
Knowledge and Information Systems (2022) 64:1781–1815
https://doi.org/10.1007/s10115-022-01686-5

REGULAR PAPER

Bridging the gap between expressivity and efficiency in
stream reasoning: a structural caching approach for IoT
streams

Pieter Bonte1 · Filip De Turck1 · Femke Ongenae1

Received: 27 October 2021 / Revised: 3 May 2022 / Accepted: 7 May 2022 /
Published online: 6 June 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
In today’s data landscape, data streams are well represented. This is mainly due to the rise
of data-intensive domains such as the Internet of Things (IoT), Smart Industries, Pervasive
Health, and Social Media. To extract meaningful insights from these streams, they should
be processed in real time, while solving an integration problem as these streams need to
be combined with more static data and their domain knowledge. Ontologies are ideal for
modeling this domain knowledge and facilitate the integration of heterogeneous data within
data-intensive domains such as the IoT. Expressive reasoning techniques, such as OWL2 DL
reasoning, are needed to completely interpret the domain knowledge and for the extraction
of meaningful decisions. Expressive reasoning techniques have mainly focused on static data
environments, as it tends to become slow with growing datasets. There is thus a mismatch
between expressive reasoning and the real-time requirements of data-intensive domains. In
this paper, we take a first step towards bridging the gap between expressivity and efficiency
while reasoning over high-velocity IoT data streams for the task of event enrichment. We
present a structural caching technique that eliminates reoccurring reasoning steps by exploit-
ing the characteristics of most IoT streams, i.e., streams typically produce events that are
similar in structure and size. Our caching technique speeds up reasoning time up to thou-
sands of times for fully fledged OWL2 DL reasoners and even tenths and hundreds of times
for less expressive OWL2 RL and OWL2 EL reasoners.

Keywords Stream reasoning · Event-based · Caching · IoT

1 Introduction

In today’s data landscape, data streams are omnipresent [14]. Data-intensive domains, such
as the Internet of Things (IoT), Smart Industries, Smart Manufacturing, Pervasive Health,
financial sector, and Social Media, are still gaining popularity. This results in huge amounts

B Pieter Bonte
pieter.bonte@ugent.be

1 IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, B-9052 Gent, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-022-01686-5&domain=pdf
http://orcid.org/0000-0002-8931-8343

1782 P. Bonte et al.

of produced heterogeneous data streams. These streams should be processed in real time, as
extracted insights change continuously due to the velocity of the stream. Stream processing
has proven successful in continuous processing of data streams [28]. However, in order to
extract meaningful insights from these data streams, a data integration problem needs to be
solved. This is especially true in the IoT, where a variety of sensor can be used, each using
their own protocols, syntax and data model [1]. Various data streams need to be combined
or integrated with more static data sources. For example, IoT sensors might transmit their
data in JSON format, while their meta-data is stored in a relational database or a key-value
store. The integration with the meta-data is often necessary to extract the exact location of
the sensor, the observed properties or its position/function within a larger system.

Semantic web technologies, such as ontologies, are the preferred model for the integration
of heterogeneous data [1, 9]. Ontologies can serve as a unifying model, allowing various data
sources to be aligned and integrated. An ontology formally describes concepts, properties,
and their relations, within a certain domain [22]. By defining the relations between various
concepts, a model can also incorporate the knowledge about a certain domain. For example,
defining the ranges the produced values of an IoT sensor should be contained in, when its
correctly functioning. By incorporating this domain knowledge, malfunctioning sensors can
automatically be detected. Reasoning techniques are needed to interpret the modeled domain
knowledge and thus allow to extract meaningful decisions [10]. The more elaborate the
modeling of the domain knowledge, the more expressive the reasoning needs to be to fully
interpret the domain. To extract meaningful decision from data streams, the events in the
streams should be enriched, i.e., they need to be integrated with both static data sources and
their domain knowledge [11, 15].

In this paper, we specifically focus on OWL2 as ontological language to define the domain
knowledge and expressive reasoningwithin theOWL2DLprofile, as it is aweb standard. This
expressivity is necessary as previous research [10] has shown that almost all IoT ontologies
within the Linked Open Vocabularies repository1 require OWL2 DL reasoning to be fully
interpreted.

