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Abstract
Themost straightforward approaches to checking the degrees of similarity and differentiation
between two sets are to use distance and cosine similarity metrics. The cosine of the angle
between two n-dimensional vectors in n-dimensional space is called cosine similarity. Even
though the two sides are dissimilar in size, cosine similarity may readily find commonalities
since it deals with the angle in between. Cosine similarity is widely used because it is simple,
ideal for usagewith sparse data, and deals with the angle between two vectors rather than their
magnitude. The distance function is an elegant and canonical quantitative tool to measure
the similarity or difference between two sets. This work presents new metrics of distance
and cosine similarity amongst Fermatean fuzzy sets. Initially, the definitions of the new
measures based on Fermatean fuzzy sets were presented, and their properties were explored.
Considering that the cosine measure does not satisfy the axiom of similarity measure, then
we propose a method to construct other similarity measures between Fermatean fuzzy sets
based on the proposed cosine similarity and Euclidean distance measures and it satisfies the
axiom of the similarity measure. Furthermore, we obtain a cosine distance measure between
Fermatean fuzzy sets by using the relationship between the similarity and distance measures,
thenwe extend the technique for order of preference by similarity to the ideal solutionmethod
to the proposed cosine distance measure, which can deal with the related decision-making
problems not only from the point of view of geometry but also from the point of view of
algebra. Finally, we give a practical example to illustrate the reasonableness and effectiveness
of the proposed method, which is also compared with other existing methods.
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1 Introduction

1.1 Similarity and distancemeasures

Almost every scientific field relies heavily on the concept of similarity. Geometric methods
for assessing similarity, for example, are used in studies of congruence and homothety, as
well as in allied fields such as trigonometry. Semantics, for example, makes use of topological
methods. Graph theory is widely used in taxonomy to assess cladistic similarities. Fuzzy set
theory has also developed similarity measures, which are used in fields such as management,
medicine, andmeteorology.Measuring the sequence similarity of two proteins is an important
problem in molecular biology.

Not surprisingly, similarity has played a critical role in psychological experiments and the-
ories. Many experiments, for example, ask participants to make direct or indirect judgments
about the similarity of two objects. In these studies, a variety of experimental techniques are
used. Still, the most common is to ask subjects whether the objects are the same or different,
or to ask them to produce a number, say between 1 and 7, that corresponds to their feelings
about how similar the objects appear (e.g., with 1 meaning very dissimilar and 7 meaning
very similar). Similarity also plays an important but less direct role in modeling many other
psychological tasks. This is especially true in theories of object recognition, identification,
and categorization, where it is commonly assumed that the greater the similarity between
two things, the more likely one will be confused with the other.

In data science, the similarity measure is a way of determining how closely related or
similar data samples are. A dissimilarity measure is used to determine how distinct the data
objects are.When similar data samples are grouped into one cluster, these terms are commonly
used in clustering. The similarity is somewhat subjective, and it is heavily dependent on
context and application. For instance, the similarity of vegetables can be determined based
on their taste, size, color, and so on.

Statistical measures of similarity allow scholars to think computationally about how sim-
ilar or dissimilar their objects of study might be, and these measures also serve as the
foundation for many other clustering and classification techniques. The similarity of two
texts in the context of text analysis can be assessed in its most basic form by representing
each text as a series of word counts and calculating distance using those word counts as
features. The similarity measure is typically expressed as a numerical value, which rises as
the data samples become more similar. It is commonly expressed as a number between zero
and one by conversion: zero indicates a low level of similarity (the data objects are dissimilar)
and one indicates a high level of similarity (the data objects are very similar). The similarity
is essentially a broad umbrella term that encompasses a diverse set of scores and measures
for evaluating the differences between various types of data.

As previously stated, similarity can refer to a broader category of similarity measures,
whereas distance is a more narrow category that measures the difference in Cartesian space.
In the context of text analysis, these terms are often used interchangeably—distance is simply
the inverse of similarity and vice versa. When measuring distance, the closest points have the
shortest distance, but when measuring similarity, the closest points have the highest degree
of similarity.

The dissimilarity metrics indicate how distinct and distinct two things (observations) are
from one another. In contrast, distance describes the distance between two objects in a certain
mathematical space. Distance is defined as the quantifiable degree to which two objects differ
from one another in scientific andmathematical terms. Differences are measured by distance.
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The difference is a measurement of the contrast or incompatibility of two items based on
their numerous properties. Dissimilarity measurements calculate the distance between two
things. The degree of dissimilarity between two items is determined using distance metrics.
The larger the difference between two things, the higher the distance value.

