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Abstract
Pattern mining is a fundamental data mining task with applications in several domains. In
this work, we consider the scenario in which we have a sequence of datasets generated by
potentially different underlying generative processes, and we study the problem of mining
statistically robust patterns, which are patterns whose probabilities of appearing in transac-
tions drawn from such generative processes respect well-defined conditions. Such conditions
define the patterns of interest, describing the evolution of their probabilities through the
datasets in the sequence, which may, for example, increase, decrease, or stay stable, through
the sequence. Due to the stochastic nature of the data, one cannot identify the exact set of the
statistically robust patterns by analyzing a sequence of samples, i.e., the datasets, taken from
the generative processes, and has to resort to approximations. We then propose gRosSo,
an algorithm to find rigorous approximations of the statistically robust patterns that do not
contain false positives or false negatives with high probability. We apply our framework to
the mining of statistically robust sequential patterns and statistically robust itemsets. Our
extensive evaluation on pseudo-artificial and real data shows that gRosSo provides high-
quality approximations for the problem of mining statistically robust sequential patterns and
statistically robust itemsets.

Keywords Statistically robust patterns · Sequential pattern mining · Itemset mining ·
VC-dimension · Statistically sound pattern mining

Grosso: (Italian adj.) large, big, robust.
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1 Introduction

Frequent pattern mining [2] is one of the fundamental tasks in data mining, and requires to
identify all patterns appearing in fractions at least θ of all transactions from a transactional
dataset. Several variants of the problem have explored different types of patterns (from item-
sets [3] to sequential patterns [4], to subgroups [5], to graphlets [6]) relevant to applications
ranging from market basket analysis to recommendation systems to spam detection.

In several real applications, a pattern is studied in the context of a sequence of datasets,
where the sequence is given, for example, from the collection of the data at different time
points. For example, inmarket basket analysis, it is natural to study the patterns (e.g., itemsets)
in datasets obtained from transactions in different weeks ormonths. In almost all applications,
one can assume that each dataset is obtained from a generative process on transactions, which
generates transactions according to some probability distribution, as assumed by statistically
sound pattern mining [7]. Let us consider, for example, a series of n surveys performed in
n different time intervals in a supermarket, where we collect the data of the receipts of the
costumers. The goal of such surveys is to infer information on how the behavior of the entire
customers population evolves, but, obviously, it is impossible to collect the receipts of the
whole population. Thus, our datasets only represent a collection of samples from the whole
population.

In such a scenario, patterns of interest are the ones whose probability of appearing in
a transaction follows some well-specified trend (e.g., it increases, decreases, or is constant
across datasets). In the survey example above, we may be interested in finding sequences
of purchases (i.e., sequential patterns) which become more and more common in time to
understand how the customers’ behavior changes over time. However, the identification of
such patterns is extremely challenging, since the underlying probability distributions are
unknown and the observed frequencies of the patterns in the data only approximately reflect
such probabilities.As a result, considering the same trends at the level of observed frequencies
leads to reporting several false positives. This problem is exacerbated by the huge number
of potential candidates, which poses a severe multiple hypothesis correction problem [8]. In
addition, techniques developed for significant pattern mining [7] or for statistically emerging
pattern mining [9] can only be applied to (a sequence of) two datasets.

To address such challenges, in this work we introduce a novel framework to identify
statistically robust patterns from a sequence of datasets, i.e., patterns whose probability of
appearing in transactions follows a well-specified trend, while providing guarantees on the
quality of the reported patterns in terms of false positives or in terms of false negatives.

1.1 Our contributions

In this work, we introduce the problem ofmining statistically robust patterns from a sequence
of datasets. In this regard, our contributions are:

– Wedefine the problemofmining statistically robust patterns, and define an approximation
of such patterns that does not contain false positives. We also describe three general types
of patterns (emerging, descending, and stable) which are of interest in most scenarios.

– We introduce an algorithm, gRosSo, to obtain a rigorous approximation, without false
positives, of the statistically robust patterns from a sequence of datasets with probability
at least 1 − δ, where δ is a confidence parameter set by the user. Our strategy is based
on the concept of maximum deviation and can employ any uniform convergence bound
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(see Sect. 2). We show how such a strategy can be used to approximate the three types
of statistically robust patterns we introduced.

– We define an approximation of the statistically robust patterns that does not contain false
negatives, and explain howgRosSo can bemodified to obtain such an approximationwith
high probability. We also discuss and prove additional guarantees that can be obtained
with gRosSo.

– We apply the general framework of statistically robust patterns to mine sequential pat-
terns. We also introduce a novel algorithm to compute an upper bound on the capacity
of a sequence that can be used to bound the maximum deviation using the statistical
learning concept of VC-dimension of sequential patterns, which may be of independent
interest.

– We apply the general framework of statistically robust patterns to mine itemsets using
the VC-dimension of itemsets to bound the maximum deviation.

– We perform an extensive experimental evaluation, mining statistically robust sequential
patterns and itemsets from pseudo-artificial datasets. Our evaluation proves that relying
on frequency alone leads to several spurious discoveries, while gRosSo provides high-
quality approximations for both data mining tasks. Finally, we analyze real datasets
mining statistically robust sequential patterns, proving that gRosSo is able to detect
various type of patterns.

1.2 Related works

We now discuss the relationship of our work to prior art on significant pattern mining,
emerging pattern mining, and robust pattern mining, which are the areas most related to our
work. We also focus on works that considered sequential pattern and itemset mining, which
are the applications of our framework that we present in this paper, and that use concepts
from statistical learning theory, as done in our work.

In significant pattern mining the dataset is seen as a sample from an unknown distribution
and one is interested in finding patterns significantly deviating from an assumed null distri-
bution (or hypothesis). Many variants and algorithms have been proposed for the problem.
We point interested reader to the survey [7] and the recent works [10–12]. Few works have
been proposed to mine statistically significant sequential patterns [13–15]. These methods
are orthogonal to our approach, which focuses on finding patterns whose frequencies with
respect to (w.r.t.) underlying generative distributions respect well-defined conditions through
a sequence of datasets.

The first work that proposed the problem of mining emerging patterns is [16]. To the best
of our knowledge, the only work that considers the problem of finding emerging patterns
considering a data generative process and provides statistical guarantees is [9]. However,
the proposed approach only works with two datasets and only finds patterns with significant
differences in the two datasets. Instead, our approach describes more general trends of the
probabilities of the patterns and considers more than two datasets, and it is unclear whether
the approach of [9] can be modified to work in our scenario.

Frequent itemset mining [3] and frequent sequential pattern mining [4] are two funda-
mental data mining problems, and several algorithms have been proposed for these tasks
(e.g., [17–20]). Servan-Schreiber et al. [21] are the first who apply the statistical learning
theory concept of VC-dimension to sequential patterns, and they provide the first computable
efficient upper bound on the empirical VC-dimension of sequential patterns, based on the
notion of capacity of a sequence. In this work, we propose a tighter upper bound on the
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capacity of a sequence to compute it and we apply it in a different scenario. More recently,
Santoro et al. [22] provide a sampling-based algorithm to compute approximations for the
frequent sequential patterns problem, based on an upper bound on the VC-dimension of
sequential patterns. They are also the first who consider the problem of mining true frequent
sequential patterns, that are frequent sequential patterns w.r.t. an underlying generative pro-
cess. They propose two approaches to compute approximations of such a problem: one based
on the empirical VC-dimension and the other based on the Rademacher complexity. While
we use a general framework similar to the one proposed by [22], we consider the problem of
mining statistically robust patterns in a sequence of datasets, that is a different task. Riondato
and Upfal [23] are the first who apply the VC-dimension to itemsets, providing a sampling-
based algorithm to compute approximations for the frequent itemsets problem. Riondato and
Vandin [24] are instead the first who consider the extraction of frequent patterns w.r.t. an
underlying generative process, based on the concept of empirical VC-dimension of itemsets.
While in our application to mine statistically robust itemsets we use some of the results pro-
vided in these works, we consider the problem of mining itemsets in a sequence of datasets,
that is a different problem.

Few works have been proposed to mine robust patterns, where the robustness is usually
defined by constraints between the relation of the observed frequency of a pattern in a dataset
and the frequencies of its sub- or super-patterns. For example, Zhu et al. [25] define robust
patterns as patterns for which, by removing some of their sub-patterns, the ratio between its
original frequency and the frequency of the resulting pattern in a dataset is greater than a user
defined parameter. Egho et al. [26] introduce a space of rules patterns model and they define
a Bayesian criterion for evaluating the interest of sequential patterns for mining sequential
rule patterns for classification purpose. Differently from our work, these contributions focus
on a single dataset and do not consider a dataset as a collection of samples from an unknown
generative process.

This version of our work differs in many ways from the preliminary one that appeared in
the proceedings of IEEE ICDM’20 [1]. The major changes are the following:

– We include additional proofs and pseudo-code that had been removed from the previous
version due to space constraints.

– We define a false negatives free approximation, and we discuss how gRosSo can be
extended to obtain such an approximation (Sect. 4.4).

– We discuss additional guarantees that can be obtained with gRosSo for both types of
approximations (Sect. 4.5).

– We include another application of the general framework of statistically robust patterns,
namelymining statistically robust itemsets, using the VC-dimension of itemsets to bound
the maximum deviation (Sect. 6).

– We extend our experimental evaluation to include experiments on mining statistically
robust itemsets frompseudo-artificial datasets, and onmining false negatives free approx-
imations for both statistically robust sequential patterns and statistically robust itemsets
(Sect. 7).

1.3 Organization of the paper

The rest of the paper is structured as follows. Sect. 2 contains the definitions and concepts
used throughout this work. Our framework for statistically robust pattern mining is presented
in Sect. 3. Section 4 describes our algorithm, gRosSo to mine statistically robust patterns
and provides discussions and proofs of the guarantees that can be obtained with gRosSo. The
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application of our approach for mining statistically robust sequential patterns is described in
Sect. 5, while the application for mining statistically robust itemsets is described in Sect. 6.
Section 7 reports the results of an extensive suite of experiments performed to evaluate the
effectiveness of gRosSo on pseudo-artificial and real datasets. Section 8 concludes the paper
with some final remarks.

2 Preliminaries

We now provide the definitions and the concepts used throughout the paper. We start by
introducing the task of pattern mining and defining the problems of mining frequent and true
frequent patterns. Then, we formally define the concept of maximum deviation, which is
required by our strategy to find an approximation of the statistically robust patterns, and of
VC-dimension, showing how it can be used to bound the maximum deviation.

2.1 Patternmining

Let a dataset D = {τ1, τ2, . . . , τm} be a finite bag of |D| = m transactions, where each
transaction is an element from a domain U. We assume that the elements ofU exhibit a poset
structure. We define a pattern p as an element of U, potentially with some constraints. (For
example, in itemset mining the domain U consists of all subsets of binary features called
items.) A pattern p belongs to a transaction τ ∈ D if and only if p is contained in τ , denoted
by p � τ . The support set TD(p) of p in D is the set of transactions in D containing p, that
is, TD(p) = {τ ∈ D : p � τ }. Finally, the frequency fD(p) of p in D is the fraction of
transactions in D to which p belongs, that is,

fD(p) = |TD(p)|
|D| .

Given a dataset D and a minimum frequency threshold θ ∈ (0, 1], frequent pattern (FP)
mining is the task of reporting the set FP(D, θ) of all the patterns whose frequencies in D
are at least θ , and their frequencies, that is,

FP(D, θ) = {(p, fD(p)) : p ∈ U, fD(p) ≥ θ}.

