presence, absence or
distance of a shapelet is used as discriminative information for classification. Examples
include Shapelet Transform (ST) [30] and Generalized Random Shapelet Forest (gRSF)
[31], and a time contracted version of ST called Shapelet Transform Classifier (STC)
[32].

– Dictionary-based methods transform time series into a bag-of-word model. The series is
either discretized in time domain such as in Bag of Patterns (BoP) [33] or it is transformed
into the frequency domain such as in Bag-of-SFA-Symbols (BOSS) [34], and Word
eXtrAction for time SEries cLassification (WEASEL) [35] and Temporal Dictionary
Ensemble (TDE) [36]. Currently, TDE is the most accurate classifier in this category
[29].

– Kernel-based methods transform the time series using a transformation function and then
use a general purpose classifier. A notable example is RandOm Convolutional KErnel
Transform (ROCKET) [37] which uses random convolutions to transform the data, and
then uses logistic regression for classification.

– Deep-learningmethods can be divided into two main types of architectures: (1) based on
recurrent neural networks [38], or (2) based on temporal convolutions, such as Residual
Neural Network (ResNet) [39] and InceptionTime [40]. A recent review of deep learning
methods shows that architectures that use temporal convolutions show higher accuracy
[41].

– Combinations of Methods combine multiple methods to form ensembles. Examples
include HIVE-COTE (Hierarchical Vote Collective of Transformation-based Ensembles)
[16], which ensembles EE, ST, RISE and BOSS, and TS-CHIEF (Time Series Combi-
nation of Heterogeneous and Integrated Embeddings Forest) [17], which is a tree-based
ensemble where the tree nodes use similarity, distance, dictionary or interval-based split-
ters.
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Fig. 1 Independent DTW (DTWI , left) and dependent DTW (DTWD , right). Dimension 1 in series Q and
C is shown in blue, and the dimension 2 is shown in green (Color figure online)

InceptionTime, TS-CHIEF, ROCKET and HIVE-COTE have been identified to be state-
of-the-art classifiers for TSC [29]. The latest versions of HIVE-COTE, which do not include
EE, called HIVE-COTE 1.0 [32] and HIVE-COTE 2.0 [29], significantly improved the speed
of the original version [16]. While benchmarking on the UCR univariate TSC archive places
HIVE-COTE 1.0 behind ROCKET and TS-CHIEF on accuracy [32], recent benchmarking
[29] places HIVE-COTE 2.0 ahead on accuracy relative to all alternatives.

2.3 Multivariate TSC

Research into multivariate TSC has lagged behind univariate research. A recent paper [42]
reviews several methods used for multivariate TSC and compares their performance on the
UEAmultivariate time series archive [43]. Here, we present a short summary of multivariate
methods:

– Multivariate similarity and distance measures can be used with 1-nearest neighbor for
classification. DTW has previously been extended to the multivariate case using two key
strategies [14]. The independent strategy applies the univariate measure to each dimen-
sion and then sums the resulting distances. The dependent strategy treats each time step
as a multidimensional point. DTW is then applied on the Euclidean distances between
these multidimensional points. Figure1 illustrates these approaches, and we present def-
initions in Sect. 3. In addition, Shokoohi et al. [14] present an adaptive approach to select
between independent or dependent DTW based on the performance on the dataset. Since
this adaptive approach falls back to either the independent or dependent version based on
the performance, we only studied the independent and dependent strategies when exper-
imenting with single measures. However, in Sect. 3.7 we present an ensemble based on
our own version of an adaptive approach. We discuss its results in Sect. 4.4.

– Interval-based methods include RISE [16], TSF [27], and the recently introduced CIF
[28] and its extension DrCIF [29]. They extract intervals from each dimension separately.
CIF and DrCIF have shown promising results for multivariate classification [42].
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– Shapelet-based methods include gRSF [31] and time contracted Shapelet Transform
(STC) [32]. According to the review [42], STC is the current most accurate multivariate
method that uses shapelets [42].

– Dictionary-based methods include WEASEL with a Multivariate Unsupervised Sym-
bols and dErivatives (MUSE) (a.k.a WEASEL+MUSE, or simply MUSE) [35] and time
contracted Bag-of-SFA-Symbols (CBOSS) [44].

– Kernel-based methods include an extension of ROCKET to the multivariate case, imple-
mented in the sktime library [45]. It combines information from multiple dimensions
using small subsets of dimensions.

– Combinations of Methods include a multivariate version of HIVE-COTE 1.0 which com-
bines STC, TSF, CBOSS, and RISE [32], applying each constituent algorithm to each
dimension separately.

– Deep-learning-based methods that directly support multivariate series include Time
Series Attentional Prototype Network (TapNet) [46], ResNet [41] and InceptionTime
[40].

To benchmark key algorithms covered in the review, Ruiz et al. compared 12 classifiers
on 20 UEAmultivariate datasets with equal length that completed in a reasonable time. They
found that the most accurate multivariate TSC algorithms are ROCKET, InceptionTime,
MUSE, CIF, HIVE-COTE and MrSEQL in that order [42, Fig. 12a].

3 Similarity and distancemeasures

In this section, we present the proposed similarity and distance measures. For this study, we
extend to the multivariate case the set of univariate similarity and distance measures used in
EE and PF (and thus TS-CHIEF and some versions of HIVE-COTE).

The independent strategy proposed by [14] simply sums over the results of applying DTW
separately to each dimension. For completeness, we propose to extend this idea to allowing
any p-norm. In this case, the previous approach extends directly to any univariate measure
as follows.

Definition 1 Independent Measures For any univariate measure m(Q1,C1) → R and mul-
tivariate series Q and C , an independent multivariate extension of m is defined by

I nd(m, Q,C, p) =
(

D∑
d=1

∣∣∣m(Qd ,Cd)

∣∣∣p
)1/p

(2)

We compute the distance between Q and C separately for each dimension, and then take
the p-norm of the results. Here, Qd (orCd ) represents the univariate time series of dimension
d such that Qd =< qd1 , . . . , qdL > (or Cd =< cd1 , . . . , c

d
L >). The parameter p is set to 1 in

Shokoohi-Yekta et al. [14].
For consistency with previous work, we assume a 1-norm unless otherwise specified. For

ease of comprehension, we indicate an independent extension of a univariate measure by
adding the subscript I . Hence, DTWI (Q,C) = I nd(DTW , Q,C, 1), WDTWI (Q,C) =
I nd(WDTW , Q,C, 1) and so forth.

However, in most cases it requires more than such a simple formulation to derive a depen-
dent extension, and hence we below introduce each of the univariate measures together with
our proposed dependent variant.
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3.1 Lp distance (Lp)

3.1.1 Univariate Lp distance

The simplest way to calculate distance between two time series is to use Lp distance, also
known as the Minkowski distance.

Let us denote by Q and C two univariate (D = 1) time series of length L where qi and
ci are scalar values at time point i from the two time series. Equation3 formulates the Lp
distance between Q and C .

Lp(Q,C) =
(

L∑
i

|qi − ci |p
)1/p

(3)

The parameter p is the order of the distance. The L1 (Manhattan distance) and L2

(Euclidean distance) distances are widely used.

3.1.2 Multivariate Lp distance

We here show that Independent Lp distance (LpI ) and Dependent Lp distance (LpD) are
identical for a given value of the parameter p.

Definition 2 Independent LpDistance (LpI ) In this case, we simply compute the Lp distance
between Q and C separately for each dimension, and then take the p-norm of the results.

LpI (Q,C) =
(

D∑
d=1

∣∣∣Lp(Qd ,Cd)

∣∣∣p
)1/p

=
(

D∑
d=1

L∑
i=1

∣∣∣qdi − cdi

∣∣∣p
)1/p

(4)

Definition 3 Dependent LpDistance (LpD) In this case,we compute the Lp distance between
each multidimensional point qi ∈ R

D and ci ∈ R
D , and take the p-norm of the results.

LpD(Q,C) =
(

L∑
i=1

|Lp(qi, ci)|p
)1/p

=
(

L∑
i=1

D∑
d=1

∣∣∣qdi − cdi

∣∣∣p
)1/p

(5)

Consequently both the independent and the dependent versions of the non-elastic Lp
distance will produce the same result when used with the same value of p.

In the context of TSC, Lp distances are of limited use because they cannot align two
series that are misaligned in the time dimension, since they compute one-to-one differences
between corresponding points only.

