
Knowledge and Information Systems (2023) 65:1067–1103
https://doi.org/10.1007/s10115-022-01788-0

REGULAR PAPER

Logical design of multi-model data warehouses

Sandro Bimonte1 · Enrico Gallinucci2 · Patrick Marcel3 · Stefano Rizzi2

Received: 13 December 2021 / Revised: 26 October 2022 / Accepted: 29 October 2022 /
Published online: 15 November 2022
© The Author(s) 2022

Abstract
Multi-model DBMSs, which support different data models with a fully integrated backend,
have been shown to be beneficial to data warehouses and OLAP systems. Indeed, they can
store data according to the multidimensional model and, at the same time, let each of its
elements be represented through the most appropriate model. An open challenge in this
context is the lack of methods for logical design. Indeed, in a multi-model context, several
alternatives emerge for the logical representation of dimensions and facts. The goal of this
paper is to devise a set of guidelines for the logical design of multi-model data warehouses so
that the designer can achieve the best trade-off between features such as querying, storage,
and ETL. To this end, for each model considered (relational, document-based, and graph-
based) and for each type of multidimensional element (e.g., non-strict hierarchy) we propose
some solutions and carry out a set of intra-model and inter-model comparisons. The resulting
guidelines are then tested on a case study that shows all types of multidimensional elements.

Keywords OLAP · Multi-model databases · Data variety · Data warehouse

1 Introduction

A multi-model DBMS (MMDBMS) is a data managing platform that supports different data
models with a fully integrated backend, thus providing unified data governance, manage-
ment, and access via a single query language, while still granting performance, scalability,
and fault tolerance Lu and Holubová, [28]. Using a single platform for multi-model data
delivers several benefits to users besides that of providing a unified query interface; namely,
it will reduce maintenance and data integration issues, speed up development, and elimi-
nate migration problems Tsunakawa, [40], Lu and Holubová, [28]. Examples of MMDBMSs
are PostgreSQL, ArangoDB, Cosmos DB, and CouchBase. Specifically, PostgreSQL (www.
postgresql.org/) is a relational DBMS that supports the row-oriented, column-oriented, key-

B Stefano Rizzi
stefano.rizzi@unibo.it

1 INRAE - TSCF, University of Clermont Auvergne, Aubiere, France

2 DISI, University of Bologna, Bologna 40136, Italy

3 LIFAT Laboratory, University of Tours, Tours, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-022-01788-0&domain=pdf
http://orcid.org/0000-0002-4617-217X
www.postgresql.org/
www.postgresql.org/

1068 S. Bimonte et al.

value, and document-oriented data models, offering XML, hstore, JSON/JSONB data types
for storage.

MMDBMSs can effectively cope with the variety issues that characterize big data while
preserving volume and velocity. Within modern architectures of information systems, this is
particularly valuable to manage data lakes. Data lakes have been defined as central repository
systems for storage, processing, and analysis of raw data, in which the data are kept in their
original format and is processed to be queried only when needed; they can store a varied
amount of formats in big data ecosystems, from unstructured, semi-structured, to structured
data sources Couto, Borges, Ruiz, Marczak and Prikladnicki, [16]. The support to variety,
volume, and velocity ensured by MMDBMSs promises to be beneficial to data warehouses
(DWs) and On-Line Analytical Processing (OLAP) systems too: in fact, warehoused data
result from the integration of huge volumes of heterogeneous data, and OLAP requires very
good querying performances Bimonte, Hifdi, Maliari, Marcel and Rizzi, [3]. A multi-model
data warehouse (MMDW) could store data according to the multidimensional model and, at
the same time, let each of its elements be represented through the most appropriate model.

An investigation of the effectiveness and efficiency ofMMDWs to store multidimensional
data is done by Bimonte, Gallinucci, Marcel and Rizzi [2]. Specifically, starting from the
UniBench multi-model benchmark Zhang, Lu, Xu and Chen, [43], a conceptual multidi-
mensional schema is defined first, then three logical schemata are proposed to support it.
The first one (called M3D) extends the star schema by introducing semi-structured (JSON,
XML, graph-based, and key-value) data in the multidimensional elements. The second one
is a classical (full-relational) star schema. The third one corresponds to a data lake-like
approach where data are not put in multidimensional form and maintain their source format.
These three schemata are implemented using PostgreSQL (with the AgensGraph extension,
bitnine.net/agensgraph/, to support graph data) and compared in terms of efficiency and
effectiveness. Remarkably, it is shown that M3D offers a valuable trade-off between query-
ing performance, ETL costs, design flexibility, extensibility in presence of variable source
schemata, and evolvability.

One of the research challenges left open by Bimonte et al. [2] is the lack of best practices
for logical design. Indeed, in amulti-model setting, several alternatives emerge for the logical
representation of dimensions and facts Ferrahi, Bimonte and Boukhalfa, [18], and some of
them may be better than others from one or more points of view. The goal of this paper is to
devise a set of guidelines for the logical design of MMDWs so that the designer can achieve
the best trade-off between features such as querying, storage, and ETL. To this end, for
each model considered (relational, document-based, and graph-based) and for each type of
multidimensional element (essentially related to how hierarchies are structured, e.g., shared
hierarchy and non-strict hierarchy), we propose some solutions and carry out a set of intra-
model and inter-model comparisons. The resulting guidelines are then tested on a case study
that shows all types of multidimensional elements. The roadmap we follow to determine the
guidelines is sketched in Fig. 1.

The novel contributions we offer in this paper can be summarized as follows:

– We discuss mono-model multidimensional design with reference to the relational,
document-based, and graph-based models (Sect. 4). This leads to recognize five basic
schemata: star schema (relational); denormalized and shattered schema (document-
based); flat and shortcut schema (graph-based). For each type of multidimensional
element, it is shown how it can be modeled in each of these schemata.

– We carry out a set of quantitative comparative tests (whose goal and setting are described
in Sect. 5) aimed at comparing the different schemata at the intra-model and inter-model

123

Logical design of multi-model... 1069

Fig. 1 Test roadmap (with corresponding paper sections)

levels. The comparison is done in terms of querying performance and query formula-
tion complexity (Sect. 5.1), storage (Sect. 5.2), and ETL formulation complexity and
performance (Sect. 5.3).

– We address multi-model multidimensional design in Sect. 6 by first proposing a set of
guidelines derived from the analysis carried out in the previous sections, then we apply
them to our case study. Other features (flexibility, extensibility, and evolvability) are
qualitatively considered here.

The paper is completed by Sect. 2, which discusses the related literature, Sect. 3, which
describes a case study centered on orders, and Sect. 7, which draws the conclusion.

2 Related work

2.1 Polystores andmulti-model databases

Traditional DBMSs were conceived for handling a specific type of data; for example, rela-
tional DBMSs for structured data, document-based DBMSs for semi-structured data, etc.
For applications that require the integration of different types of data, two solutions are pos-
sible: (i) integrate all data into a single DBMS, or (ii) use two or more DBMSs together.
The obvious drawback of the former solution is that some types of data cannot be stored and
analyzed (e.g., the pure relational model does not support the storage of XML, arrays, etc.
Shimura, Yoshikawa and Uemura, [38]). The latter approach (known as polyglot persistence
Gadepally, Chen,Duggan, Elmore, Haynes, Kepner,Madden,Mattson and Stonebraker, [19])

123

1070 S. Bimonte et al.

presents drawbacks as well, namely, a difficulty in technically managing more DBMSs, a
steep learning curve for developers, inadequate performance optimization, complex logic in
applications, data inconsistency, etc. Tsunakawa, [40].

MMDBMSs have been proposed to overcome these issues (see the survey by Lu and
Holubová [28]). MMDBMSs support different models using specific storage strategies;
for example, PostgreSQL stores data using relational tables, text, or binary format, while
ArangoDB uses a document storage technique. To enable queries on different data models,
theseDBMSsprovide newquery languages, namely, extended-SQLandAQL for PostgreSQL
and ArangoDB, respectively. Besides, depending on the storage strategy, each DBMS imple-
ments a particular set of physical structures (indexes and partitions). Themain cloud providers
either support multi-model databases to some extent (e.g., Azure’s Cosmos DB supports all
non-relational models) or offer cross-querying functionalities over multiple database sys-
tems (e.g., Amazon’s standard data warehousing solution RedShift can be used to query
semi-structured and unstructured data on S3).

Among the topics currently investigated for MMDBMSs, we mention conceptual mod-
eling of multi-model data Holubová, Contos and Svoboda, [24], inference of multi-model
schemata, multi-model querying Holubová, Svoboda and Lu, [26] as well as evolution man-
agement Holubová, Klettke and Störl, [25]. To the best of our knowledge, the only work
dealing with multi-model logical design starting from a conceptual schema is the one by
Svoboda, Contos and Holubová [39], which uses category theory to formalize the trans-
formation from elements of an Entity/Relationship diagram to relational tables, documents,
and graphs in an MMDBMS. The approach is devised for operational databases rather than
for multidimensional data; besides, it is more focused on providing a uniform modeling
framework than on supporting the designer in deciding which model to use for each piece of
data.

2.2 NoSQL OLAP

A DW is a repository of integrated data periodically fed by (possibly heterogeneous) data
sources and interactively queried using theOLAP (On-LineAnalytical Processing) paradigm.
To facilitate OLAP querying, DWs are normally based on themultidimensional model, which
introduces the concepts of facts, dimensions, andmeasures to analyze data. Thus, source data
must be transformed to fit amultidimensional logical schema (schema-on-write approach). To
this end, ROLAP architectures rely on a single, relational DBMS for storage, while MOLAP
architectures store data in multidimensional arrays.

