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Abstract
We present a novel hypergraph-based framework enabling an assessment of the importance
of binary classification data elements. Specifically, we apply the hypergraph model to rate
data samples’ and categorical feature values’ relevance to classification labels. The pro-
posed Hypergraph-based Importance ratings are theoretically grounded on the hypergraph
cut conductanceminimization concept. As a result of using hypergraph representation, which
is a lossless representation from the perspective of higher-order relationships in data, our
approach allows for more precise exploitation of the information on feature and sample
coincidences. The solution was tested using two scenarios: undersampling for imbalanced
classification data and feature selection. The experimentation results have proven the good
quality of the new approach when compared with other state-of-the-art and baseline methods
for both scenarios measured using the average precision evaluation metric.

Keywords Hypergraphs · Machine learning · Imbalanced data · Random undersampling ·
Feature selection

1 Introduction

In this paper, we investigate the area of research on data modeling for the binary classification
problem. Specifically, we focus on the application of a hypergraph, which is regarded as a
convenient and expressive tool tomodel and visualize the coincidences between data elements
in complex structures [1, 2]. A hypergraph is a generalization of a graph, allowing edges that
may consist of any number of vertices. Although they are less prevalent than standard graphs,
hypergraphs have already been successfully used in various machine learning tasks, includ-
ing community detection and clustering [3, 4], biomedical applications such as modeling
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virus spreading networks, relations between genes and diseases [1] or finding genes which
are central in the host response to viral infection [2], as well as e-commerce applications,
mainly aimed at prediction [5]. In contrast to themost commonmachine learning applications
of hypergraphs based on modeling structure forming networks, this paper investigates the
application domain related to processing binary classification datasets. Specifically, we study
how to model a binary classification dataset in a way allowing us to assess the importance
of each input data element. We investigate two research scenarios in which we apply the
hypergraph-based importance rates and evaluate their quality: dealing with imbalanced data
[6, 7] and feature selection [8–10]. Both problems are regarded as highly practical and are
currently intensively investigated in the area of research on machine learning [8, 11].

Many state-of-the-art classification algorithms, e.g., those based on neural networks [12,
13], are not able to provide a human-interpretable explanation, allowing users to understand
how the values of original data elements influence the algorithm decision. This explanation
capability is even more critical when studying the fairness of machine learning solutions
[14], which is a crucial issue in every area where automated decision-making algorithms
should give users the decision explanation to avoid discrimination. Graphs are widely used
and convenient tools to model and visualize the structure of various datasets or networks
in an interpretable way, and consequently, they are applied in various machine learning
applications [15]. However, due to being limited to modeling dyadic interactions in data
by means of standard edges, a graph is a suboptimal modeling solution for many datasets,
especially for classification data [1, 3]. Moreover, existing graph- and hypergraph-based
approaches to machine learning either require the preprocessing step transforming input data
to a network, e.g., utilizing some distance measure [16], or embedding of input samples to a
vector space [12, 13], which leads to loss of interpretability.

The motivation for building our hypergraph-based modeling framework for binary
classification datasets is twofold. Firstly, we apply hypergraphs due to their ability for human-
interpretable modeling of dependencies between original feature values and labels. Secondly,
in contrast to standard graphs, hypergraphs enable flexible polyadic modeling [17], i.e., mod-
eling interactions occurring within groups of arbitrary size using hyperedges. It has been
already proven that this ability of hypergraphs is beneficial in research on properties of
social, collaboration, or biological networks [2, 4]. We recognize the features of hypergraphs
stated above as crucial for deriving structure-aware importance rates for classification data.
Moreover, the proposed importance assessment framework may be used in many practical
scenarios. It may be applied in intensively investigated research scenarios, like dealing with
imbalanced classification data, feature selection, explanatory data analysis, and algorithm
fairness. Both dealing with the class imbalance and feature selection are regarded as impor-
tant research problems in machine learning, especially when dealing with high dimensional
data [9, 11, 18]. Specifically, the undersampling and feature selection methods can be suc-
cessfully applied to make model training faster, lower model complexity and improve its
interpretability, or even improve model efficiency from the perspective of machine learning
metrics [8, 19].

The novel contribution of the paper may be summarized as follows:

• We define the hypergraph-based data representation model for the binary classification
task. Then, with the aim of walks on the hypergraph, we propose the method to calculate
Hypergraph-based Importance (HI) rates for data samples and feature values, which are
theoretically grounded on a concept of the hypergraph cut conductance minimization.
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• We construct the adaptive undersampling algorithm for imbalanced classification. The
algorithm is aimed at reducing the number of elements in the majority class data based
on HI rates for data samples.

• We propose the feature selection algorithm using HI rates for values of features.

Furthermore, we confirm the proposed algorithms’ effectiveness through experiments involv-
ing several datasets of various characteristics.

It must be clearly stated that our approach focuses on datasets with mostly categori-
cal features and it cannot be regarded as a solution for the general classification problem.
Such datasets are less explored but not necessarily less common in machine learning appli-
cations. We introduce the model enabling us to explore higher-order relations between
data elements as hypergraph H = (V , E), with vertices from set V denoting data sam-
ples and hyperedges from set E corresponding to values of categorical features used
to describe these samples. The information on data labels is introduced as a partition
over the hypergraph. Finally, we propose the importance assessment framework based on
the hypergraph cut conductance minimization approach, which may be applied to opti-
mize data preparation steps to improve the accuracy and performance of classification
algorithms. To the authors’ knowledge, such hypergraph application is novel in machine
learning.