The (SR) community states that event enrichment can be achieved through reasoning [16];
however, current reasoners were not designed for event enrichment [42]. Expressive OWL2
reasoners have mostly focused on rather static data [42]. There is still a mismatch between
expressive reasoning and the real-time requirements of data stream intensive domains [16].
Scalable expressive stream reasoning is still an open issue in the SR community [16], while
expressive ontologies are in fact widely used within the field of IoT [10]. Note that expressive
OWL2DL reasoners can have up toNEXPTIME complexity [27], resulting in slow reasoning
times. This is in contradiction with the fact that streams should be processed in real time. In
this paper, we set the first steps for bridging the gap between expressiveness and efficiency
in IoT Stream Reasoning applications and focus specifically on Event enrichment.

Event enrichment is the task of combining (joining) the events with the static knowledge
base, and reasoning over these events in order to infer and add all the available rich semantic
information [43]. Once these events have been enriched, they can be used by querying tasks
for further processing and analysis. However, the challenge lies in enriching these events in a
timelymanner, as the reasoning process is a time-consuming task and existing reasoners were
not designed to enrich streams. We investigate how we can speed up the enrichment process
by exploiting the characteristics of the IoT streams, i.e., events in IoT streams are typically
similar in structure and limited in size [11]. These characteristics have the benefit that it
loosens particular reasoning constraints due to the reoccurring nature of the events and their

1 https://lov.linkeddata.es/dataset/lov/.

123

https://lov.linkeddata.es/dataset/lov/

Bridging the gap between expressivity and efficiency in stream reasoning 1783

limited size. Current expressive reasoners will perform the same reasoning steps over and
over again over these types of reoccurring events, i.e., the events are different observations;
however, their structure is the same and so are the reasoning results.

For example, in an Industry 4.0 setting, a sensor will continuously report the state of
one specific machine [19]. In a Smart City, sensors will continuously report the state of
traffic at a certain location [37]. In a Smart Air Quality case, sensors will continuously
report the air quality in a specific room [36]. In all three cases, the structure of the produced
observation shows limited variation, except for the sensor values themselves. The integration
with background data and domain knowledge allows to meaningfully interpret and process
these observations.

To allow event enrichment through the use of expressive reasoning, we set the following
objectives:

1. Expressive reasoning In order to correctly interpret the domain, expressive reasoning is
required to correctly analyze and capture the domain knowledge.

2. Eliminate reoccurring reasoning steps Previous reasoning steps over similar events, i.e.,
in shape and size, should be exploited to speed up reasoning performance.

3. Scalable In order to enable high throughput event enrichment for a variety of stream
rates, the solution should be able to scale to a large number of events and high velocity
data streams.

4. Integrate static knowledge In order to perform event enrichment, it is mandatory to link
events to additional data, e.g., the type of measurement linked to the sensor and the
location of the sensor, since the sensory data typically only describe the sensor readings.

In this paper, we investigate a special form of caching that exploits the reoccurring nature
of IoT events and limit the number of reasoning steps that need to be performed on similar
events. The cache is able to differentiate between streaming and static data in order to correctly
enrich events in IoT streams. The cache itself is scalable and imposes limited overhead for
events that are limited in size.

We show that this special form of caching allows to speed up event enrichment up to
thousands of times for expressive OWL2 DL ontologies with large static knowledge bases.
OWL2 contains three lesser expressive profiles, i.e., EL, QL, and RL. We show that our
caching technique is even up to 10 times faster for less expressive ontologies that fall within
the OWL2RL profile and up to hundreds of times for ontologies within the OWL2EL profile.

This paper is structured as follows: Sect. 2 introduces a running example. Section 3
provides some background on expressive reasoning and streams to understand the remainder
of the paper, while Sect. 4 details the domain knowledge for the running example. In Sect. 5,
we introduce the IoT architecture used for processing IoT streams and detail how the event
enrichment process fits within the complete architecture. Section 6 details the related work.
In Sect. 7, we provide all the details of our caching technique and in Sect. 8, we detail the
evaluation. Section 9 provides insights into the benefits and limitations of the approach, and
Sect. 10 summarizes the contributions and sets a vision for future work.