For example, in an electrocardiogram (ECG) signal, two measurements from a patient at
different times may produce slightly different time series which belong to the same class (e.g.
a certain heart condition). Ideally, if they belong to the same class, an effective similarity or
distance measure should account for such “misalignments” in the time axis, while capturing
the similarity or distance.
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2672 A. Shifaz et al.

Elastic similarity and distance measures such as DTW tackle this issue. Elastic measures
are designed to compensate for temporal misalignments in time series that might be due
to stretched, shrunken or misaligned subsequences. From Sects. 3.2 to 3.6, we will present
various elastic similarity and distance measures and show that independent and dependent
strategies are substantially different.

3.2 Dynamic time warping (DTW) and relatedmeasures

3.2.1 Univariate DTW

The most widely used elastic distance measure is DTW [1]. By contrast to measures such
as the Lp distance, DTW is an elastic distance measure, that allows one-to-many align-
ment (“warping”) of points between two time series. For many years, 1-NN with DTW was
considered as the traditional benchmark algorithm for TSC [12].

DTW is efficiently solved using a dynamic programming technique. Let ΔDTW be an
(L+1)-by-(L+1) dynamic programming costmatrixwith indices starting from i = 0, j = 0.
The first row i = 0 and the first column j = 0 defines the border conditions:

ΔDTW (0, 0) = 0

ΔDTW (i, 0) = +∞, 1 ≤ i ≤ L

ΔDTW (0, j) = +∞, 1 ≤ j ≤ L

(6)

The rest of the elements (i, j) with i > 0 and j > 0 are defined as the squared Euclidean
distance between two corresponding points qi and c j—i.e.ΔDTW (i, j) = (qi −c j )2 and the
minimum of the cumulative distances of the previous points. Equation (7) defines element
(i, j), where i > 0 and j > 0, of the cost matrix as follows:

ΔDTW (i, j) = (qi − c j )
2 + min

⎧⎨
⎩

ΔDTW (i − 1, j − 1)
ΔDTW (i, j − 1)
ΔDTW (i − 1, j)

(7)

The cost matrix represents the alignment of the two series as according to the DTW
algorithm. DTW between two series Q and C is the accumulated cost in the last element of
the cost matrix (i.e. i, j = L + 1 ) as defined in Eq. (8):

DTW (Q,C) = ΔDTW (L, L). (8)

Note that, except for LCSS, the boundary conditions of the matrix remain the same for
the multivariate measures. Hence we do not repeat the boundary conditions in Eq. (6) for
measures other than LCSS. We simply modify Eq. (7) accordingly to each measure.

DTW has a parameter called “window size” (w), which helps to prevent pathological
warpings by constraining themaximumallowedwarping distance. For example,whenw = 0,
DTWproduces a one-to-one alignment,which is equivalent to theEuclideandistance.A larger
warping window allows one-to-many alignments where points from one series can match
points from the other series over longer time frames. Therefore, w controls the elasticity of
the distance measure.

Different methods have been used to select the parameterw. In somemethods, such as EE,
and HIVE-COTE,w is selected using leave-one-out cross-validation. Some algorithms select
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the window size randomly (e.g. PF and TS-CHIEF select window sizes from the uniform
distribution U (0, L/4)).

Parameter w also improves the computational efficiency, since in most cases, the ideal w
is much less than the length of the series [47]. When w is small, DTW runs relatively fast,
especially with lower bounding, and early abandoning techniques [48–51]. Time complexity
to calculate DTW with a warping window is O(L · w), instead of O(L2) for the full DTW.

In this paper, we use DTW to refer to DTWwith a cross-validated window parameter and
DTWF to refer to DTW with window set to series length.

3.2.2 Dependent multivariate DTW

Definition 4 Dependent DTW (DTWD) Dependent DTW (DTWD) uses all dimensions
together when computing the point-wise distance between each point in the two time series
[14]. In this method, for each point in the series, DTW is allowed to warp across the dimen-
sions.

In this case, the squared Euclidean distance between two univariate points—(qi − c j )2—
in Eq. (7) is replaced with the L2-norm computed between the two multivariate points qi and
cj as in Eq. (9).

L2(qi, cj)2 =
D∑

d=1

(qdi − cdj )
2 (9)

3.2.3 Derivative DTW (DDTW)

Derivative DTW (DDTW) is a variation of DTW, which computes DTW on the first deriva-
tives of time series. Keogh et al. [18] developed this version to mitigate some pathological
warpings, particularly, cases where DTW tries to explain variability in the time series values
by warping the time axis, and cases where DTW misaligns features in one series which are
higher or lower than its corresponding features in the other series. The derivative transfor-
mation of a univariate time point q ′

i is defined as:

q ′
i = (qi − qi−1 + (qi+1 − qi−1)/2)

2
(10)

Note that q ′
i is not defined for the first and last element of the time series. Once the two

series have been transformed, DTW is computed as in Eq. (8).
Multivariate versions of DDTW are very straightforward to implement. We calculate the

derivatives separately for each dimension, and then use Eqs. (2) and (9) to compute from the
derivatives independent DDTW (DDTWI ) and dependent DDTW (DDTWD), respectively.

3.2.4 Weighted DTW (WDTW)

Weighted DTW (WDTW) is another variation of DTW, proposed by [19], which uses a
“soft warping window” in contrast to the fixed warping window sized used in classic DTW.
WDTW penalizes large warpings by assigning a non-linear multiplicative weight w to the
warpings using the modified logistic function in Eq. (11):

weight|i− j | = weightmax

1 + e−g·((|i− j |−L)/2)
, (11)
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where weightmax is the upper bound on the weight (set to 1), L is the series length, and g is
the parameter that controls the penalty level for large warpings. Larger values of g increases
the penalty for warping.

When creating the dynamic programming distance matrix ΔWDTW , the weight penalty
weight|i− j | for a warping distance of |i− j | is applied, so that the (i, j)-th ground cost in
the matrix ΔWDTW is weight|i− j | · (qi − ci )2. Therefore, the new equation for WDTW is
defined as

ΔWDTW (i, j) = weight|i− j | · (qi − c j )
2

+min

⎧⎨
⎩

ΔWDTW (i − 1, j − 1)
ΔWDTW (i, j − 1)
ΔWDTW (i − 1, j)

(12)

WDTW(Q,C) = ΔWDTW (L, L). (13)

Parameter g may be selected using leave-one-out cross-validation as in EE and HIVE-
COTE, or selected randomly as in PF and TS-CHIEF (g ∼ U (0, 1)).

Since WDTW does not use a constrained warping window (i.e. the maximum warping
distance |i− j | may be as large as L), its time complexity is O(L2), which is higher than
DTW.

3.2.5 Dependent multivariate WDTW

Definition 5 DependentWDTWThe dependent version ofWDTW simply inserts the weight
into DTWD . We define Dependent WDTW (WDTWD) as

ΔWDTWD (i, j) = weight|i− j | · L2(qi, cj)2

+ min

⎧⎨
⎩

ΔWDTWD (i − 1, j − 1)
ΔWDTWD (i − 1, j)
ΔWDTWD (i, j − 1),

(14)

WDTWD(Q,C) = ΔWDTWD (L, L). (15)

3.2.6 Weighted derivative DTW (WDDTW)

The ideas behindDDTWandWDTWmay be combined to implement anothermeasure called
Weighted Derivative DTW (WDDTW). This method has also been traditionally used in some
ensemble algorithms [6].

Multivariate versions ofWDDTWare also straightforward to implement.We calculate the
derivatives separately for each dimension, and then useEqs. (2) and (14)with them to compute
independent WDDTW (WDTW I ) and dependent WDDTW (WDTWD), respectively.

3.3 Longest common subsequence (LCSS)

3.3.1 Univariate LCSS

Longest Common Subsequence (LCSS) distance is based on the edit distance algorithm,
which is used for string matching [20, 21]. Figure2 shows an example string matching
problem. One of the early works that use LCSS for time series classification by Vlachos et
al. [21] states that onemotivation to use LCSS-based approach is that it is more robust to noise

123



Elastic similarity and distance measures… 2675

Fig. 2 Example of string matching with LCSS. Image on the left side shows direct pairwise matching of two
strings using LCSS. Image on the right side shows matching of two strings with some gaps or unmacthed
letters (shown as “–”) allowed between the matched letters. This allows matching with “elasticity” as in DTW

compared to DTW. This is because DTWmatches all points, including the outliers. However,
LCSS can allow some points to remain unmatched while retaining the order of matching.
In addition LCSS is designed to be more efficient than DTW since it does not require the
Lp computation. In TSC, the LCSS algorithm is modified to work with real-valued data by
adding a threshold ε for real-value comparisons. Two real values are considered a match if
the difference between them is not larger than the threshold ε. A warping window can also
be used in conjunction with the threshold to constrain the degree of local warping.