To offer better support to large volumes of data while maintaining velocity, some works
propose the usage of NoSQL DBMSs. Chevalier, Malki, Kopliku, Teste and Tournier [14]
propose three different logical models, using one or more document collections to store data
in document-based DBMSs Chevalier, Malki, Kopliku, Teste and Tournier, [13]. The same
authors also investigate how to handle complex hierarchies and summarizability issues with
document-based DWs Chevalier, Malki, Kopliku, Teste and Tournier, [12]. A logical model
for column-based DWs has been proposed by Boussahoua, Boussaid and Bentayeb [6] and
Chevalier, Malki, Kopliku, Teste and Tournier [10] to address volume scalability. Sellami,
Nabli and Gargouri [36] propose to use transformation rules for DW implementation in
graph-based DBMSs for better handling social network data. Some works also use XML
DBMSs for warehousing XML data Ouaret, Chalal and Boussaid, [32]. While this is a first
effort towards native storage of semi-structured data, the querying performances do not
scale well with size, and compression techniques must be adopted Boukraâ, Bouchoukh and

123

Logical design of multi-model... 1071

Boussaïd, [5]. Among all these proposals, it is hard to champion one logical and physical
implementation for NoSQL and XMLDWs, since no approach clearly outperforms the other.
Moreover, although these single-model proposals offer interesting results in terms of volume
and velocity, they have been mainly conceived and tested for structured data, without taking
variety into account, neither do they address other issues related to warehousing big data,
such as reducing the cost of ETL, evolution, and improving flexibility.

Adopting a schema-on-write approach is not always painless because of the schemaless
nature of some source data. This, in some recent papers, OLAP queries are directly rewritten
over schemaless data sources that are not organized according to the multidimensional model
(schema-on-read approach). In this case themultidimensional schema is not devised at design
timeand forced in aDW,but decided at querying time.Chouder,Rizzi andChalal [15] describe
a schema-on-read approach to automatically extract facts and hierarchies from document data
stores and trigger OLAP queries. A similar approach is presented by Gallinucci, Golfarelli
and Rizzi [20]; there, schema variety is explicitly taken into account by choosing not to
design a single crisp schema where source fields are either included or absent, but rather to
enable an OLAP experience on some sort of “soft” schema where each source field is present
to some extent. In the same direction, Dehdouh [17] proposes a MapReduce-based algorithm
to compute OLAP cubes on column stores, while the work by Castelltort and Laurent [7]
aims at delivering the OLAP experience over a graph-based database.

The approaches mentioned above rely on a single-model database. Conversely, Gallinucci
and Golfarelli [23] propose a pay-as-you-go approach which enables OLAP queries against a
polystore supporting relational, document, and column data models by hiding heterogeneity
behind a dataspace layer. Data integration is carried out on-the-fly using a set of mappings.
Even this approach can be classified as schema-on-read; the focus is on query rewriting
against heterogeneous databases and not on the performance of the approach.

Bimonte et al. [2] investigate the effectiveness and efficiency of MMDWs to store mul-
tidimensional data. Though one multi-model solution coping with variety is proposed with
reference to a case study, there is no discussion and evaluation of all the single- and multi-
model solutions made available for the different types of multidimensional elements when
relying on a MMDBMS.

3 Case study

UniBench is a benchmark for multi-model databases Zhang et al. [43], Zhang and Lu,
[42]. It includes a retail dataset composed of relational, XML, JSON, key-value, and graph
data, which makes it a good representative for variety. To investigate the pros and cons of
MMDBMSs, in Bimonte et al. [2] a multidimensional schema is derived from UniBench
by adopting a classical data-driven approach based on the functional dependencies inferred
from the data. Though that schema was good for a preliminary study, it is not sufficient
in this paper because it is not representative of all the possible situations that may arise in
multidimensional modeling. For this reason we had to extend it by adding new types of mul-
tidimensional elements, such as shared hierarchies and convergences Golfarelli and Rizzi,
[21]. The resulting extended schema is shown in Fig. 2 using the DFM notation Golfarelli
and Rizzi, [21], where the box represents a fact with its measures surrounded by its dimen-
sions, hierarchy levels are shown as circles, while descriptive properties are underlined. The
schema is focused on the Order fact and can be described as follows:

123

1072 S. Bimonte et al.

Fig. 2 Multidimensional schema for our case study, based on the DFM notation

– The fact has four measures, namely, TotalPrice, NetPrice, VAT, and Discount; the cloud
symbol inside the box denotes that additional measures that were not known at design
time can be fed into the fact as a consequence of the evolution of the data sources.

– The OrderCode dimension describes each order by its shipment mode and customer.
Customers can by grouped by their Gender and BrowserUsed (the latter is optional, i.e.,
it is known only for some customers, as shown in the DFM by a dash on the arc), and are
described by some properties, e.g., LastName. Customers are also related to their City.
Some unexpected levels and properties can be related to customers, as denoted by the
cloud symbol. To model the graph of inter-customer acquaintances, a knows non-onto
hierarchy Pedersen, Jensen and Dyreson, [34] (also called recursiveGolfarelli and Rizzi,
[21] or unbalanced Niemi, Nummenmaa and Thanisch, [30] hierarchy, represented in
the DFM with a loop) is set on Customer. Finally, each customer expresses her interest
for one or more tags (non-strict hierarchy, represented in the DFM with a double arc).

– The temporal dimension has several levels, ranging from Date to Year. The dia-
mond shape denotes a convergence, i.e., MonthYear can be aggregated either by
4-MonthPeriod or by Quarter/Semester, but in both cases one single Year is reached.

– The ProductASIN1 dimension features, besides a couple of properties, a Vendor hierar-
chy. Even here, a product can have some additional levels and properties not specified
at design time. Since an order is associated with many products, a non-strict hierarchy
is set between the fact and the product dimension; each couple of order and product is
described by a Quantity.

1 ASIN stands for Amazon Standard Identification Number.

123

Logical design of multi-model... 1073

– Ageographical hierarchy rooted in City is shared by vendors and customers (double circle
in the DFM). Level State is optional, since not all countries have states (non-covering
hierarchy Pedersen et al. [34], denoted in the DFM with a dash on the circle).

– Level Rating is cross-dimensional, i.e., its value is jointly determined by ProductASIN
and Customer (a customer can rate several products). This is shown in the DFM with an
arc touching two arcs.

4 Mono-model multidimensional design

Several possible alternatives arise whenmodeling amultidimensional fact within anMMDW.
Indeed, the possibility of mixing different models into a single schema gives rise to a huge
number of combinations, where two or more models are used even within the same hierarchy.
In the direction of providing guidelines for designing these combinations, we proceed by
first listing, in the following subsections, the main design alternatives for implementing the
different types of multidimensional elements using eachmodel. Then, in Sections from 5.1 to
5.3, we will compare these solutions from different points of view. The models we consider
are: relational, document-based, and graph-based. We do not consider key-value because,
in key-value data modeling, the value is a black-box that cannot be used for selections
nor aggregations Sadalage and Fowler, [35], thus it makes little sense to adopt it in a data
warehousing context. Document-based model implementations are considered only in JSON
and not XML because, as discussed by Bimonte et al. [2], XML does not add expressiveness
to JSON (while yielding slightly worse performances).

4.1 Relational model

Multidimensional design for the relational model has been largely investigated, and a set of
best practices is already available for all types of multidimensional elements Golfarelli and
Rizzi, [21]. In the following, we briefly recap them:

– In a star schema2, a dimension table is created for each dimension, storing a (normally
surrogate) primary key and one attribute for each level of the corresponding hierarchy.

– Convergences (e.g., the one on Year), properties (e.g., LastName), optional arcs (e.g.,
the one to BrowserUsed), and non-covering hierarchies (e.g., State) do not require any
adjustment to the rule above.

– Non-onto hierarchies (e.g., Knows), cross-dimensional levels (e.g., Rating), and non-
strict hierarchies (e.g., the one to Tag) are designed using a bridge table, i.e., a table that
establishes a many-to-many association between two dimension tables.

– Shared hierarchies (e.g., the one rooted in City) are designed using snowflaking, i.e., by
partially normalizing the dimension table.

– Unexpected levels and measures are simply not dealt with.

The relational schema obtained by applying these guidelines to the Order fact is shown in
Fig. 3; prefixes FT, DT, and BT are used for fact, dimension, and bridge tables, respectively.

2 For simplicity we do not consider snowflake schemata here, since the star vs. snowflake issues have already
been studied Golfarelli and Rizzi, [21].

123

1074 S. Bimonte et al.

Fig. 3 Star schema for the Order fact

4.2 Document-basedmodel

Multidimensional design for the document-based model has been investigated only to a
limited extent, however some papers propose and compare different solutions.

Four different solutions are proposed by Chevalier et al. [14]: a denormalized flat schema
(where a fact is stored using a single collection of documents including all its measures and
levels with no nesting); a deco schema (denormalized like the previous one, but the measures
and the levels of each dimension are stored in separate subdocuments); a shattered schema
(where each dimension is stored in a separate collection of documents and connected to the
fact documents using a reference); and a hybrid schema (like a shattered schema, but with all
documents stored within a single collection). These solutions are experimentally compared
on MongoDB against the Star Schema Benchmark O’Neil, O’Neil, Chen and Revilak, [31]
in terms of storage space, loading time, and querying performance, to find out that:

– Due to their redundancy, the first two schemata require about 4 times the space required
by the other two, which leads to significantly higher loading times.