2 Running example

We will use a Smart Air Quality case as a running example and focus specifically on the
fact that indoor CO2 concentrations correlate with the probability of COVID-19 infection.
One could alert the people in the room when the observed concentrations of CO2 exceed a
certain threshold. However, the threshold is not static but rather depends on the function of the

123

1784 P. Bonte et al.

Fig. 1 Example of event enrichment: enriching of CO2 sensor observation with sensor metadata from a
relational database to include the location of the sensor and with the data from a key-value store to include
the activities of the location

room [36]. For example, rooms, where people are standing, speaking loudly, or exercising,
have lower thresholds than where people are resting, due to the larger amount of exhaled
particles. This requires the CO2 observations to be integrated with static background data
(the information of the room) and domain knowledge (the COVID-19 infection details).

Figure 1 gives an example of an enrichment of a CO2 sensor observation, produced in one
of the monitored rooms. Note that the event itself only details that it was made by a certain
sensor, not the full details of the sensor or its surroundings. In this case, only the observed
value and the ID of the sensor that made the observation. By combining the observation with
the static data (containing the sensor details), we can determine that the observation is a high
CO2 observation in a classroom, where activities such as Reading, Sitting, and Teaching can
take place. Note that IoT data are often stored using different technologies and in different
formats or data models. The sensor produces data in JSON format, while the sensor meta-
data is stored in a relational database and the functionality of the locations is stored in a
key-value store. There is clearly an integration problem, and the domain knowledge itself
still needs to be integrated as well as we still need a means to infer that the event is alarming
in terms of COVID-19 infections. This problem is typical in the IoT, where data are often
very heterogeneous [6]. Therefore, we will rely on ontologies to facilitate the integration of
all this heterogeneous data.

3 Background

In this section, we will provide more details on ontologies and their relation with Resource
Description Framework (RDF). Additionally, we give some definitions on the topic of stream-
ing data and explain how ontologies can model IoT streams.

123

Bridging the gap between expressivity and efficiency in stream reasoning 1785

Fig. 2 Relations between the
different OWL2 profiles (EL, QL,
RL, and DL). (Source: W3C)

3.1 Ontologies and description logic

OWL2 is an ontological language that defines three profiles, i.e., EL, QL, and RL, each
optimized for certain reasoning applications. OWL2 DL comprises the union of the three
subprofiles, as visualized in Fig. 2. This paper focuses on improving the streaming perfor-
mance of OWL2 DL reasoning. OWL2 DL is the most expressive profile and built upon
Description Logic (DL) [3]. As OWL2 DL is the most expressive, the proposed optimiza-
tions for OWL2 DL reasoning translated to all the other subprofiles. We introduce the syntax
of a simplified DL, explaining the basic notions to understand the remainder of the paper.
We refer the reader to Horrocks et al. [26] for a more thorough description.

DL defines concepts Ci , to represent the classes of individuals ai and roles Ri to represent
binary relations between individuals or an individual and data values.

Concepts Ci are constructed from two special primitive concepts ⊥ (bottom) and � (top)
or concept names and roles using the following grammar:

C ::=Ci |�|⊥|¬C |C1 � C2|C1 � C2|∃R1.C1|∀R1.C1

A Terminological Box (TBox) T is a finite set of concept (C) and role (R) inclusion
axioms of the form: C1 � C2 and R1 � R2. Concept equations (C1 ≡ C2) denote that both
C1 and C2 include each other. An Assertion Box (ABox) A is a finite set of concept and
role assertions of the form: C(a) and R(ai , a j). While ind(A) denotes the set of individuals
occurring in A. A Knowledge base K = (T ,A) combines T and A. I is an interpretation
for K, we say that I is a model of K, if it satisfies all concept and role inclusions of T and
all concept and role assertions of A. This can be written as I |
 K.

Definition 1 Reasoning is the process of interpreting the domain knowledge and inferring
implicit facts. Different reasoning tasks exist, i.e.,

• Consistency checking the task of checking if there exist a model that satisfies all the
definitions in the knowledge base.