The unnormalized LCSS distance (LCSSUN ) between Q and C is

ΔLCSS(0, 0) = 0 and ΔLCSS(i, 0) = ΔLCSS(0, j) = −∞, 1 ≤ i, j ≤ L

ΔLCSS(i, j) =
⎧⎨
⎩
1 + ΔLCSS(i − 1, j − 1) i f |qi − c j | ≤ ε

max

{
ΔLCSS(i − 1, j)
ΔLCSS(i, j − 1)

otherwise,
(16)

LCSSUN (Q,C) = ΔLCSS(L, L), (17)

In practice, LCSSUN is then normalized based on the series length L .

LCSS(Q,C) = 1 − LCSSUN (Q,C)

L
, (18)

LCSS can be used with a window parameterw similar to DTW.With a window parameter,
LCSS has a time complexity of O(L · w). In EE and PF, the parameter ε is selected from
[ σ
5 , σ ], where σ is the standard deviation of the whole dataset.

3.3.2 Independent multivariate LCSS

Independent multivariate LCSSI uses the Eq. (2) and computes the LCSS for dimensions
separately. However, in this case we use a separate ε parameter for each dimension. We
compute the standard deviation σ per dimension when sampling ε. Sampling ε for each
dimension can be useful if the data is not normalized.

3.3.3 Dependent multivariate LCSS

Definition 6 Dependent LCSS Dependent LCSS (LCSSD) is similar to Eq. (16), except that
to compute distance between two multivariate points we use Eq. (9) and an adjustment is
made to the range of parameter ε to make allowance for multidimensional distances tending
to be larger than univariate. In this case, parameter ε is selected from [ 2·D·σ

5 , 2 ·D ·σ ], where
σ the standard deviation of the whole dataset. Except for this adjustment, parameters are
sampled similar to the way it was selected in the univariate LCSS, in EE.

ΔLCSSD (i, j) =
⎧⎨
⎩
1 + ΔLCSSD (i−1, j−1) i f L2(qi, cj)2 ≤ ε

max

{
ΔLCSSD (i−1, j)
ΔLCSSD (i, j−1)

otherwise,
(19)
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LCSSUND(Q,C) = ΔLCSSD (L, L), (20)

Similar to the univariate case, LCSSUND is then normalized based on the series length
L .

LCSSD(Q,C) = 1 − LCSSUND(Q,C)

L
. (21)

3.3.4 Other LCSSD formulations

An early work byVlachos et al. [52] also presented a way to extendmeasures to themultivari-
ate case. Their proposed dependent DTW is similar to Shokoohi et al.’s DTWD formulation
in Eq. (9), but their LCSS’s formulation is slightly different to our LCSS formulation present
in Eq. (19). Equation22 defines this version of LCSS named Vlachos_LCSSD .

ΔVlachos_LCSSD (i, j) =

⎧⎪⎪⎨
⎪⎪⎩
1 + ΔLCSSD (i−1, j−1) i f ∀ d ∈ D, |qdi − cdj | < ε

and|i − j | ≤ δ

max

{
ΔLCSSD (i−1, j)
ΔLCSSD (i, j−1)

otherwise,
(22)

Our method treats qi and ci as each being multidimensional points, placing a single
constraint on the distance between them, whereas Vlachos et al. treat the dimensions inde-
pendently, with separate constraints on each. We believe that our method is more consistent
with the spirit of dependent measures.

Vlachos_LCSSD allows matching values within both data dimensions and the time
dimension, while our LCSSD matches values only in data dimensions. They have an addi-
tional parameter δ that controls matching in the time dimension.

Our method also requires an adjustment to LCSS’s ε parameter as described in Sect. 3.3.3.
This may help to cater for unnormalized data, since Vlachos_LCSSD uses the one ε across
all dimensions.

3.4 Edit distance with real penalty (ERP)

3.4.1 Univariate ERP

Edit Distance with Real Penalty (ERP) [22, 23] is also based on string matching algorithms.
In a typical string matching algorithm, two strings, possibly of different lengths, may be
aligned by doing the least number of add, delete or change operations on the symbols. When
aligning two series of symbols, the authors proposed that the delete operations in one series
can be thought of as adding a special symbol to the other series. Chen et al. [22] refer to these
added symbols as a “gap” element.

ERP uses the Euclidean distance between elements when there is no gap, and a constant
penalty when there is a gap.

This penalty parameter for a gap is denoted as g (see Eq. (23)).
For time series, with real values, similar to the parameter ε in LCSS, a floating point

comparison threshold may be used to determine a match between two values. This idea
was used in a measure called Edit Distance on Real sequences (EDR) [22]. However, using
a threshold breaks the triangle inequality. Therefore, the same authors proposed a variant,
namely ERP, which is a measure that follows the triangle inequality. Being a metric gives
some advantages to ERP over DTW or LCSS in tasks such as indexing and clustering.
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ERP can also be used with a window parameter w similar to DTW. With the window
parameter, ERP has the same time complexity as DTW. The parameter g is selected from
[ σ
5 , σ ], with σ being the standard deviation of the training data. Formally, ERP is defined as,

ΔERP (i, j) = min

⎧⎨
⎩

ΔERP (i − 1, j − 1) + (qi − c j )2

ΔERP (i − 1, j) + (qi − g)2

ΔERP (i, j − 1) + (c j − g)2
(23)

ERP(Q,C) = ΔERP (L, L). (24)

3.4.2 Dependent ERP

Definition 7 Dependent ERP We define Dependent ERP (ERPD) as,

ΔERPD (i, j) = min

⎧⎨
⎩

ΔERPD (i − 1, j − 1) + L2(qi, cj)2

ΔERPD (i − 1, j) + L2(qi, g)2

ΔERPD (i, j − 1) + L2(cj, g)2,
(25)

ERPD(Q,C) = ΔERPD (L, L). (26)

In Eq. (25), we note that the parameter g is a vector that is sampled separately for each
dimension. This is in contrast to the univariate case in Eq. (23) which uses the standard
deviation of the whole training dataset (parameter g).

In this case, all terms increase proportionally with respect to the increase in the number
of dimensions. So we do not need to adjust for the parameter g as we adjusted for ε in LCSS
in Sect. 3.3.3.

3.5 Move-split-merge (MSM)

3.5.1 Univariate MSM

Move-Split-Merge (MSM) is an edit distance-based distance measure introduced by [24].
The motivation is to propose a distance measure that is a metric invariant to translations and
robust to temporal misalignments. Measures such as DTW and LCSS are not metrics because
they fail to satisfy the triangle inequality. Invariance to translation is another design feature
of MSM when compared to ERP (see Sect. 3.4.1) [24]. For example consider two series X
and Y where X =< v0 · · · v100 > and Y =< v >, with v being a constant real value. ERP
requires 99 deletes to transform X into Y , and the cost of deletion is tied to the value of v,
since the cost of deletion is 0 if v = 0 or 99v otherwise (i.e. 99 merge). By contrast, in MSM,
the cost of deletion is independent of the value of v. This makes MSM translation-invariant
since it does not change when the same constant is added to two time series [24].

The distance between two series is computed based on the number and type of edit
operations required to transform one series to the other. MSM defines three types of edit
operations: move, merge and split. The move operation substitutes one value into another
value. The split operation inserts a copy of the value immediately after itself, and the merge
operation is used to delete a value if it directly follows an identical value. Figure3 illustrates
these edit operations.