We evaluate the quality of HI rates using imbalanced data classification and feature selec-
tion research scenarios. It is well known that the classification effectiveness for imbalanced
datasets is greatly influenced by dataset characteristics [20, 21]. The problems are usually
caused by so-called difficulty factors influencing the classification, such as class overlap-
ping, decomposition of the minority class, or the presence of too many minority examples
inside the majority class region [11]. In order to ensure satisfactory results for datasets
with different characteristics, our undersampling solution introduces a novel mechanism
that controls the influence of the hypergraph-derived factor on the final algorithm out-
come. On the other hand, the novelty of our feature selection algorithm is related to the
ability to calculate the importance rate for every attribute value, taking into account the
higher-order relationships in data. For both scenarios, we measure the quality of HI rates
through the efficiency evaluation of classification models. Each experiment consists of the
phase aimed at data modification— reducing the number of samples for undersampling
or reducing the number of features for feature selection—and the phase aimed at quality
evaluation based on building the machine learning models on modified data and measuring
their efficiency. For efficiency evaluation, we use gradient boosting tree-based classifiers—
namely, CatBoost Classifier [22] and LightGBM Classifier [23]—that are known for their
proven performance and—at the same time—can handle and effectively exploit categorical
features in data. Furthermore, as tree-based algorithms, they allow us to obtain human-
interpretable results. Finally, we deliver the publicly available Python library—https://github.
com/hypper-team/hypper—that allows our results to be easily reproduced by other scien-
tists.

The rest of the paper is structured as follows. First, we present the state-of-the-art
research related to our proposal (Sect. 2). In the central section (Sect. 3), we introduce the
paper’s scientific contribution consisting of (i) the description of the hypergraph model for
binary classification data, (ii) the definition of importance ratings derived from the hyper-
graph cut conductance minimization approach, and (iii) the description of algorithms for
random undersampling optimization and feature selection. Then, we define the evaluation
methodology by introducing the details of experimentation scenarios, experimental datasets,
the training and testing procedures, baseline methods, hyperparameters, and the evalua-
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tion metric (Sect. 4). Next, the results of the experiments are presented and analyzed in
Sect. 5. We finish the paper with conclusions and suggestions for further improvements
(Sect. 5).

2 Related work

To the authors’ knowledge, no research directly addressing this specific problem has already
been published in the relevant literature. However, hypergraphs have already been widely
used in machine learning, particularly in research on properties of social, collaboration,
or biological networks [2, 4, 24]. They have been applied for many application scenar-
ios, including clustering and community detection [3, 4, 25], modeling virus spreading
networks [1], exploring biomedical knowledge graphs [24], finding genes which are cen-
tral in host response to viral infection [2], or prediction for e-commerce [5]. Attention
should also be paid to recent developments in hypergraph neural networks [12, 13, 26],
and hypergraph signal processing [16, 27]. In contrast to the solution proposed in this paper,
the approaches from these areas are not focused on model interpretability. Therefore, they
cannot be used to calculate importance rates for data elements. The authors of [16] have
proposed the application of hypergraph signal processing to the classification problem. Nev-
ertheless, their solution requires the transformation of input data to the network defined
based on distances between input samples described using numerical and binary features
before modeling the data as a hypergraph. Similarly, the algorithm proposed by Qu et al. [27]
introduces the spectral transformation of hypergraph signal processing. On the other hand,
the solutions based on hypergraph neural networks usually assume the application of node
embeddings to a vector space and employ datasets delivered in the form of a network [12,
13, 26].

The proposed hypergraph-based data representation and importance rating models are
mainly inspired by research presented in [3, 5, 15]. Kaminski et al. [3] have introduced the-
oretical foundations of hypergraph modeling and practical algorithms for clustering based
on hypergraph modularity methods. Chitra and Raphael [15] have investigated the walks
on hypergraphs with edge-dependent vertex weights. Finally, Li et al. [5] have applied the
concept of local hypergraph cut conductance to optimize product return prediction algo-
rithms.

Numerous papers dealing with the challenge of class imbalance for the classification task
have already been published [7, 11, 20]. Many difficulty factors for this problem have been
investigated [11, 20], and various solutions have been proposed [6], mainly for the case of
datasets given using numerical and binary features. However, none of these solutions applies
hypergraph modeling and focuses on optimizing the random undersampling at the same
time.

On the other hand, hypergraphs have already been applied for feature selection [10, 28].
Specifically, the authors of [10] have involved a hypergraph data representation to optimize
selecting features for the classification algorithm. Their approach differs from the one pro-
posed in this paper since it assumes to model the features as hypergraph vertices and then rate
the feature importance based on the hypergraph clustering outcome. In [28], the authors have
proposed an unsupervised feature selection method that involves hypergraph-based model-
ing. In contrast to our approach, their method applies hypergraph embeddings and deals with
features extracted from unlabeled data.
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Fig. 1 An example of a simple
graph G = (V , E) with V = v1, . .
. , v6 and E = v1,v2, v1, v3, v2,
v3, v2,v4, v3, v4, v4, v5, v4,v6,
(Visualization using the
HyperNetX (HNX) library:
https://pnnl.github.io/
HyperNetX/build/index.html)

Fig. 2 An example of a
hypergraph H = (V , E) with
V = {v1, . . . , v6} and E =
{{v1, v2, v3}, {v2, v3, v4}, {v4, v5, v6}}

For the experimental research, we follow the evaluation methodology for feature selection
algorithms inspired by approaches presented in [8, 18].

3 Proposedmethod

3.1 Basic definitions

In this section,we follow the notation anddefinitions provided in [1, 3, 5, 15].Basic definitions
of a simple graph and a hypergraph are given inDefinitions 1 and 2, followed by visualizations
of examples in Figs. 1 and 2, respectively.

Definition 1 (Simple graph) A graph G is defined as:

G = (V , E)

where V = {v1, . . . , vn} is a set of vertices, and E ⊆ {{vi , v j } : vi , v j ∈ V } is a set of edges.

Definition 2 (Hypergraph) A hypergraph H is defined as:

H = (V , E)

where vertices are elements of set V = {v1, . . . , vn}, and hyperedges e ∈ E are subsets of
V of cardinality greater than 1.