Given a generic set A of pairs (p, ·), where the first element of each pair is a pattern, in
the following, with an abuse of notation, we use p ∈ A to indicate that ∃(p, ·) ∈ A, e.g.,
p ∈ FP(D, θ) ⇒ ∃(p, fD(p)) ∈ FP(D, θ).

2.2 True frequent patternmining

In several applications, the dataset D is a sample of transactions independently drawn from
an unknown probability distribution π on U, that is, the dataset D is a finite bag of |D|
independent identically distributed (i.i.d.) samples from π , with π : U → [0, 1]. The true
support set T (p) of p is the set of patterns inU to which p belongs, T (p) = {τ ∈ U : p � τ },
and the true frequency tπ (p) of p w.r.t. π is the probability that a transaction sampled from
π contains p, that is,

tπ (p) = Pr
τ∼π

(p � τ).
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In such a scenario, the final goal of the datamining process onD is to gain a better understand-
ing of the process that generated the data, i.e., the distribution π , through the true frequencies
of the patterns, which are unknown and only approximately reflected in the dataset D. Thus,
given a probability distribution π on U and a minimum frequency threshold θ ∈ (0, 1], true
frequent pattern (TFP)mining is the task of reporting the set T FP(π, θ) of all patterns whose
true frequencies w.r.t. π are at least θ , and their true frequencies, that is,

T FP(π, θ) = {(p, tπ (p)) : p ∈ U, tπ (p) ≥ θ}.
Let us note that, given a finite number of random samples from π , the dataset D, it is
not possible to find the exact set T FP(π, θ), and one has to resort to approximations of
T FP(π, θ).

2.3 Maximum deviation

LetX be a domain set and letP be a probability distribution onX . Let G be a set of functions
from X to [0, 1]. Given a function g ∈ G, the expectation E[g] of g is defined as

E[g] = Ex∼P [g(x)],
with x ∈ X , and, given a sample A of |A| elements drawn from P , the empirical average
E(g, A) of g on A is defined as

E(g, A) = 1

|A|
∑

xi∈A

g(xi ).

Themaximum deviation is defined as the largest difference, over all functions g ∈ G, between
the expectation of g and its empirical average on a sample A, that is,

sup
g∈G

|E[g] − E(g, A)|.

In the TFP mining task, one is interested in finding good estimates for tπ (p) simultaneously
for each pattern p ∈ U. In such a scenario, the true frequency tπ (p) and the frequency fD(p)
of a pattern p on D represent, respectively, the expectation and the empirical average of a
function associated with p, since

tπ (p) = Eτ∼π [1τ (p)]
and

fD(p) = 1

|D|
∑

τi∈D
1τi (p),

with 1τ (p) the indicator function that assumes the value 1 if and only if p � τ . Thus, in the
TFP scenario the maximum deviation is

sup
p∈U

|tπ (p) − fD(p)|,

and one is interested in finding probabilistic upper bounds on such a measure, i.e., finding a
μ ∈ (0, 1) such that (s.t.)

Pr

(
sup
p∈U

|tπ (p) − fD(p)| ≤ μ

)
≥ 1 − δ,
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with a confidence parameter δ ∈ (0, 1).
Such probabilistic upper bounds on the maximum deviation can be computed with tools

from statistical learning theory, e.g., VC-dimension [27] and Rademacher complexity [28].
More common techniques (e.g., Hoeffding inequality and union bounds) instead do not
provide useful results since they require to know the number of all possible patterns that can
be generated from the process, which can be infinite or impractical to compute.

2.4 VC-dimension

The Vapnik–Chervonenkis (VC) dimension [27, 29] of a space of points is a measure of the
complexity or expressiveness of a family of indicator functions, or, equivalently of a family
of subsets, defined on that space. A finite bound on the VC-dimension of a structure implies
a bound of the number of random samples required to approximately learn that structure.

We define a range space as a pair (X ,R), where X is a finite or infinite set and R, the
range set, is a finite or infinite family of subsets of X . The members of X are called points
while the members ofR are called ranges. Given A ⊆ X , we define the projection ofR in A
as PR(A) = {r ∩ A : r ∈ R}. We define 2A as the power set of A, that is the set of all the
possible subsets of A, including the empty set ∅ and A itself. If PR(A) = 2A, then A is said
to be shattered by R. The VC-dimension of a range space is the cardinality of the largest set
shattered by the ranges.

Definition 1 Let RS = (X ,R) be a range space and B ⊆ X . The empirical VC-dimension
EVC(RS, B) of RS on B is the maximum cardinality of a subset of B shattered by R.

The main application of VC-dimension in statistics and learning theory is to derive the
sample size needed to approximate “learn” the ranges, as defined below.

Definition 2 Let RS = (X ,R) be a range space and let γ be a probability distribution on X .
Given μ ∈ (0, 1), a bag B of elements sampled from X according to γ is a μ-bag of (X , γ )

if for all r ∈ R, ∣∣∣∣Prγ (r) − |B ∩ r |
|B|

∣∣∣∣ ≤ μ.

A μ-bag of (X , γ ) can be constructed sampling points from X according to the distribution
γ , as follows.

Theorem 1 [30] Let RS = (X ,R) be a range space and let γ be a probability distribution
on X. Let B a bag of |B| elements sampled from X according to γ and let d be the empirical
VC-dimension EVC(RS, B) of RS on B. Then, given δ ∈ (0, 1) and

μ =
√

1

2|B|
(
d + ln

1

δ

)
,

the bag B is a μ-bag of (X , γ ) with probability at least 1 − δ.

2.4.1 Range space of patterns

We now define the range space of patterns and prove how the VC-dimension can be used to
bound the maximum deviation in the TFP scenario.
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Definition 3 Let U be a domain and let π be a probability distribution on U. We define
RS = (X ,R) to be a range space associated with U w.r.t. π such that:

– X = U;
– R = {T (p) : p ∈ U} is a family of sets of transactions such that for each pattern p the

set T (p) = {τ ∈ U : p � τ } is the true support set of p.
The following theorem is a generalization of a result for sequential patterns appearing

in [22]. Here, we provide it for a general pattern mining task.

Theorem 2 Let RS be the range space associated with U w.r.t. π , let D be a finite bag of
i.i.d. sample from π , and let v be the empirical VC-dimension EVC(RS,D) of RS on D.
Then, given δ ∈ (0, 1) and

μ =
√

1

2|D|
(

v + ln
1

δ

)
,

supp∈U |tπ (p) − fD(p)| ≤ μ with probability at least 1 − δ.

Proof From Theorem 1, we know thatD is a μ-bag of (U, π) with probability at least 1− δ.
Then, from Definition 2, ∣∣∣∣Prπ (r) − |D ∩ r |

|D|
∣∣∣∣ ≤ μ

for all r ∈ R. Given a pattern p ∈ U and its real support set T (p), which is the range rp ,
from the definition of range space of patterns (Definition 3) we have

Pr
π

(rp) = tπ (p)

and |D ∩ rp|
|D| = fD(p).

Thus, supp∈U |tπ (p) − fD(p)| ≤ μ with probability at least 1 − δ. �
In Sects. 5 and 6, we discuss, respectively, an efficient computable upper bound of the

empirical VC-dimension of sequential patterns and of itemsets, to bound the maximum
deviation of the true frequencies for the two data mining tasks.

3 Statistically robust patternmining

In this work, we introduce the task of mining statistically robust patterns from a sequence of
datasets. Let us consider the scenario in which we have a sequence Dn

1 = {D1,D2, . . . ,Dn}
of n datasets, where each dataset Di is a bag of |Di | i.i.d. samples taken from a probability
distribution πi on U, with i ∈ {1, . . . , n}. Let Πn

1 = {π1, π2, . . . , πn} denote the sequence
of the n probability distributions and Tp = {tπ1(p), tπ2(p), . . . , tπn (p)} the sequence of the
true frequencies of the pattern p w.r.t. Πn

1 . In such a scenario, we are interested in finding
patterns whose true frequencies w.r.t. Πn

1 respect a well-defined condition cond(Tp) that
describes the evolution of their true frequencies through the sequence. For example, one
may be interested in finding patterns whose true frequencies are almost the same in all the
probability distributions, or patterns whose true frequencies always increase/decrease, and
so on. So, given n probabilities distribution Πn

1 = {π1, π2, . . . , πn}, a condition cond(Tp)

on the true frequencies Tp that defines the patterns we are interested in, with cond(Tp) = 1
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when the condition is satisfied and cond(Tp) = 0 otherwise, statistically robust pattern
(SRP) mining is the task of reporting the set SRP(Πn

1 ) of all patterns whose true frequencies
w.r.t Πn

1 respect cond(Tp), that is,

SRP(Πn
1 ) = {(p, Tp) : p ∈ U ∧ cond(Tp) = 1}.

Similarly to TFP mining, from a sequence of samples (the datasets Dn
1 ) it is not possible

to find the exact set SRP(Πn
1 ). Thus, one has to resort to approximations. Denoting by

Fp = { fD1(p), fD2(p), . . . , fDn (p)} the sequence of the n frequencies of p in Dn
1 , we

define a false positives free (FPF) approximation AP of SRP(Πn
1 ) as

AP = {(p,Fp) : ∃(p, Tp) ∈ SRP(Πn
1 )}.

The approximation AP does not contain false positives, that is, patterns p /∈ SRP(Πn
1 ). In

Sect. 4.4, we define an approximation that does not contain false negatives.
Now, we define three general types of patterns that can be described by the SRPs frame-

work, and that we consider in the rest of this work.

Emerging Patterns (EP): these are patterns whose true frequencies always increase over the
sequence, i.e., patterns p for which tπi+1(p) > tπi (p)+ε, for all i ∈ {1, . . . , n−1}, for some
given emerging threshold ε ∈ [0, 1). Formally, given an emerging threshold ε ∈ [0, 1), we
define the emerging condition condE (Tp) as

condE (Tp) =
{
1 if tπi+1(p) > tπi (p) + ε,∀i ∈ {1, . . . , n − 1}
0 otherwise.

(1)

Descending Patterns (DP): these are patterns p whose true frequencies always decrease over
the sequence, i.e., patterns p for which tπi (p) > tπi+1(p) + ε for all i ∈ {1, . . . , n − 1}, for
some given emerging threshold ε ∈ [0, 1). Formally, given an emerging threshold ε ∈ [0, 1),
we define the descending condition condD(Tp) as

condD(Tp) =
{
1 if tπi (p) > tπi+1(p) + ε,∀i ∈ {1, . . . , n − 1}
0 otherwise.

(2)

Stable Patterns (SP): these are patterns whose true frequencies in the n probability dis-
tributions are above a minimum frequency threshold θ and do not change too much. In
particular, we consider patterns p for which |tπi (p) − tπ j (p)| ≤ α and tπi (p) ≥ θ for all
i �= j ∈ {1, . . . , n}, for some given stability threshold α ∈ (0, 1) and a minimum frequency
threshold θ ∈ (0, 1). Formally, given a stability threshold α ∈ (0, 1) andminimum frequency
threshold θ ∈ (0, 1), we define the stability condition condS(Tp) as

condS(Tp) =

⎧
⎪⎨

⎪⎩

1 if |tπi (p) − tπ j (p)| ≤ α ∧ tπi (p) ≥ θ,

∀ i �= j ∈ {1, . . . , n}
0 otherwise.