The concepts of distance and difference are frequently employed interchangeably, even
though distance refers to a subset of differences. The distance is a measure of disorder or
disorder between two items, whereas the difference is a measure of contrast or incongruity
between two objects based on numerous qualities. In brief, distance measures are used to
determine the degree of separation between two things. As a result, the differences between
different pairs of items will be great, and the value of the distance measure will be small,
whereas the differences between more similar pairs of objects will be lower, and the value
of the distance measure will be less.

1.2 Uncertainty

Many fields, including psychology, philosophy, cognitive science, and artificial intelligence,
study people’s thinking and decision-making processes in the face of everyday situations.
These processes are typically described using various mathematical and statistical models.
The issue of decision-making emerges during this procedure. Decision-making (DM) is
described as the process of selecting one or more of the different forms of behavior presented
to a person or institution to attain a certain objective. According to research, while making
many daily judgements instinctively is fine, this method alone is insufficient for compli-
cated and critical decisions. Multi-Criteria Decision Making (MCDM) is a set of analytical
methodologies that analyze the benefits and drawbacks of alternatives based on a variety of
criteria. MCDM approaches are used to aid the DM process by selecting or ranking one or
more alternatives from a group of alternatives with different attributes based on competing
criteria. In other words, usingMCDMmethodologies, decision-makers evaluate options with
various features by analyzing them against a variety of criteria. MCDM is a collection of
strategies that are widely employed in all aspects of life and at all levels.

ForDMdifficulties, uncertainty is a critical notion.Uncertainty implies unpredictability. In
unpredictable scenarios, routine decisions cannot be mentioned. The benefits and drawbacks
of potential repercussions in unknown situations must be carefully considered. At this time,
it is critical to thoroughly examine the environmental elements. In the face of ambiguity,
drawing on previous experiences and judgments is not always useful, and ultimate decisions
are not in doubt. Linguistic terms that we use unknowingly in our everyday lives have become
"computable" because of Zadeh’s notion of "fuzzy sets" (FS) [41]. With the grading system,
fuzzy logic enlarged the universe of classical mathematics from certainty to uncertainty,
and this notion achieved a paradigm shift that spread all over the world as a result of its
successful applications in real life. An element with a characteristic function is either an
element or not an element of a set, according to the traditional set idea. However, whether an
apple belongs to a set or not in the FS idea is specified by a membership function (MF) that
assigns the item a degree of membership in the range [0, 1]. The degree of belonging of an
element to the set in the FS A is ρ(A), whereas the degree of not belonging is 1−ρ(A). As a
result, the sum of the degrees of belonging and non-belonging equals one. This circumstance,
however, is insufficient to explain the ambiguity in some cases. As a result, Atanassov [1]
introduced the intuitionistic fuzzy set (IFS) theory, a generalization of the FS theory. In IFS
theory, the non-membership degree (ND) is defined in addition to the membership degree
(MD), whereas FS theory is designed to only reveal the membership degree (MD) defined
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in the range [0, 1]. According to IFS theory, MD and ND both fall between [0, 1]. Yager
[37] proposed Pythagorean fuzzy sets (PFS) and in certain circumstances developed them as
an extension of IFSs because IFSs cannot adequately convey uncertainty. PFSs employ the
notion that the sum of the squares of MD and ND is less than or equal to 1 for circumstances
when decision-making is impossible when MD and ND are added together. In the literature,
there is a ton of study on FS and its many expansions [5–10, 12–15, 26, 27, 31, 37, 39].

Senapati and Yager [29] is credited with creating the Fermatean fuzzy set (FFS). The MD
and ND in the FFS achieve the property 0 ≤ m3

A + n3
A ≤ 1. When identifying uncertainties,

the FFS, a novel idea in the literature, performs better than the IFS and PFS. As an illustration,
consider 0.9+0.6 > 1, 0.92+0.62 > 1 , and 0.93+0.63 < 1. Numerous investigations have
originatedwith FFSs [2, 3, 11, 16, 18–21, 25]. Senapati andYager [29] offers some of the FFS
characteristics, score, and accuracy attributes. The FFS problem has been addressed using
the TOPSIS approach, which is widely applied to MCDM issues. Additionally, Senapati
and Yager claim that FFS was carried out utilizing the TOPSIS method, which is frequently
applied to MCDM issues. Senapati and Yager [29] further mention that the TOPSIS method,
which is frequently used in MCDM issues, has been used for FFS. Senapati and Yager
[30] continued this work by investigating several novel operations, including Fermatean
arithmetic mean, division, and subtraction operations on FFSs, and they used the Fermatean
fuzzy weighted product model to tackle MCDM issues. Novel aggregation operators that
are part of the FFS have been defined and their associated attributes have been studied in
Senapati and Yager [30].