– Denormalized flat schemata and shattered schemata tend to have better querying per-
formances; however, there is not a single winner between these two since the execution
times largely depend on the query features (mostly, on the number of joins they require).

Chevalier et al. [12] also propose solutions to deal with irregular hierarchies; specifically,
they suggest to adopt arrays to model non-strict hierarchies, and using a dummy value (such
as ‘other’) to balance non-covering hierarchies.

Two solutions are proposed by Challal, Bala, Mokeddem, Boukhalfa, Boussaid and
Benkhelifa [8] and Yangui, Nabli and Gargouri [41]: a simple schema (where the fact and
each dimension are stored in separate documents of the same collection, like in the hybrid
schema mentioned above) and hierarchical schema (like a simple schema, but using separate
documents for each dimension hierarchy, much like the shattered schema mentioned above).
The experimental comparison, made onMongoDB against the TPC-DS benchmark, does not
highlight significant differences in loading time and querying performance.

123

Logical design of multi-model... 1075

Fig. 4 Document-based design alternatives for each multidimensional element

Based on the above, here we consider two solutions: denormalized schema and shattered
schema. These solutions are exemplified in Fig. 4, together with the variants we propose for
them in presence of different types of multidimensional elements. Nested boxes represent
arrays. A brief comment on the solutions:

123

1076 S. Bimonte et al.

– Figure 4.a: a fact with two simple hierarchies is modeled either including all levels and
measures in the same document (denormalized), or creating three separate documents,
one for the fact and one for each dimension (shattered).

– Figure 4.b: a non-onto hierarchy is modeled using a document that includes a reference
to itself (denormalized and shattered).

– Figure 4.c: a non-onto and non-strict hierarchy is modeled using a document that includes
an array of references to itself (denormalized and shattered).

– Figure 4.d: a convergence is modeled including all the levels in the same document
(denormalized and shattered).

– Figure 4.e-f: a non-covering hierarchy and an optional arc are bothmodeled using optional
fields (denormalized and shattered).

– Figure 4.g: a non-strict hierarchy is modeled using an array, either including all levels
in the same document (denormalized) or including the children level (b) in a separate
document (shattered).

– Figure 4.h: a shared hierarchy is modeled either by replicating the children levels (denor-
malized) or by including them in a separate document (shattered).

– Figure 4.i: a cross-dimensional level c is modeled either including c and its children
in the same document (denormalized, it can be done because, in terms of functional
dependencies, ab → cd) or including them in a separate document (shattered).

Note that, in practice, the modeling solutions taken in the source JSON documents may
possibly differ from the ones considered here. For instance, the concepts included in a plain
hierarchy could be modeled starting from the leaves rather than from the root (e.g., for the
hierarchy rooted in a in Fig. 4.a, there could be a document for each value of c, each including
an array of values of a).

The denormalized and the shattered schemata obtained for theOrder fact are shown inFigs.
5 and 6, respectively. Noticeably, in PostgreSQL document-based data are actually supported
only in terms of column data typed JSON in relational tables; for this reason the schemata
show each document as embedded in a relational table. In the denormalized schema all levels
are included within a single document, the only exception being Customerwhere a non-onto
hierarchy is rooted. Conversely, in the shattered schema separate documents are created for
the fact, for each dimension, for the shared hierarchy in City, for the cross-dimensional level
Rating, and for the non-onto hierarchy in Customer (there is no need to create a document
for tag since it has no children).

4.3 Graph-basedmodel

Though some papers propose extensions of the multidimensional model and of OLAP to
deal with graph data Chen, Yan, Zhu, Han and Yu, [9], Beheshti, Benatallah, Nezhad and
Allahbakhsh, [1], Gómez, Kuijpers and Vaisman, [22], to the best of our knowledge only a
couple of approaches cope with the problem of implementing a multidimensional schema
against the graph-based model. Sellami et al. [36] propose two solutions. In the first one, the
fact is stored in a graph node having measures as properties, and each level is stored in a
node with its properties; the fact node points to the dimension nodes, which in turn point to
the level nodes following the structure of the hierarchies. The second one is similar, except
that the fact node points to a single node, which in turn points to each dimension node. A
third solution is proposed by Sellami, Nabli and Gargouri [37], where the fact node points to
the dimension nodes, and each dimension node includes all the levels and properties of the

123

Logical design of multi-model... 1077

Fig. 5 Denormalized schema for the Order fact (dashed lines represent implicit inter-attribute relationships)

corresponding hierarchy. Note that these three solutions are not experimentally compared in
terms of efficiency.

Herewe consider two solutions: flat schema (the third solution described above) and short-
cut schema (like the first solution above, but extended with additional transitive arcs from the
fact node to the other nodes to improve querying performance). These solutions are exempli-
fied in Fig. 7, together with their variants in presence of different types of multidimensional
elements. A brief comment on the solutions:

– Figure 7.a: a fact with two simple hierarchies is modeled either including all levels in
each hierarchy in a single node (flat), or creating separate nodes for each level (shortcut).
In both cases, measures are stored within a fact node.

– Figure 7.b-c: a non-onto hierarchy is modeled using a node pointing to itself (flat and
shortcut).

– Figure 7.d: a convergence is modeled either including all the levels in the same node
(flat) or using separate nodes for each level (shortcut).

123

1078 S. Bimonte et al.

Fig. 6 Shattered schema for the Order fact

– Figure 7.e: a non-covering hierarchy is modeled either using an optional field b (flat) or
an additional arc that directly links a to c when b is missing (shortcut).

– Figure 7.f: an optional arc is modeled using either optional fields b and c (flat) or an
optional arc from a to b (shortcut).

– Figure 7.g: a non-strict hierarchy is modeled using an arc attribute d to store the attribute
(if any) connected to the many-to-many relationship (flat and shortcut).

– Figure 7.h: a shared hierarchy is modeled by having two nodes a and b pointing to the
same node c (flat and shortcut).

– Figure 7.i: for cross-dimensional level c, one node must necessarily be created to store
the couples of matching members of a and b —similarly to what done with the bridge
table in the relational model. This node (represented with a dot in the figure) can either
store also c and its children (flat), or point to a separate node storing c (shortcut).

The arc directions do not usually impact querying performances Bitnine Global Inc., [4],
Marzi, [29]; conventionally, we directed all arcs from the hierarchy root towards its leaves.

The flat and the shortcut schemata obtained for the Order fact are shown in Figs. 8 and
9, respectively. The shortcut schema also includes transitive arcs from the fact node to all
other nodes, not shown in the figure for simplicity. Noticeably, in both solutions, the cross-
dimensional level Rating could have been modeled as a property of an arc directly linking
Product to Customer; this solution has not been considered because it is not applicable in
the general case (i.e., when the cross-dimensional level has some children).

5 Comparative tests

As stated in the Introduction, the goal of this paper is to devise a set of guidelines for the
logical design of MMDWs. To this end, we need to (i) evaluate the solutions outlined above
from different points of view, namely, querying, storage, and ETL, and (ii) discuss if and
how two or more solutions (possibly corresponding to different models) can be effectively

123

Logical design of multi-model... 1079

Fig. 7 Graph-based design alternatives for each multidimensional element

mixed together within a single schema. To this end, for each of these aspects, in the following
sections we carry out a set of comparative tests (please refer to Fig. 1 for a roadmap).

We wish to emphasize that the idea behind these comparative tests (and the motivation
to the whole paper) is not to investigate whether a relational DW is better/worse than a
document-based or graph-based DW. Indeed, this kind of comparison has already been made
in the literature to some extent, e.g., by Challal et al. [8], Chevalier, Malki, Kopliku, Teste and
Tournier [11], and Gómez et al. [22]. The motivation is to find guidelines for mixing different
models when implementing a DW via a MMDBMS; this is the reason why all tests were
made on a single MMDBMS (namely, PostgreSQL) rather than using different mono-model

123

1080 S. Bimonte et al.

Fig. 8 Flat schema for the Order fact

DBMSs (such as MongoDB and Neo4j). Clearly, the choice of which model to use for which
part of multidimensional data is the result of a trade-off between different features, such
as having better query performance, fewer transformations (which suggests maintaining the
source data model in the DW as well), etc.

All solutions are implemented in AgensGraph 2.2, an open-source extension of Post-
greSQL 10.4 including support to graph storage. Differently from pure graph-based DBMSs
like Neo4j, the support given to graphs in AgensGraph is not native. In fact, AgensGraph
relies on relational structures to store nodes and edges: several tables are created, one for each
class; dynamic node properties are supported by modeling each node as a JSON object, and
B-tree indexes are automatically computed to support efficient querying; ultimately, Cypher
queries are supported and mapped to SQL queries on such structures Bitnine Global Inc., [4].
We remark that, although other MMDBMSs (namely, Oracle DB and SQL Server Lu and
Holubová [28]) support all the data models considered in this work, they all use relational
tables to store graphs, so the support they give is not native as well.

For all three models, B+trees have been used to index (i) primary and foreign keys in
relational tables, (ii) attributes used in selection predicates, and (iii) identifiers (and attributes
referencing them) in JSON/graph-based data.Also,GIN indexes have been used in document-
based solutions to index the content of array attributes.

A custom application has been written in Java to generate data for all solutions. Although
synthetic, the generation process complies with basic realistic assumptions (e.g., ratings are

123

Logical design of multi-model... 1081

Fig. 9 Shortcut schema for the Order fact

generated only for products that a customer has actually bought) and satisfies all the functional
dependencies among levels. Specifically, we have 1M orders made by 100K customers on
10K products over 365 dates. The number of cities is 5K; the products bought in each order
(expressed as average ± standard deviation) are 5.5 ± 2.9 (minimum 1, maximum 10), the
number of customers known by each customer is 7.3± 2.7 (minimum 1, maximum 21), and
the number of tags per customer is 2± 1 (minimum 1, maximum 5). Finally, we assume that
ratings are given for each product ordered by each customer.