For each hyperedge e ∈ E we define its weight w(e) ≥ 0. Additionally, we use edge-
dependent vertex weights u(v, e) reflecting a contribution of vertex v to hyperedge e. Both
weightings allow modeling the impact of hyperedges and vertices based on relations in data
converted to the hypergraph. In the case of our framework,we use u(v, e)weights to introduce
the information about class imbalance (see details in Subsect. 3.2). Using these weights, we
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model randomwalks on a hypergraph. For a given vertex v, the next randomstep is determined
based on two choices. Firstly, the incident hyperedge e′ with probability p1 ∝ w(e′) is chosen.
Then, the next vertex v′ ∈ e′ is determined with probability p2 ∝ u(v′, e′).

For our algorithms involving the use of a random walk, we introduce the weights normal-
ization. Given a vector x = {x1, . . . xn}, we calculate its normalized form x′ = {x ′

1, . . . x
′
n}

based on the L2 normalization for which x ′
i = xi/z where z = ‖x‖2 =

√∑n
i=1 x

2
i and

i = 1, . . . , n.
Moreover, we define degree of a vertex v as d(v) = ∑

e∈E u(v, e)w(e), and degree of a
hyperedge e as d(e) = ∑

v∈e u(v, e).

3.2 Modeling binary classification data with a hypergraph

Machine learning classification problem is usually modeled as a task of finding a mapping
function f (x) = y from input variables x = (x1, . . . , xm) to the discrete output variable y
(called the label), where m is a number of variables used to describe input data. For each
variable (often called the attribute) xi ∈ Di , whereDi is a domain of its values. In this paper,
we focus on datasets described using discrete (categorical) domains, which may be denoted
asDi = {xi,1, . . . , xi,mi }, wheremi is a number of different values of attribute xi . Moreover,
for binary classification problem we have y ∈ {0, 1}. In our framework, datasets used to train
and test machine learning models are represented as sets of samples (x, y). We model them
as hypergraphs H = (V , E) for which:

• V is a set of samples {(x1, y1), . . . , (xn, yn)},
• E is a set of hyperedges corresponding to the values of attributes xi, j – a given hyperedge

consists of vertices corresponding to data samples for which the value of variable xi is
equal to xi, j ,

• Labels y are modeled as two additional hyperedges which define partitionA = {A1, A2}
of the vertex set V .

The hypergraph structure allows edge weighting w(e) ≥ 0 and edge-dependent vertex
weightingu(v, e) ≥ 0 [15], enabling tomodel the local dependencies between attribute values
on the data. In the case of our framework, we use edge-dependent vertex weights in order to
reflect the information on a class imbalance in the model. For a given partitionA = {A1, A2},
for which A1 is a minority class we set u(v, e) = 1 for v ∈ A1 and u(v, e) = |A1|/|A2| for
v ∈ A2.

Notice that the hypergraph used for binary classification usually has hyperedges containing
a relatively large number of vertices. This observation distinguishes our research challenges
from the problems investigated in clustering for which hyperedges usually are small [1, 3,
5]. Furthermore, for the clustering case, many hyperedges contain vertices only from one
cluster. In contrast, in the case of binary classification, all or almost all hyperedges contain
the vertices of both classes.

An example of a hypergraph describing a binary classification dataset is presented in
Fig. 3. For the clarity of visualization, hyperedges corresponding to the labels are indicated
using the coloring of vertices.

3.3 Hypergraph cut conductance

The idea behind the Hypergraph-based Importance (HI) rating approach proposed in this
paper is related to the concept of the hypergraph cut conductance. One can observe that
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Fig. 3 An example of a
hypergraph representing a dataset
describing a binary classification
problem presented in Table 1
(color figure online)

Table 1 Example of data with a
binary label (inspired by German
Credit dataset [29]) (color figure
online)

Index Housing Income Credit score
(label)

0 Rent Low Bad
1 Own High Good
2 Rent Medium Bad

Bad3 Free Low
4 Free Medium Bad
5 Rent High Good
6 Own Medium Good

binary classification labels correspond to partition A = {A1, A2} of vertex set V , which
defines a cut on a hypergraph [5]. Formally, the cut on hypergraph H = (V , E) is just a
partition that separates the vertex set V into set S and S̄, where S̄ is the complement of
S. This section follows the definitions presented in [5]. Let us define the volume of vertex
subset S ⊆ V as vol(S) = ∑

v∈S d(v). Then, for a given cut corresponding to the partition
A = {A1, A2} we introduce the concepts of its boundary and the boundary volume using
Definition 3.

Definition 3 (Boundary of the cut (∂A)) The boundary of A = {A1, A2} (∂A) is a set of
hyperedges that connect A1 and A2, i.e., ∂A = {e ∈ E : e∩ A1 	= ∅, e∩ A2 	= ∅}, for which

vol(∂A) =
∑
e∈∂A

w(e)

(∑
v∈e∩A1

u(v, e)
) (∑

v∈e∩A2
u(v, e)

)

d(e)
.

The contribution of each hyperedge to the boundary volume reflects the information about
the distribution of a given feature value xi, j in minority and majority classes. As a result of
vertex weighting introduced in the previous section—for which u(v, e) = 1 for v from
minority class A1 and u(v, e) = |A1|/|A2| for v from majority class A2—this contribution
is maximal for feature values, whose number of occurrences in each class is proportional
to the sizes of these classes. The goal of HI rates is to provide the importance ranking for
majority class samples (for the application scenario of undersampling) and for the feature
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values (for the application scenario of feature selections), which model the samples’ and
the feature values’ contribution to the hypergraph cut conductance defined in Definition 4.
In general, the paper’s research goal is to investigate the impact of the hypergraph cut con-
ductance minimization approach applied during data preparation on the efficiency of binary
classification models.

Definition 4 (Cut conductance �(A))

�(A) = vol(∂A)

min {vol(A1), vol(A2)}
It has to bementioned that the presented approachmaybe extended to the case ofmulticlass

or multi-label classification, for which the approach of cut conductance minimization should
be replaced by hypergraph modularity maximization [3].