The newmeasurement combines the Euclidean distancemeasurewith the cosine similarity
measure. Fermatean fuzzy soft sets (FFSS) were defined by Kirisci [16], who also provided
a measure of entropy based on them. A brand-new hesitant fuzzy set (HFS) known as the
Fermatean hesitant fuzzy set (FHFS) has been presented and some of its attributes have been
examined in Kirisci [19]. The ELECTRE I technique is described in Kirisci et al. [17] with
FFSs by the group DM operate in which several people engage simultaneously. To increase
the efficacy of anti-virusmasks, Shahzadi andAkram [28] presents a decision supportmethod
based on the FFSS notion.

1.3 Motivation

In the field of fuzzy set theory, the similaritymetric is a crucial concept. In pattern recognition,
medical diagnostics, and other fields, it is commonly employed. On FSs, IFSs, and PFSs,
several similarity metrics have been investigated [23, 32, 33, 36, 40, 42, 43].

A series of distance and similarity measurements between two hesitant fuzzy linguistic
word sets is provided in Liao et al. [23]. Second, different weighted or ordinal weighted
distance and similarity measurements are provided between two collections of hesitant fuzzy
linguistic word sets. Following that, these metrics were examined in both discrete and contin-
uous scenarios. In [40], a cosine similarity measure and a weighted cosine similarity measure
between IFSs are proposed based on the concept of the cosine similarity measure for fuzzy
sets, taking into account the information carried by the membership degree and the non-
membership degree in IFSs as a vector representation with the two elements. Zhou et al.
[43] developed the heuristic fuzzy ordered weighted cosine similarity measure by combin-
ing the heuristic fuzzy ordered weighted cosine similarity measure and the extended ordinal
weighted average operator. The intuitionistic fuzzy ordered weighted cosine similarity mea-
sure distinguishes itself by not only being an extension of several frequently used similarity
measures, but also by dealing with the correlation of distinct decision matrices or multi-
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dimensional arrays for intuitionistic fuzzy values. The entropy of interval-valued fuzzy sets
and similarity measures of interval-valued fuzzy sets were presented by Zeng and Li [42].
Based on their axiomatic definitions, Zeng and Li [42] established three theorems that simi-
larity measure and entropy of interval-valued fuzzy sets may be modified by each other and
proposed some formulae to compute entropy and similarity measure of interval-valued fuzzy
sets. Wei [35] introduced several unique approaches for determining the similarity of picture
fuzzy sets. Some similarity metrics across image fuzzy sets are defined in [35], including
cosine similarity, weighted cosine similarity, set-theoretic similarity, weighted set-theoretic
cosine similarity, grey similarity, and weighted grey similarity.Wei andWei [36] proposed 10
similarity metrics between PFSs based on the cosine function, taking into account the degree
of membership, nonmembership, and reluctance in PFSs. These similarity and weighted
similarity scores between PFSs were applied to pattern recognition and medical diagnostics.
The axiom definitions of entropy, distance measure, and similarity measure of fuzzy sets
are systematically presented in [33], and essential relationships between these measures are
examined. Sridevi and Nadarajan [33] presented a new fuzzy similarity measure to determine
the degree of similarity of generalized fuzzy numbers (GFNs). The fuzzy similarity measure
is created by combining the notion of center of gravity (COG) points with the fuzzy differ-
ence of distance between fuzzy number points. Aydin [4] introduced a newMCDM technique
using FFSs that employs entropy theory to compute criterion weights and cosine similarity
measurements to select the optimal option. Xu and Shen [34] investigated Fermatean fuzzy
set similarity measures. The definitions of the Fermatean fuzzy sets similarity measures and
its weighted similarity measures on discrete and continuous universes are provided in turn in
this work. The fundamental features of the proposed similarity metrics are then addressed.
Following that, a decision-making process based on the TOPSIS approach is constructed
in the Fermatean fuzzy environment, and a novel method based on the provided Fermatean
fuzzy sets similarity measures is designed to tackle medical diagnosis issues.