• Classification the task of computing the complete view on the TBox.
• Realization the task of inferring implicit concept and role assertions for an individual

defined in the ABox.

In the remainder of the paper, we will focus on the reasoning task of Realization and more
specifically onMaterialization, which computes all possible implicit concept and role asser-
tions for all the individuals in the ABox.

Definition 2 We call M = K∞ the materialization of K, i.e., all inferred axioms w.r.t.
explicit individuals in K are computed and explicitly stored. This means that, based on the

123

1786 P. Bonte et al.

knowledge defined in T , additional axioms regarding A can be extracted through the use of
a reasoner.

Example 1 The TBox defines the concepts within a certain domain. In our use case, we could
define various locations using the following concept inclusions, which defines that anOffice,
Library and ClassRoom are subclasses of the concept Location:

O f f ice � Location

Library � Location

ClassRoom � Location

...

The TBox could also define that a CO2Sensor is certain type of Sensor:

CO2Sensor � Sensor

Furthermore, the role hasLocation links Sensors to Locations. The ABox can define an
instance of a CO2Sensor called sensor1 as CO2Sensor(sensor1) and a specific Class-
Room room1 as ClassRoom(room1). We can link them together using the role assertion
hasLocation(sensor1, room1). Through the use of reasoning and the definitions in the
TBox, the materialization process will infer that sensor1 is of the type Sensor and that room1
is of the type Location: Sensor(sensor1), Location(room1).

3.2 Relation to RDF

RDF [35] is a standard to model interchangeable data on the web and allows the serialization
of ontologies. It represents data as triples, consisting of a subject, predicate and object. A
set of triples forms a graph. We give the relation between DL Concepts and Roles and RDF
triples and how they can be visualized as graphs.

As depicted in Fig. 3, Concept and Roles in DL can be converted to RDF triples. Concept
assertions of the form C(a), with C a concept and a an individual can be represented as
the RDF triple :a rdf:type :C. Role assertions of the form R(a,b) can be represented as the
RDF triple :a :R :b. Subsumption of concepts of the form C1 � C2 can be represented as
the RDF triple :C1 rdfs:subClassOf :C2. Note that in RDF everything is represented as an
URI. Prefixes can be used to minimize the URI definitions, for example the prefix rdf: is short
for http://www.w3.org/1999/02/22-rdf-syntax-ns#, thus rdf:type is short for http://www.w3.
org/1999/02/22-rdf-syntax-ns#type. :a, :b, :R and :C use the default prefix.

Each of the triples can be visualized as a graph. Combining multiple triples results in a
larger graph.

3.3 Events and streams

As the topic of this paper is about enrichment of IoT streams, we provide the definitions of
Streams, Events and the Enrichment procedure.

Definition 3 A data stream S is an infinite sequence of pairs 〈di , ti 〉 where, di is a data item,
and ti is a time timestamp. An Ontology Stream is a stream where the data item di is an
ABox and ti a timestamp.

Each data item in a stream can also be considered an event:

123

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Bridging the gap between expressivity and efficiency in stream reasoning 1787

Fig. 3 Relations between the different DL concept and roles, RDF Triples and RDF Graphs

Definition 4 We define an event Ei as an element of an Ontology stream describing a self-
contained observation or state in the form of a limited size ABox. One needs to combine
the event with a static Abox A and domain knowledge described in the TBox T in order to
interpret the event.

Thus to fully interpret these events, some kind of enrichment is necessary:

Definition 5 Event Enrichment is the materialization of events Ei , while taking the Abox
data A that describes the static knowledge, e.g., sensor metadata, and the TBox T that
describes the domain knowledge into account.

More formally, Enrichment(Ei , T ,A) = Ei ∪{C(e j)|(T ,A∪Ei) |
 C(e j),∀e j ∈ Ei },
with ei the individuals defined in the event Ei .

Static enrichment, which is the materialization of the static data based on the inferred
influence of the events, is out of scope for this paper.