(3)

Let us note that many more types of patterns can be described by our proposed frame-
work. For example, one may be interested in patterns whose true frequencies in the different
probability distributions have a ratio larger than a user-defined constant, or may be interested
in patterns whose true frequencies are stable in some distributions and then increase/decrease
in others, or that first increase and then decrease, and so on. In addition, for the EP and DP
tasks, we provided general conditions to describe such patterns, while one may also consider
constraints using a minimum frequency threshold θ .
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4 GROSSO: approximating the statistically robust patterns

In this section, we describe gRosSo, mininG statistically RObuSt patterns from a Sequence
Of datasets, our strategy to provide a rigorous approximation of the SRPs. In particular,
gRosSo aims to find an approximation that does not contain false positives (i.e., a FPF
approximation, see Sect. 3) with high probability. In Sects. 4.1–4.3 we show how to apply
such a strategy to mine approximations of the three types of SRPs we defined in the previous
section. gRosSo can also be modified to find approximations with guarantees on the false
negatives: in Sect. 4.4, we show how to use gRosSo to find such approximations for the
EP task. Finally, in Sect. 4.5 we describe additional guarantees that can be obtained with
gRosSo for both types of approximations.

Algorithm 1: gRosSo: find a FPF approximation AP of SRP(Πn
1 ).

Data: Datasets Dn
1 , δ ∈ (0, 1).

Result: Set AP that is a FPF approx. of SRP(Πn
1 ) with probability ≥ 1 − δ.

1 foreach Di ∈ Dn
1 do

2 μi ← computeMaxDev(Di , δ/n);
3 θ̃i ← minimum frequency threshold for Di computed considering condP (Fp, μ

n
i );

4 B ← FP(Dk , θ̃k ), with k = argmaxi∈{1,...,n} θ̃i ;
5 AP ← ∅;
6 foreach (p, fDk

(p)) ∈ B do
7 Fp ← empty array of n elements;
8 Fp[k] ← fDk

(p); /* Fp[k]: k-th element of Fp */
9 AP ← AP ∪ (p,Fp);

10 foreach Di ∈ Dn
1 \ Dk do

11 foreach (p,Fp) ∈ AP do
12 Fp[i] ← computeFrequency(Di , p);
13 if condP (Fp, μ

n
1) = 0 then

14 AP ← AP \ (p,Fp);
15 return AP ;

Algorithm 1 shows the pseudo-code of gRosSo. For a fixed cond(Tp) that defines
the SRPs we are interested in, and given the sequence Dn

1 of n datasets and a confi-
dence parameter δ ∈ (0, 1) as input, we start by computing an upper bound μi on the
maximum deviation w.r.t. πi for each dataset Di , i.e., supp∈U |tπi (p) − fDi (p)| ≤ μi ,
with i ∈ {1, . . . , n} (lines 1-2). Each upper bound is computed using δ/n as confidence
parameter, thus Pr(supp∈U |tπi (p) − fDi (p)| ≤ μi ) ≥ 1 − δ/n, ∀ i ∈ {1, . . . , n}. We
denote by μn

1 = {μ1, μ2, . . . , μn} the sequence of the n upper bounds on the maximum
deviations. (Such upper bounds can be computed, for example, using Theorem 2 and the
VC-dimension.) Since cond(Tp) considers the true frequencies Tp , which are unknown, we
need to define a new condition condP (Fp, μ

n
1) on the frequencies Fp and on the upper

bounds μn
1. Such new FPF condition takes into account the uncertainty of the data in our

samples, i.e., the datasets, in order to avoid false positives, and, for a pattern p, it must
be cond(Tp) = 0 �⇒ condP (Fp, μ

n
1) = 0 if supp∈U |tπi (p) − fDi (p)| ≤ μi holds

∀i ∈ {1, . . . , n}. Figure 1 shows such conditions for the EP and SP scenarios as examples.
Let us note that condP (Fp, μ

n
1) can be also evaluated only considering a subsequence of

the frequencies Fp , and if condP (Fp, μ
n
1) = 0 for some subsequence, then there are no

guarantees that cond(Tp) = 1. Then, we aim to find a starting set of possible candidates. For
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Fig. 1 FPF conditions for the EP and SP. The two panels show the cond(Tp) (left) and the corresponding
condP (Fp, μ

n
1) (right), which takes into account the uncertainty of the data and avoids false positives, for

the EP and SP tasks, with n = 3 datasets

each dataset Di , we compute the minimum frequency threshold θ̃i which the patterns must
have in such a dataset to verify condP (Fp, μ

n
1) (line 3). We then mine the datasetDk , where

k = argmaxi∈{1,...,n} θ̃i , with the corresponding minimum frequency threshold θ̃k , obtaining

the setB = FP(Dk, θ̃k) of the starting candidates (line 4). The idea is tomine the dataset with
the highest minimum frequency threshold in order to obtain a set of possible candidates that
is as small as possible. Let us note that any efficient algorithm for mining frequent patterns
can be used to obtain FP(Dk, θ̃k). For each pattern p ∈ B, we then create an empty array
Fp of length n, initialize its k-th element with fDk (p), and put the pair (p,Fp) in the set
AP containing all possible candidates (lines 6-9). Finally, we explore the remaining datasets
(lines 10-14). For each Di ∈ Dn

1 \ Dk and for each pattern p ∈ AP , we compute its fre-
quency fDi (p) inDi and initialize the i-th element ofFp with fDi (p) (line 12), andwe check
whether condP (Fp, μ

n
1) = 1, considering the subsequence of the frequencies Fp that has

already been computed. If condP (Fp, μ
n
1) = 0, there are no guarantees that cond(Tp) = 1,

and we remove such a pattern from the set of the possible candidates (lines 13-14). Then,
outputs are the patterns that have not been removed from the set of the possible candidates
(line 15).

Theorem 3 The set AP returned by gRosSo is a FPF approximation of SRP(Πn
1 ) with

probability ≥ 1 − δ.

Proof From the definition of condP (Fp, μ
n
1), we know that cond(Tp) = 0 �⇒

condP (Fp, μ
n
1) = 0 if supp∈U |tπi (p)− fDi (p)| ≤ μi holds ∀ i ∈ {1, . . . , n}. In such a sce-

nario, only the patterns p ∈ SRP(Πn
1 ) can appear inAP , and thusAP is a FPF approximation

of SRP(Πn
1 ). Now, let us define the event Ei as the event inwhich supp∈U |tπi (p)− fDi (p)| >

μi , with i ∈ {1, . . . , n}. From the choice of the confidence parameter used to compute
the upper bounds on the maximum deviation, we know that Pr(Ei ) < δ/n. So, we have
Pr(∃i ∈ {1, . . . , n} : supp∈U |tπi (p) − fDi (p)| > μi ) = Pr(∪n

i=1Ei ) ≤ ∑n
i=1 Pr(Ei ) < δ.

Thus, the setAP returned by gRosSo is a FPF approximation of SRP(Πn
1 ) with probability

≥ 1 − δ. �
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4.1 FPF approximation of the EP

Now, we apply the strategy defined above to find a FPF approximation of the EP. Starting
from condE (Tp) (Equation 1), we define condE

P (Fp, μ
n
1) as

condE
P (Fp, μ

n
1) =

⎧
⎪⎨

⎪⎩

1 if fDi+1(p) − μi+1 − ( fDi (p) + μi ) > ε,

∀ i ∈ {1, . . . , n − 1}
0 otherwise.

For a given i ∈ {1, . . . , n−1}, such a condition represents the scenario in which tπi+1(p) and
tπi (p) assume the values fDi+1(p)−μi+1 and fDi (p)+μi , respectively, that are the values
at which their distance is minimum over all possible values that they can assume. Only if such
a condition is true, we are guaranteed that tπi+1(p) > tπi (p) + ε. (See Fig. 1.) Then, starting
from such a condition, we compute the minimum frequency threshold for each dataset. Since
it must be fD2(p) − μ2 > fD1(p) + μ1 + ε and fD3(p) − μ3 > fD2(p) + μ2 + ε, and
thus fD3(p) > fD1(p) + 2 · ε + μ1 + μ3 + 2 · μ2, iterating such a reasoning for all the n
datasets and considering fD1(p) ≥ 0, we obtain the minimum frequency threshold θ̃ E

n for
the dataset Dn ,

θ̃ E
n = (n − 1) · ε + μ1 + μn +

n−1∑

i=2

2 · μi ,

the highest over all the n datasets. Thus, the set FP(Dn, θ̃
E
n ) provides the starting candidates.

Finally, starting fromDn−1 and ending withD1, we analyze the remaining datasets and check
whether the candidates verify condE

P (Fp, μ
n
1).

Theorem 4 condE (Tp) = 0 �⇒ condE
P (Fp, μ

n
1) = 0.

Proof Let us consider that supp∈U |tπi (p) − fDi (p)| ≤ μi , ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi (p) ∈ [ fDi (p) − μi , fDi (p) + μi ], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. condE (Tp′) = 0. From Equation 1, there is at least a couple of
consecutive distribution π j , π j+1, with j ∈ {1, . . . , n − 1}, s.t. tπ j+1(p

′) ≤ tπ j (p
′) + ε.

Since we know that tπ j+1(p
′) ∈ [ fD j+1(p

′) − μ j+1, fD j+1(p
′) + μ j+1] and that tπ j (p

′) ∈
[ fD j (p

′) − μ j , fD j (p
′) + μ j ], the condition fD j+1(p

′) − μ j+1 − ( fD j (p
′) + μ j ) > ε,

cannot be verified for such p′, and thus condE
P (Fp′ , μn

1) = 0. �

If one is interested in patterns with a true frequency above a value θ ∈ (0, 1), i.e., tπi (p) ≥
θ , ∀ i ∈ {1, . . . , n}, the following strategy can be used to reduce the set of starting candidates.
Since we require that fD1(p) ≥ θ + μ1 to discard possible false positives, a factor θ + μ1

must be added to θ̃ E
n . Instead, if one is interested in patterns p with tπn (p) ≥ θ , the minimum

frequency threshold θ̃ E
n for dataset Dn is

θ̃ E
n = max{(n − 1) · ε + μ1 + μn +

n−1∑

i=2

2 · μi , θ + μn}.
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4.2 FPF approximation of the DP

Using the same approach proposed to approximate the EP, it is possible to approximate the
DP. Starting from condD(Tp) (Equation 2), we define condD

P (Fp, μ
n
1) as

condD
P (Fp, μ

n
1) =

⎧
⎪⎨

⎪⎩

1 if fDi (p) − μi − ( fDi+1(p) + μi+1) > ε,

∀ i ∈ {1, . . . , n − 1}
0 otherwise.

Iterating such a condition for all the n datasets, we obtain the minimum frequency thresh-
old θ̃D

1 = θ̃ E
n for the dataset D1, that is the highest over all the n datasets. Thus, the set

FP(D1, θ̃
D
1 ) provides the starting candidates. Finally, starting fromD2 and ending withDn ,

we analyze the remaining datasets and check whether the candidates verify condD
P (Fp, μ

n
1).

In the case of a minimum frequency threshold θ ∈ (0, 1), reasoning analogous to the EP can
be applied.

Theorem 5 condD(Tp) = 0 �⇒ condD
P (Fp, μ

n
1) = 0. �

The proof is analogous to the proof of Theorem 4.

4.3 FPF approximation of the SP

Finally, we apply the strategy defined above to find an approximation of the SP. Starting from
condS(Tp) (Equation 3), we define condS

P (Fp, μ
n
1) as

condS
P (Fp, μ

n
1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if fDi (p) + μi − ( fD j (p) − μ j ) ≤ α

∧ fD j (p) + μ j − ( fDi (p) − μi ) ≤ α,

∧ fDi (p) − μi ≥ θ,

∀ i �= j ∈ {1, . . . , n}
0 otherwise.