3.4 Hypergraph-based importance rates

For our rating framework, we calculate the vertex and the edge contributions to binary-
classification hypergraph cut conductance using random walks on hypergraph H = (V , E).
We apply a lazy random walk on the hypergraph, for which the choice of the next vertex v′
is based on two actions:

• First choose an incident hyperedge e′ with probability p1 ∝ w(e),
• Then choose a vertex v′ ∈ e′ with probability p2 ∝ u(v′, e′).

Based on the random walk described above, we define probabilities of class preservation or
class change when walking on H = (V , E). Specifically, we define:

• pHi (v, k)—probability that random walk on H of length k ≥ 1 starting from vertex
v ∈ V will finish in some vertex from class Ai (i = 1, 2),

• pHi (e, k)—probability that random walk on H of length k ≥ 1 using the edge e as the
first one will finish in some vertex from class Ai (i = 1, 2),

• pH+
i (v, k)—probability that randomwalk on H of length at most k (k ≥ 2) starting from

vertex v ∈ V will finish in some vertex from class Ai (i = 1, 2),
• pH+

i (e, k)—probability that random walk on H of length at most k (k ≥ 2) using the
edge e as the first one will finish in some vertex from class Ai (i = 1, 2).

In the simplest case concerning the edges and k = 1, we have:

pHi (e, 1) =
∑

v j∈e∩Ai

u(v j , e)
/ ∑

v j∈e
u(v j , e),

for i = 1, 2. Additionally, we investigate approaches applying longer walks for k ≥ 2.
Specifically, for the purposes of experiments presented in this paper, we have checked k from
set {1, 2, 3}. The motivation behind using various values of k is to explore the properties of
the hypergraph-based nearest neighborhood of a given vertex or hyperedge.

Based on the probabilities defined above, we introduce three types of HI ratings which
we experimentally checked in this paper:

• R1—theHI ratingwhich promotes vertices and edges ‘close’ tominority class A1 defined
as follows:

– R1(v, k) = pH1 (v, k) − pH2 (v, k) for v ∈ V and k ≥ 1,
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Table 2 Statistics of feature Purpose from the German Credit dataset

Feature value Class-good Class-bad Ratio

Car 231 106 0.46

Radio/TV 218 62 0.28

Furniture 123 58 0.47

Business 63 34 0.54

Education 36 23 0.64

Repairs 14 8 0.57

Domestic appliances 8 4 0.50

Vacation/others 7 5 0.71

Whole dataset 700 300 0.43

– R1(e, k) = pH1 (e, k) − pH2 (e, k) for e ∈ E and k ≥ 1,

• R2—theHI rating which promotes vertices and edges ‘close’ tomajority class A2 defined
as follows:

– R2(v, k) = pH2 (v, k) − pH1 (v, k) for v ∈ V and k ≥ 1,
– R2(e, k) = pH2 (e, k) − pH1 (e, k) for e ∈ E and k ≥ 1,

• R0—the HI rating which promotes vertices and edges ‘close’ to one class and ‘far’ to
another, defined as follows:

– R0(v, k) = |pH1 (v, k) − pH2 (v, k)| for v ∈ V and k ≥ 1,
– R0(e, k) = |pH1 (e, k) − pH2 (e, k)| for e ∈ E and k ≥ 1.

Additionally, we investigate ratings R+
1 , R

+
2 , and R+

0 defined analogously with the use of
pH+
i instead of pHi for k ≥ 2.
Let us demonstrate the behavior of hypergraph-based importance by means of the experi-

ment conducted using the German Credit dataset (described in Sect. 4). Themain objective of
this example is to illustrate how the balance of the values for a given feature can influence HI
ratings. Additionally, it shows how higher-order relations between feature values can impact
the value’s importance. The example is focused on the feature describing the purpose of
credit application. The feature statistics are summarized in Table 2.

The experiment results are gathered in Table 3. Firstly, we have delivered the baseline
results obtained by applying our method to the dataset reduced only to the Purpose feature
and the label. The positive correlation between the number of feature value occurrences and
the output HI rates can be observed. Moreover, the closer the distribution of a given value is
to the original class distribution (0.43 for the German Credit dataset, see Table 2), the less
its importance is. This explains why value Radio/TV is above Car in importance ranking.
We may observe that features with an equal number of occurrences, which are modeled as
hyperedges of the same size, such as Domestic appliances and Vacation/Other, obtained
different importance reflecting their class distributions.

In the second part of the experiment, the proposed hypergraph-based algorithm has been
executed using the whole dataset and the ranking variant R+

0 , for k = 3. As a result, we
have calculated the importance of all the feature-value pairs in the German dataset. The
obtained ratings for Purpose feature are compared as the final ranking in the right column of
Table 3. Experiments show how higher-order relations modeled in hypergraph can affect the
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Table 3 Visualization of the hypergraph-based importance rates for feature with unbalanced distribution

Baseline experiment Experiment using the whole dataset

HI ratings HI-based ranking HI-based ranking HI ratings

1 0.540 Radio/TV Radio/TV 0.072

2 0.270 Car Car 0.020

3 0.108 Furniture Furniture 0.018

4 0.083 Business Education 0.016

5 0.073 Education Business 0.015

6 0.017 Repairs Vacation/other 0.005

7 0.016 Vacation/other Repairs 0.004

8 0.005 Domestic appliances Domestic appliances 0.001

Results are presented only for the Purpose feature and sorted by HI ratings

feature value importance. We can observe some differences in ranking caused by the impact
of hypergraph neighborhood, e.g., for a new ranking Education is higher than Business and
Vacation/Other is higher than Repairs. Nevertheless, rankings in both cases remain similar.
Still, the HI rating for a given feature value may be regarded as some kind of function of the
number of occurrences in datasets and the ability to distinguish between classes.

3.5 Algorithms

We design algorithms utilizing the HI rates for random undersampling of imbalanced data
and feature selection.

3.5.1 Optimization of random undersampling

In this section, we describe the algorithm for reducing the number of elements in the majority
class for imbalanced data. The proposed solution combines the standard random undersam-
pling with the approach based on HI ratings. The motivation behind such an approach is
to provide an outcome that preserves global dependencies in the data and introduces the
information on local relationships observed in the hypergraph structure. Since the problem
depends heavily on data characteristics, the proposed algorithm uses the mechanism that
enables control of the influence of the hypergraph-derived factor on the outcome.