The cost for a move operation is the pairwise distance between two points, and the cost
of split or merge operation depends on the parameter c.
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Fig. 3 Three edit operations used by MSM to transform one series to the other. MSM attempts to use the
minimum number of these operations to perform the transformation. The number of operations used quantifies
the distance between two series. Both split and merge operations incur a cost defined by the parameter c.
Inspired by [24]

Formally, MSM is defined as,

ΔMSM (i, j) = min

⎧⎨
⎩

ΔMSM (i−1, j−1) + |qi − c j |
ΔMSM (i−1, j) + cost(qi , qi−1, c j , c)
ΔMSM (i, j−1) + cost(c j , qi , ci−1, c),

(27)

MSM(Q,C) = ΔMSM (L, L). (28)

The costs of split and merge operations are defined by Eq. (29). In the univariate case, the
algorithm either merges two values or splits a value if the the value of a point qi is_between
two adjacent values (qi−1 and c j ).

cost(qi−1, qi , c j , c) =

⎧⎪⎪⎨
⎪⎪⎩
ci f qi−1 ≤ qi ≤ c j
ci f qi−1 ≥ qi ≥ c j

c + min

{ |qi − qi−1|
|qi − c j | otherwise.

(29)

In most algorithms (e.g. EE, PF, HIVE-COTE and TS-CHIEF), the cost parameter c for
MSM is sampled from 100 values generated from the exponential sequence {10−2, . . . , 102}
proposed in Stefan et al. [24].

3.5.2 Dependent multivariate MSM

Definition 8 Dependent MSMHere we combine Eqs. (27) and (9). The cost_multiv function
is explained in Sect. 3.5.3, and presented in Algorithm 1.

ΔMSMD (i, j) = min

⎧⎨
⎩

ΔMSMD (i − 1, j − 1) + L2(qi, cj)2

ΔMSMD (i − 1, j) + cost_multiv(qi,qi−1, cj, c)
ΔMSMD (i, j − 1) + cost_multiv(cj,qi, cj−1, c)

(30)

MSMD(Q,C) = ΔMSMD (L, L) (31)

3.5.3 Cost function for dependent MSM

A non-trivial issue when deriving a dependent variant ofMSM is how to translate the concept
of one point being between two others.

A naive approach would test whether a point x is_between points y and z in multidi-
mensional space by projecting x onto the hyperplane defined by y and z. However, this has
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Fig. 4 Example of checking whether a point is between two other points in 2 dimensions using a circle. In
the first case (left side), the yellow point is considered “in between” blue and green points. In the second
case (right side), the red point is considered to be “not in between” the green and blue points even though
its projection falls between red and blue points because orthogonally it is outside the circle defined by theses
points. This is one way to adapt the idea of checking if a point is between two other points in the univariate
case (1-dimension) as defined in Eq. (29). In Algorithm 1, we use a generalization of this idea and check if a
point is inside a hypersphere in D-dimensions (Color figure online)

serious limitations. For an intuitive example, let us use cities to represent points on a 2-D
plane.

Assume that we have two query cities Chicago and Santiago wish to determine which is
between New York and San Francisco. If we use vector projections, and project the position
of Santiago on to the line betweenNewYork and San Francisco, wewill find that it is between
them. Similarly, we will also find that Chicago is between NewYork and San Francisco using
this method. However, orthogonally Santiago is extremely far away from both New York and
San Francisco, so it would seemmore intuitive to define this function in a way that Chicago is
in between New York and San Francisco, but Santiago is not. Using this intuition, we define
the cost function in such a way that a point is considered to be in between two points only if
the point is “inside the hypersphere” defined by the other two points. Figure4 illustrates this
concept using three points.

We implement this idea in Algorithm 1. First we find the diameter of the hypersphere in
line 1 by computing ||qi−1 − cj||. In line 2, we find the midpoint mid along the line qi−1
and cj. Then we calculate distance to the midpoint using ||mid− qi|| (line 3). Once we have
the distance_to_mid , we check if this distance is larger than half the diameter. If its larger,
then the point qi is outside the hypersphere, and so we return c (line 5). If distance_to_mid
is less than half the diameter, then qi is inside the hypersphere, so we check to which point
(either qi−1 or cj) is closest. Then we return c plus the distance to the closest point as the
cost of the edit operation (line 9 to 12).

3.6 Time warp edit (TWE)

3.6.1 Univariate TWE

Time Warp Edit (TWE) [25] is a further edit-distance-based algorithm adapted to the time
series domain. The goal is to combine an Lp distance-based technique with an edit-distance-
based algorithm that supports warping in the time axis, i.e. has some sort of elasticity like
DTW, while also being a distance metric (i.e. it respects the triangle inequality). Being a
metric helps in time series indexing, since it speeds up time series retrieval process.

TWE uses three operations named match, deleteA, and deleteB . If there is a match, Lp
distance is used, and if not, a constant penalty λ is added. deleteA (or deleteB) is used to
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Algorithm 1: Cost of checking if a midpoint is inside the hypersphere defined by the
other two points
Input: cost_multiv(qi,qi−1, cj, c) : three points, and cost parameter c for MSM
Output: cost of operation

1 diameter = ||qi−1 − cj||;
2 mid = (qi−1 + cj)/2;
3 distance_to_mid = ||mid − qi||;
4 if distance_to_mid ≤ (diameter/2) then
5 return c;
6 else
7 dist_to_q_prev = ||qi−1 − qi||;
8 dist_to_c = ||cj − qi||;
9 if dist_to_q_prev < dist_to_c then

10 return c + dist_to_q_prev;
11 else
12 return c + dist_to_c ;
13

14

remove an element from the first (or second) series to match the second (or first) series.
Equations32, 33 and 34 define TWE and these three operations, respectively.

ΔTW E (i, j) = min

⎧⎨
⎩

ΔTW E (i − 1, j − 1) + γM match
ΔTW E (i − 1, j) + γA deleteA
ΔTW E (i, j − 1) + γB deleteB

(32)

TW E(Q,C) = ΔTW E (L, L) (33)

γM = (qi − c j )2 + (qi−1 − c j−1)
2 + 2 · ν match

γA = (qi − qi−1)
2 + ν + λ deleteA

γB = (c j − c j−1)
2 + ν + λ deleteB

(34)

Themultiplicative penalty ν1 is called the stiffness parameter.When ν = 0, TWEbecomes
more stiff like the Lp distance, and when ν = ∞, TWE becomes less stiff and more elastic
like DTW. The second parameter λ is the cost of performing either a deleteA or deleteB
operation.

Following [5, 15, 25], λ is selected from ∪9
i=0

i
9 and ν from the exponentially growing

sequence {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3, 5 · 10−3, . . . , 1}, resulting in 100 possible
parameterizations.

3.6.2 Dependent TWE

Definition 9 Dependent TWE Dependent version of TWE follows a similar pattern. Due to
the greater magnitude of multidimensional distances, λ is selected from∪9

i=0
2·D·i
9 and ν from

the exponentially growing sequence {2 · D · 10−5, D · 10−4, 2 · D · 10−4, D · 10−3, 2 · D ·
10−3, D · 10−2, . . . , 2 · D}

1 In the published definition of TWE [25], ν is multiplied with the time difference in the timestamps of two
consecutive time points.We simplified this equation, for clarity, by assuming that this time difference is always
1 (UEA datasets do not contain the actual timestamps).

123



Elastic similarity and distance measures… 2681

We define Dependent TWE (TW ED) as,

ΔTW ED (i, j) = min

⎧⎨
⎩

ΔTW ED (i − 1, j − 1) + γM match
ΔTW ED (i − 1, j) + γA deleteA
ΔTW ED (i, j − 1) + γB deleteB

(35)

TW ED(Q,C) = ΔTW ED (L, L). (36)

γM = L2(qi, cj)2 + L2(qi−1, cj−1)
2 + (2 · ν) match

γA = L2(qi,qi−1)
2 + (ν + λ) deleteA

γB = L2(cj, cj−1)
2 + (ν + λ) deleteB

(37)

3.7 Multivariate elastic ensemble (MEE)

Ensembles formed using multiple 1-NN classifiers with a diversity of similarity and distance
measures have proved to be significantly more accurate than 1-NN with any single measure
[5]. Such ensembles help to reduce the variance of the model and thus help to improve
the overall classification accuracy. For example, Elastic Ensemble (EE) combines eleven
1-NN algorithms, each using one of the eleven elastic measures [5]. The eleven measures
used in EE are: Euclidean, DTWF (with full window), DTW (with leave-one-out cross-
validated window), DDTWF, DDTW, WDTW, WDDTW, LCSS, ERP, MSM, TWE. For
each measure, the parameters are optimized with respect to accuracy using leave-one-out
cross-validation [5, 6]. Although EE is a relatively accurate classifier [6], it is slow to train
due to the high computational cost of the leave-one-out cross-validation used to tune its
parameters—O(n2 · L2 · P) for P cross-validation parameters [5, 6, 15]. Furthermore, since
EE is an ensemble of 1-NNmodels, the classification time for each time series is also high—
O(n · L2). EE was the overall most accurate similarity or distance-based classifier on the
UCR benchmark until PF [6]. EE was also used as a component of HIVE-COTE.