Given i �= j ∈ {1, . . . , n}, the first two conditions represent the scenario in which tπi (p) and
tπ j (p) assume the values fDi (p) − μi and fD j (p) + μ j , respectively, if fDi (p) < fD j (p),
or, respectively, the values fD j (p) − μ j and fDi (p) + μi if fD j (p) < fDi (p), that are the
values at which their distance is maximum over all possible values that they can assume. Only
if such conditions are true, we can prove that |tπi (p) − tπ j (p)| ≤ α. The third condition,
instead, represents the scenario in which tπi (p) assumes the value fDi (p) − μi , that is
the minimum value that it can assume. Only if such a condition is true, we can prove that
tπi (p) ≥ θ . (See Fig. 1.) The only condition that affects the minimum frequency thresholds
θ̃ S
i is fDi (p) ≥ θ + μi , ∀ i ∈ {1, . . . , n}. So, we have θ̃ S

i = θ + μi , ∀ i ∈ {1, . . . , n}, and
the set FP(Dk, θ̃

S
k ), with k = argmaxi∈{1,...,n} θ̃ S

i , provides the starting candidates. Finally,
we analyze the remaining datasets Di ∈ Dn

1 \ Dk and check whether the candidates verify
condS

P (Fp, μ
n
1).

Theorem 6 condS(Tp) = 0 �⇒ condS
P (Fp, μ

n
1) = 0.

Proof Let us consider that supp∈U |tπi (p) − fDi (p)| ≤ μi , ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi (p) ∈ [ fDi (p) − μi , fDi (p) + μi ], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. condS(Tp′) = 0. From Equation 3, there is at least a distribution πi ,
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with i ∈ {1, . . . , n} s.t. tπi (p
′) < θ and/or there is at least a couple of distributions πk, π j ,

with k �= j ∈ {1, . . . , n}, s.t. |tπ j (p
′) − tπk (p

′)| > α. First, let us consider the case in
which there is a distribution πi , with i ∈ {1, . . . , n}, s.t. tπi (p

′) < θ . Since we know that
tπi (p

′) ∈ [ fDi (p
′) − μi , fDi (p

′) + μi ], the condition fDi (p
′) − μi ≥ θ cannot be verified,

and thus condS
P (Fp′ , μn

1) = 0. Now, let us consider the case in which there is a couple of
distributions πk, π j , with k �= j ∈ {1, . . . , n} s.t. |tπ j (p

′)− tπk (p
′)| > α. Since we know that

tπ j (p
′) ∈ [ fD j (p

′)−μ j , fD j (p
′)+μ j ] and that tπk (p

′) ∈ [ fDk (p
′)−μk, fDk (p

′)+μk ], the
condition fD j (p

′)+μ j−( fDk (p
′)−μk) ≤ α cannot be verified, if fD j (p

′) > fDk (p
′), while

the condition fDk (p
′)+μk − ( fD j (p

′)−μ j ) ≤ α cannot be verified if fD j (p
′) < fDk (p

′),
and thus condS

P (Fp′ , μn
1) = 0. �

4.4 Guarantees on false negatives

In this section, we explain how gRosSo can be modified to obtain an approximation without
false negatives with high probability. Analogously to what done in Sect. 3, we first define a
false negatives free (FNF) approximation AN of SRP(Πn

1 ) as

AN = {(p,Fp),∀(p, Tp) ∈ SRP(Πn
1 )}.

The approximation AN does not contain false negatives, that is, it contains all patterns
p ∈ SRP(Πn

1 ).
Our algorithm gRosSo can be used to obtain FNF approximations. The procedure

is the same described above (see Algorithm 1) but we need to define a new condition
condN (Fp, μ

n
1), a FNF condition that takes into account the uncertainty in the data in order to

avoid false negatives, and for a pattern p it must be cond(Tp) = 1 �⇒ condN (Fp, μ
n
1) = 1

if supp∈U |tπi (p) − fDi (p)| ≤ μi holds ∀i ∈ {1, . . . , n}. Figure 2 shows such a condition

for the EP scenario as an example. Then, we compute the minimum frequency threshold θ̂i
for each dataset Di , with i ∈ {1, . . . , n}, considering condN (Fp, μ

n
i ), and we mine the set

of the starting candidates from the dataset with the highest minimum frequency threshold.

Theorem 7 The setAN returned by gRosSo using condN (Fp, μ
n
1) is a FNF approximation

of SRP(Πn
1 ) with probability ≥ 1 − δ.

Proof From the definition of condN (Fp, μ
n
1), we know that cond(Tp) = 1 �⇒

condN (Fp, μ
n
1) = 1 if supp∈U |tπi (p) − fDi (p)| ≤ μi holds ∀ i ∈ {1, . . . , n}. In such

a scenario, all the patterns p ∈ SRP(Πn
1 ) appear in AN , and thus AN is a FNF approxi-

mation of SRP(Πn
1 ). The remaining of the proof is analogous of the proof of Theorem 3.

�

4.4.1 FNF approximation of the EP

Now, we apply the strategy defined above to find a FNF approximation of the EP. With a
similar reasoning, it is possible to mine a FNF approximation of the descending and stable
patterns. Starting from condE (Tp) (Equation 1), we define condE

N (Fp, μ
n
1) as

condE
N (Fp, μ

n
1) =

⎧
⎪⎨

⎪⎩

1 if fDi+1(p) + μi+1 − ( fDi (p) − μi ) > ε,

∀ i ∈ {1, . . . , n − 1}
0 otherwise.
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Fig. 2 FNF condition for the EP. The two panels show the cond(Tp) (left) and the corresponding
condN (Fp, μ

n
1) (right), which takes into account the uncertainty of the data and avoids false negatives,

for the EP task, with n = 3 datasets

For a given i ∈ {1, . . . , n−1}, such a condition represents the scenario in which tπi+1(p) and
tπi (p) assume the values fDi+1(p)+μi+1 and fDi (p)−μi , respectively, that are the values
at which their distance is maximum over all possible values that they can assume. Only if
such a condition is false, we can prove that tπi+1(p) ≤ tπi (p)+ε. (See Fig. 2.) Then, starting
from such a condition, we compute the minimum frequency threshold for each dataset. Since
it must be fD2(p) + μ2 > fD1(p) − μ1 + ε and fD3(p) + μ3 > fD2(p) − μ2 + ε, and
thus fD3(p) > fD1(p) + 2 · ε − μ1 − μ3 − 2 · μ2, iterating such a reasoning for all the n
datasets and considering fD1(p) ≥ 0, we obtain the minimum frequency threshold

θ̂ E
i = (i − 1) · ε − μ1 − μi −

i−1∑

j=2

2 · μ j ,

for each dataset Di , i ∈ {2, . . . , n}, and θ̂ E
1 = 0. Thus, the set FP(Dk, θ̂

E
k ), with k =

argmaxi∈{1,...,n} θ̂ E
i , provides the starting candidates.Then,weanalyze the remainingdatasets

Di ∈ Dn
1 \ Dk and check whether the candidates verify condE

N (Fp, μ
n
1). Let us note that,

depending on the values of ε and μn
1, the highest minimum frequency threshold θ̂ E

k can
be equal or very close to 0, resulting in a huge amount of starting candidates, sometimes
infeasible to mine. Thus, to obtain FNF approximations, a reasonable solution is to only
consider patterns with a minimum true frequency. If one is interested in patterns with a true
frequency above a value θ ∈ (0, 1), i.e., tπi (p) ≥ θ , ∀ i ∈ {1, . . . , n}, the following strategy
can be used to reduce the set of starting candidates. Since we require that fDi (p) ≥ θ − μi

for all i ∈ {1, . . . , n} to discard possible false negatives, we obtain the minimum frequency
threshold

θ̂ E
i = max{(i − 1) · ε + θ − μi −

i−1∑

j=1

2 · μ j , θ − μi },

for each datasetDi , i ∈ {1, . . . , n}. Instead, if one is interested in patterns p with tπn (p) ≥ θ ,
the highest minimum frequency threshold is the maximum between θ − μn , for dataset Dn ,
and the minimum frequency threshold described above without frequency constraints.
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Theorem 8 condE (Tp) = 1 �⇒ condE
N (Fp, μ

n
1) = 1.

Proof Let us consider that supp∈U |tπi (p) − fDi (p)| ≤ μi , ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi (p) ∈ [ fDi (p) − μi , fDi (p) + μi ], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. condE (Tp′) = 1. From Equation 1, we have tπ j+1(p

′) > tπ j (p
′) + ε

for all couples of consecutive distributions π j , π j+1, with j ∈ {1, . . . , n − 1}. Since we
know that tπ j+1(p

′) ∈ [ fD j+1(p
′)−μ j+1, fD j+1(p

′)+μ j+1] and that tπ j (p
′) ∈ [ fD j (p

′)−
μ j , fD j (p

′) + μ j ], the condition fD j+1(p
′) + μ j+1 − ( fD j (p

′) − μ j ) > ε is verified for
such p′ for all j ∈ {1, . . . , n − 1}, and thus condE

N (Fp′ , μn
1) = 1. �

4.5 Additional guarantees of GROSSO

In this section,we provide additional guarantees of gRosSo for both types of approximations.
In particular, it is possible to derive guarantees on the false negatives that can appear in a
FPF approximation returned by gRosSo, and, vice versa, guarantees on the false positives
that can appear in a FNF approximation. Such guarantees differ considering different types
of patterns (i.e., emerging, descending, and stable), and thus, they must be separately derived
for each type of pattern. Here, we prove additional guarantees for the emerging patterns but,
with a similar reasoning, it is possible to obtain analogous guarantees for the descending and
stable patterns.

Theorem 9 For any pattern p with tπi+1(p) > tπi (p)+ε+2·μi+2·μi+1 ∀i ∈ {1, . . . , n−1},
condE

P (Fp, μ
n
1) = 1.

Proof Let us consider that supp∈U |tπi (p) − fDi (p)| ≤ μi , ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi (p) ∈ [ fDi (p) − μi , fDi (p) + μi ], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. tπi+1(p

′) > tπi (p
′)+ε+2 ·μi +2 ·μi+1 ∀i ∈ {1, . . . , n−1}. Since we

know that tπi+1(p
′) ∈ [ fDi+1(p

′) − μi+1, fDi+1(p
′) + μi+1] and that tπi (p

′) ∈ [ fDi (p
′) −

μi , fDi (p
′)+μi ] ∀i ∈ {1, . . . , n−1}, thenwe have that fDi+1(p

′)−μi+1 > fDi (p
′)+μi+ε

∀i ∈ {1, . . . , n − 1}, and thus condE
P (Fp′ , μn

1) = 1. �

Theorem 10 Forany pattern p with tπi+1(p) ≤ tπi (p)+ε−2·μi−2·μi+1 ∀i ∈ {1, . . . , n−1},
condE

N (Fp, μ
n
1) = 0.