Let B1 and B2 be subsets of samples defining minority and majority classes, respectively.
These subsets correspond to the partition A = {A1, A2} of vertices of hypergraph H =
(V , E). Let denote |B1| = n1 and |B2| = n2. Given a set of majority samples B2 =
{x1, . . . , xn2} the undersampling algorithm returns its subset C such as |C | = t . In our
research, we studied a few settings of t including the standard one for which t = n1.

The hypper-undersampling() procedure is presented as a pseudocode in Algorithm 1.
The random() procedure used in Algorithm 1 returns the value selected randomly from

uniform distribution over the segment [0, 1]. Our method uses α as a hyperparameter tuned
during themodel training.Themethodmaybe seen as the adjustmentmechanism for sampling
from a uniform distribution. We tested several values of α, including the case of α = 0 for
which the choice of samples depends on hypergraph-based ratings r′ only. In this setting,
the method aims to find the subset A′

2 of A2, which leads to minimum hypergraph cut
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Algorithm 1 hypper-undersampling(B2, r, t, α)
Require: B2 = (x1, . . . , xn2 ) - samples from themajority class, r = (r1, . . . , rn2 ) - the vector of hypergraph-

based ratings for majority samples, t - the size of output set, α - the hyperparameter controlling the impact
of hypergraph-based ratings

Ensure: C - the majority class after undersampling
1: Initialize a vector of ratings r′ = (r ′

1, . . . , r
′
n2 ) with all entries equal to 0

2: for xi ∈ B2 do
3: r ′

i ⇐ ri + α · random()

4: end for
5: sort(r′)
6: set C as a set of all xi ∈ B2 for which r ′

i is among the top t values in the sorted vector r′

conductance. As a input rates r, we investigated all versions of Rl(v, k) and R+
l (v, k) (defined

in Subsect. 3.4) for l = 1, 2, 3 and k ≤ 3.
Compared to the feature selection algorithm (described in Subsect. 3.5.2), onemayobserve

that the undersampling procedure requires more hyperparameter optimization. The reason
is related to difficulty factors that influence the undersampling efficiency, especially those
involving class overlapping, decomposition of theminority class, or the presents ofmany out-
liers in both classes. It also should be stressed that hypergraphs have a chance to demonstrate
their superiority when there are higher-order relationships in the data, and these relation-
ships influence the classification labels. Furthermore, we have observed that the optimal
undersampling strategy may depend on the size of the dataset and the imbalance ratio. It is
especially noticeable when we attempt to remove many samples from the majority class and
leave only a small fraction. In order to address these issues, we introduce the α parameter,
which controls the balance between random and hypergraph-derived factors. As confirmed
in the experiments, the optimal value of α differs for different dataset characteristics. Addi-
tionally, we applied the type of HI ranking as a method hyperparameter involving all variants
proposed in Sect. 3.4. This way, we are able to adjust our method for a given dataset charac-
teristic being focused on majority samples most distant from the majority class (R2 ratings),
majority samples from the border between classes (R1 ratings), or both of them (R0 ratings).

3.5.2 Feature selection algorithm

This section describes the algorithm for feature selection used in a second application scenario
presented in this paper. For each dataset, let denote the features used to describe the samples
as F = { f1, . . . , fm}. As it introduced in Subsect. 3.2, we focus on categorical features with
values from discrete domains denoted as Di = {xi,1, . . . , xi,mi }, where mi is a number of
different values of feature fi . The solution is based on ratings for hypergraph edges that
correspond to feature values. The procedure returns the subset of most important features of
the size controlled by parameter β describing the percentage of features left after selection.

The hypper-feature-selection() procedure is presented in Algorithm 2.
In contrast to the undersampling case, the proposed feature selection procedure requires

much less extensive hyperparameter optimization. Specifically, we restrict it to checking
the ratings from R+

0 (e, k) for k = 2, 3. This type of rating treats both classes equally and
promotes the features with values that distinguish between them better (see the example
presented in Table 3). The only parameter we tune is the extent to which we explore the
hyperedge neighborhood.
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Algorithm 2 hypper-feature-selection(F, r , β)
Require: F ′ = { f1, . . . , fm } - the set of features used to describe the samples, r =

(r1,1, . . . , r1,m1 , r2,1, . . . , r2,m1 , . . . , rm,1, . . . , rm,mm ) - the vector of hypergraph-based ratings for fea-
ture values, β - the parameter controlling the percentage of feature selected

Ensure: F = { f1, . . . , fa}, where a = βm�
1: a ⇐ βm�
2: Initialize a vector of ratings r′ = (r ′

1, . . . , r
′
m ) with all entries equal to 0

3: for fi ∈ F do
4: r ′

i ⇐ 1
mi

∑mi
j=1 ri, j

5: end for
6: sort(r′)
7: set F ′ as a set of all fi ∈ F for which r ′

i is among the top a values in the sorted vector r′

4 Experimental settings

4.1 Datasets

A broad selection of datasets was used for a better exploratory analysis of the proposed
hypergraph-based solutions. Datasets differ in size and characteristics but focus on binary
classification tasks. All the datasets are described mainly by categorical features (see Table 4
for details).

The following datasets were used in experiments:

• Statlog (German Credit) Dataset [30] (originally from UCI repository [29]) classifies
people described by a set of different attributes in terms of good/bad bank credit risk.

• Criteo Sponsored Search Conversion Log Dataset [31] classifies product sales based on
user actions linked to the product-related advertisement. The original dataset was modi-
fied to reduce the number of instances (randomly but preserving the original imbalance
ratio) and ignore some features with high entropy. A single sample represents the user
action with corresponding product details and user demographics. The classes define if
user actions led to conversion (bought product) within the 30 day window.

• Bank Marketing (Banking) Dataset [32] classifies term deposit subscription based on
the information about client and marketing campaigns. The data were gathered from a
Portuguese bank institution’s direct marketing campaigns (using phone calls).