The major reason we used FFSs in designing the current study’s strategy is because of
its exibility in dealing with unclear information. The supreme tendency of FFSs to address
the inexact human decision makes it more feasible and accurate to model two-dimensional
(i.e., membership and non-membership) information in a wider space as compared to IFSs
and PFSs. The inner product of two vectors divided by the product of their lengths gives the
measure of cosine similarity. The aim of this study is to define cosine similarity and weighted
cosine similarity measures based on FFSs. The characteristics of the new cosine similarity
measures will be examined and a new decision-making algorithm based on these measures
will be given. The algorithm is obtained by combining the new cosine similarity measures
with the TOPSIS method.

The originality: There have been various extensions of the classical cosine similarities such
as fuzzy, IF, and PF cosine similarities. These extensions have improved the performance of
the cosine similarities. FFSs can handle problemswith ambiguity and incomplete information
more efficiently than that of IFSs and PFSs. In this study, the Fermatean fuzzy cosine and
weighted cosine similarity measures were developed considering the intuitionistic fuzzy
and Pythagorean fuzzy cosine similarity measures studies. Since the M D3+ N D3 ≤ 1
requirement is satisfied for an object in the use of FFSs, there will be the possibility to cover
more elements than IFSs and PFSs. A medical application regarding the new similarities is
shown.

The remainder of this article is structured as follows. In Sect. 2, wewill give the fundamen-
tal information that will be used in the study. In Sect. 3, we will present new cosine similarity
and weighted cosine similarity measures and show the properties of these measures. Sect.
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4 is devoted to the MCDM algorithm with respect to cosine similarities and the TOPSIS
technique. In the fifth chapter, an application to infectious diseases is presented. The medical
decision-making model is shown that the cosine similarities given in the study are easy to
use and optimum results can be obtained. From the illustrative example study, it has been
accomplished that the offered cosine similarities in the FFS framework can conveniently
operate the real-life DM problem with their objectives.

2 Preliminaries

Now, some fundamental information that will be used in the study will be given.

Definition 2.1 [29] For X = {x1, x2, . . . , xn}, if
S = {(x, ρS(x), τS(x)) : x ∈ X }

satisfies the following conditions, then the set S is called FFS:

ρS, τS ∈ [0, 1], 0 ≤ ρ3
S + τ 3S ≤ 1.

θS = (1 − ρ3
S + τ 3S )1/3 shows the hesitation degree.

The pair (ρS(x), τS(x)) in the FFS S is defined as a Fermatean Fuzzy Number (FFN).
Choose the FFNs F = (ρF , τF ) and G = (ρG, τG).

a. F = (τF , ρF ),
b. F � G = ((ρ3

F + ρ3
G − ρ3

Fρ3
GF )1/3, τFτG),

c. F � G = (ρFρG, (τ 3F + τ 3G − τ 3Fτ 3G)1/3),
d. z.F = ((1 − (1 − ρ3

F )z)1/3, τ z
F ),

e. F z = (ρz
F , (1 − (1 − τ 3FF )z)1/3).

Definition 2.2 Consider the two FFNs F = (ρF , τF ) and G = (ρG, τG). For F and G. The
operation laws between them are as follows:

i. F ∪ G = (max{ρF , ρG},min{τF , τG})
ii. F ∩ G = (min{ρF , ρG},max{τF , τG})
iii. FC = (τF , ρF )

iv. F � G if and only if ρF ≤ ρG, τF ≤ τG .

Definition 2.3 [29] Consider the two FFNs F = (ρF , τF ) and G = (ρG, τG). For F and G,
the score functions SC(F) = ρ3

F − τ 3F and SC(G) = ρ3
G − τ 3G and the accuracy functions

AC(F) = ρ3
F + τ 3F and AC(G) = ρ3

G + τ 3G .

In this definition, the following situations are held:

Lemma 2.1 For the two FFNs F = (ρF , τF ) and G = (ρG, τG),

– If SC(F) < SC(G), then F < G,
– If SC(F) = SC(G), AC(F) < AC(G), then F < G,
– If SC(F) = SC(G), AC(F) = AC(G), then F = G.

Lemma 2.2 Choose any two FSsF,G. If the conditions [i.]–[iv.] are held, then S : FS×FS →
[0, 1] is said to be an SM between F,G.

i. 0 ≤ S(F,G) ≤ 1,
ii. S(F,G) = 1 ⇔ F = G,

iii. S(F,G) = S(G,F),
iv. S(F,H) ≤ S(F,G) and S(F,H) ≤ S(G,H) if F ⊆ G ⊆ H.