Proof Let us consider that supp∈U |tπi (p) − fDi (p)| ≤ μi , ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi (p) ∈ [ fDi (p) − μi , fDi (p) + μi ], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. tπi+1(p

′) ≤ tπi (p
′)+ε−2 ·μi −2 ·μi+1 ∀i ∈ {1, . . . , n−1}. Since we

know that tπi+1(p
′) ∈ [ fDi+1(p

′) − μi+1, fDi+1(p
′) + μi+1] and that tπi (p

′) ∈ [ fDi (p
′) −

μi , fDi (p
′)+μi ] ∀i ∈ {1, . . . , n−1}, thenwe have that fDi+1(p

′)+μi+1 ≤ fDi (p
′)−μi +ε

and thus condE
N (Fp′ , μn

1) = 0. �

Theorem 9 and Theorem 10 provide additional guarantees for the emerging patterns
returned by gRosSo. In particular, Theorem 9 provides additional guarantees for a FPF
approximation returned by gRosSo, stating that a pattern p with tπi+1(p) > tπi (p) + ε +
2 · μi + 2 · μi+1 ∀i ∈ {1, . . . , n − 1} is certainly included in a FPF approximation. Instead,
Theorem 10 provides additional guarantees for a FNF approximation returned by gRosSo,
stating that a pattern p with tπi+1(p) ≤ tπi (p) + ε − 2 · μi − 2 · μi+1 ∀i ∈ {1, . . . , n − 1}
cannot appear in a FNF approximation.
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5 Application: mining statistically robust sequential patterns

In this section, we introduce the task of sequential pattern mining, as a concrete realization
of the general framework of pattern mining we introduced in Sect. 2.1. Then, we introduce a
novel algorithm to compute an upper bound on the capacity of a sequence and we use such an
algorithm to compute an upper bound on the empirical VC-dimension of sequential patterns.
Finally, we discuss a VC-dimension-based strategy to bound the maximum deviation of the
true frequencies of sequential patterns, which can be used in the SRP mining scenario.

5.1 Sequential patternmining

Let I = {i1, i2, . . . , i p} be a finite set of items. An itemset X is a non-empty subset of I, i.e.,
X ⊆ I, X �= ∅. A sequential pattern (or sequence) s = 〈S1, S2, . . . , Sk〉 is a finite ordered
sequence of itemsets, with Si ⊆ I, Si �= ∅ for all i ∈ {1, . . . , k}. We say that such a sequence
s is built on I and we denote by S the set of all such sequences. The length |s| of s is the
number of itemsets in s. The item-length ||s|| of s is the sum of the sizes of the itemsets in
it, i.e., ||s|| = ∑|s|

i=1 |Si |, where the size |Si | of an itemset Si is the number of items in it.
A sequential pattern y = 〈Y1, Y2, . . . , Ya〉 is a subsequence of an other sequential pattern
w = 〈W1,W2, . . . ,Wb〉, denoted by y � w, if and only if there exists a sequence of naturals
1 ≤ i1 < i2 < · · · < ia ≤ b s.t. Y1 ⊆ Wi1 , Y2 ⊆ Wi2 , . . . , Ya ⊆ Wia . Let us note that an
item can occur only once in an itemset, but it can occur multiple times in different itemsets of
the same sequence. The capacity c(s) of a sequence s is the number of distinct subsequences
of s, that is, c(s) = |{a : a � s}|.

Example 1 Let us consider the following sequential dataset D = {τ1, τ2, τ3, τ4} as an exam-
ple:

τ1 = 〈{2, 6, 7}, {2}〉
τ2 = 〈{1}, {2}, {6, 7}, {2}〉
τ3 = 〈{1, 4}, {3}, {2}, {1, 2, 5, 6}〉
τ4 = 〈{7}, {2}, {6, 7}, {2}〉.

The dataset above has 4 transactions. The first one, τ1 = 〈{2, 6, 7}, {2}〉 has length |τ1| = 2,
item-length ||τ1|| = 4 and capacity c(τ1) = 14. The frequency fD(〈{7}, {2}〉) of the sequence
〈{7}, {2}〉 in D, is 3/4, since it is contained in all transactions but τ3. Let us note that the
sequence 〈{7}, {2}〉 occurs three times as a subsequence of τ4, but τ4 contributes only once
to the frequency of 〈{7}, {2}〉.

5.2 VC-dimension of sequential patterns

Given a datasetD for the sequential patternmining task, that is a finite bag of transactions sam-
pled from S in according toπ , we aim to compute the empirical VC-dimension EVC(RS,D)

of the range space (see Definition 3) associated with S w.r.t. π on the dataset D in order to
find a probabilistic bound μ ∈ (0, 1) on the maximum deviation sups∈S |tπ (s) − fD(s)|. In
particular, given EVC(RS,D) and using Theorem 2, it is possible to compute a μ ∈ (0, 1)
s.t. sups∈S |tπ (s) − fD(s)| ≤ μ.

The exact computation of the empirical VC-dimension EVC(RS,D) of sequential pat-
terns on the dataset D, required by Theorem 2, is computationally expensive. The s-index
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introduced by Servan-Schreiber et al. [21] provides an efficiently computable upper bound
on EVC(RS,D).

Definition 4 [21] Let D be a sequential dataset. The s-index of D is the maximum integer
d such that D contains at least d different sequential transactions with capacity at least
2d − 1, such that no one of them is a subsequence of another, i.e., the d transactions form an
anti-chain.

5.3 New upper bound on the capacity

Definition 4 requires to compute the capacity of each transaction τ ∈ D. The exact capac-
ity c(s) of a sequence s can be computed using the algorithm described in [31], but it is
computationally expensive and may be prohibitive for large datasets. Thus, we are inter-
ested in efficiently computable upper bounds on c(s). A first naïve bound, that we denote by
c̃n(s) ≥ c(s), is given by 2||s|| − 1, but it may be a loose upper bound since c(s) = 2||s|| − 1
if and only if all the items contained in all the itemsets of the sequence s are different.

The second upper bound has been introduced in [21]. Such upper bound, that we denote
by c̃(s) ≥ c(s), can be computed as follows. When s contains, among others, two itemsets
A and B s.t. A ⊆ B, subsequences of the form 〈C〉 with C ⊆ A are considered twice in
2||s|| − 1, “generated” once from A and once from B. To avoid over-counting such 2|A| − 1
subsequences, [21] proposes to consider only the ones “generated” from the longest itemset
that can generate them.

In this work, we introduce a novel, tighter upper bound ĉ(s) ≥ c(s). Our upper bound is
based on the following observation. Let itemsets A and B be, respectively, the i-th and j-th
itemset of the sequence s with i < j , that is, A comes before B in s, and let T = A∩ B �= ∅
be their intersection. Let D be a subset of the bag-union of the itemsets in s that come before
A, that is D ⊆ ⋃

Sk∈s:k<i Sk , and let E be a subset of the bag-union of the itemsets in s that
come after B, that is E ⊆ ⋃

S
∈s:
> j S
. The sequences of the form 〈DCE〉, with C ⊆ T ,

are also considered twice, for the same reasons explained above. Given a = ∑i−1
k=1 |Sk | the

sum of the sizes of the itemsets before A in the sequence s and b = ∑|s|

= j+1 |S
| the sum of

the sizes of the ones that come after B, the number of over-counted sequences of this form
is 2a · (2|T | − 1) · 2b. Let us note that this new formula also includes the sequences of the
form 〈C〉, since D and E may be the empty set.

An algorithm to compute an upper bound ĉ(s) based on the observation above is given in
Algorithm 2. Let s = 〈S1, S2, . . . , S|S|〉 be a sequence and assume to re-label the itemsets
in s by increasing size, ties broken arbitrarily, i.e., following the original order. Let ŝ =
〈S1, S2, . . . , S|ŝ|〉 be the sequence in the new order, s.t. |Si | ≤ |Si+1|,∀ i ∈ {1, . . . , |ŝ| − 1}.
Let N = [n1, n2, . . . , n|ŝ|] be a vector s.t. its i-th element ni is the sum of the sizes of the
itemsets that in the original ordered sequence s come before the i-th itemset of the new
ordered sequence ŝ. The inputs of our algorithm are the new ordered sequence ŝ and the
vector N . First, ĉ(ŝ) is set to 2||ŝ|| − 1 (line 2). For each itemset Si ∈ ŝ, we check whether
there exists an itemset S j , with j > i , s.t. the set Ti j = Si ∩S j is non-empty (line 6). For such
S j , we compute the number of over-counted subsequences with the formula above (line 7). In
Algorithm 2 (line 7), the min and max functions are used to check which itemset comes first
in the original ordered sequence. After checking the entire sequence ŝ for a single itemset Si ,
we remove the maximum number of over-counted subsequences found for such Si (line 9).
Then, we update the vector N , subtracting the size of Si from each nm , if the itemsetm comes
after the itemset i in the original ordered sequence s (lines 11-13).
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Algorithm 2: Computation of the upper bound ĉ(ŝ).

Data: Sequence ŝ = 〈S1, S2, .., S|ŝ|〉, with the S′
i s labeled as described in the text, vector

N = [n1, n2, .., n|ŝ|], with the n′
i s computed as described in the text.

Result: Upper bound ĉ(ŝ) on c(s).
1 t ← ||ŝ||;
2 ĉ(ŝ) ← 2t − 1;
3 for i ← 1 to |ŝ| − 1 do
4 val ← 0;
5 for j ← i + 1 to |ŝ| do
6 if ∃ T = Si ∩ S j : T �= ∅ then

7 val ← max{val, 2min
(
ni ,n j

)
·
(
2|T | − 1

)
·

· 2t−max
(
ni+|Si |,n j+|S j |

)
};

8 if val �= 0 then
9 ĉ(ŝ) ← ĉ(ŝ) − val;

10 t ← t − |Si |;
11 for m ← i + 1 to |ŝ| do
12 if nm > ni then
13 nm ← nm − |Si |;
14 return ĉ(ŝ);

Example 2 Let us consider the sequence s = 〈{1}, {2, 5, 7}, {4}, {2, 3, 5}, {1, 8}〉. The inputs
of our algorithm are ŝ = 〈{1}, {4}, {1, 8}, {2, 5, 7}, {2, 3, 5}〉 and N = [0, 4, 8, 1, 5]. The
naïve upper bound c̃n(s) is 210 − 1 = 1023. The upper bound c̃(s) defined in [21] is 1022,
since it only removes once the sequence 〈{1}〉. The upper bound ĉ(s) obtained with our
algorithm is 1010, since we remove the sequence 〈{1}〉 but also sequences generated by
the intersection of {2, 5, 7} and {2, 3, 5} combined with other itemsets (e.g., the sequence
〈{2, 5}, {1, 8}〉).

5.4 Bound on themaximum deviation

Using Algorithm 2 one can compute upper bounds on the capacities of the transactions of
D, which can be used to obtain an upper bound on the s-index. Such bound can be used in
Theorem 2 as upper bound of the empirical VC-dimension of sequential patterns, in order to
compute a bound on the maximum deviation of the true frequencies of sequential patterns.
With such a bound on the maximum deviation, we can use gRosSo to find FPF and FNF
approximations of the statistically robust sequential patterns.

6 Application: mining statistically robust itemsets

In this section, we introduce the task of itemset mining, as another concrete realization of
the general framework of pattern mining we introduced in Sect. 2.1. Then, we apply the VC-
dimension to itemsets and we discuss a VC-dimension-based strategy to bound themaximum
deviation of the true frequencies of itemsets, which can be used in the SRP mining scenario.
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6.1 Itemset mining

Let I = {i1, i2, . . . , i p} be a finite set of items. Let us remember that an itemset X is a
non-empty subset of I, i.e., X ⊆ I, X �= ∅. We denote by I the set of all possible itemsets
composed by items from I. The length |X | of X is the number of items in X and an itemset
X is contained in another itemset Y if and only if X ⊆ Y .

Example 3 Let us consider the following dataset D = {τ1, τ2, τ3, τ4} as an example:

τ1 = {2, 6, 7}
τ2 = {1, 2, 6, 7}
τ3 = {1, 2, 3, 4, 5, 6}
τ4 = {2, 6, 7}.

The dataset above has 4 transactions. The first one, τ1 = {2, 6, 7}, has length |τ1| = 3. The
frequency fD({6, 7}) of the itemset {6, 7} in D is 3/4, since it is contained in all transactions
but τ3.