• HR Analytics Dataset [33] classifies whether a candidate for a job is actually interested
in the proposed position. It helps to reduce costs and time required for the training course
of candidates looking for new employment. A candidate is defined with various features
such as education, experience, and demographics.

• Phishing Dataset [34] classifies phishing attacks based on features gathered from 5000
legitimate and 5000 phishing websites. The dataset was created to detect and block
phishing attacks where attackers can pose as trusted entities and trick users into sharing
sensitive information.

• Breast Cancer Dataset [35] classifies if recurrence events, regarding breast cancer, hap-
pened for the studied oncology patients. The dataset includes patients’ demographics and
tumor characteristics.
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Table 4 Datasets characteristics summary

Dataset No. of samplesNo. of featuresNo. of cat-
egorical
features

No. of feature-
value pairs

Minority
class sam-
ples (%)

German credit 1000 9 6 1033 30

HR analytics 19158 12 10 526 25

Banking 45211 16 10 9541 10

Phishing 10000 30 30 70 50

Breast cancer 286 9 9 45 30

Criteo sponsored search conversion log100000 16 15 74321 11

4.2 Evaluationmethodology

This section presents the evaluation settings for both considered experimentation scenarios:
optimization of random undersampling and feature selection.

4.2.1 General settings

Before each experiment, datasets were split into four cross-validation folds. We used 75%
of data for each fold as a train set. The remaining 25% of samples were randomly divided
into two equal subsets: a validation set and a testing set. We used the validation set to
tune the hyperparameters of methods based on HI ratings. For each dataset, we repeated
the cross-validation procedure 8 times and reported the average values of final performance
provided by means of the evaluation metric. Each experiment consisted of three phases:
(i) data preprocessing, (ii) reducing the number of samples (undersampling) or the number
of features (feature selection), (iii) final evaluation based on building the machine learning
models onmodified data andmeasuring their efficiency using the testing set.When presenting
the results of our experiments, we refer to the solution based on HI ratings as the Hypper
method.

Classification algorithms
For efficiency evaluation, we apply gradient boosting tree-based classifiers, namely Cat-

Boost Classifier [22] and LightGBM Classifier [23]. Firstly, our choice is motivated by
the fact that these algorithms are dedicated to handling and effectively exploiting categor-
ical features in data. Secondly, they are known for their proven performance. Specifically,
both solutions do not involve the one-hot encoding step, which is crucial when processing
bigger and high-dimensional datasets. Finally, as tree-based algorithms, they allow us to
obtain human-interpretable results and, simultaneously, can take advantage of discovering
the higher-order relations in data. The last feature is of key importance for our research—we
believe that proper preprocessing involving HI rates could help these classifiers exploit such
relationships when building the tree structures. The details of both selected algorithms are
as follows:

• CatBoost classifier [22] implemented using library [36] is a machine learning algorithm
developed by Yandex for gradient boosted decision trees. CatBoost handles categorical
features without any explicit preprocessing done by the user. Categorical features are
transformed into numerical with the use of various statistics on combinations of both
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Table 5 Datasets used for benchmarks

Dataset Undersampling Feature selection

German credit
√ √

HR analytics
√

Banking dataset
√ √

Criteo sponsored search conversion log
√ √

Breast cancer
√

Phishing
√

categorical and numerical features. [37]. For our experiments, we applied the CatBoost
classifier with default parameters and predefined random_state.

• LightGBMclassifier [23] implemented using library [38] is a tree-basedmachine learning
algorithm utilizing gradient boosting developed by the Microsoft company. The algo-
rithm can also automatically handle categorical features by finding an optimal split over
categories [39]. We applied it with the default settings of parameters and predefined
random_state.

Evaluation measure
We used Average Precision (AP) [19] as an evaluation metric. This measure is based

on precision and recall, the most popular state-of-the-art binary classification metrics. In
opposition to them, it enables rating the ranked sequence of samples provided for testing.
AP calculates the model performance as a weighted mean of precision achieved at differ-
ent thresholds used to determine the classification outcome. This way, the results are not
dependent on the specific threshold setting, which might heavily influence the performance
assessment, especially in the case of imbalanced data. We used the implementation of AP
metric from the scikit-learn library [40].

4.2.2 Undersampling

We tested the efficiency of theHyppermethod for the task of reducing the number of samples
in themajority class for the classification of imbalanced data.As presented inTable 5, for these
experiments, we chose the largest datasets with the smallest imbalance ratio (IR) calculated
as n1/n2 [41], namely Criteo, Banking, and HR Analytics datasets. In order to test how the
method performs for a small dataset, we conducted additional tests using the German Credit
dataset.

Hypper method settings
Our main goal was to compare the performance of the undersampling algorithm based

on the Hypper method with the random undersampling approach. This scenario assumes
investigating the case of reducing the number of majority samples to the number of minority
samples. To extend the analysis, we tested the Hyppermethod for two additional settings for
the number of majority samples after reduction, each time comparing it with the equivalent
random undersampling. Finally, we analyzed three settings of parameter t in our tests:

• t = n1 + 0.0 · n2, where n1 and n2 denote the sizes of minority and majority classes,
respectively—the method referred to as Hypper 0.0 (the undersampling which equalizes
the numbers of majority and minority samples),

• t = n1 + 0.25 · n2—the method referred to as Hypper 0.25,
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• t = n1 + 0.5 · n2—the method referred to as Hypper 0.5.

In order to tune the method, we conducted the grid search approach, including the settings
of the following hyperparameters:

• The rating vector r = (r1, . . . , rn2): Rl(v, k) for l = 1, 2, 3 and k = 1, 2, 3, and R+
l (v, k)

for l = 1, 2, 3 and k = 2, 3,
• α: 0, 5, 40, 500,
• t : n1 + 0.0 · n2, n1 + 0.25 · n2, and n1 + 0.5 · n2.
We tested several values of α including the case of α = 0 for which the choice of samples

depends on hypergraph-based ratings r only, and the case of α = 500 for which the impact
of HI rates is negligible, so basically, theHyppermethod follows the random undersampling.