All tests have been run on a Core i7 with 8 CPUs @3.6GHz server with 32 GB RAM
running Ubuntu. PostgreSQL memory parameters have been set as follows:

– Shared_buffers (i.e., the number of shared memory buffers used by the server) is set to
its default, 128MB; this avoids the entire database being stored in memory;

– Effective_cache_size (i.e., the estimate that the query planner makes of how much mem-
ory is available for disk caching by the operating system and within the database itself)
is set to 4GB;

– Work_mem (i.e., the amount ofmemory actually used by PostgreSQL for each user query)
is set to 80MB; this setting enables 100 concurrent connections.

The three solutions and the workload queries are all publicly available at https://github.
com/big-unibo/m3d-guidelines.

123

https://github.com/big-unibo/m3d-guidelines
https://github.com/big-unibo/m3d-guidelines

1082 S. Bimonte et al.

Table 1 Workload for performance test (Hops is the number of hops on the non-onto hierarchy; Card. is the
number of tuples in the query result)

MD element Query Group-by set Selection Hops Card.

Plain q1 Month – – 12

q2 Month Quarter – 3

q3 ShipmentMode – – 4

q4 Gender – – 2

q5 Gender BrowserUsed – 2

q6 Gender City – 1

q7 Date – – 365

q8 Date Quarter – 90

q9 Date Month – 30

q10 Date Date – 3

Non-onto q11 Customer – 1 105

q12 Gender – 1 2

q13 ShipmentMode BrowserUsed 1 4

q14 ShipmentMode BrowserUsed 2 4

q15 ShipmentMode BrowserUsed 3 4

q16 ShipmentMode Customer 1 4

q17 ShipmentMode Customer 2 4

q18 ShipmentMode Customer 3 4

q19 ShipmentMode Customer, BrowserUsed 1 4

q20 ShipmentMode Customer, BrowserUsed 2 4

q21 ShipmentMode Customer, BrowserUsed 3 4

q22 Tag – 1 5

q23 City – 1 5000

q24 Customer Customer var. 4

Convergence q25 Year – – 1

Non-covering q26 State – – 102

Opt. arc q27 BrowserUsed – – 6

Non-strict q28 ProductASIN – – 104

q29 ProductASIN Industry – 62

q30 ProductASIN City – 16

q31 Vendor – – 500

q32 Gender Industry – 2

q33 Gender City – 2

q34 Tag – – 4

q35 City – – 469

Shared hier. q36 City – – 5000

q37 Country – – 28

Cross-dim- lev. q38 Rating – – 5

123

Logical design of multi-model... 1083

5.1 Querying

In this section we compare the different solutions outlined above from the point of view of
querying performance and formulation complexity; intra-model comparisons are done first,
followed by an inter-model comparison.

The workload we use for these comparisons includes 38 queries, whose features are
summarized in Table 1, classified based on the main multidimensional element they involve:
(i) plain (from q1 to q10, only regular hierarchies involved with different group-by sets and
selection predicates), (ii) non-onto hierarchy (from q11 to q24, involving level Customer
with different group-by sets, selection predicates, and number of hops),3 (iii) convergence
(q25, involving level Year), (iv) non-covering hierarchy (q26, involving level State), (v)
optional arc (q27, involving level BrowserUsed), (vi) non-strict hierarchy (from q28 to q35,
involving levels ProductASIN and Tagwith different group-by sets and selection predicates),
(vii) shared hierarchy (q36 and q37, involving level City with different group-by sets), and
(viii) cross-dimensional level (q38, involving level Rating). As done by Zhang and Lu [42],
the queries were designed to cover the main challenges of multi-model query processing,
such as graph traversal and shortest path-finding, string matching, joins, and aggregation,
all from an OLAP point of view. For some types of multidimensional element, we defined
more queries than for other types, because the number of possibly interesting combinations is
larger. Specifically, for plain hierarchieswe tried different combinations of levels in the group-
by set and in the selection predicate, to obtain different result cardinalities and encourage
the adoption of different execution plans in the DBMS. For non-onto hierarchies, we also
required different numbers of hops (from 1 to 3) to be executed; in particular, query q24
shows a variable number of hops because it computes the shortest connection between two
customers along the knows non-onto hierarchy. Even for non-strict hierarchies we tried
different combinations, to involve either Tag or ProductASIN either in the group-by set or in
the selection predicate.

Queries are formulated in the extended query language provided by PostgreSQL and
Agensgraph to query JSON and graph data, respectively. In particular, as mentioned at the
beginning of this section, AgensGraph supports Cypher to formulate queries over graph data
and then rewrites them to SQL operations over the relational structures that implement the
graph. The Cypher query language is integrated with SQL and hybrid queries (e.g., over
relational, JSON, and graph data) are allowed. A sample hybrid query (corresponding to an
implementation of q22) is shown in Listing 1.

Listing 1 A sample hybrid query over relational, JSON, and graph data in AgensGraph

select tag , round(sum((ft.info ->>’totalprice ’):: numeric),5),
round(avg((ft.info ->>’discount ’):: numeric),5)

from doc1t4_ft ft , doc1_dt_order o, rel_bt_customer_tag ct ,
(match (c:dt_customer)-[: knows]->(c1:dt_customer)

return c.id , c1.id as parentid) c
where ft.idorder = o.idorder

and o.idcustomer = c.id::text::int
and c.parentid ::text::int = ct.idcustomer

group by tag;

3 The Order example only shows one non-onto hierarchy based on a many-to-many association between
customers. A non-onto hierarchy based on a many-to-one association (like the one defining a company orga-
nization chart, case (b) in Figs. 4 and 7) can be seen as a particular case of this.

123

1084 S. Bimonte et al.

Execution times are obtained by running a PostgreSQL procedure that runs each query of
the workload in random order; the reported execution times are the average of five workload
runs4.

To evaluate the query formulation complexity in terms of the cognitive load on the user
during query authoring, we compute for each schema the main indicator proposed by Jain,
Moritz, Halperin, Howe and Lazowska [27], i.e., the character length of each query as a
string, a proxy for the effort it takes to craft the query.

5.1.1 Document-based model

The results for the performance tests made on document-based solutions are shown in Fig.
10. The shattered schema appears to perform better than the denormalized one in almost all
situations. The main reason is that the fact table is significantly larger in the denormalized
schema (1 KB per row on average, against the 670 B in the shattered schema), thus requiring
longer execution times to operate on the data; for instance, a simple sequential scan of the
fact table takes less than 100 ms in the shattered schema and almost 2 s in the denormalized
one. A careful evaluation of the execution plans showed that JSON objects are carried out
along the execution plans until the end (i.e., fields are not efficiently projected out of JSON
objects). This substantially increases the footprint of queries, putting much pressure not only
on themainmemory, but also on the disk (that is used when an external sort on a large amount
of data is carried out). More in detail:

(i) With both schemata, the query execution times fall below 10 s for all queries on plain
hierarchies.

(ii) For queries on the non-onto hierarchy, times are obviously longer, significantly depend-
ing on the number of hops in the query and on the cardinality of the grouping level. The
shattered schema is clearly better, also considering that for two queries (q11 and q15)
the execution on the denormalized schema failed due to a timeout error. However, the
shortest-path query q24 failed on both schemata (out-of-memory).

(iii) For all other multidimensional constructs, the performance of the shattered schema is
fully compatible with the one required by an interactive analysis session, and signifi-
cantly better than the denormalized schema.

(iv) The only exception is for query q38, which groups tuples by cross-dimensional level
Rating. Here, the execution time on the shattered schema is almost 70 s, more than
double the one on the denormalized schema. As querying the cross-dimensional level
in the shattered schema creates a join path with a loop, the query optimizer struggles to
produce an efficient query plan. In particular, the optimizer estimates that the number of
records obtained by closing the loop is an order of magnitude lower than the actual one,
and it relies on a Nested Loops join strategy (which becomes inefficient in presence of
large numbers of records).5

In general, in presence of a cross-dimensional level c, the denormalized and shattered
schemata can be mixed by moving c within the fact collection. In the Order fact, if the

4 PostgreSQL does not provide any functionality to clear the cache; as a remedy, we run the queries multiple
times in random order.
5 PostgreSQL gives the possibility to turn off Nested Loops joins by issuing the command set
enable_nestloop = off. However, as stated in the documentation, “It is impossible to suppress nested-
loop joins entirely, but turning this variable off discourages the planner fromusing one if there are othermethods
available”; indeed, turning it off does not change the execution plan (https://www.postgresql.org/docs/current/
runtime-config-query.html).

123

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html

Logical design of multi-model... 1085

Fig. 10 Query performance (in seconds) for the document-based model

shattered schema in Fig. 6 is modified by removing table Rating and including levels rating
and posneg within the products array of document InfoOrder, the execution time of q38
drops down to 2.6 s. Note that this mixed solution cannot be taken when cross-dimensional
level c is preceded by a non-strict hierarchy. In this case, the granularity of c is finer than
the one of the fact table, thus, the denormalized solution for c is not feasible. However, in
the specific situation in which the non-strict hierarchy is directly attached to the fact (as in
the Order fact), the shattered design of the fact table allows to include data at a finer level of
granularity.