3.4 Semantic sensor network ontology

The semantic sensor network (SSN) [13]2 is an ontology for the description of sensors and
their observations. SSN is a modular ontology, consisting of a lightweight self-contained
core ontology called SOSA (Sensor, Observation, Sample, and Actuator) for the modeling
of its elementary concepts and roles. SSN further extends SOSA with additional concepts
but also more elaborate domain knowledge.

Figure 4 visualizes the SOSA ontology with its core concepts. At the center is the Obser-
vation concept which models the observed values and the time of the observation as literal
(data) values, through the properties hasSimpleResult and resultTime. This defines the con-
ceptualization for the Events themselves. The Observations are linked to the Sensor that
made the observation, and the property that was observed, e.g., CO2. This is the more Static
Data. Figure 4 shows the distinction between the conceptualization for events and more

2 https://www.w3.org/TR/vocab-ssn/.

123

https://www.w3.org/TR/vocab-ssn/

1788 P. Bonte et al.

Fig. 4 Overview of the SOSA ontology, the event core, concepts of the static data and the use case extensions

Fig. 5 Converting raw sensor data ,e.g., JSON, to the ontology model using RML

static data. Furthermore, it shows that for the running example, the SOSA concepts are
being extended with CO2Sensors and CO2Observations. Moreover, Sensors are positioned
at certain Locations, which each can have an number of Activities.

3.5 Conversion to the ontologymodel

Special techniques exist to convert raw data, e.g., JSON, CSV, data from a database, etc. to an
ontology model. RDF Mapping Language (RML) [17] allows to convert the raw data to the
ontology model through a mapping definition. These mapping definitions specify how parts
of the raw data need to be extracted and converted to the ontology model. Figure 5 gives a
visual overview of the mapping process for the sensor data from the running example. The
values are extracted from the raw sensor data, in this case in JSON format, and converted to

123

Bridging the gap between expressivity and efficiency in stream reasoning 1789

a graph according to the ontology model. The figure also gives an example of the mapping
definition itself. Note that we used YARRRML [24] for the definition of the mapping, as it
is a more concise and human-readable RML format.

4 Defining the domain knowledge for the running example

We will now introduce the domain knowledge for the running example, defined through the
Concept and Role definitions in DL and show some visual examples using depictions of RDF
graphs.

Example 2 (Concept hierarchies)Concept inclusions allow to define hierarchies of concepts.
In our running example, each location can have a variety of activities, based on the static
defined functionality of the room. We can divide these activities into three categories:

• Resting Breathing Activities that involve activities where people are mostly in rest and
are not breathing excessively.

• Standing Speaking Activities including activities where one or more persons are standing
and speaking up, resulting in more particles to be exhaled.

• Heavy Breathing Activities activities where people are breathing excessively and most
particles are exhaled.

The concept definitions below define a small part of the activity hierarchy, stating that
Reading is a subclass of RestingBreathingActivity, etc.:

Reading � RestingBreathingActivi t y

Whispering � RestingBreathingActivi t y

Si t ting � RestingBreathingActivi t y

RestingBreathingActivi t y � Activi t y

...

Figure 6 shows an larger extract of these concept inclusions in a hierarchy, including
StandingSpeakingActivities and HeavyBreathingActivities with their subclasses. Note that
this hierarhcy is an extension of the Activities that are linked to each Location as visualized
in Fig. 4. Thus each Location in our running example can have a variety of Activities from
this hierarchy. We can use more complex concept definitions to define the knowledge in a
certain domain.

Example 3 (Domain Knowledge) In our running example, the severity of the CO2 values, in
terms of potential COVID-19 infections, depends on the function of each location. First, we
need to define the function of each room in terms of several activities that it can host. For
example, a ClassRoom is a Location in which Reading, Sitting, and Teaching can take place
as specific Activities (as defined in the hierarchy in Example 2) . Note that Activities can
belong to different parts of the hierarchy. The knowledge regarding the different locations
can be modeled as follows:

ClassRoom ≡ Location

�∃has Activi t y.(Reading � Sitting � T eaching)

MusicClassRoom ≡ Location

�∃has Activi t y.(Reading � T eaching � Singing)

123

1790 P. Bonte et al.

Fig. 6 Extract of the activity concept hierarchy. Each Location can have a variety of activities

Fig. 7 Example of semantic event enrichment of CO2 observation based on the activity of the location it was
captured in

SpinningClass ≡ Location

�∃has Activi t y.(T eaching � Spinning)

Library ≡ Location

�∃has Activi t y.(Reading � Sitting � Whispering)

...