123



New cosine similarity and distance measures for Fermatean... 861

3 Newmeasures

It is known that the inner product of two vectors divided by the product of their lengths gives
the cosine similarity(CS) measure.

Definition 3.1 Take a fixed set X = {x1, x2, . . . , xn}. Choose any two FFSs F =
{(x, [ρF (xi ), τF (xi )]) : xi ∈ X } and G = {(x, [ρG(xi ), τG(xi )]) : xi ∈ X }. Therefore,
a CS measure CFFS(F,G) between F and G can be defined as

CFFS(F,G) = 1

n

n∑

i=1

ρ3
F (xi )ρ

3
G(xi ) + τ 3F (xi )τ

3
G(xi ) + θ3F (xi )θ

3
G(xi )

3
√

ρ6
F (xi ) + τ 6F (xi ) + θ6F (xi )

3
√

ρ6
G(xi ) + τ 6G(xi ) + θ6G(xi )

.

Theorem 3.1 Take any two FFSs F and G. Therefore the CS measure CFFS(F,G) satisfies
the following conditions:

i. 0 ≤ CFFS(F,G) ≤ 1
ii. CFFS(F,G) = CFFS(G,F)

iii. CFFS(F,G) = 1, if F = G, (ρF (xi ) = ρG(xi ), τF (xi ) = τG(xi )).

Definition 3.2 Choose any two FFSs F = {(x, [ρF (xi ), τF (xi )]) : xi ∈ X }, G =
{(x, [ρF (xi ), τF (xi )]) : xi ∈ X }. For xi ∈ X , take the weight ωi . The weighted cosine
similarity(WCS) measure Cω

FFS(F,G) is given as

Cω
FFS(F,G) = 1

n

n∑

i=1

ωi
ρ3
F (xi )ρ

3
G(xi ) + τ 3F (xi )τ

3
G(xi ) + θ3F (xi )θ

3
G(xi )

3
√

ρ6
F (xi ) + τ 6F (xi ) + θ6F (xi )

3
√

ρ6
G(xi ) + τ 6G(xi ) + θ6G(xi )

.

When take ω = { 1n , 1
n , . . . , 1

n }, the WCS Cω
FFS(F,G) is reduced to the CS measure

CFFS(F,G).

Theorem 3.2 Take any two FFSs F and G. Therefore, the WCS measure Cω
FFS(F,G) satisfies

the [i.]–[iii.] conditions:

i. 0 ≤ Cω
FFS(F,G) ≤ 1

ii. Cω
FFS(F,G) = Cω

FFS(G,F)

iii. Cω
FFS(F,G) = 1, if F = G, that is, ρF (xi ) = ρG(xi ), τF (xi ) = τG(xi ).

Example 3.1 For two FFSs F = {(x1, [0.4, 0.7]), (x2, [0.5, 0.6]), (x3, [0.3, 0.9]), (x4,
[0.5, 0.5]))} and G = {(x1, [0.4, 0.5]), (x2, [0.8, 0.3]), (x3, [0.6, 0.3]), (x4, [0.6, 0.6]))}. If
ω = {0.32, 0.23, 0.18, 0.27}, then CFFS(F,G) = 0.375 and Cω

FFS(F,G) = 0.156.

If a SM S(F,G) satisfies the conditions [i]–[iii] of Lemma 2.2, then S(F,G) is called
genuine SM. It is known that an SM satisfies the conditions of Lemma 2.2, then we can give
the following statement:

Let D(F,G) show the distance measure(DiMe) between F,G. Then D = 1 − S is the
SM between F,G.

Since Definitions 3.1 and 3.2 do not the hold the condition [ii] of Lemma 2.2 in several
situation, these CS measures are not the genuine SMs.

Example 3.2 For X = {x1, x2}, take two FFSs F = {(x1, [0.3, 0.3]), (x2, [0.2, 0.2])}
and G = {(x1, [0.4, 0.4]), (x2, [0.3, 0.3])} and ω = (0.4, 0.6). The WCS measure
Cω
FFS(FF,G) = 1. However, the given numbers are not equal to each other.
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In this example, there is a problem in obtaining the desired result. To solve this problem,
the following definition is given.