6.2 VC-dimension of itemsets and bound on themaximum deviation

As described in Sect. 5.2 for the sequential patterns, given a datasetD for the itemset mining
task, that is a finite bag of transactions sampled from I in according to π , we aim to compute
the empirical VC-dimension EVC(RS,D) of the range space (see Definition 3) associated
with I w.r.t. π on the dataset D in order to find a probabilistic bound μ ∈ (0, 1) on the
maximum deviation supX∈I |tπ (X) − fD(X)|. In particular, given EVC(RS,D) and using
Theorem 2, it is possible to compute a μ ∈ (0, 1) s.t. supX∈I |tπ (X) − fD(X)| ≤ μ. The
d-index introduced by Riondato and Upfal [23] provides an efficiently computable upper
bound on EVC(RS,D).

Definition 5 [23] Let D be a dataset for the itemset mining task. The d-index of D is the
maximum integer d such that D contains at least d different transactions of length at least d ,
such that no one of them is a subset of another, i.e., the d transactions form an anti-chain.

The d-index can be used in Theorem 2 as upper bound of the empirical VC-dimension of
itemsets in order to compute a bound on the maximum deviation of the true frequencies of
itemsets. With such a bound on the maximum deviation, we can use gRosSo to find FPF and
FNF approximations of the statistically robust itemsets.

7 Experimental evaluation

In this section, we report the results of our experimental evaluation on multiple pseudo-
artificial datasets to assess the performance of gRosSo for approximating the statistically
robust sequential patterns and itemsets. Then, we execute gRosSo onmultiple real datasets to
approximate the statistically robust sequential patterns andwe analyze the sequential patterns
mined. To bound the maximum deviations, as required by gRosSo, we use Theorem 2. The
VC-dimension of sequential patterns is bounded using the s-index obtained by using our
algorithm (Algorithm 2) to compute the upper bound on the capacity of each sequential
transaction, while the VC-dimension of itemsets is bounded using the d-index (Definition 5).

The goals of the evaluation are the following:
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– Assess the performance of our algorithm to compute an upper bound on the capacity
c(s) of a sequence s, comparing our upper bound with the naïve bound and with the one
proposed by [21] (see Sect. 5.3).

– Assess the performance of gRosSo on pseudo-artificial datasets to mine statistically
robust sequential patterns and itemsets, checking whether, with probability 1− δ, the set
of patterns returned by gRosSo does not contain false positives or false negatives.

– Assess the performance of gRosSo to mine statistically robust sequential patterns on
real datasets.

Since this is the first work that considers the problem of mining SRPs, there are not methods
to compare with.

7.1 Implementation, environment, and real datasets

We implemented gRosSo for mining statistically robust sequential patterns and itemsets, and
our algorithm to compute an upper bound on the capacity of a sequence in Java. To mine the
frequent sequential patterns and frequent itemsets, we used, respectively, the PrefixSpan [20]
and the FP-Growth [18] implementations both provided by the SPMF library [32]. We per-
formed all experiments on the same machine with 512 GB of RAM and 2 Intel(R) Xeon(R)
CPU E5-2698 v3 @ 2.3GHz, using Java 1.8.0_201. Our open-source implementation and
the code developed for the tests and to generate the datasets are available at https://github.
com/VandinLab/gRosSo. In all experiments, we fixed δ = 0.1.

Here, we provide the details on the generation of the real datasets for the sequential pattern
mining task. The details on the generation of pseudo-artificial datasets for the sequential pat-
tern and itemset mining tasks are, respectively, in Sects. 7.3.1 and 7.3.2. To obtain sequences
of real sequential datasets, we generated multiple datasets starting from the Netflix Prize
data,1 which contains over 100 million ratings from 480 thousand randomly chosen anony-
mous Netflix customers over 17 thousand movie titles collected between October 1998 and
December 2005.

To generate a single dataset, we collected all the movies that have been rated by the users
in a given time interval (e.g., in 2004). Each transaction is the temporal ordered sequence
of movies rated by a single user, with the movies sorted by ratings’ date. Movies rated by
such a user in the same day form an itemset and each movie is represented by its year of
release. Considering consecutive time intervals, we obtained a sequence of datasets, where
each dataset only contains data generated in a single time interval. From the original data we
removed movies which year of release is not available and movies that have been rated in a
year that is antecedent to their year of release. The latter are due to one of the perturbations
introduced in the data to preserve the privacy of the users.2

We considered the data collected between January 2003 andDecember 2005. For each year
2004 and 2005, we generated two types of sequences: the first one composed by 4 datasets,
e.g., 2004(Q1-Q4) (each dataset contains the data generated in 3 months), and the second
one composed by 3 datasets, e.g., 2004(T1-T3) (each dataset contains the data generated in
4 months). Finally, we generated another sequence of datasets, 2003-2005, considering the
entire data between 2003 and 2005 (each dataset contains the data generated in one year).

The characteristics of the generated real datasets are reported in Table 1.

1 https://www.kaggle.com/netflix-inc/netflix-prize-data.
2 https://en.wikipedia.org/wiki/Netflix_Prize.
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Table 1 Real datasets
characteristics and comparison of
the upper bounds on the capacity

Dataset D |D| |I| Avg. ||τ || Δno(%) Δpo(%)

2004Q1 132,907 93 24.2 11.42 10.55

2004Q2 165,428 93 23.5 11.61 10.76

2004Q3 184,109 93 24.7 9.18 8.48

2004Q4 218,151 93 24.9 9.77 9.00

2005Q1 266,799 94 26.2 12.31 11.34

2005Q2 291,627 94 25.3 12.15 11.14

2005Q3 315,316 94 24.7 8.67 7.86

2005Q4 295,797 94 19.9 7.89 6.74

2004T1 152,657 93 29.2 11.64 10.94

2004T2 184,202 93 30.3 11.64 10.96

2004T3 229,929 93 30.6 9.71 9.09

2005T1 290,287 94 32.0 13.03 12.17

2005T2 331,117 94 31.4 11.14 10.38

2005T3 326,668 94 25.7 8.53 7.61

2003Y 117,497 92 51.6 13.81 13.37

2004Y 259,407 93 65.9 11.91 11.54

2005Y 451,435 94 62.2 12.07 11.71

The table reports: Dataset D: name of the real dataset; |D|: number of
transactions; |I|: total number of items; Avg ||τ ||: average transaction
item-length;Δno(%) andΔpo(%): average relative differences between
our upper bound on the capacity and the previously proposed ones. The
datasets are grouped in sequences

7.2 Upper bound on the capacity

In this section, we report the results of Algorithm 2, which computes the upper bound ĉ(s)
on the capacity of a sequence, and compare it with the naïve upper bound c̃n(s) = 2||s|| − 1,
and the upper bound c̃(s) from [21]. (See Sect. 5.3.) Table 1 shows the averages (over all
transactions) of the relative differences betweenour novel upper bound ĉ(s) and the previously
proposed ones, which, for a dataset D, are computed as

Δno(%) = 1

|D|
∑

τ∈D

(
c̃n(τ ) − ĉ(τ )

c̃n(τ )

)
· 100

and

Δpo(%) = 1

|D|
∑

τ∈D

(
c̃(τ ) − ĉ(τ )

c̃(τ )

)
· 100.

In all the datasets, our novel bound is (on average) tighter than the other bounds, with a
maximum improvement of 13.81% on the naïve method and 13.37% on the method proposed
by [21].
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7.3 Results with pseudo-artificial datasets

In this section, we report the results of our evaluation on pseudo-artificial datasets. First,
we describe the experimental evaluation using pseudo-artificial datasets for the sequential
pattern mining task (Sect. 7.3.1), and then for the itemset mining task (Sect. 7.3.2).

7.3.1 Sequential patterns

Here, we report the results of our experimental evaluation using pseudo-artificial datasets for
the sequential pattern mining task. We considered the 2005(T1-T3) sequence of datasets as
ground truth for the sequential patterns, and we generated random datasets taking random
samples from each of the datasets in the sequence. In such away,we know the true frequencies
of the sequential patterns (the probability that a pattern belongs to a transaction sampled
from a dataset is exactly the frequency that such a pattern has in that dataset). Then, we
executed gRosSo on the pseudo-artificial datasets and, by knowing the true frequencies of
the patterns, we assessed its performance in terms of false positives, false negatives, and
of correctly reported patterns. Since it is not feasible to obtain all the statistically robust
sequential patterns due to the gargantuan number of candidates to consider in such datasets,
for the EP and DP scenarios, we only considered patterns with true frequency above a
minimum threshold θ in the last and first dataset, respectively, while for the SP with true
frequency above θ in all the datasets, as defined in Sect. 3.

From each of the three original datasets, 2005T1, 2005T2 and 2005T3, we generated a
random dataset with the same size of the corresponding original one, obtaining a sequence
of three random datasets. From such a sequence, we mined the set of statistically robust
sequential patterns without considering the uncertain of the data, i.e., directly using Equa-
tion 1, Equation 2, or Equation 3, using the observed frequencies of the patterns in the random
datasets. This allows us to verify whether the set of sequential patterns obtained consider-
ing only the frequencies (i.e., without taking the uncertainty into account) results in false
positives or in false negatives.

We then ran gRosSo on the sequence of random datasets to mine a FPF or a FNF approx-
imation of the statistically robust sequential patterns, and checked whether the returned
approximation contained, respectively, false positives or false negatives. We also reported
what fraction of statistically robust sequential patterns is reported by gRosSo. (For both
gRosSo and the observed frequency-based approach above, we only considered patterns
with frequency greater than θ as explained above, matching our ground truth.)

Table 2 reports the average results, over 5 different random sequences, denoted by Sn
1 , for

mining FPF approximations of the EP and DP with ε ∈ {0, 0.01, 0.05}, Table 3 reports the
average results for mining FPF approximations of the SP with α ∈ {0.05, 0.1}, while Table 4
reports the average results for mining FNF approximations of the EP. We repeated the entire
procedure with 5 sequences of random datasets, denoted bySn×2

1 , where each random dataset
had size twice the original one, and then with five sequences of random datasets, denoted by
Sn×3
1 , with size three times the original one. For all the experiments, we used θ ∈ {0.2, 0.3}.

Here, we report only a representative subset of the results, with ε = 0.01 and α = 0.1. Other
results are analogous and discussed below.