Note that the equivalence is used when defining the different rooms, this means that when a
location is defined as a ClassRoom, the reasoner will infer its activities, even when they are

123

Bridging the gap between expressivity and efficiency in stream reasoning 1791

not explicitly defined. Figure 7 shows the enrichment of a sensor observation event which
is combined with static data detailing the metadata about the sensors and their locations.
Through the event enrichment, the materialization process will infer all implicit facts about
the individuals in the event and the static data. In the static data, room1 is defined as a
ClassRoom, through the use of reasoning, the activities are automatically inferred, even
though they were not specifically defined. This is indicated by the yellow ovals. On the other
hand, when the reasoner sees a location with the activities Reading, Sitting, and Teaching
it will know this is a ClassRoom. Note that in Fig. 7, we have mapped the raw JSON data
and the meta-data from the databases to the ontology model using RML so that the different
sources of data can easily be integrated together.

The domain knowledge can also define when actions need to be taken:

Example 4 (Taking actions) In our running example, we need to automatically infer if the
persons at a specific location should be alerted for high infection probabilities, based on
the activities and functions of the room. This is possible through the following concept
definitions, where aCO2Observation is defined as anObservation that was made by a sensor
that observes the property CO2. An HBCoronaAlertObservation is a CO2Observation that
wasmade by a sensor, which is positioned in a Location that containHeavyBreathing Activies
while the observed sensor value is above 50 ppm. Below we define the domain knowledge
for all the activities. Note that the threshold for alerting depends on the activities that are
taking place in each location. We used the following abbreviations: (HB=HeavyBreathing,
SS=StandingSpeaking, RB=RestingBreathing)

CO2Observation ≡ Observation � ∃madeBy.∃observes.CO2

HBCoronaAlertObservation ≡ CO2Observation

� ∃madeBySensor .∃hasLocation.∃has Activi t y.HeavyBreathing

� hasSimpleResult > 50

SSCoronaAlertObservation ≡ CO2Observation

� ∃madeBySensor .∃hasLocation.∃has Activi t y.StandingSpeaking
� hasSimpleResult > 100

RBCoronaAlertObservation ≡ CO2Observation

� ∃madeBySensor .∃hasLocation.∀has Activi t y.RestingBreathing
� hasSimpleResult > 1000

CoronaAlertObservation ≡ HBCoronaAlertObservation

� SSCoronaAlertObservation � RBCoronaAlertObservation

Note that the RBCoronaAlertObservation is more restrictive, as it requires that there are only
(∀) RestingBreathing activities taking place.

Figure 7 shows an example of an event enrichment of a CO2 observation that was captured
in a Classroom. Even though many RestingBreathing activities take place in the class room3,
since the teacher is performing a StandingSpeaking activity (because Teaching is a subclass
of StandingSpeaking), the observation will be enriched as a SSCoronaAlertObservation.
Note that the event in the stream, i.e., the observation, only states the value and the sensor.
The static data describes the observed property, i.e., CO2, and the location of the sensor,

3 Note that Reading and Sitting are subclasses of RestingBreathingActivity as defined in the activity hierarchy
(see Fig. 6).

123

1792 P. Bonte et al.

Fig. 8 Architecture of IoT pipeline. Sensors transmit their readings to the Sensor Gateway, which maps the
raw data to RDF through RML, before sending the data to the backend for processing. Before the data can be
analyzed, it needs to be enriched. Finally, decisions can be made and actions can be taken

i.e., a classroom, without explicitly defining the activities in the room. By combining the
observationwith the static data,we can infer that the observation is aCoronaAlertObservation
and more specifically a SSCoronaAlertObservation. This allows us to take additional actions
and alert the people inside the room that there is a high probability for COVID-19 infection,
or take automated actions such as opening doors or windows.