Definition 3.3 For any two FFSs F = {(x, [ρF (xi ), τF (xi )]) : xi ∈ X } and G =
{(x, [ρG(xi ), τG(xi )]) : xi ∈ X }. The Euclidean DiMe DFFS(ρ, τ ) is defined as

DFFS(F,G) =
⎛

⎝ 1

2n

∑

xi ∈X

(|ρ3
F − ρ3

G |2 + |τ 3F − τ 3G |2 + |θ3F − θ3G |2)
⎞

⎠
1/2

.

For xi ∈ X , take the weight ωi . The weighted Euclidean DiMe Dω
FFS(F,G) is described as

Dω
FFS(F,G) =

⎛

⎝1

2

∑

xi ∈X

ωi
(|ρ3

F − ρ3
G |2 + |τ 3F − τ 3G |2 + |θ3F − θ3G |2)

⎞

⎠
1/2

.

Theorem 3.3 For any two FFSs F,G, the weighted Euclidean DiMe Dω
FFS(F,G) satisfies

the [i.]–[iii.] conditions:

i. 0 ≤ Dω
FFS(F,G) ≤ 1

ii. Dω
FFS(F,G) = Dω

FFS(G,F)

iii. Dω
FFS(F,G) = 1, if F = G, that is, ρF (xi ) = ρG(xi ), τF (xi ) = τG(xi ).

Proof i. Since 0 ≤ ρF , ρG, τF , τG, θF , θG ≤ 1, 0 ≤ |ρ3
F − ρ3

G |2 ≤ 1, 0 ≤ |τ 3F − τ 3G |2 ≤ 1
and, |θ3F − θ3G |2 ≤ 1. Hence, 0 ≤ Dω

FFS(F,G) ≤ (1/2)1/2(2
∑n

i=1 ωi )
1/2 = 1.

ii. From Definition 3.3, it can easily show.
iii. Dω

FFS(F,G) = 0 ⇔ |ρ3
F − ρ3

G | = 0, |τ 3F − τ 3G | = 0, and, |θ3F − θ3G | = 0 if and only if
F = G. 
�
Definition 3.4 For any two FFSs F = {(x, [ρF (xi ), τF (xi )]) : xi ∈ X } and F =
{(x, [ρG(xi ), τG(xi )]) : xi ∈ X }. The new SM Sω

FFS(F,G) can be given as

SFFS(F,G) = CFFS(F,G) + 1 − DFFS(F,G)

2

Definition 3.5 For any two FFSs F = {(x, [ρF (xi ), τF (xi )]) : xi ∈ X } and G =
{(x, [ρG(xi ), τG(xi )]) : xi ∈ X}, the WCS measure Sω

FFS(F,G) between F and G can be
defined as

Sω
FFS(F,G) = Cω

FFS(F,G) + 1 − Dω
FFS(F,G)

2

where ωi denote the weight of xi ∈ X (
∑n

i=1 ωi = 1, 0 ≤ ωi ≤ 1).

Example 3.3 Consider the information in Example 3.2. The weighted similarity measure
Sω
FFS(F,G) = 0.98. That is when F �= G, Sω

FFS(F,G) does not equal 1.

Theorem 3.4 For the two FFSs F, G, the new WCS measure Sω
FFS(F,G) satisfies the [i.]–

[iii.] conditions:

i. 0 ≤ Sω
FFS(F,G) ≤ 1

ii. Sω
FFS(F,G) = Sω

FFS(G,F)

iii. Sω
FFS(F,G) = 1, if F = G, (ρF (xi ) = ρG(xi ), τF (xi ) = τG(xi )).
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Proof (i) FormTheorem3.2, 0 ≤ Cω
FFS(F,G) ≤ 1,weknow theDiMe0 ≤ Dω

FFS(F,G) ≤ 1

according to Lemma 2.1. Hence, 0 ≤ Cω
FFS(F,G)+1−Dω

FFS(F,G)

2 ≤ 1, that is, 0 ≤
Sω
FFS(F,G) ≤ 1 obtained.

(ii) Form Theorems 3.2 and 3.3, Cω
FFS(F,G) = Cω

FFS(GF,F) and Dω
FFS(F,G) =

Dω
FFS(G,F). Hence, Sω

FFS(F,G) = Sω
FFS(G,F).