As to query formulation complexity, Fig. 11 shows that (except for a slightly lower com-
plexity for queries q26-q38 for the denormalized schema) there is not relevant difference
between the denormalized and the shattered schema from this point of view. In fact, the

123

1086 S. Bimonte et al.

Fig. 11 Query formulation complexity (in characters) for the document-based model

average complexity turns out to be about 640 and 660 characters for the denormalized and
shattered schemata, respectively, which means a 3% relative difference.

Following these results, we can conclude that, from the querying point of view, the best
practice for document-based modeling of multidimensional data is to use a shattered schema
for all constructs except for cross-dimensional levels, for which a local denormalized schema
should be adopted.

5.1.2 Graph-based model

The results for the performance tests made on graph-based solutions are shown in Fig. 12.
The shortcut schema appears to perform better than the flat one in all situations. This is
mainly because queries on the shortcut schema are quite simpler, and fewer edges must be
usually navigated to join the fact nodes with the other nodes of interest.

123

Logical design of multi-model... 1087

Fig. 12 Query performance (in seconds) for the graph-based model

Specifically:

(i) With both schemata, the query execution times fall below 3 s for all queries on plain
hierarchies.

(ii) Like in the document-based case, recursive queries on the non-onto hierarchy are more
challenging. The times here aremostly below 20 s, the only exception being q15 (group-
by ShipmentMode, selection on BrowserUsed, 3 hops) which takes 114 s with the
shortcut schema due to the high number of hops and low selectivity; q18 and q21 also
require three hops, but their selectivity is much higher. Noticeably, the shortest-path
query q24 (which failed on document-based solutions) performs very well (about 7 s)
on both schemata.

(iii) The high gap between the flat and shortcut schema in q13 to q15 is due to the very
large number of records that must be aggregated by the values of ShipmentMode. As

123

1088 S. Bimonte et al.

ShipmentMode is modeled as a single node in the shortcut schema, the query planner is
able to aggregate the data efficiently by using a Hashed Aggregate strategy; conversely,
in the flat schema, the query planner must first sort records by ShipmentMode and
(as already mentioned for the document-based model) this operation is particularly
expensive, as the disk is also involved.

(iv) The gap in q21 is due to mistakenly low estimates in the number of records by the
optimizer, leading to favoring (unexpectedly slower) Nested Loops joins over (actually
faster) Hash Joins.

(v) Queries on non-strict hierarchies are demanding as well, with q29 (group-by Produc-
tASIN, selection on Industry) taking about 30 s with both schemata. In particular, in
queries with no selection predicates (i.e., q28, q31, q34, and q35), a large number of
records is collected andmost of the time is spent in the final aggregation; although some
variability occurs, execution times are almost equivalent in these cases. Conversely,
when selection predicates are present (i.e., in q29, q30, q32, and q33), the optimizer
often favors Nested Loops joins on the flat schema; as already mentioned, when esti-
mates are mistakenly low, the execution times are heavily affected. This behavior is not
evident in q30 and q33 due to the very high selectivity of the selection predicates.

(vi) Query q38 on cross-dimensional level Rating performs well on the shortcut schema
due to the direct edge from fact nodes to rating ones; conversely, it is slow on the flat
schema as several edges must be navigated.

As to query formulation complexity, Fig. 13 shows that there is no clear winner between
the two schemata; the average complexity is 1577 for the flat schema and 1572 for the shortcut
schema, so even for the graph-based model there is no relevant difference between the two
schemata from this point of view.

Following these results we can conclude that, from the querying point of view, the best
practice for graph-based modeling of multidimensional data is the shortcut schema.

5.1.3 Inter-model comparison

Figures 14 and 15 compare the querying execution times and formulation complexity, aver-
aged by query class, for the relational model (star schema), the document-based model
(shattered schema + denormalized schema for Rating), and the graph-based model (shortcut
schema). Clearly, the average is computed, for each model, only on the queries that did not
fail (which excludes q24 for the relational and document-based models). The standard devi-
ation (not shown in the chart for simplicity) is very similar across the different models, and is
about ±61% for queries on plain and non-strict hierarchies; ±185% for queries on non-onto
hierarchies (this is because the related queries are quite different from each other, in terms
of both the number of hops on the recursive arc and the number of aggregated tuples); ±7%
for queries on shared hierarchies; 0 for queries on other hierarchy types (as there is only 1
query per type). The figure can be commented as follows:

– Expectedly, the figure shows that the relational model outperforms both the document-
based and the graph-based ones for almost all types of queries. For queries on a cross-
dimensional level, the shortcut schema outperforms the relational one thanks to the direct
links from the fact nodes to the Rating nodes, through which rating data can be obtained
with fewer join operations (2 instead of 3). The top performance of the document-based
model for these queries is actually unexpected, as the execution times for q38 are higher
for both the shattered and denormalized schemata (as shown in Fig. 10). The improvement
in performance is achieved by combining the benefit of denormalizing the rating (i.e.,

123

Logical design of multi-model... 1089

Fig. 13 Query formulation complexity (in characters) for the graph-based model

saving join operations) with the benefit of using a shattered schema (i.e., having lighter
JSON objects in the fact table).

– For queries on plain hierarchies, by far the most common, the performance of the three
models is substantially the same (around 1 second in the average).

– Queries on non-onto hierarchies are apparently the most challenging ones for the
document-based and graph-based models, from both points of view of performance and
formulation complexity. However, we remark that the average values shown on the chart
do not consider query q24, which failed on both the relational and the document-based
models.

– In general, the shattered schema suffers the need to deal with JSON data, which require
more storage and are more challenging to be analyzed efficiently (as discussed in the
single-model comparison). Although aggregate data modeling allows to save explicit
join operations (instead, the jsonb_array_elements function is used to “enter”
arrays), PostgreSQL implements the unnesting of arrays as a Nested Loop between the
Sequential Scan of the table and the Function Scan of the contents of the array. Eventually,

123

1090 S. Bimonte et al.

Fig. 14 Query performance (in seconds) for the relational, document-based, and graph-based models

Fig. 15 Query formulation complexity (in characters) for the relational, document-based, and graph-based
models

in our workload, the shattered schema performs a total of 113 joins (32 of which are due
to the unnesting of arrays) against the 107 of the star schema. All these factors contribute
to making the shattered schema generally less performing than the star schema.

– The shortcut schema suffers from issues similar to the shattered one in terms of JSON
data. Additionally, we remark that the Agensgraph’s implementation of graph data relies
on the relational data model, i.e., all nodes of a certain class are stored in a different table,
and a table is created for each type of edge (independently of the edge representing a
one-to-one, one-to-many, or many-to-many relationship). This means that, against our
expectations, the shortcut schema requires a larger number of joins than the star schema
(184 against 107), because a join to an “edge table” is required even in presence of a

123

Logical design of multi-model... 1091

Table 2 Storage size for the
different schemata; the total size
includes not only data but also
indexes

Model Schema Data size Total size

Relational Star 660 MB 1557 MB

Document-based Denormalized 2105 MB 2494 MB

Shattered 1251 MB 1765 MB

Graph-based Flat 2109 MB 3476 MB

Shortcut 6629 MB 12321 MB

one-to-* relationship (which does not require and extra table in the relational model, as
it is simply implemented through a foreign key).

– The formulation complexity on the star schema is not very different from the one on the
shattered schema, being significantly smaller only for queries on non-onto hierarchies.

– The formulation complexity on the shortcut schema is, for all query types, about double
the one on the shattered schema.

5.2 Storage

In this section we compare the different solutions from the point of view of the storage space
they require. Table 2 shows the storage size for the different schemata. As already noted by
Bimonte et al. [2], storing data in relational form is the cheapest solution. For document-
based data, the shattered schema uses about half the space of the denormalized schema. For
graph-based data, the shortcut schema uses three times the space of the flat schema, due to the
presence of many more arcs (not only those between hierarchy levels, but also the transitive
ones from the fact nodes to the levels).

5.3 ETL

In this sectionwe firstly compare the different solutions outlined above from the point of view
of the cost for designing ETL procedures. This is indeed quite relevant, since the design and
maintenance of ETL procedures are recognized to make up for up to 60% of the resources
spent in a DW project Papastefanatos, Vassiliadis, Simitsis and Vassiliou, [33]. Then, we
extend the comparison to the performance of ETL procedures.

To characterize the complexity of ETL formulation, we use the same indicator employed
in Sect. 5.1 to assess the query formulation complexity. We assume that ETL procedures are
written in terms of SQL statements to enable a better characterization of complexity and be
independent of the specific features of ETL tools. Besides, we consider static ETL (which
is performed when a DW is loaded for the first time), not incremental ETL (periodically
performed to extract, transform, and load the data inserted/updated in the sources since the
last run of the ETL).

An ETL query reads a piece of data from the data source and transforms it so that it
can be loaded onto the MMDW. Hence, its precise formulation depends on the model and
schema of the data source, on the multidimensional schema, and on the solution adopted for
logical design; thus, a huge number of combinations arise. Precisely counting the number of
characters of each possible ETL query—as suggested by Jain et al. [27]—would require to
write all of them. To avoid this, we introduce some rough approximation. Specifically, we
proceed as follows:

123

1092 S. Bimonte et al.

Fig. 16 Modeling the many-to-one relationship between Category and Type in a normalized (left), nested
(center), and flat (right) schema

(i) We classify data sources, based on their type of schema, into normalized (e.g., a
relational database), nested (e.g., a JSON collection), and flat (e.g., a wide-column
database); Fig. 16 shows how themany-to-one relationship between Category and Type
would be modeled according to the three schema types, respectively. The reason for not
explicitly considering the model of the data source is that the formulation complexity of
an ETL query is mainly driven by the need to nest/un-nest and normalize/denormalize
the data.