5 IoT architecture

In this section, we detail the IoT architecture that is used to extract meaningful insights from
IoT data and position Event Enrichment within this larger system. Figure 8 visualizes the
used architecture, consisting of the following components:

• IoT Sensors various IoT sensors, e.g., CO2 sensors, sense their environment and transmit
their observations to the Sensor Gateway.

• Sensor Gateway serves as an access point for the sensors to transmit their observations
to and forwards these observations to the backend for further processing. We utilize the
DYAMAND sensor gateway [33]4, as it provides many connectors to easily interact with
a variety of sensor protocols and manufacturers. Furthermore, it allows to register plug-
ins to apply additional transformations to the data. We apply such a plug-in to convert
the raw sensor data to the ontology model using RML [17].

• RML converts the raw data to the ontology model. These RML mappings are typically
defined when a new type of sensor is added to the platform. Note that this also means
that the structure of the resulting event is fixed. As the shape of the raw data typically
does not change, the resulting ontology graph will adhere to the same structure, only the
values that are injected from the raw sensor JSON will be different.

• Backend is responsible for the further processing of the captured IoT data. The Event
Enrichment component combines the IoT events with the static knowledge, e.g., the
sensormeta-data and the domain knowledge. It thenmaterializes the events, i.e., performs
reasoning to infer implicit facts regarding these events. Once the IoT events have been
enriched, they are forwarded to the Stream Analysis components that investigates each
enriched event and analyzes if certain events require further actions. TheDecisionMaking
component then decides which specific actions need to be taken.

The focus of this paper is specifically on the Event Enrichment component. The Stream
Analysis and Decision making steps can be achieved through RDF Stream Processing [45],
which allows to define declarative queries on top of RDF data streams to enable decision
making and analysis.

4 https://dyamand.tech/.

123

https://dyamand.tech/

Bridging the gap between expressivity and efficiency in stream reasoning 1793

6 Related work

In this section, we will visit the related work that has touched on the topic of caching for
reasoning or researched optimizations for reasoning over data streams.

OWL2 Reasoners such as HermiT [20] and Pellet [40] contain caching mechanisms but
only for a single reasoner run [41]. If data are added, which is the case in a streaming scenario,
no caching mechanisms can exploit the reoccurring nature of the data. This is because these
reasoners were designed for static scenarios.

Glimm et al. [21] describe an approach that abstracts large ABoxes to smaller abstractions
and shows that the reasoning results can be transferred from the abstraction to larger ABoxes.
This approach is similar to ours, as we also transfer the results, between events, instead of
abstractions and large ABoxes. However, we optimize for streaming data, while the described
technique is for static data. The technique is particularly beneficial for extremely large static
ABoxes, i.e., millions of triples, a scenario we currently do not consider in the streaming
case.

TrOWL [44] is an OWL2 DL reasoner that performs approximations to enable stream
reasoning over ontologies. This is supported by incrementally processing the addition and
removal of facts while approximating the results. However, it is only an approximation and
does not provide any optimization to reduce redundant reasoning steps over the facts in the
data stream. Our caching approach is not an approximation and is correct and complete for
the task of event enrichment.

Subset reasoning [10] is another approximation technique to materialize events in data
streams that need to be combined with large static ABoxes. The technique extracts a subset
of the static Abox in order to optimize the materialization process over the events in the
stream. However, subset reasoning only gives large performance gains when events need
to be combined with large static ABoxes. Furthermore, the technique does not provide any
optimization to reduce redundant reasoning steps over the facts in the data stream.

RDFox [34] is the fastest incremental OWL2 RL reasoner currently available. It is built
upon the principles of datalog and is optimized for incrementally reasoning upon new facts.
However, it is not optimized for a streaming scenario, where events typically describe similar
facts. Recently, research on datalog has investigated how frequently occurring workloads
can be cached for future use [29]. OWL2 RL reasoners such as RDFox , however, do not
yet contain such optimizations. Note that we are not able to include them, due to the closed-
source nature of RDFox. Furthermore, we aim to support up to OWL2 DL and not limit to
OWL2 RL.