The results show that, for almost all parameters, the sets of patterns mined in the pseudo-
artificial datasets only considering the observed frequency of the patterns (i.e., without
considering the uncertainty) contain false positives or false negatives with high probabil-
ity. In addition, such a probability increases with a lower θ , and thus with a large number
of patterns. Instead, the patterns returned by gRosSo do not contain false positives or false
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Table 2 Results on pseudo-artificial datasets for EP and DP for the sequential pattern mining task with
guarantees on the false positives

Datasets Dn
1 ε θ EP DP

|GT | T.FP f T.FPg |AP |/|GT | |GT | T.FP f T.FPg |AP |/|GT |
Sn
1 0.01 0.3 18 0% 0% 0.46 245 60% 0% 0.28

0.2 104 0% 0% 0.21 2439 100% 0% 0.08

Sn×2
1 0.01 0.3 18 0% 0% 0.62 245 60% 0% 0.48

0.2 104 20% 0% 0.38 2439 100% 0% 0.23

Sn×3
1 0.01 0.3 18 0% 0% 0.67 245 60% 0% 0.58

0.2 104 60% 0% 0.43 2439 100% 0% 0.34

The table reports: Dn
1 : name of the sequences of datasets; ε: emerging threshold; θ : minimum frequency

threshold; for both the EP and DP: |GT |: number of SRPs in the ground truth; T.FP f : percentage of times
that the SRPs mined using the observed frequencies contain false positives; T.FPg : percentage of times that
the SRPs mined using gRosSo contain false positives; |AP |/|GT |: average ratio between reported patterns
by gRosSo and patterns in the ground truth over 5 random sequences

Table 3 Results on
pseudo-artificial datasets for SP
for the sequential pattern mining
task with guarantees on the false
positives

Datasets Dn
1 α θ |GT | T.FP f T.FPg |AP |/|GT |

Sn
1 0.1 0.3 42 60% 0% 0.02

0.2 430 100% 0% 0.06

Sn×2
1 0.1 0.3 42 40% 0% 0.29

0.2 430 100% 0% 0.30

Sn×3
1 0.1 0.3 42 40% 0% 0.49

0.2 430 100% 0% 0.46

The table reports: α: stability threshold. See Table 2 for the meaning of
the other values

Table 4 Results on
pseudo-artificial datasets for EP
for the sequential pattern mining
task with guarantees on the false
negatives

Datasets Dn
1 ε θ |GT | T.FN f T.FNg |GT |/|AN |

Sn
1 0.01 0.3 18 60% 0% 0.45

0.2 104 80% 0% 0.09

Sn×2
1 0.01 0.3 18 0% 0% 0.68

0.2 104 20% 0% 0.35

Sn×3
1 0.01 0.3 18 0% 0% 0.75

0.2 104 40% 0% 0.50

The table reports: T.FN f : percentage of times that the SRPsmined using
the observed frequencies contain false negatives; T.FNg : percentage
of times that the SRPs mined using gRosSo contain false negatives;
|GT |/|AN |: average ratio of patterns in the ground truth and reported
patterns by gRosSo over 5 random sequences. See Table 2 for the mean-
ing of the other values
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negatives in all the runs and with all the parameters. The results are even better than the
theoretical guarantees, since theory guarantees us a probability at least 1 − δ = 0.9 of
obtaining a set without false positives or without false negatives. Let us note that in some
cases, the percentage of reported SRPs is small, in particular for the SP. However, such a
percentage increases with larger datasets, since techniques from statistical learning theory,
such as the VC-dimension, perform better when larger collections of data are available. In
the EP scenario, for both types of approximations, FPF and FNF, we also checked whether
the approximations returned by gRosSo had the additional guarantees described in Sect. 4.5,
and, in all the runs, we found that such additional guarantees were always respected.

For the EP and DP with guarantees on the false positives, the results obtained with ε = 0
are very close to the ones reported by Table 2, in many cases even better, while with ε =
0.05 gRosSo reported a lower percentage (between 0.003 and 0.23) of statistically robust
sequential patterns, in particular for the DP scenario. For the SP instead, using α = 0.05,
we found only few real SRPs in the original data, and gRosSo did not report any of them,
while for the EP with guarantees on the false negatives, the results obtained with ε = 0 and
ε = 0.05 are very close to the ones reported by Table 4, with a percentage of reported patterns
between 0.06 and 0.78.

For the EP and DP scenarios with guarantees on the false positives, we also performed an
additional experiment to verify the absence of false positives in the output of gRosSo. We
generated a random sequence of datasets taking three random samples from the same original
dataset 2005T1. In such a way, the random sequence did not contain any EP and DP, since
each pattern had the same true frequency in all the datasets. Then, we executed gRosSo on
such a sequence using θ = 0 and ε = 0. Let us note that this choice of parameters is the most
challenging scenario, since we searched for all the EP and DP we were able to find. Again,
we repeated such an experiment with five different random sequences where each dataset had
the same size of the original one, five sequences with double size and five sequences with
datasets that had three times the size of the original one. In all the runs, gRosSo correctly
did not report any EP and DP.

These results show that, in general, considering the observed frequencies of the patterns
is not enough to find sets of SRPs that do not contain false positives or false negatives. Thus,
techniques like the one introduced in this work are necessary to find large sets of SRPs
without false positives or false negatives. In addition, gRosSo is an effective tool to find
rigorous approximations of the statistically robust sequential patterns.

7.3.2 Itemsets

Here, we report the results of our experimental evaluation using pseudo-artificial datasets
for the itemset mining task. Starting from the 2005(T1-T3) sequence of datasets for the
sequential pattern mining task, we first generated the corresponding sequence of datasets,
2005(T1-T3)IT, for the itemset mining task. For each dataset in the sequence 2005(T1-T3),
we generated a newdataset taking the union of the items in each transaction of the dataset, e.g.,
a sequential transaction τ = 〈{1}, {2}, {6, 7}, {2}〉 becomes a transaction τ ′ = {1, 2, 6, 7}.
Then, we considered the 2005(T1-T3)IT sequence as ground truth for the itemsets, and
we performed the same experimental evaluation described in Sect. 7.3.1 for the sequential
patterns. We denote by Qn

1, Q
n×2
1 , and Qn×3

1 the analogous to Sn
1 , S

n×2
1 , and Sn×3

1 , but for
itemsets. Table 5 reports the average results for mining FPF approximations of the EP andDP,
Table 6 reports the average results for mining FPF approximations of the SP, while Table 7
reports the average results for mining FNF approximations of the EP. The results show that,
for almost all parameters, the sets of patterns mined in the pseudo-artificial datasets only

123



2354 A. Tonon, F. Vandin

Table 5 Results on pseudo-artificial datasets for EP and DP for the itemset mining task with guarantees on
the false positives

Datasets Dn
1 ε θ EP DP

|GT | T.FP f T.FPg |AP |/|GT | |GT | T.FP f T.FPg |AP |/|GT |
Qn

1 0.01 0.3 26 20% 0% 0.17 6 0% 0% 0.33

0.2 48 60% 0% 0.14 60 80% 0% 0.04

Qn×2
1 0.01 0.3 26 0% 0% 0.36 6 100% 0% 0.67

0.2 48 100% 0% 0.20 60 100% 0% 0.07

Qn×3
1 0.01 0.3 26 100% 0% 0.42 6 100% 0% 0.67

0.2 48 100% 0% 0.23 60 100% 0% 0.07

See Table 2 for the meaning of the values

Table 6 Results on
pseudo-artificial datasets for SP
for the itemset mining task with
guarantees on the false positives

Datasets Dn
1 α θ |GT | T.FP f T.FPg |AP |/|GT |

Qn
1 0.1 0.3 419 80% 0% 0.65

0.2 10541 60% 0% 0.70

Qn×2
1 0.1 0.3 419 0% 0% 0.81

0.2 10541 0% 0% 0.76

Qn×3
1 0.1 0.3 419 0% 0% 0.82

0.2 10541 0% 0% 0.78

See Table 3 for the meaning of the values

considering the observed frequency of the patterns contain false positives or false negatives
with high probability. Instead, the patterns returned by gRosSo do not contain false positives
or false negatives in all the runs, as observed for the sequential patterns. In addition, all the
approximations of the EP reported bygRosSo respected the additional guarantees introduced
in Sect. 4.5. All these results emphasize that considering the observed frequency is not
enough to find large sets of SRPs without false positives or false negatives, and that gRosSo
is an effective tool also to find rigorous approximations of the statistically robust itemsets.
Comparing these results with the ones obtained for the sequential patterns, it is interesting to
notice that in the EP andDP scenarios, almost always the returned statistically robust itemsets
are less than the corresponding statistically robust sequential patterns, in particular for the
DP, and that also the percentages of reported patterns are lower for the itemsets. Instead, in the
SP scenario, more statistically robust itemsets are returned, always with higher percentages
of reported patterns.

7.4 Results with real datasets

Here, we report the results of gRosSo for mining statistically robust sequential patterns
from the Netflix real datasets. First, we report and discuss the results with guarantees on
the false positives for all the three types of SRPs. For the EP and DP, we did not use any
constraints on the minimum frequency, thus we reported every statistically robust sequential
patterns found in the data. Table 8 shows the results for the EP and DP with guarantees on the
false positives. In the EP scenario, for the sequences of datasets composed by four datasets
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Table 7 Results on
pseudo-artificial datasets for EP
for the itemset mining task with
guarantees on the false negatives

Datasets Dn
1 ε θ |GT | T.FN f T.FNg |GT |/|AN |

Qn
1 0.01 0.3 26 80% 0% 0.20

0.2 48 60% 0% 0.02

Qn×2
1 0.01 0.3 26 0% 0% 0.24

0.2 48 0% 0% 0.04

Qn×3
1 0.01 0.3 26 0% 0% 0.30

0.2 48 0% 0% 0.05

See Table 4 for the meaning of the values

Table 8 Results on real datasets
for EP and DP for the sequential
pattern mining task with
guarantees on the false positives

Datasets Dn
1 ε EP DP

|AP | Avg||s|| |AP | Avg||s||
2004(Q1–Q4) 0 25 2.4 0 /

0.01 16 2.3 0 /

0.05 1 1.0 0 /

2005(Q1–Q4) 0 2 1.5 10 3.2

0.01 1 1.0 2 2.5

0.05 0 / 0 /

2004(T1–T3) 0 5213 4.6 5 3.4

0.01 2214 4.4 0 /

0.05 207 3.6 0 /

2005(T1–T3) 0 113 3.6 689 5.4

0.01 48 3.3 187 4.9

0.05 4 2.5 0 /

2003–2005(Y) 0.05 15107 5.4 14 5.5

The table reports: Dn
1 : name of the sequences of datasets; ε: emerging

threshold; for both the EP and DP: |AP |: number of returned SRPs;
Avg||s||: average item-length of the returned SRPs

(denoted by Q1-Q4), gRosSo reported only few patterns. In particular, all the emerging
sequential patterns returned contain the year of the dataset in which they were found, e.g.,
in 2004(Q1-Q4) all the EP contain the item 2004, with a frequency close to zero in the first
dataset. Since during the year many more movies come out, the number of users that rates
such movies increases through the year and so such patterns emerge through the sequence.
We found the same result in sequences composed by three datasets (denoted by T1-T3) but
in this case gRosSo reported many more patterns, in particular for the 2004 sequence, since
now we were considering the emerging condition only in three datasets, and thus patterns
with such an emerging behavior are easier to discover.

gRosSo did not report any DP in all the datasets using ε = 0.05. Observing the patterns
found on 2005(T1-T3), we noted that the maximum absolute difference maxs∈A | fD1(s) −
fDn (s)| over all the returned patterns between the frequency of a pattern in the first dataset
and its frequency in the last dataset was 0.26, while for the EP such a difference was 0.60.
Thus, while the frequencies of the EP increase a lot through the year, the frequencies of
the DP decrease less, which explains why fewer descending patterns are found by gRosSo.
The DP found on 2005(T1-T3) are on average larger than the EP found on the same data,
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Table 9 Results on real datasets
for SP for the sequential pattern
mining task with guarantees on
the false positives

Datasets Dn
1 α θ |AP | Avg||s||

2004(Q1–Q4) 0.1 0.4 2 1.0

0.2 40 1.8

2005(Q1–Q4) 0.1 0.4 0 /

0.2 7 1.7

2004(T1–T3) 0.1 0.4 3 1.0

0.2 146 2.2

2005(T1–T3) 0.1 0.4 1 1.0

0.2 18 2.1

2003–2005(Y) 0.1 0.4 3 2.0

0.2 458 3.9

The table reports: α : stability threshold; θ :minimum frequency thresh-
old. See Table 8 for the meaning of the other values

Table 10 Results on real datasets
for EP for the sequential pattern
mining task with guarantees on
the false positives and on the
false negatives

Datasets Dn
1 θ ε FPF FNF

|AP | Avg||s|| |AN | Avg||s||
2004(Q1–Q4) 0.3 0 21 2.1 119 2.3

0.01 15 2.1 114 2.3

0.05 1 1.0 80 2.6

2005(Q1–Q4) 0.3 0 2 1.5 13 2.0

0.01 1 1.0 11 2.1

0.05 0 / 4 1.8

2004(T1–T3) 0.3 0 74 2.7 309 2.6

0.01 73 2.7 298 2.6

0.05 63 2.7 243 2.8

2005(T1–T3) 0.3 0 9 2.0 43 2.0

0.01 8 2.3 41 2.0

0.05 3 2.2 25 2.0

2003–2005(Y) 0.5 0 46 2.2 255 2.1

0.01 44 2.1 242 2.1

0.05 41 2.1 227 2.1

The table reports: Dn
1 : name of the sequences of datasets; θ : minimum

frequency threshold; ε: emerging threshold; for both the FPF and FNF
approximations: |A|: number of returned SRPs; Avg||s||: average item-
length of the returned SRPs

and the 96% of such patterns contain the item 2004, many of them multiple times. Thus,
they probably represent long sequential patterns whose frequencies decrease, since the users
watch always less 2004’s movies through the year 2005 and so, it is difficult for such long
patterns to persist through the time.