(ii) For each type of multidimensional element, each type of source schema, and each
target logical design solution, we write a sample ETL query. Plain hierarchies are
considered together with convergences, optional arcs, and non-covering hierarchies,
since the corresponding query does not change significantly.

(iii) We count the number of characters in each sample ETL query. We claim that the
complexity is actually driven by the structure of the query, so we do not count the
attribute names.

The results are shown in Table 3.
To give an empirical validation of these estimates, we applied it to the case study discussed

by Bimonte et al. [2], where the exact number of characters of specific ETL queries is counted
with reference to a data source including JSON, XML, key-value, and graph data, and to two
target logical solutions: a classical (full relational, FR) star schema and a multi-model star
schema (MM)where relational, JSON, and graph data aremixed. The actual total formulation
complexity for ETL (removing attribute names) turns out to be 412 for FR and 276 for MM.
The estimates obtained using Table 3 (considering cost zero for the pieces of data whose
model is preserved so that no transformation is required) yield 597 for FR and 315 for MM.
Both estimates are satisfying for our purposes; indeed, they are higher than the real values
because they do not consider the possibility of merging some queries together.

To discuss the complexity of ETL formulation for our Order fact we use Table 3 with
reference to three different situations, in which the source data are stored in (i) a (normalized)
relational database, (ii) a (nested) document-based database, and (iii) a (flat) graph-based
database6. The results are shown in Fig. 17 for each source model and target solution.

The figure can be commented as follows:

– For each source model, the ETL formulation complexity for the shortcut schema is more
than double the one of the other schemata. Indeed, an extra effort is required to create
different nodes for each level and to create transitive arcs from the fact nodes.

6 Though a flat schema type is not themost frequent choice in a graph-based database, it is technically possible.

123

Logical design of multi-model... 1093

Table 3 Estimation of ETL formulation complexity

Source Target Multidimensional element

Plain/Conv./Opt. Non-onto Non-strict Shared Cross-dim.

Norm. Star 60 56 79 79 79

Denorm. 60 85 124 122 101

Shatt. 60 85 114 79 114

Flat 60 56 79 125 125

Short. 198 56 178 263 224

Nested Star 67 103 180 189 228

Denorm. 67 27 27 182 76

Shatt. 67 27 104 189 228

Flat 67 103 180 301 235

Short. 265 103 283 393 364

Flat Star 27 66 107 204 107

Denorm. 27 58 44 130 33

Shatt. 27 58 81 204 107

Flat 27 66 107 250 165

Short. 147 66 168 386 226

Fig. 17 ETL formulation complexity (in characters) for the different source data models and target logical
solutions

123

1094 S. Bimonte et al.

– The star and flat schemata are similar from the point of view of denormalization, thus
their costs aremostly the same—except for shared hierarchies and cross-dimension levels,
where more arcs need be created.

– When the source data are normalized and relational, using star as the target schema is the
best choice; for the denormalized, shattered, and flat schemata the costs are roughly the
same. The larger effort here is in creating the JSON objects by joining and aggregating
the data.

– When the source is a nested document-based collection, using a document-based solution
for logical design as well is the best option as data is already aggregated (indeed, most
queries are very simple). Specifically, a denormalized schema is the cheapest solution,
followed by a shattered (where some degree of normalization is required), a star, and a
flat schema.

– The same ordering holds when the source is a flat graph-based database. In this case,
adopting the graph-based model for the target as well is not the best choice, since using
nodes and edges to model complex multidimensional elements can be seen as some sort
of normalization—like the one carried out when the target is a star schema. Document-
based solutions are cheaper as flat data are significantly denormalized, thus building a
document-based solution is just a matter of creating the JSON objects, while the star and
flat schemata require some more aggregation and normalization steps.

To compare the solutions in terms of ETL performance we use the same approximation
used for formulation complexity: (i) we classify data sources into normalized, nested, and
flat; and (ii) we write a sample ETL query for each type of multidimensional element, each
type of source schema, and each target logical design solution. To reduce the resulting number
of queries, we restrict to consider two types of multidimensional elements: plain hierarchies
(because they are the most frequent ones) and non-strict hierarchies (because Table 3 shows
that their formulation complexity changes significantly from one solution to another). For
all sample queries, the reference is a simple fact with a single (either plain or non-strict)
hierarchy; the fact cardinality is 1M. The resulting execution times are shown in Table 4.
Figure 18 plots the relationship between ETL performance and storage space taken by the
target logical solutions; clearly, the non-strict hierarchy is the one requiring most storage
space in every logical solution. It appears that, as we could expect, the ETL time is roughly
proportional to the target storage for each source model. The most notable exception holds
for the denormalized solution, especially in the case of a non-strict hierarchy; indeed, the
ETL cost is lower than expected in the denormalized solution since it is the only one with
a procedure composed by a single query (as only one table must be created), requiring very
simple computations (especially in the case of a nested or flat source, where a single source
table exists; this is also reflected in Table 3, where the complexity of such queries is very
low).

6 Multi-model multidimensional design

In this section, we show how the mono-model solutions considered in the previous sections
can be mixed to create a Multi-Model MultiDimensional (in short, M3D) logical schema,
using again as aworking example theOrder fact introduced previously. The onlymulti-model
solution considered by Bimonte et al. [2] was a classical star schema with fact and dimension
tables, extended with semi-structured data in JSON, XML, key-value, and graph-based form.
While this has some advantages (e.g., that performance optimization of star schema has been

123

Logical design of multi-model... 1095

Table 4 ETL performance (in
seconds)

Multidimensional element

Source Target Plain/Conv./Opt. Non-strict

Norm. Star 1.6 2.2

Denorm. 5.3 16.6

Shatt. 3.8 4.4

Flat 17.7 24.6

Short. 28.3 71.0

Nested Star 2.3 8.1

Denorm. 4.5 8.6

Shatt. 3.3 10.7

Flat 19.6 32.8

Short. 28.6 74.0

Flat Star 1.7 2.1

Denorm. 4.8 13.3

Shatt. 2.8 4.2

Flat 21.0 26.7

Short. 32.8 71.0

Fig. 18 Relationship between ETL performance and storage for the different source data models and target
logical solutions

long studied and practiced), it may not exploit the flexibility enabled by an MMDBMS.
Hence, in this work we freely explore all the design alternatives, without requiring that a star
schema lies at the core.

Bimonte et al. [2] argue that three more features are relevant—besides query performance,
query formulation, storage, and ETL—when comparing different target models in MMDW
design, namely, flexibility, extensibility, and evolvability. To make our guidelines more com-

123

1096 S. Bimonte et al.

Table 5 Guidelines by design goals and multidimensional element type (R=relational, D=document-based,
G=graph-based); the ∼ and � symbols denote, respectively, that two models are equivalent or that the first
one is better than the second one)

MD element Query perf. Query form. Storage/ ETL form. Flex./Ext./
ETL perf. Evolv.

Plain/Conv./Opt. R∼D∼G R∼D�G R�D�G R∼D∼G D∼G�R

Non-onto G�R�D R�D�G

Non-strict R�D�G R∼D�G

Shared R∼D∼G R∼D�G

Cross-dim. D�G�R R∼D�G

prehensive, in this section we briefly recall the main findings described by Bimonte et al.
[2].

As to flexibility, we observe that an M3D schema can preserve the data variety existing
in the data sources to a greater extent than a mono-model schema. Besides, mixing different
models in anMMDW enables the achievement of higher flexibility in the modeling solutions
taken so as to adapt the target schema to the workload.

Extensibility is mainly related to variable source schemata. In case of schemaless sources,
some levels not considered at design time may be occasionally present in some source docu-
ments. Clearly, these levels can be queried in an M3D schema, while they cannot in classical
(fully relational) star schema. This allows adopting sophisticated querying approaches capa-
ble of coping with variable schemata and structural forms within a collection of documents,
such as approximate OLAP Gallinucci et al. [20].

Finally, as to evolvability we observe that, in a multi-model context, evolution issues are
crucial because extensions and changes of the data schema in onemodel can cause changes in
other models, too Holubová, Klettke and Störl, [25]. M3D schemata are partially schemaless,
so they transparently support evolution to some extent by reducing the impact on tables
and ETL. This is confirmed by Bimonte et al. [2] by showing that the evolution effort for a
classical star schema is about 10% higher than the one for an M3D schema. In particular, the
higher effort for evolving workload queries in an M3D schema is largely compensated by the
lower complexity of the schema and by the absence of ETL.

6.1 Design guidelines

In Table 5we summarize the results of the comparative tests described in Sects. 5.1–5.3, in the
form of guidelines by main design goal (querying, storage, ETL, flexibility, extensibility, and
evolvability) and multidimensional element type. We treat plain hierarchies, convergences,
non-covering hierarchies, and optional arcs together since they essentially exhibit the same
behaviour from all points of view.

Clearly, to complete the guidelines, we need to discuss when and how different models
can be mixed together within the same schema (some examples will be given with reference
to Figs. 19 and 20):

– Different hierarchies can use different models.
– In general, mixing different models within the same hierarchy can be done as follows:

123

Logical design of multi-model... 1097

Fig. 19 M3D-R schema for the Order fact; here, the relational model is used for both the Rating cross-
dimensional level and the non-strict hierarchy to Product

– The connection from a fact/dimension/bridge table T to a document D is established
by creating a new table N , adding to T a foreign key referencing N , and adding an
attribute of type JSON with value D to N (e.g., see the connection from FT_Order
to OrderCode in Fig. 19);

– The connection from a fact/dimension/bridge table T to a graph nodeG is established
by adding to T an attribute whose values match with the identifier of G (e.g., see the
connection from BT_Rating to Customer in Fig. 19);

– The connection from a document D to a dimension table T is established by adding
to D a field whose values match with the primary key of T (e.g., see the connection
from InfoOrder to DT_Product in Fig. 20);

– The connection from a graph node G to a dimension table T is established by adding
to G a field whose values match with the primary key of T (e.g., see the connection
from Customer to DT_City in Fig. 20);

– The connection from a graph node G to a document D embedded in table N is
established by adding to G a field whose values match with the primary key of N ;

– The connection from a document D to a graph node G is established by adding to
D a field whose values match with the identifier of G (e.g., see the connection from
OrderCode to Customer in Fig. 19).