Compared undersampling methods
We compared the effectiveness of the proposed undersampling algorithm with the follow-

ing state of the art and baseline solutions:

• Tomek Links [42] (we used implementation from [43]). One of the cleaning–based tech-
niques that do not allow to specify the exact number of samples for the majority class
after reduction. This method detects Tomek’s links and removes samples from a majority
class that are also a part of Tomek’s link.

• Edited Nearest Neighbors [44] (we used implementation from [45]). The technique uses
the k-nearest neighbor algorithm (with Euclidean distance and K = 3) to determine if
the sample and its neighbors should be remain or be removed. The sample is removed
when the majority class from the k-nearest neighbors is different from the sample class.

• Random undersampling [46] (tested using cases Random 0.0, Random 0.25, and Ran-
dom 0.5), which selects a set of samples based on the uniform distribution (without
replacement) from the majority class to match the desired proportion of each class.

• Without undersampling used as a baseline.

4.2.3 Feature selection

In the second application scenario, we evaluated the efficiency of the Hyppermethod for the
feature selection task.As seen inTable 5,wehave chosendatasets of various characteristics for
this scenario, namely German Credit, Banking, Phishing, Breast Cancer, and Criteo datasets.
We have excluded only one dataset, namely the HR dataset, due to the presence of missing
values inmany samples. Specifically, this dataset contains several featureswithmissingvalues
for more than 20% of samples. While missing values do not influence the hypergraph model,
this issue is harmful to other state-of-the-art methods used for effectiveness comparison.
We have observed that applying the standard approach for compensating missing values
using the dedicated default values leads to outcomes for which both state-of-the-art methods
achieve worse efficiency than the random baseline approach. Therefore, we have decided not
to include these results in order not to bias the conclusions.

Hypper method settings
Using the grid search approach, we investigated the following settings ofHyppermethod’s

hyperparameters:

• The rating vector r = (r1, . . . , rn2): R
+
l (v, k) for k = 2, 3;

• β: 0.15, 0.30, 0.5.
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The choice of β settings was motivated by the solutions applied in relevant publications [8,
18].

Compared feature selection methods
We compared the effectiveness of feature selection based on the Hypper method with the

following state-of-the-art algorithms:

• Feature importance ranking based on Random Forest Classifier [47],
• Feature importance ranking based on Logistic Regression Classifier [48] using absolute

values of the Logistic Regression coefficients,
• Random feature importance ranking (used as a baseline).

5 Experimental results

For both experimentation scenarios, we demonstrated the methods’ efficiency using tables
with detailed results (see Tables 6 and 7) and charts visualizing the efficiency comparison for
chosen scenarios (see Figs. 4, 6, and 8). Moreover, we used Friedman’s test and Nemenyi’s
post hoc test [49] to determine whether the differences between the average ranked perfor-
mances of compared methods are statistically significant.

In the case of Friedman’s tests, we followed the approach presented in [50]. For each
investigated case, the Friedman rank sum test statistics was greater than the critical value for
the assumed level of confidence α = 0.1 [49]. Therefore, we concluded that for the level of
confidence α = 0.1, the null hypothesis that there is no difference between themethods could
be rejected, and the post hoc Nemenyi test can be conducted to investigate the difference
between each pair of individual approaches. Finally, we provided the significance diagrams
(see Figs. 5, 7, 9, and 10) in a form proposed in [49] to illustrate the ranked performance of
the compared solutions along with the critical difference (CD).

5.1 Undersampling

Table 6 presents the general performance comparison of undersampling methods measured
in terms of average precision for classification models built using the CatBoost and Light-
GBM algorithms.When comparing CatBoost with LightGBM, onemay notice that CatBoost
performs better for each dataset and each undersampling method. However, their results are
consistent, i.e., they lead to the same conclusions from the perspective of the method used to
reduce the number of samples in the majority class. It has to be noticed that for the case of big
datasets with a small imbalance ratio, i.e., dataset typical for the undersampling scenario, the
best performance is achieved for Tomek Links and the classifier built using unmodified data
(the without undersampling baseline). On the other hand, for the small dataset, i.e., German
Credit, the Hypper method outperforms other compared solutions, whereas Tomek Links
and without undersampling obtain the worst results. Such an outcome may be explained by
the specific characteristics of this dataset, which contains only 1000 samples with a rela-
tively high imbalance ratio equal to 3/7. Moreover, the APmetric used for evaluation obtains
better results for methods that are more precise at the beginning of the ranking used to cal-
culate the metric value. These observations lead to the general conclusion that the method
performance depends on the number of removed samples, e.g., the Tomek Links method,
which removes about 5% of samples, obtains evaluation results comparable to the baseline
approach—without undersampling. Nevertheless, it has to be stressed that the proposedHyp-
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Fig. 4 The undersampling scenario: the performance comparison in terms of the AP metric for the case of the
CatBoost classifier

permethod outperforms the random undersampling and Edited Nearest Neighbors approach
for each benchmark dataset.

The visualizations of experiment results for the CatBoost classifier (see Fig. 4) and the
Nemenyi’s tests (see Fig. 5) for both CatBoost and LightGBM confirm the conclusions stated
above. In order to illustrate the value of the Hypper method, we provide its additional com-
parison with the random undersampling approach for the scenario in which both methods
reduce the majority class to precisely the same size. The results are illustrated using Fig.6
(the case of CatBoost-based evaluation) and Fig. 7 (the visualization of Nemenyi’s statistical
test).