Next, we present our novel multivariate similarity and distance-based ensemble Multi-
variate Elastic Ensemble (MEE). We keep the design of our multivariate ensemble similar to
the univariate EE, except that MEE uses the multivariate similarity measures. Similar to EE,
MEE also uses leave-one-out cross-validation of 100 parameters when choosing the param-
eters for similarity and distance measures. Both EE and MEE also predict the final label of
a test instance by using highest class probability. The class probability of each measure is
weighted by the leave-one-out cross-validation accuracy of each measure on the training set.
Any ties are broken using a uniform random choice. Similarly to the original DTWI and
DTWD [14], all measures used in MEE use all dimensions in the dataset.

We explore four variations of MEE, which are constructed as follows.

– MEEI : An ensemble of eleven 1-NN classifiers formed using only independent multi-
variate similarity and distance measures.

– MEED: An ensemble of eleven 1-NNclassifiers formed using only dependentmultivariate
similarity and distance measures.

– MEEID: An ensemble of 22 1-NN classifiers formed using eleven independent measures
and eleven dependent measures.

– MEEA: An ensemble of eleven 1-NN classifiers formed by selecting either independent
or dependent version of the measure based on its accuracy on the training set (ties are
broken randomly).
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4 Experiments

First we conduct experiments using 1-NN classifiers with single multivariate measures to
investigate two hypotheses and then we present the experiments conducted with Multivariate
Elastic Ensemble. Finally, we investigate the use of normalization and the runtime.

The first hypothesis is that there are different datasets towhich each of the newmultivariate
distancemeasures is best suited. The second arises from the observation that there are datasets
for which either the independent or dependent version of DTW is consistently more accurate
than the alternative [14]. However, it is not clear whether this is a result of there being an
advantage in treating multivariate series as either a single series of multivariate points or
multiple independent series of univariate points; or rather due to some other property of the
measures.

It is credible that there should be some time series data for which it is beneficial to treat
multiple variables as multivariate points in a single series. Suppose, for example, that the
variables each represent the throughput of independent parts of a process and the quantity
relevant to classification is aggregate throughput. In this case, the sum of the values at each
point is the relevant quantity. In contrast, if classification relates to a failure in any of those
parts, it seems clear that independent consideration of each is the better approach.

We seek to assess whether there are multivariate datasets for which each of dependent
and independent analyses is best suited, or whether there are other reasons, such as their
mathematical properties, that underlie the systematic advantage on specific datasets of either
DTWI or DTWD .

We start by describing our experimental setup and the datasets we used. We then con-
duct an analysis of similarity and distance measures in the context of TSC by comparing
accuracy measures of independent and dependent versions. We then conduct a statistical
test to determine if there is a difference between independent and dependent versions of the
measures.

4.1 Experimental setup

We implemented amulti-threaded version of themultivariate similarity and distancemeasures
in Java. We also release the full source code in the github repository: https://github.com/
dotnet54/multivariate-measures.

In these experiments, for parameterization of the measures, we use leave-one-out cross-
validation of 100 parameters for each similarity and distance measure. We follow the same
settings proposed in [5]. This parameterization is also used in HIVE-COTE, PF, and TS-
CHIEF.

In this study,weusemultivariate datasets obtained fromhttps://www.timeseriesclassification.
com.

For each dataset, we use 10 resamples for training with a train/test split ratio similar to the
default train/test split ratio provided in the repository. Out of the available 30 datasets, we use
23 datasets in this study. Since we focus only on fixed-length datasets, the four variable length
datasets (CharacterTrajectories, InsectWingbeat, JapaneseVowels, and SpokenArabicDigits)
are excluded from this study. We also omit EigenWorms,MotorImagery, and FaceDetection,
which take too long to run the leave-one-out cross-validation for 100 parameters in a practical
time frame. Table 5 (on page 38) summarizes the characteristics of the 23 fixed-length
datasets. The main results are obtained for non-normalized datasets, except for four datasets
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Fig. 5 Average accuracy ranking diagram showing the ranks of the measures on the error rates (thus more
accurate measures are to the right side). For clarity, we have removed the horizontal lines (“cliques”) that
normally connect groups of classifiers that are statistically indistinguishable

that are already normalized in the archive. We explore the influence of the normalization in
Sect. 4.6. Further descriptions of each dataset can be found in [43].

4.2 Accuracy of independent vs dependent measures

First, we look at the accuracy of each measure used with a 1-NN classifier. Tables 6 and 7
(on page 39) present the accuracy for independent measures and dependent measures, respec-
tively. For each dataset, the highest accuracy is typeset in bold. Of the values reported in
Tables 6 and 7, accuracy for measures other than Euclidean distance (labeled “L2” in the
table) and DTW are newly published results in this paper.

Our first observation is that for every similarity and distancemeasure, except LCSSD, there
is at least one dataset for which that measure obtains the highest accuracy. This is consistent
with our first hypothesis, that each measure will have datasets for which it is well suited.

To compare multiple algorithms over the multiple datasets, first a Friedman test is per-
formed to reject the null hypothesis. The null hypothesis is that there is no significant
difference in the mean ranks of the multiple algorithms (at a statistical significance level
α = 0.05). In cases where the null-hypothesis of the Friedman test is rejected, we use the
Wilcoxon signed-rank test to compare the pairwise difference in ranks between algorithms,
and then use Holm–Bonferroni’s method to adjust for family-wise errors [53, 54].

Figure5 displays mean ranks (on error) between all similarity and distance measures.
Measures on the right side indicate higher rank in accuracy (lower error). We do not include
L2 distance here to we focus on “elastic” measures only. Since we use Holm–Bonferroni’s
correction, there is not a single “critical difference value” that applies to all pairwise compar-
isons. Hence, we refer to these visualizations as “average accuracy ranking diagrams.” For
clarity, we also remove the horizontal lines that group statistically different classifiers. We
refer to the p-value tables and highlight the statistically indistinguishable pairs most relevant
to the discussion in the text.

In Fig. 5, WDTWD, which is to the further right, is the most accurate measure on the
evaluated datasets.WDTWD obtained a ranking of 6.7174 from theWilcoxon test. By contrast,
DDTWFD (ranked 14.7174) is the least accurate measure on these datasets. After Holm–
Bonferroni’s correction, computed p-values indicate there are five pairs that are statistically
different from each other. They are: DTWD and ERPD, ERPD and WDTWD, DDTWFD and
DTWD, DDTWFD andWDTWD, LCSSD and WDTWD.
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Fig. 6 Heatmap showing the difference in accuracy between independent and dependent versions of the
measures—deeper reddish colors indicate caseswhere independent ismore accurate (positive on the scale), and
deeper bluish colors indicate cases where dependent is more accurate (negative on the scale). The datasets are
sorted based on average color values to show contrasting colors on the two ends. (Dimensions/length/number
of classes are shown in the bracket after the dataset name) (Color figure online)

4.3 Are independent and dependent measures significantly different?

In this section, we test if there are datasets for which independent or dependent version is
always more accurate. We also test if there is a statistically significant difference between
independent and dependent similarity and distance measures. Answering these questions
will help us determine the usefulness of developing these two variations of the multivariate
similarity and distance measures. It will also help us to construct ensembles of similarity and
distance measures with more diversity, that is expected to perform well in terms of accuracy
over a wide variety of datasets.

Figure 6 shows the difference in accuracy between independent and dependent versions
of the measures—deeper reddish colors indicate cases where independent is more accurate
(positive on the scale), and deeper bluish colors indicate cases where dependent is more
accurate (negative on the scale). The datasets are sorted based on average color values to
show contrasting colors on the two ends. Dimensions D, length L , number of classes c are
given in the bracket after the dataset name.

FromFig. 6 we observe that there are datasets for which either independent or dependent is
alwaysmore accurate. For example, the independent versions of all measures are consistently
more accurate for datasets DuckDuckGeese, PEMS-SF and BasicMotions (indicated by red
color rows in the heatmap). On the other hand, we see that Handwriting always wins for the
dependent versions (indicated by the blue color row).