(iii) Take F = G. Therefore Cω
FFS(F,G) = 1 and Dω

FFS(F,G) = 0, then Sω
FFS(F,G) =

1. Conversely, take Sω
FFS(F,G) = 1. Then, Cω

FFS(F,G) + 1 − Dω
FFS(F,G) = 2,

that is, Cω
FFS(F,G) = 1 + Dω

FFS(F,G). For all F,G, 0 ≤ Cω
FFS(F,G) ≤ 1 and

0 ≤ Dω
FFS(F,G) ≤ 1 should exist simultaneously, therefore Cω

FFS(F,G) = 1 and
Dω
FFS(F,G) = 0. From Theorem 3.3, when Dω

FFS(F,G) = 0, it is already known
F = G. Hence, Sω

FFS(F,F) = 1 iff FF = G.

�

When the SM satisfies the condition of DiMe, then a corresponding DiMe can be obtained
concerning the relationship between the DM and SM. Since the suggested SM Sω

FFS(F,G) is
a genuine SM, the corresponding DiMe Dω

FFS(F,G) between any two FFSs F,G is obtained
as follows:

Definition 3.6 For the two FFSs F,G. The weighted distance measure(WDM)

DMω
FFS(F,G) = 1 − Sω

FFS(F,G) = 1 − Cω
FFS(F,G) + Dω

FFS(F,G)

2
.

where ωi denote the weight of xi ∈ X (
∑n

i=1 ωi = 1).

If take ω = (1/n, . . . , 1/n), the DiMe DFFS(F,G) is obtained.

Example 3.4 Consider the information in Example 3.1. Hence DMω
FFS(F,G) = 0.482.

Theorem 3.5 For the two FFSs F,G, DMω
FFS(F,G) satisfies the following conditions:

i. 0 ≤ DMω
FFS(F,G) ≤ 1

ii. DMω
FFS(F,G) = DMω

FFS(G,F)

iii. DMω
FFS(F,G) = 1, if F = G, that is, ρF (xi ) = ρG(xi ), τF (xi ) = τG(xi ).

The distance measure DFFS(F,G) also satisfies the properties of Theorem 3.5.

4 TOPSIS approach

This section is dedicated to developing a TOPSIS technique for MCDM with FFS.
Consider that the experts evaluate the alternatives U = {U1, U2, . . . , Um} according to

the criteria K = {K1, K2, . . . , Kn}, which are represented by FFSs Ui j = (ρi j , τi j ) such
that ρi j , τi j ∈ [0, 1] and ρ3

i j + τ 3i j ≤ 1.
Let ω be weight vector of criteria satisfying with

∑n
j=1 ω j = 1 and ω j ≥ 0. Then

the FF decision matrix(FFDMT) E = (Ui j )n×n = ((ρi j , τi j ))M×n is shown as: For i =
1, 2, . . . , m; j = 1, 2, . . . , n,

E =

⎛

⎜⎜⎜⎝

U11 U12 · · · U1n

U21 U22 · · · U2n
...

...
. . .

...

Um1 Um2 · · · Umn

⎞

⎟⎟⎟⎠
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where Ui j are FFSs.
The algorithm based on the suggested CM is developed as follows:

1: Firstly, we will normalize the decision matrix E = (Ui j )n×n = ((ρi j , τi j ))m×n . For
normalization we will use the following negation operator:

Ê = ((ρ̂i j , τ̂i j ))

{
(ρi j , τi j ) for benefit type Kj,

(τi j , ρi j ) for cost type Kj.
(1)

This operator is comprehended as follows: If the criterion we are considering is benefit-
type, no action is taken. If our criterion is cost-type, we will convert this criterion to
benefit-type.

2: We will obtain positive and negative ideal solutions determined with the help of the
score and accuracy functions and denoted by U+ = {U+

1 , U+
2 , . . . , U+

n }, U− =
{U−

1 , U−
2 , . . . , U−

n }: For j = 1, 2, . . . , n,

U+
j = max{SC(U1 j ),SC(U2 j ), . . . ,SC(Unj )},

U−
j = min{SC(U1 j ),SC(U2 j ), . . . ,SC(Unj )}.

If all score values are equal, we need to use accuracy values. That is, we use accuracy
values for comparison.

3: We will compute the separations for each alternative between the obtained U+ and
U− with the suggested DiMe DMω

FFS. The separation measures as follows: For i =
1, 2, . . . , m,

DMω
FFS(Ui , U+) =

n∑

j=1

ω jDM
ω
FFS(Ui j , U+),

DMω
FFS(Ui , U−) =

n∑

j=1

ω jDM
ω
FFS(Ui j , U−).