The results have shown that theHypper undersamplingmethod ismore efficient for smaller
datasets such as German Credit. In this case, the hypergraph-based undersampling procedure
removes a small number of samples from the majority class, so it is able to do it more
precisely. We have observed during the hyperparameter tuning phase that for this dataset,
the optimal efficiency has usually been achieved for small α and the R2 rating type. Small
α means that the hypergraph-based factor plays a more important role than the random one.
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(a) CatBoost classifier

(b) LightGBM classifier

Fig. 5 The undersampling scenario: visualization of Nemenyi’s test results for the AP measure

Fig. 6 The undersampling scenario: the performance comparison of the Hypper method against the random
undersampling approach in terms of the AP metric for the case of the CatBoost classifier

The straightforward strategy R2 to remove these majority samples, which are closest to the
minority class, has proven to be better than the remaining ones. On the other hand, the results
for bigger datasets are different. The efficiency improvement is smaller for their case. Firstly,
they are less academic andmore real-world datasets with more outliers, somemissing values,
and class overlapping. Secondly, in their case, the undersampling procedure has to remove
a large number of samples and remain only a small part of the majority class in a way
preserving the global dependencies in data. For these datasets, as optimal hyperparameters
settings, we have obtained bigger values of α—which means a more significant impact of
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(a) CatBoost classifier

(b) LightGBM classifier

Fig. 7 The undersampling scenario: visualization of Nemenyi’s test results for the AP measure (Hypper vs
Random comparison)

random factor—and R0 or R1 HI ratings types. The choice of the rating type is possibly
related to the existence of many data outliers in the majority class, which are not valuable
for model training.

5.2 Feature selection

The outcomes of experiments for the feature selection scenario are collected in Table 7 and
illustrated in Fig. 8.

Similar to the case of undersampling, the results are consistent for both classifiers applied
to build the model for final evaluation, namely for CatBoost and LightGBM. It may be
noticed (see Table 7 and Figs. 8, 9 and 10) that the Hypper method outperforms the baseline
approaches used for the comparison, especially for the case of β = 15%. Additionally,
one can observe that the selection method utilizing the feature importance ranking based on
Random Forest Classifier leads to better results than the method using feature importance
derived from Logistic Regression coefficients.

We complement the result presentation using visualizations of post hoc Nemenyi’s tests
for both CatBoost and LightGBM classifiers and each investigated setting of the parameter
β, i.e., β ∈ {0.15, 0.30, 0.50} (see Figs. 9 and 10).

The results have proven that the Hypper feature selection method is more efficient for
smaller datasets, namely Brest Cancer and German Credit. The reason for that is related to
their characteristics as academic datasets with categorical features of various distributions
usually correlated to classification labels (see Table 2 from Sect. 3.4 for an example). For the
remaining larger datasets, the efficiency improvement of the proposed method is not evident.
In the case of the Phishing dataset, which consists only of binary and trinary features, the
underlying hypergraph model contains only very large hyperedges, which can be a difficulty
factor for our approach. Similarly, the biggest Banking and Criteo datasets also lead to
specific hypergraph structure with hyperedges of very big size corresponding to most popular
or default values and a very big number of small hyperedges corresponding to the values
occurring only a few times in data.
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Fig. 8 The features selection scenario: the performance comparison in terms of the AP metric for the case of
the CatBoost classifier and β = 0.5

6 Conclusions and future work

In our studies, we show that hypergraphs, which are regarded as a lossless representation from
the perspective of higher-order relationships in data, can be successfully applied to model
binary classification datasets. Moreover, our results indicate that such a representation may
be applied to rate the importance of data elements from the perspective of their relevance
to classification labels. The effectiveness of the proposed algorithms in the undersampling
and feature selection scenarios has been confirmed by the results of experiments involving
several datasets of various characteristics.

One of the key findings of the research presented in this paper is that the practical value of
hypergraph modeling depends heavily on the characteristics of a given dataset, especially for
the scenario aimed at reducing the number of samples in the majority class. For this scenario,
the adaptive mechanism enabling controlling the influence of hypergraph-based rates on the
algorithm outcome was critical in ensuring that the solution leads to satisfactory results for
datasets with different characteristics. From this perspective, our approach is consistent with
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Fig. 9 The features selection scenario: visualization of Nemenyi’s test results for the AP measure and the
CatBoost classifier

Fig. 10 The features selection scenario: visualization of Nemenyi’s test results for the AP measure and the
LightGBM classifier

the recent postulate ofAndrewNg formore data-centric rather thanmodel-centric approaches
to machine learning, confirming the validity of his observations [51].

Our research opens several future work directions. One interesting way to proceed is to
investigate additional undersampling algorithms based on the proposed adaptive mechanism
for sampling from uniform distribution but using modification factors different from the HI
rates. Other directions for future research may focus on the case of multi-label or multi-
class classification, for which the hypergraph cut conductance minimization approach may
be replaced by the hypergraph modularity maximization technique [3]. Also, it would be
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interesting to build the classifier based on HI rates and compare its efficiency with similar
machine learning techniques such as the k-nearest neighbors algorithm.

Finally, it has to be admitted that focusing on processing only the categorical features is a
limitation of our approach. Therefore, the research on introducing the numerical features to
the hypergraph model is planned, involving the application of discretization techniques. This
enhancement is necessary to extend the solution to a general binary classification problem.
Nevertheless, it involves new non-trivial modeling and research problems. Firstly, to ensure
the fair impact of various types of features on the method outcome, the proper discretization
technique should be chosen with parameters adjusted to the characteristics of categorical
attributes in a given dataset. Secondly, the discretization of numeric attributes leads to ordinal
features. Therefore, an auxiliary modeling technique, possibly using additional weighted
hyperedges, is needed to reflect the order of discretized values for a given numeric feature.

Supplementary information

Hypper standalone open-source library has been implemented for the purpose of this research.
Hypper is working with Python 3.7 or above. The repository for the project is publicly
available at https://github.com/hypper-team/hypper. The library can be installed using PyPI
(https://pypi.org/project/hypper/). Documentation for the project is located at https://hypper-
team.github.io/hypper.html. Specifically, the methods of importance assessment described
in this paper are implemented within the library. Furthermore, python scripts and notebooks
used for undersampling and feature selection benchmarks are located in the benchmarks/
directory. Paper results can be easily reproducible using datasets provided in public reposi-
tories.
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