Next we statistically investigate the hypothesis that there are some multivariate TSC tasks
that are inherently best suited to either treating the multivariate series as a single series
of multivariate points or as multiple independent series of univariate points. To this end
we present the results of a Wilcoxon signed-rank test on each of the 10 pairs of measures
(without L2), to test whether the difference between accuracy of independent and dependent
versions across 23 datasets are statistically significant. We conduct this test with the null
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Table 2 p-values for two-sided
signed-rank Wilcoxon test with
α = 0.05 (significant values are
in bold face) and α values
adjusted for multiple testing using
the Holm–Bonferroni correction

Dataset p-value αHB

BasicMotions 0.0020 0.0021

DuckDuckGeese 0.0020 0.0022

Epilepsy 0.0020 0.0023

PEMS-SF 0.0020 0.0024

Handwriting 0.0020 0.0025

FingerMovements 0.0249 0.0026

ArticularyWordRecognition 0.0371 0.0028

LSST 0.0488 0.0029

HandMovementDirection 0.0528 0.0031

SelfRegulationSCP1 0.0645 0.0033

ERing 0.0645 0.0036

NATOPS 0.0840 0.0042

Libras 0.0840 0.0038

RacketSports 0.1934 0.0045

StandWalkJump 0.3081 0.0050

UWaveGestureLibrary 0.3750 0.0056

AtrialFibrillation 0.3750 0.0063

PenDigits 0.4316 0.0071

Cricket 0.5566 0.0083

PhonemeSpectra 0.6953 0.0100

SelfRegulationSCP2 0.8457 0.0125

EthanolConcentration 1.0000 0.0167

Heartbeat 1.0000 0.0250

hypothesis that the mean of the difference between the accuracy of the independent and
dependent versions will be zero. We reject the null hypothesis with statistical significance
value α = 0.05, and accept that there is a significant statistical difference in accuracy if
the p ≤ α. Table 2 shows the p-value for each dataset. The bold values mark the p-values
for which there is a significant difference. We also report the adjusted α value after Holm–
Bonferroni corrections, αHB . Before Holm–Bonferroni correction, out of the 23 datasets, we
observe that for 8 datasets there is a statistically significant difference in accuracy between
independent and dependent measures. After Holm–Bonferroni correction, we still find 5
statistically significant differences (where p ≤ αHB ) and so conclude there are indeed
datasets that are inherently best suited to either independent or dependent treatment.

This finding leads to the questions of why this is the case and whether it is predictable
which strategy will prevail.

In general, we observe that the dependent strategy tends to perform poorlywhen there are a
large number of dimensions in the dataset. The twodatasets forwhich the independent strategy
performs most strongly are the only two with more than 100 dimensions. The explanation for
this may simply be that high-dimensional datasets suffer from the curse of dimensionality and
that the L2-norms between different sets of high dimensional points carry little information.

For lower-dimensional data, we hypothesize that the independent strategywill be effective
when the interactions between the dimensions carry little information about the classification
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Table 3 The table shows the
accuracy of two datasets with two
independent DTW and dependent
DTW when all dimensions are
used and a single dimension is
used

Dataset Dimensions DTWI DTWD DTW

Handwriting 3 0.46 0.61

Handwriting 1 (dim #0) 0.32

Handwriting 1 (dim #1) 0.24

Handwriting 1 (dim #2) 0.35

BasicMotion 6 1.00 0.96

BasicMotion 1 (dim #0) 1.00

BasicMotion 1 (dim #1) 1.00

BasicMotion 1 (dim #2) 0.90

BasicMotion 1 (dim #3) 0.98

BasicMotion 1 (dim #4) 0.85

BasicMotion 1 (dim #5) 1.00

BasicMotion was selected because it performs more accurately on all
independent measures, and Handwriting was selected because it per-
forms more accurately on all dependent measures (see Fig. 6)

task and the dependent strategywill be effectivewhen the interactions between the dimensions
carry much information about the classification task.

Consider the Handwriting dataset for which all dependent measures are more accurate
than their corresponding independent measures (see Fig. 6). It has three accelerometer values
recording handwritten letters. It seems intuitive that to distinguish a straight line from curved;
horizontal from vertical; and writing from repositioning the pen; it is necessary to consider
all three accelerometers together. To test this, we compare the accuracy of 1-NN classifiers
using each dimension alone to the accuracy of the independent and dependent strategies.
The results are shown in Table 3. Firstly, we observe that for Handwriting dataset, DTWD

performs more accurately than DTWI (0.61 versus 0.46). In addition, we see that using
DTWD with all three dimensions of the dataset is more accurate than using only a single
dimension (last three rows). This shows that dependent measures can be effective for datasets
that contain information in the interactions between dimensions.

We contrast this to the six dimensional BasicMotions dataset for which all independent
measures are more accurate than their corresponding dependent measures (see Fig. 6). Com-
paring the accuracy of the single-dimension 1-NN classifiers to that of the independent and
dependent strategies, we see that each of three of the dimensions when used alone can attain
100% accuracy. When all dimensions are considered together, DTWI also performs better
than DTWD (1.00 versus 0.96). This suggests that independent measures will have good per-
formance when individual dimensions carry substantial information about the class without
need to consider interdependencies between dimensions.

It is interesting to note that there appears to be considerable correlation between the
relative desirability of the independent and dependent approaches across all the measures
that are applied to the derivative of the original series, DDTWF , DDTW and WDDTW .
It particularly stands out that there seems to be a strong advantage to independent variants
of these measures with respect to ArticularyWordRecognition, DuckDuckGeese and Cricket.
Possible connections between transformations and the relative efficacy of independent or
dependent approaches may be a productive topic for future research.
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Fig. 7 Average accuracy ranking diagram showing the ranks on the error rate of the independent similarity
and distance measures andMEEI

Fig. 8 Average accuracy ranking diagram showing the ranks on the error rate of the dependent similarity and
distance measures andMEED

Fig. 9 Average accuracy ranking diagram showing the ranks on the error rate of the top five similarity and
distance measures and four variants of MEE

4.4 Multivariate measures vsMEE

EE showed that 1-NN ensembles formed using a diverse set of similarity and distance mea-
sures are more accurate than any of the single measures on the 85 univariate UCR datasets [5,
6]. In this experiment, we replicate this evaluation in the multivariate context. We compare
single independent and dependent measures with MEE ensembles to assess whether each of
the three versions of MEE are significantly different to the individual measures.

Figures 7 and 8 show accuracy rankings of independent measures and MEEI ; and
dependent measures and MEED, respectively. Figure7 indicates that MEEI obtains the best
accuracy.However, an investigation of the p-values indicate thatMEEI is not significantly dif-
ferent from seven independent measures (WDTWI ,DTWI ,DTWFI ,MSMI , ERPI ,WDDTWI ,
and DDTWFI ). As for, Fig. 8, the computed p-values indicate thatMEED is significantly dif-
ferent to individualmeasures except forWDTWD,DTWFD and DTWD . Both results indicate
thatMEEI andMEED are more accurate than individual measures with 1-NN.

Figure 9 shows accuracy ranking of our four ensembles presented in Sect. 3.7 versus the
top five (out of twenty-one) individual similarity and distance measures with 1-NN. We can
observe that all ensembles are more accurate than the classifiers using a single measure. We
found that the MEEA (avg. rank 2.5870) performs better than MEEID (avg. rank 2.9130),
MEEI (avg. rank 3.7174) and MEED (avg. rank 5.0435). The computed p-values show that
the difference between MEEA and MEED is statistically significant. Based on these results,
we select MEEA as the final design ofMEE.
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Fig. 10 Average accuracy ranking diagram showing the ranks on the error rate of six classifiers from
Ruiz et al. [42] and Middlehurst et al. [29] and our best performing ensemble, MEE

4.5 MEE vs SOTAmultivariate TSC algorithms

Next,we compareMEE (i.e.MEEA)with six state-of-the-artmultivariate TSCalgorithms [29,
42]. Figure10 shows the accuracy ranking of our ensembles and these algorithms.