– A denormalized schema can be used for a cross-dimensional level only if the fact is
modeled as a document (e.g., as done for Rating in Fig. 5).

– A shortcut schema can be locally adopted only if the fact is modeled as a graph node
(since only in that case can the transitive arcs be added).

6.2 Case study

In this section we show how the guidelines in Table 5 can be concretely applied, using again
the Order fact as a case study. We assume that (i) the source data are stored within a nested

123

1098 S. Bimonte et al.

Fig. 20 M3D-D schema for the Order fact; here, the document-based model is used for both the Rating
cross-dimensional level and the non-strict hierarchy to Product

JSON collection, except for geographical data which are stored in a relational table; (ii) the
main variety issues lie in the product and customer dimensions, as well as in the measures
(consistently with the cloud symbols shown in Fig. 2); and (iii) the expected workload is the
one shown in Table 1. Our (often conflicting) design goal can be summarized as follows:

�1 Yield good querying performance and low query formulation complexity.
�2 Reduce storage space.
�3 Yield low ETL formulation complexity and costs.
�4 Encourage flexibility in presence of variety and evolvability.

To propose an M3D schema in this setting we proceed as follows:

– Since geographical data are natively stored in the relational model, for the City shared
hierarchy we adopt a relational solution—which reduces the storage space (goal �2)
and the ETL complexity/cost (goal �3), while ensuring good query performance and
formulation complexity (goal �1).

– A relational solution is chosen for the temporal (plain) hierarchy as well. Indeed, the
source data only include a simple date attribute (the other levels must be derived during
ETL), and the relational solution is the best one in terms of storage (goal �2, no need to
support variety in this case since the temporal hierarchy has a fixed structure).

– To encourage flexibility in presence of variety and better evolvability (goal �4) while
ensuring good query performance and formulation (goal �1), for the product and order
hierarchies (for the latter, limitedly to levels OrderCode and ShipmentMode) we adopt
a shattered schema (since source data are in JSON form).

– For the Customer hierarchy (which includes the knows non-onto hierarchy) we adopt
the graph-based model, specifically, a flat schema. There are three reasons for this: (i) a
schemaless model is required to cope with customer variety (goal �4); (ii) graph-based
solutions are the only ones for which none of the queries fail (goal �1), and (iii) a shortcut
schema is feasible only when the fact is modeled as a graph node, which is not the case
here.

123

Logical design of multi-model... 1099

Table 6 Total query performance, query formulation complexity, storage size, and estimated ETL formulation
complexity for the different schemata; the out-of-memory (OOM) column refers to failure of query q24

Model Schema Query perf. OOM Query form. Storage ETL

Multi M3D-R 76.0 ± 3.2 sec 30531 1737 MB 1452

M3D-D 230.1 ± 12.5 sec 31430 1291 MB 1147

Relational Star 60.3 ± 3.8 sec � 16218 1557 MB 1543

Doc.-based Shattered 301.3 ± 17.3 sec � 25190 1765 MB 1002

Graph-based Shortcut 279.9 ± 18.5 sec 59747 12321 MB 1602

– Dealing with measure variety requires to store the fact according to the document-based
model, which also ensures better evolvability (goal �4).

– To model the non-strict hierarchy on Tag we adopt the model that yields the best query
performance and formulation, i.e., the relational one (goal �1).

– The Rating cross-dimensional level and the non-strict hierarchy to Product both lean on
the Product level, so they should be modeled coherently, either in the relational or in
the document-based model. We have a conflict here, since cross-dimensional levels and
non-strict hierarchies yield better query performance and formulation when modeled,
respectively, in a shattered and in a star schema (goal �1). To explore this trade-off we
consider two different solutions: the first one (called M3D-R from here on) uses the
relational model for both multidimensional elements, the second one (M3D-D) uses the
document-based model.

The two resulting schemata are depicted in Figs. 19 and 20.
Table 6 shows an overall comparison between the twoM3D schemata and the three mono-

model schemata proposed in the previous sections. The bad performance of M3D-D is due
to the higher storage space occupied by the InfoOrder JSON field in the fact table, which has
a negative impact on performances in queries with high cardinalities—especially those on
the knows non-onto hierarchy, namely, q11, q12, and q15. This is consistent with the con-
siderations made in Sect. 5.1.1 about PostgreSQL’s inefficiencies when aggregating JSON
data. M3D-D outperforms M3D-R only for queries involving the Rating cross-dimensional
attribute; as demonstrated in Sect. 6, such queries are more efficient when the multidimen-
sional element is denormalized. However, in our workload, the relative impact of queries on
Rating is low, thus the overall performances steer in favor of M3D-R.

7 Conclusion

Multi-model data warehouses were recently proposed to store data according to the multidi-
mensional model and, at the same time, let each of its elements be represented through the
most appropriate model. To help designers in understanding how to mix different models
when implementing a DW via an MMDBMS, we proposed a set of guidelines for multi-
model multidimensional design based on a set of intra-model and inter-model comparisons,
and showcased the guidelines on a case study. The design goals we took into account are
querying performance and formulation complexity, storage, ETL formulation complexity,
flexibility, extensibility, and evolvability. We studied various alternatives for the modeling
of multidimensional elements, including complex hierarchies, according to three models:
relational, document-based, and graph-based.

123

1100 S. Bimonte et al.

The main lessons learned are that, depending on the DW designer’s will to balance
design goals, different models can be mixed together within the same schema. In particular,
hierarchies can use differentmodels, andmodels can bemixedwithin the same hierarchy con-
sidering connections between fact/dimension/bridge tables and documents or graph nodes.
Specific schemata (denormalized, shortcut) can be used depending on the fact model. Over-
all, it appears that the graph-based model is only convenient for storing non-onto hierarchies,
especially in presence of a workload that includes recursive queries. While this may be due
to the fact that PostgreSQL uses relational tables to store graphs, we remark that none of the
MMDBMSs supporting all three models used in this paper stores graphs natively. As to the
relational and document-based models, the former is preferred to reduce the storage space
and improve the ETL performance, while the latter ensures better flexibility, extensibility,
and evolvability.

MMDWs open many research avenues, at the conceptual level (e.g., how to extend the
existing conceptual models to cope with schemaless data Holubová, Svoboda and Lu, [26],
Holubová et al. [24]), at the logical level (e.g., how to select and use materialized views
in MMDWs), and at the physical level (e.g., what ad hoc indexing strategies to adopt for
MMDWs, or what is the benefit of using native graphs in an MMDWs). Our future work will
be mainly placed at the conceptual level; specifically, we will investigate how to extend the
UML profiles usually adopted for conceptual design of multidimensional data to cope with
variety issues.

Acknowledgements This work was partially supported by the French ANR Project ANR-20-PCPA-0002
“Building epidemiological surveillance & prophylaxis with observations near & distant” (BEYOND).

Author Contributions All authors contributed to the study conception and design. Material preparation and
data collection were performed by Enrico Gallinucci. Data analysis was performed by Enrico Gallinucci and
Stefano Rizzi. The first draft of the manuscript was written by Stefano Rizzi and all authors commented on
previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Open access funding provided by Alma Mater Studiorum - Università di Bologna within the CRUI-
CARE Agreement.

Declarations

Funding The authors did not receive support from any organization for the submitted work.

Data availability The datasets generated during the current study are available at https://github.com/big-unibo/
m3d-guidelines.

conflict of interest All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://github.com/big-unibo/m3d-guidelines
https://github.com/big-unibo/m3d-guidelines
http://creativecommons.org/licenses/by/4.0/

Logical design of multi-model... 1101

References

1. Beheshti S, Benatallah B, Nezhad HRM, Allahbakhsh M (2012) A framework and a language for on-line
analytical processing on graphs, In: Proc WISE, pp 213–227

2. Bimonte S, Gallinucci E, Marcel P, Rizzi S (2022) Data variety, come as you are in multi-model data
warehouses, IS, 104:101734

3. Bimonte S, Hifdi Y, Maliari M, Marcel P, Rizzi S (2020) To each his own: Accommodating data variety
by a multimodel star schema, In: Proc DOLAP@EDBT/ICDT’, Copenhagen, Denmark, pp 66–73

4. Bitnine Global Inc. (2017) Architecture of AgensGraph, https://bitnine.net/blog-agens-solution/
architecture-of-agensgraph/

5. Boukraâ D, BouchoukhMA, Boussaïd O (2015) Efficient compression and storage of XMLOLAP cubes.
IJDWM 11(3):1–25

6. Boussahoua M, Boussaid O, Bentayeb F (2017) Logical schema for data warehouse on column-oriented
NoSQL databases. In: Proc DEXA, Lyon, France, pp 247–256

7. CastelltortA, LaurentA (2014)NoSQLgraph-basedOLAPanalysis. ProcKDIR,Rome, Italy, pp 217–224
8. Challal Z, Bala W, Mokeddem H, Boukhalfa K, Boussaid O, Benkhelifa E (2019) Document-oriented

versus column-oriented data storage for social graph data warehouse. Proc SNAMS, Granada, Spain, pp
242–247