Table 9 shows the results for the SP with guarantees on the false positives. We performed
experiments varying θ ∈ {0.2, 0.4} and α ∈ {0.05, 0.1}. With α = 0.05, gRosSo did not
report any SP for all the datasets. Almost always the SP found by gRosSo are quite short
combinations of items that represents movies of the 90s or early 2000s, that precede the year
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of the mined sequence. It is surprising that sequential patterns that contain such “old” items
are stable through the time, e.g., 〈{2000, 2001}, {1990}〉 has a maximum absolute difference
between all its frequencies of 0.025 in the sequence 2003-2005(Y). Such sequential patterns
probably represent some classical movies that people always watch with the same frequency
through time.

To conclude, we report the results for the EP with guarantees on the false negatives. As
discussed in Sect. 4.4, we decided to consider only patterns p with tπn (p) ≥ θ to reduce the
amount of starting candidates. In order to compare the size of FPF and FNF approximations
in the same scenario, we also executed the same experiments for the EP with guarantees on
the false positives using a minimum frequency threshold. Table 10 reports the parameters
and the results of such experiments. These results show that gRosSo can detect EP when one
is interested in finding FPF or FNF approximations, and it is possible to notice that almost
always the FNF approximations contain a number of EP that is from 4 to 6 times larger than
the corresponding number in the FPF approximations.

Overall, the results show that gRosSo detects various types of SRPs from real datasets,
obtaining insights into the evolution of the generative process underlying the data.

8 Conclusions

In this work, we introduced the problem of mining statistically robust patterns from a
sequence of datasets, which naturally arises in several applications. We provided a general
framework for such a problem and described gRosSo, an algorithm to identify approxima-
tions of the SRPs with probabilistic guarantees on false discoveries or on false negatives, and
we applied it to identify statistically robust sequential patterns and statistically robust item-
sets. Our extensive experimental evaluation shows that gRosSo significantly improves over
the naïve approach which ignores the uncertainty in the data, and that it identifies interesting
patterns in real datasets. While in our application we use the VC-dimension to bound the
maximum deviation, any uniform convergence bound (e.g., from Rademacher complexity)
can be used in our framework. Interesting future directions are the use of improved bounds
on the maximum deviation, which may lead to higher statistical power, and to consider a
streaming setting for the data.
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3. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large
databases. SIGMOD Rec 22:207–216

4. Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the 11th international con-
ference on data engineering, IEEE, ICDE’95, pp 3–14

5. Klösgen W (1992) Problems for knowledge discovery in databases and their treatment in the statistics
interpreter explora. Int J Intell Syst 7(7):649–673

6. Ahmed NK, Neville J, Rossi RA, Duffield N (2015) Efficient graphlet counting for large networks. In:
Proceedings of the 2015 IEEE international conference on data mining, IEEE, ICDM’15, pp 1–10

7. HämäläinenW,Webb GI (2019) A tutorial on statistically sound pattern discovery. Data Min Knowl Disc
33(2):325–377

8. Pellegrina L, Riondato M, Vandin F (2019) Hypothesis testing and statistically-sound pattern mining.
In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data
mining, pp 3215–3216

9. Komiyama J, IshihataM,ArimuraH,NishibayashiT,MinatoSI (2017) Statistical emerging patternmining
with multiple testing correction. In: Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pp 897–906

10. Llinares-López F, Sugiyama M, Papaxanthos L, Borgwardt K (2015) Fast and memory-efficient signif-
icant pattern mining via permutation testing. In: Proceedings of the 21st ACM SIGKDD international
conference on knowledge discovery and data mining, pp 725–734

11. Pellegrina L, Riondato M, Vandin F (2019) SPuManTE: Significant pattern mining with unconditional
testing. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and
data mining, pp 1528–1538

12. Pellegrina L, Vandin F (2020) Efficient mining of the most significant patterns with permutation testing.
Data Min Knowl Disc 34:1201–1234

13. Gwadera R, Crestani F (2010) Ranking sequential patterns with respect to significance. In: Zaki MJ, Yu
JX, Ravindran B, Pudi V (eds) Advances in knowledge discovery and data mining, PAKDD 2010, pp
286–299

14. Low-Kam C, Raïssi C, Kaytoue M, Pei J (2013) Mining statistically significant sequential patterns. In:
Proceedings of the 13th IEEE international conference on data mining, IEEE, ICDM’13, pp 488–497

15. Tonon A, Vandin F (2019) Permutation strategies for mining significant sequential patterns. In: Proceed-
ings of the 19th IEEE international conference on data mining, IEEE, ICDM’19, pp 1330–1335

16. Dong G, Li J (1999) Efficient mining of emerging patterns: discovering trends and differences. In: Pro-
ceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 43–52

17. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of the 20th
international conference on very large data bases, VLDB’94, pp 487–499

18. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-
pattern tree approach. Data Min Knowl Disc 8(1):53–87

19. Srikant R, Agrawal R (1996)Mining sequential patterns: generalizations and performance improvements.
In: Proceedings of the 5th international conference on extending database technology, EDBT’96, pp 1–17

20. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu MC (2004) Mining sequential
patterns by pattern-growth: the prefixspan approach. IEEE Trans Knowl Data Eng 16(11):1424–1440

21. Servan-Schreiber S, Riondato M, Zgraggen E (2020) ProSecCo: progressive sequence mining with con-
vergence guarantees. Knowl Inf Syst 62:1313–1340

22. Santoro D, Tonon A, Vandin F (2020) Mining sequential patterns with VC-dimension and rademacher
complexity. Algorithms 13(5):123

23. Riondato M, Upfal E (2014) Efficient discovery of association rules and frequent itemsets through sam-
pling with tight performance guarantees. ACM Trans Knowl Discov Data (TKDD) 8(4):1–32

123

http://creativecommons.org/licenses/by/4.0/


gRosSo: mining statistically robust patterns from a sequence of datasets 2359

24. Riondato M, Vandin F (2014) Finding the true frequent itemsets. In: Zaki MJ, Obradovic Z, Tan P,
Banerjee A, Kamath C, Parthasarathy S (eds) Proceedings of the 2014 SIAM international conference on
data mining, SIAM, pp 497–505

25. Zhu F, Yan X, Han J, Philip SY, Cheng H (2007) Mining colossal frequent patterns by core pattern fusion.
In: 2007 IEEE 23rd international conference on data engineering, pp 706-715

26. Egho E, Gay D, Boullé M, Voisine N, Clérot F (2017) A user parameter-free approach for mining robust
sequential classification rules. Knowl Inf Syst 52(1):53–81

27. Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative frequencies of events to
their probabilities. In: Vovk V, Papadopoulos H, Gammerman A (eds) Measures of complexity. Springer,
Cham, pp 11–30

28. Boucheron S, Bousquet O, Lugosi G (2005) Theory of classification: a survey of some recent advances.
ESAIM Probab Stat 9:323–375

29. Mitzenmacher M, Upfal E (2017) Probability and computing: randomization and probabilistic techniques
in algorithms and data analysis. Cambridge University Press, Cambridge

30. Li Y, Long PM, Srinivasan A (2001) Improved bounds on the sample complexity of learning. J Comput
Syst Sci 62(3):516–527

31. Egho E, Raïssi C, Calders T, Jay N, Napoli A (2015) On measuring similarity for sequences of itemsets.
Data Min Knowl Discov 29(3):732–764

32. Fournier-Viger P, Lin JCW, Gomariz A, Gueniche T, Soltani A, Deng Z, Lam HT (2016) The SPMF
open-source data mining library version 2. In: Proceedings of 19th European conference on machine
learning and principles and practice of knowledge discovery and data mining (Part III), ECML PKDD’16

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Andrea Tonon received the Laurea Triennale degree (2015) in Informa-
tion Engineering from the University of Padova, Italy, and the Laurea
Magistrale degree (summa cum laude, 2018) in Computer Engineer-
ing from the University of Padova, Italy. He is currently a Ph.D. stu-
dent at the Department of Information Engineering of the University
of Padova, Italy. His research interests focus on algorithms for data
mining. In particular, the development of novel efficient methods for
knowledge and pattern discovery from large collections of sequential
data, often exploiting distributed/parallel approaches and statistically
sound algorithms.

Fabio Vandin received the Laurea Triennale degree (summa cum laude,
2004) and the Laurea Specialistica degree (summa cum laude, 2006)
in Computer Engineering from the University of Padova, Italy. He
received the Ph.D. (2010) in Information Engineering from the Univer-
sity of Padova, Italy. He has been a postdoctoral researcher at Brown
University and an Assistant Professor at the University of Southern
Denmark. Since 2020 he is Professor at the Department of Informa-
tion Engineering of the University of Padova. His research interests are
in algorithms for data mining and machine learning and their applica-
tion for the analysis of large biological datasets, in particular cancer
genomic datasets. He has authored over 70 papers in international peer-
reviewed venues, and he has used his methods for analyses published
in Nature, Nature Genetics, Cell, NEJM. He has been a co-PI for two
projects funded by the NSF (USA) and a participant in several Euro-
pean projects.

123


	gRosSo: mining statistically robust patterns from a sequence of datasets
	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related works
	1.3 Organization of the paper

	2 Preliminaries
	2.1 Pattern mining
	2.2 True frequent pattern mining
	2.3 Maximum deviation
	2.4 VC-dimension
	2.4.1 Range space of patterns


	3 Statistically robust pattern mining
	4 gRosSo: approximating the statistically robust patterns
	4.1 FPF approximation of the EP
	4.2 FPF approximation of the DP
	4.3 FPF approximation of the SP
	4.4 Guarantees on false negatives
	4.4.1 FNF approximation of the EP

	4.5 Additional guarantees of gRosSo

	5 Application: mining statistically robust sequential patterns
	5.1 Sequential pattern mining
	5.2 VC-dimension of sequential patterns
	5.3 New upper bound on the capacity
	5.4 Bound on the maximum deviation

	6 Application: mining statistically robust itemsets
	6.1 Itemset mining
	6.2 VC-dimension of itemsets and bound on the maximum deviation

	7 Experimental evaluation
	7.1 Implementation, environment, and real datasets
	7.2 Upper bound on the capacity
	7.3 Results with pseudo-artificial datasets
	7.3.1 Sequential patterns
	7.3.2 Itemsets

	7.4 Results with real datasets

	8 Conclusions
	Acknowledgements
	References