The most accurate algorithm, HIVE-COTE 2.0, obtained an average rank of 2.7826. It
is followed by ROCKET (ranked 3.3696), InceptionTime (3.6957), DrCIF (ranked 3.7391)
and then our ensemble MEE (4.5000). Our ensemble MEE is not significantly different to
more complex leading classifiers such as HIVE-COTE 2.0, ROCKET and InceptionTime.
Based on the p-values, only 2 pairs of classifiers are significantly different. They are: STC
vs HIVE-COTE 2.0 and TDE vs HIVE-COTE 2.0.

Finally, Table 4 shows the accuracy of leading algorithms (selected from Fig. 10) and
our ensembles. Across the all algorithms,MEE achieves the highest accuracy for 2 datasets.
By comparison, shapelet-based STC is highest on 1 dataset and dictionary-based TDE on 2
datasets. Interestingly, highly ranked ROCKET has highest accuracy on only two datasets,
while InceptionTime and HIVE-COTE 2.0 have highest accuracy six and eight times, respec-
tively.

4.6 Performance on normalized vs unnormalized data

We ran experiments for all measures for both z-normalized and unnormalized datasets.
Note that 4 datasets—ArticularyWordRecognition, Cricket, HandMovementDirection, and
UWaveGestureLibrary—are already normalized. These were excluded from this study as
it is not possible to derive unnormalized versions. We z-normalized each of the remaining
datasets on a per series, per dimension basis. We found that the accuracy is higher without
normalization. This agrees with a recent paper which conducted a similar experiment using
DTWI and DTWD [42].

We include the results for all measures in our github repository.2 To summarize the results,
Fig. 11 shows a scatter plot comparing the accuracy of MEE with normalized and unnormal-
ized data. This comparison was conducted on the default train and test split and excludes
the already normalized four datasets in the archive. The results show MEE with unnormal-
ized datasets win 14 times and loses 4 times with 1 tie. In addition, for both MEEI (12/2/5
win/draw/loss) and MEED (11/1/7 win/draw/loss) we also observed that unnormalized data
works better. This is why we used unnormalized datasets for all other experiments in the
paper.

However, we note that this does not indicate that not normalizing is always the optimal
solution for all datasets. Sometimes normalization can be useful when using similarity and
distance measures. For example, consider a scenario with two dimensions temperature (e.g a
scale from 0 to 100 degree Celsius) and relative humidity as a proportion (between 0 and 1).
In such a case, temperature will dominate the result of the similarity or distance calculation,

2 https://github.com/dotnet54/multivariate-measures.
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Table 4 Accuracy of our ensemble MEE compared against top multivariate TSC algorithms on 23 datasets
from UEA Multivariate TS Archive

Dataset MEEI MEED MEEI D MEE DrCIF TDE IT STC RT HC2

AWR 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.98 1.00 1.00

AF 0.27 0.35 0.32 0.31 0.23 0.30 0.22 0.32 0.25 0.28

BM 1.00 0.91 0.97 1.00 1.00 0.99 1.00 0.98 0.99 0.99

CR 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00

DDG 0.58 0.47 0.58 0.60 0.58 0.32 0.63 0.43 0.46 0.50

EP 0.98 0.96 0.97 0.98 0.99 1.00 0.99 0.99 0.99 1.00

EC 0.30 0.31 0.30 0.31 0.67 0.53 0.28 0.82 0.45 0.79

ER 0.97 0.95 0.97 0.96 0.98 0.94 0.92 0.84 0.98 0.99

FM 0.57 0.54 0.56 0.56 0.56 0.54 0.56 0.53 0.55 0.55

HMD 0.34 0.29 0.34 0.34 0.46 0.38 0.42 0.35 0.45 0.40

HW 0.49 0.60 0.58 0.60 0.34 0.56 0.66 0.29 0.57 0.56

HB 0.73 0.72 0.73 0.72 0.76 0.72 0.73 0.72 0.72 0.73

LIB 0.88 0.89 0.89 0.89 0.91 0.88 0.89 0.84 0.91 0.93

LSST 0.58 0.55 0.59 0.58 0.55 0.56 0.34 0.58 0.63 0.64

NATO 0.79 0.83 0.81 0.81 0.84 0.82 0.97 0.84 0.89 0.89

PD 0.99 0.99 0.99 0.99 0.99 0.97 1.00 0.98 1.00 1.00

PEMS 0.82 0.78 0.81 0.82 1.00 1.00 0.83 0.98 0.86 1.00

PS 0.19 0.19 0.19 0.19 0.31 0.23 0.37 0.31 0.28 0.29

RS 0.87 0.87 0.88 0.87 0.90 0.89 0.92 0.88 0.93 0.93

SRS1 0.83 0.82 0.83 0.83 0.87 0.83 0.85 0.85 0.87 0.88

SRS2 0.51 0.51 0.52 0.51 0.51 0.53 0.52 0.52 0.51 0.50

SWJ 0.35 0.30 0.31 0.33 0.41 0.36 0.42 0.44 0.46 0.44

UW 0.92 0.93 0.93 0.93 0.92 0.93 0.91 0.87 0.94 0.95

Wins 2 2 1 2 3 2 6 1 2 8

Column names are shortened as follows: IT for InceptionTime, RT for ROCKET, HC2 for HIVE-COTE 2.0.
Wins indicate the number of time each classifier achieved the highest accuracy for each dataset

and normalization will help to compute the similarity or distance with similar scales across
the dimensions.

4.7 Runtime

In this section, we provide a summary of the runtime information and discuss the time
complexity of the multivariate measures and the MEE.

We ran the experiments on a cluster of Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz
CPUs, using 16-threads. The total time to train 23 datasetswith leave-one-out cross-validation
with 10 resamples of the training set was about 10,423h (wall clock time). On average, one
fold of leave-one-out cross-validation required 1042h of train time. The two slowest datasets
were PEMS-SF (149h) and PhonemeSpectra (650h) per fold, about 76% of the total training
time. Moreover, 11 out of 23 datasets took less than one hour per dataset to train.

The slowest measure to train was MSMD , which took a total of 3553h across all datasets
and the 10 folds (almost 35% of the total training time). The second slowest measure MSMI

123



2690 A. Shifaz et al.

Fig. 11 Accuracy comparison of MEE with unnormalized data versus z-normalized data. This comparison
excludes the already normalized four datasets in the archive

Fig. 12 Average runtime of each measure per fold in hours

took 1109h, and the third slowest TW EI took 851h. By contrast, the fastest measure to
train was DTWFD and took just one hour. This is excluding Euclidean distance with no
parameter which only took few minutes. Note that since MEE uses training accuracy to
weight the ensemble predictions, leave-on-out cross-validation is performed at least once
even if there are no parameters or a single parameter (e.g. DTWF). Figure12 shows the
average runtime of each measure per fold.
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Compared to classifiers such as ROCKET, our ensemble, MEE created from these mea-
sures have very high training time. However, the goal of MEE is not to tackle the scalability
issue but to create a multivariate similarity and distance-based classifier as a baseline for
accuracy comparison with other similarity and distance-based multivariate classifiers. This is
similar to the univariateEE,whichwas extremely slowwith a time complexity ofO(n2·L2·P)

for P cross-validation parameters [5, 6, 15]. Despite its speed, EE stimulated much research
in TSC and helped the development of more accurate classifiers such as the earlier versions
of HIVE-COTE, and much faster classifiers such as PF and TS-CHIEF. Training time and
test time complexity of MEE is: O(n2 · L2 · D · P) and O(n · L2 · D), respectively.

Measures such as DTW can be scaled to millions of time series when used in conjunction
with lower bounding and early abandoning [12, 50, 55]. Therefore, if various research on
lower bounding and early abandoning of other similarity and distance measures [48, 49, 51,
56] are combined and extended to multivariate measures, then it might be possible to create
a more scalable version of MEE.

5 Conclusion

In this paper, we present multivariate versions of seven commonly used elastic similarity
and distance measures. Our approach is inspired by independent and dependent DTW mea-
sures, which have proved very successful as strategies for extending univariate DTW to the
multivariate case.

Thesemeasures can be used in a wide range of time series analysis tasks including classifi-
cation, clustering, anomaly detection, indexing, subsequence search and segmentation. This
study demonstrates their utility for time series classification. Our experiments show that each
of the univariate similarity and distance measures excels at nearest neighbor classification
on different datasets, highlighting the importance of having a range of such measures in our
analytic toolkits.