Based on these measures, the closeness index γi connected to the Ui will be as follows:

γi = DMω
FFS(Ui , U+)

DMω
FFS(Ui , U+) + DMω

FFS(Ui , U−)
.

4: We will rank the alternatives according to their γi values. As the γi value gets smaller,
we will take the alternativeUi with the smallest value of γi to choose the best alternative.

Application
The infectious diseases example from Kirisci and Simsek [22] was adapted for this study

to represent the application of the suggested method in MCDM.
Let s

D = {HepatitisC,Crimean − CongoHemorrhagic Fever(CCHF), influenzaA(H1N1)}
= {U1, U2, U3}

be the set of three alternatives. Alternatives in this cluster were selected as infectious diseases,
which are common in Turkey, before COVID-19. The set of criteria S = {s1, s2, s3, s4, s5}.
The criteria s1 is cost type and the other criteria s2, s3, s4, s5 are benefit type. The correspond-
ing weight vector of the attribute is ω = (0.25, 0.20, 0.15, 0.18, 0.22)T . The evaluation
values are represented by FFNs (Table 1).
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Table 1 The FFDMT s1 s2 s3 s4 s5

U1 (0.7, 0.4) (0.8, 0.5) (0.8, 0.7) (0.7, 0.5) (0.9, 0.1)

U2 (0.7, 0.3) (0.6, 0.5) (0.8, 0.4) (0.5, 0.5) (0.7, 0.2)

U3 (0.8, 0.4) (0.8, 0.6) (0.9, 0.3) (0.6, 0.4) (0.7, 0.4

Table 2 The normalized FFDMT s1 s2 s3 s4 s5

U1 (0.4, 0.7) (0.8, 0.5) (0.8, 0.7) (0.7, 0.5) (0.9, 0.1)

U2 (0.3, 0.7) (0.6, 0.5) (0.8, 0.4) (0.5, 0.5) (0.7, 0.2)

U3 (0.4, 0.8) (0.8, 0.6) (0.9, 0.3) (0.6, 0.4) (0.7, 0.4)

1: We will normalize the decision matrix E = (Ui j )n×n = ((ρi j , τi j ))n×n . Transform the
FFDMT E into the normalized FFDMT by (1)(Table 2).

2: Now we will find the ideal solutions. These solutions:

U+ = {(0.4, 0.7), (0.8, 0.5), (0.9, 0.3), (0.7, 0.5), (0.9, 0.1)},
U− = {(0.3, 0.7), (0.6, 0.5), (0.8, 0.7), (0.5, 0.5), (0.7, 0.4)}.

3: We use the suggested FFDMT DMω
FFS to compute the separation of each alternative

between positive ideal and negative ideal solutions. The closeness index γi (for all Ui )
is computed: γ1 = 0.687, γ2 = 0.631, γ3 = 0.704.

4: For j = 1, 2, 3, the γ j values will help rank the alternatives. Hence, the best alternative
is U2.

The advantages of the suggested method:

(1) Since the main characteristic of FFSs is that the sum of cubes of membership and non-
membership value of any object can be less than or equal to 1, then using FFSs, we can
cover more elements than that of PFSs and IFSs. In other words, the FFS model is a
valuable, practical, and impressive extended form of IFSs and PFSs. In this instance,
experts become more autonomous in expressing their views on the level of membership.

(2) The choice of the best alternative from a set of alternatives in an MCDM problem is
handicapped when uncertain data are strained to adopt the limited form of IFNs and
PFNs. The aforenamed cases would cause the mutilation of data. A more generalized
model is required to ensure telling solutions in such crucial cases. FFSs give more correct
and exact outcomes when used to cope with practical MCDM problems including FF
information as they are an effective extension of IFSs and PFSs.

(3) The measures considered in this study are not limited to CS. It has also been studied with
Euclidean DiMes.Working with both measures provides a geometric as well as algebraic
point of view in the MCDM problem.

5 Conclusion

This study focuses on solving an MCDM problem in which measures of CS and cosine
distance between FFSs are considered. Based on FFS values, CS measure and Euclidean
DiMe were defined and their basic properties were examined. Therefore, we established new
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SMs between FFSs according to the suggested cosine SM and the Euclidean DiMe, which
not only satisfy the condition of SM but also deal with the related decision-making problems
from both points of view of geometry and algebra. The usefulness, influence, and versatility
of the developed method have been demonstrated in a medical case study.
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