9. Chen C, Yan X, Zhu F, Han J, Yu PS (2009) Graph OLAP: a multi-dimensional framework for graph data
analysis. Knowl Inf Syst 21(1):41–63

10. Chevalier M, Malki ME, Kopliku A, Teste O, Tournier R (2015) Implementation of multidimensional
databases in column-oriented NoSQL systems. Proc ADBIS, Poitiers, France, pp 79–91

11. Chevalier M, Malki ME, Kopliku A, Teste O, Tournier R (2015) Implementing multidimensional data
warehouses into NoSQL. Proc ICEIS, Barcelona, Spain, pp 172–183

12. Chevalier M, Malki ME, Kopliku A, Teste O, Tournier R (2016) Document-oriented data warehouses:
Complex hierarchies and summarizability. Proc UNet, Casablanca, Morocco, pp 671–683

13. Chevalier M, Malki ME, Kopliku A, Teste O, Tournier R (2016) Document-oriented data warehouses:
Models and extended cuboids, extended cuboids in oriented document. Proc RCIS, Grenoble, France, pp
1–11

14. Chevalier M, Malki ME, Kopliku A, Teste O, Tournier R (2016) Document-oriented models for data
warehouses—NoSQL document-oriented for data warehouses. Proc ICEIS, Rome, Italy, pp 142–149

15. Chouder ML, Rizzi S, Chalal R (2019) EXODuS: exploratory OLAP over document stores. Inf Syst
79:44–57

16. Couto J, Borges OT, Ruiz DD, Marczak S, Prikladnicki R (2019) A mapping study about data lakes: an
improved definition and possible architectures. Proc SEKE, Lisbon, Portugal, pp 453–578

17. Dehdouh K (2016) Building OLAP cubes from columnar NoSQL data warehouses. ProcMEDI, Almería,
Spain, pp 166–179

18. Ferrahi I, Bimonte S, BoukhalfaK (2017)Amodel&DBMS independent benchmark for datawarehouses.
Proc EDA, Lyon, France, pp 101–110

19. Gadepally V, Chen P, Duggan J, Elmore AJ, Haynes B, Kepner J, Madden S, Mattson T, Stonebraker M
(2016) The BigDAWG polystore system and architecture. Proc HPEC, Waltham, MA, USA, pp 1–6

20. Gallinucci E, GolfarelliM, Rizzi S (2019) Approximate OLAP of document-oriented databases: a variety-
aware approach. Inf Syst 85:114–130

21. Golfarelli M, Rizzi S (2009) Data warehouse design: modern principles andmethodologies.McGraw-Hill
Inc, New York, NY, USA

22. Gómez LI, Kuijpers B, Vaisman AA (2020) Online analytical processsing on graph data. Intell Data Anal
24(3):515–541

23. Hamadou HB, Gallinucci E, Golfarelli M (2019) Answering GPSJ queries in a polystore: a dataspace-
based approach. Proc ER, Salvador de Bahia, Brazil, pp 189–203

24. Holubová I, Contos P, Svoboda M (2021) Multi-model data modeling and representation: State of the art
and research challenges, in Proc In: Montreal QC (ed) IDEAS. Canada, pp 242–251

25. Holubová I, Klettke M, Störl U (2019) Evolution management of multi-model data—(position paper).
Proc Poly/DMAH, Los Angeles, CA, USA, pp 139–153

26. Holubová I, SvobodaM, Lu J (2019) Unified management of multi-model data—(vision paper). Proc ER,
Salvador, Brazil, pp 439–447

27. Jain S, Moritz D, Halperin D, Howe B, Lazowska E (2016) SQLShare: results from a multi-year SQL-
as-a-Service experiment. Proc SIGMOD, San Francisco, CA, USA, pp 281–293

28. Lu J, Holubová I (2019)Multi-model databases: a new journey to handle the variety of data. ACMComput
Surv 52(3):551–55:38

123

https://bitnine.net/blog-agens-solution/architecture-of-agensgraph/
https://bitnine.net/blog-agens-solution/architecture-of-agensgraph/

1102 S. Bimonte et al.

29. Marzi MD (2020) The secret sauce of Neo4j: modeling and querying graphs, https://neo4j.com/blog/
secret-sauce-neo4j-modeling-graphconnect/

30. Niemi T, Nummenmaa J, Thanisch P (2001) Logical multidimensional database design for ragged and
unbalanced aggregation, In: Proc DMDW’, p 7

31. O’Neil PE, O’Neil EJ, Chen X, Revilak S (2009) The star schema benchmark and augmented fact table
indexing. In: Proc TPCTC, Lyon, France, pp 237–252

32. Ouaret Z, Chalal R, Boussaid O (2013) An overview of XML warehouse design approaches and tech-
niques. IJICoT 2(2/3):140–170

33. Papastefanatos G, Vassiliadis P, Simitsis A, Vassiliou Y (2012) Metrics for the prediction of evolution
impact in ETL ecosystems: a case study. J Data Semant 1(2):75–97

34. Pedersen TB, Jensen CS, Dyreson CE (2001) A foundation for capturing and querying complex multidi-
mensional data. Inf Syst 26(5):383–423

35. SadalagePJ, FowlerM(2009)NoSQLdistilled: a brief guide to the emergingworld of polyglot persistence.
Addison-Wesley Professional, Boston, US

36. Sellami A, Nabli A, Gargouri F (2018) Transformation of data warehouse schema to NoSQL graph data
base. Proc ISDA, Vellore, India, pp 410–420

37. Sellami A, Nabli A, Gargouri F (2020) Graph NoSQL data warehouse creation, In: Proc. iiWAS’, Chiang
Mai, Thailand, pp. 34–38

38. Shimura T, Yoshikawa M, Uemura S (1999) Storage and retrieval of XML documents using object-
relational databases. Proc. DEXA, Florence, Italy, pp 206–217

39. Svoboda M, Contos P, Holubová I (2021) Categorical modeling of multi-model data: one model to rule
them all. In: Attiogbé JC, Yahia SB (eds) Proc MEDI. Tallinn, Estonia, pp 190–198

40. TsunakawaT (2017)Road to amulti-model database—making PostgreSQL themost popular and versatile
database. Presented at PGConf.ASIA, Tokyo, Japan. https://www.pgconf.asia/EN/2017/day-1/#B2

41. Yangui R, Nabli A, Gargouri F (2016) Automatic transformation of data warehouse schema to NoSQL
data base: comparative study. Proc KES, York, UK, pp 255–264

42. Zhang C, Lu J (2021) Holistic evaluation in multi-model databases benchmarking. Distrib Parallel
Databases 39(1):1–33

43. Zhang C, Lu J, Xu P, Chen Y (2018) UniBench: a benchmark for multi-model database management
systems. In: Proc TPCTC, Rio de Janeiro, Brazil, pp 7–23

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Enrico Gallinucci is junior assistant professor at the University of
Bologna, where he received his Ph.D. in Computer Science and Engi-
neering and teaches Business Intelligence and Big Data. His research
interests currently focus on big data analytics, NoSQL and multimodel
database systems, data democratization, and precision agriculture. He
is associate editor for the DKE journal.

123

https://neo4j.com/blog/secret-sauce-neo4j-modeling-graphconnect/
https://neo4j.com/blog/secret-sauce-neo4j-modeling-graphconnect/
https://www.pgconf.asia/EN/2017/day-1/#B2

Logical design of multi-model... 1103

Sandro Bimonte is a researcher at INRAE–TSCF. He received his
Ph.D. from INSA-Lyon, France, in 2007. From 2007 to 2008 he car-
ried out research at IMAG, France. He is an editorial board member
of the International Journal of Decision Support System Technology
and of the International Journal of Data Mining, Modeling and Man-
agement, as well as a member of the Commission on GeoVisualization
of the International Cartographic Association. His research activities
concern spatial data warehouses and spatial OLAP, visual languages,
geographic information systems, spatiotemporal databases, and geovi-
sualization.

Patrick Marcel is an Associate Professor at the University of Tours,
France. His current research focuses on database, OLAP and data ware-
housing, personalization, recommender systems, exploratory data anal-
ysis and data narration. He authored numerous publications in interna-
tional conferences and journals on these subjects. He served as program
committee member in top tier international conferences, including ER,
VLDB, EDBT. He is a member of the steering committee of DOLAP
and a member of the regular editorial board of DKE.

Stefano Rizzi is a Full Professor at the University of Bologna, Italy. He
has authored more than 150 papers in international journals and confer-
ences mainly in the fields of data warehousing, business intelligence,
and pattern recognition. He is member of the steering committee of
DOLAP and of the editorial board of DKE, and has been a member
of the steering committee of the ER Conference. His research interests
include data warehouse design and business intelligence, in particular
OLAP on NoSQL data, social business intelligence, and analysis ser-
vices for big data.

123

	Logical design of multi-model data warehouses
	Abstract
	1 Introduction
	2 Related work
	2.1 Polystores and multi-model databases
	2.2 NoSQL OLAP

	3 Case study
	4 Mono-model multidimensional design
	4.1 Relational model
	4.2 Document-based model
	4.3 Graph-based model

	5 Comparative tests
	5.1 Querying
	5.1.1 Document-based model
	5.1.2 Graph-based model
	5.1.3 Inter-model comparison

	5.2 Storage
	5.3 ETL

	6 Multi-model multidimensional design
	6.1 Design guidelines
	6.2 Case study

	7 Conclusion
	Acknowledgements
	References