They also show that there are datasets for which the independent version of DTW is
more accurate than the dependent version and vice versa. Until now there was no way to
determinewhether this is a result of a fundamental difference between treating eachdimension
independently or not, or whether it arises from other properties of the algorithms. Our results
showing that there are some datasets for which dependent or independent treatments are
consistently superior across all distance measures provides strong support for the conclusion
that it is a fundamental property of the datasets, that either the variables are best considered
as a single multivariate point at each time step or are not.

We observe that the dependent strategy tends to perform poorly when there are a large
number of dimensions in the dataset. Addressing this limitationmay be a productive direction
for future research. We further observe that the independent method tends to perform well
when individual dimensions are independently accurate univariate classifiers and that it is
credible that dependent approaches excel when there are strong mutual interdependencies
between them with respect to the class.

Inspired by the Elastic Ensemble of nearest neighbor classifiers using different univariate
distance measures, we then further experiment with ensembles of multivariate similarity and
distance measures and show that ensembling results in accuracy competitive with the state
of the art.

Our three ensembles establish a baseline in our future plans to create a multivariate TS-
CHIEF which would combine similarity and distance-based techniques with dictionary-
based, interval-based for multivariate TSC.
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A Summary of the Datasets

See Tables 5.

Table 5 Summary of the 23 fixed-length multivariate datasets we used from the UAE repository

# Dataset Code Trainsize Testsize Dims Length Classes

1 ArticularyWordRecognition AWR 275 300 9 144 25

2 AtrialFibrillation AF 15 15 2 640 3

3 BasicMotions BM 40 40 6 100 4

4 Cricket CR 108 72 6 1197 12

5 DuckDuckGeese DDG 50 50 1345 270 5

6 Epilepsy EP 137 138 3 206 4

7 EthanolConcentration EC 261 263 3 1751 4

8 ERing ER 30 270 4 65 6

9 FingerMovements FM 316 100 28 50 2

10 HandMovementDirection HMD 160 74 10 400 4

11 Handwriting HW 150 850 3 152 26

12 Heartbeat HB 204 205 61 405 2

13 Libras LIB 180 180 2 45 15

14 LSST LSST 2459 2466 6 36 14

15 NATOPS NATO 180 180 24 51 6

16 PenDigits PD 7494 3498 2 8 10

17 PEMS-SF PEMS 267 173 963 144 7

18 Phoneme PS 3315 3353 11 217 39

19 RacketSports RS 151 152 6 30 4

20 SelfRegulationSCP1 SRS1 268 293 6 896 2

21 SelfRegulationSCP2 SRS2 200 180 7 1152 2

22 StandWalkJump SWJ 12 15 4 2500 3

23 UWaveGestureLibrary UW 120 320 3 315 8
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B Accuracy of dependent and independent measures

See Tables 6 and 7.

Table 6 Accuracy of independent similarity and distance measures

dataset L2 dtwf dtwcv ddtwf ddtwcv wdtw wddtw lcss msm erp twe

AWR 0.98 0.99 0.99 0.62 0.71 0.99 0.72 0.99 0.98 0.99 0.97

AF 0.31 0.21 0.25 0.23 0.30 0.29 0.33 0.29 0.29 0.33 0.33

BM 0.57 1.00 1.00 0.99 1.00 1.00 0.99 0.91 1.00 0.92 1.00

CK 0.90 1.00 1.00 0.97 0.97 1.00 0.96 0.98 0.99 0.97 0.98

DDG 0.43 0.58 0.57 0.58 0.53 0.58 0.54 0.44 0.54 0.49 0.58

EP 0.68 0.97 0.97 0.95 0.95 0.97 0.95 0.97 0.98 0.90 0.97

ER 0.93 0.92 0.94 0.83 0.92 0.95 0.89 0.93 0.93 0.94 0.93

EC 0.29 0.29 0.29 0.27 0.25 0.27 0.26 0.25 0.29 0.31 0.29

FM 0.54 0.57 0.57 0.51 0.55 0.55 0.52 0.54 0.55 0.55 0.53

HMD 0.28 0.30 0.31 0.32 0.31 0.32 0.30 0.31 0.31 0.24 0.33

HW 0.31 0.48 0.48 0.27 0.29 0.48 0.29 0.45 0.47 0.38 0.35

HB 0.66 0.68 0.69 0.71 0.71 0.69 0.70 0.71 0.69 0.66 0.70

LIB 0.79 0.87 0.87 0.88 0.88 0.87 0.88 0.83 0.84 0.80 0.85

LSST 0.45 0.57 0.56 0.48 0.48 0.57 0.48 0.29 0.54 0.45 0.52

NATO 0.77 0.79 0.78 0.83 0.82 0.80 0.82 0.79 0.77 0.77 0.77

PEMS 0.82 0.78 0.82 0.69 0.69 0.82 0.70 0.86 0.82 0.83 0.84

PD 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.98

RS 0.78 0.84 0.85 0.78 0.81 0.85 0.80 0.89 0.84 0.85 0.81

SRS1 0.80 0.80 0.81 0.57 0.56 0.81 0.56 0.80 0.80 0.80 0.77

SRS2 0.46 0.50 0.48 0.51 0.52 0.48 0.52 0.48 0.51 0.49 0.56

SWJ 0.27 0.33 0.31 0.39 0.42 0.31 0.32 0.33 0.23 0.32 0.31

UW 0.89 0.89 0.90 0.76 0.86 0.90 0.85 0.91 0.90 0.90 0.89

Wins 1 6 3 2 2 2 1 4 2 1 4

Note that DTWF and DDTWF refer to measures that use full window
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Table 7 Accuracy of dependent similarity and distance measures

dataset L2 dtwf dtwcv ddtwf ddtwcv wdtw wddtw lcss msm erp twe

AWR 0.97 0.99 0.99 0.34 0.34 0.98 0.34 0.98 0.98 0.98 0.97

AF 0.35 0.21 0.31 0.23 0.29 0.34 0.30 0.34 0.33 0.29 0.33

BM 0.58 0.96 0.96 0.89 0.89 0.96 0.89 0.76 0.76 0.74 0.89

CK 0.92 1.00 1.00 0.82 0.83 1.00 0.82 0.99 1.00 0.98 0.96

DDG 0.42 0.48 0.48 0.35 0.35 0.47 0.35 0.40 0.29 0.38 0.25

EP 0.65 0.96 0.95 0.90 0.89 0.95 0.89 0.93 0.94 0.89 0.92

ER 0.93 0.94 0.94 0.82 0.85 0.93 0.84 0.92 0.91 0.93 0.92

EC 0.29 0.30 0.29 0.24 0.24 0.29 0.25 0.31 0.32 0.29 0.26

FM 0.55 0.55 0.54 0.50 0.50 0.55 0.50 0.49 0.52 0.55 0.53

HMD 0.27 0.31 0.33 0.29 0.26 0.31 0.30 0.22 0.21 0.23 0.25

HW 0.31 0.61 0.61 0.40 0.39 0.61 0.40 0.54 0.57 0.46 0.46

HB 0.63 0.70 0.68 0.71 0.70 0.68 0.71 0.64 0.66 0.70 0.71

LIB 0.79 0.88 0.87 0.93 0.93 0.88 0.93 0.32 0.86 0.80 0.87

LSST 0.45 0.55 0.55 0.43 0.43 0.55 0.43 0.36 0.36 0.45 0.44

NATO 0.79 0.83 0.82 0.84 0.84 0.82 0.83 0.72 0.80 0.79 0.80

PEMS 0.78 0.77 0.78 0.60 0.60 0.78 0.60 0.14 0.78 0.78 0.78

PD 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.99 0.99

RS 0.79 0.85 0.87 0.80 0.83 0.87 0.81 0.87 0.88 0.77 0.83

SRS1 0.80 0.82 0.82 0.54 0.53 0.81 0.53 0.77 0.78 0.80 0.53

SRS2 0.46 0.53 0.52 0.48 0.51 0.51 0.50 0.47 0.52 0.49 0.55

SWJ 0.28 0.21 0.31 0.27 0.36 0.33 0.33 0.35 0.26 0.29 0.29

UW 0.88 0.92 0.92 0.84 0.85 0.92 0.86 0.91 0.91 0.88 0.88

Wins 1 8 4 2 1 5 1 0 2 1 2

Note that DTWF and DDTWF refers to measures that use full window. Note that the accuracy for L2 differs
in Table 6 and 7 because instead of using the same p [see Eqs. (4) and (5)], our experiments sum the distances
for independent measures as proposed in [14]
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