RDF Stream Processing (RSP) is part of the stream reasoning initiative and focuses specif-
ically on the processing of RDF streams [45]. A variety of RSP engines have been proposed
by the community, e.g., CQELS [32], C-SPARQL [5] and RSP4J [45]; however, these solu-
tions focus more on query answering than on reasoning. As a result, if reasoning is supported,
the expressivity is typically limited to RDFS, i.e., computation of hierarchies and transitive
relations. IMARS [4] is an incremental materialization maintenance technique for stream
reasoning under RDFS entailment. It reduces reasoning steps by investigating which rea-
soning steps incrementally need to be performed or can be skipped within a time window.
IMARS is an incremental approach, but does not perform any form of caching. Furthermore,
it operates on RDFS, which is far less expressive than OWL2 DL. StreamQR [12] is the
most expressive RSP engine that uses Query Rewriting (QR) to inject the reasoning directly
in the query evaluation process. This is done by rewriting a registered query into a much
larger query consisting of many UNION definitions in order to inject the ontology TBox

123

1794 P. Bonte et al.

Fig. 9 Flowchart for event enrichment using the cache

inside the query and eliminate the need to reason at query time. However, the expressiveness
of the supported ontology is restricted to the ELHIO logic, which is a subset of the logic
used within OWL2 DL. Note that rewriting queries over OWL2 DL ontologies in a sound
and complete manner is not possible. When combining RSP with uncertainty management,
caching has been introduced to speed up the reoccurring calls to the uncertainty functions
[31]. Caching results of uncertainty functions is simpler than caching reasoning results, as
the uncertainty functions with the same input parameters always returns the same results and
thus can easily be stored.

In the realm of Answer Set Programming (ASP) reasoning, there have been some efforts
to eliminate redundant reasoning steps in stream reasoners. Bazoobandi et al. [7] propose an
optimization technique for LARS, i.e., a stream reasoning framework for ASP, that infers
which facts will be impossible to derive from the streams in the future and blocks the reasoner
fromperforming these computations. The technique thus limits the reasoning steps that should
be performed on the stream. Compared to our technique, it will still recompute the same
reasoning steps over reoccurring events, however, only deriving the facts that are meaningful.
Furthermore, we focus on OWL2 instead of ASP.

Dodaro et al. [18] use reinforcement learning to identify which concept derivations are
most useful for the stream and introduce an efficient caching methodology. The technique is
specific for ASP solvers and is not always complete due to the learning component.

MASSIF [9] is a semantic message broker that allows consumers to subscribe to events
using high-level ontological concepts that are evaluated using expressive OWL2 DL reason-
ing. To obtain decent performance, it provides an incomplete caching technique. Incomplete
in the sense that it 1) cannot deal with subscriptions that are subclasses of each other, 2) can
only cache the inference for a single individual in the event, and 3) cannot deal with data
property or nominal reasoning. In this work, we present a caching technique that produces
complete results for the enrichment of the whole event and prove its correctness.

It is clear that there is a large interest in increasing reasoning performance over dynamic
data. To the best of our knowledge, we are the first to propose an attempt that exploits the
characteristics of the stream to increase performance in a very natural and low-impact fashion
through structural caching. Our proposition is reasoner independent and can be combined
with any OWL2 reasoning system.

7 Caching for event enrichment

This section details the inner workings of our caching technique. Before going into the
details, we explain the high-level idea. Figure 9 shows a visual representation of the flow of

123

Bridging the gap between expressivity and efficiency in stream reasoning 1795

the cache. Our caching technique eliminates the need to reason upon reoccurring events, by
identifying the structure of events that will lead to the same derivations through reasoning.
This means that we move from reasoning to pattern matching. When a new event arrives,
we check the cache. When there is no hit, we combine the event with the static data and the
domain knowledge and then we materialize the event. We then extract the Cache Structure
of the event, i.e., the structure that will be used for pattern matching when the next events
arrives. Next, we store the inferred types for each individual in the event and store them as
Cached Enrichments. When a new event arrives, we check if there is a Cache Structure that
exactly matches the event and we add the storedCached Enrichments. This allows to perform
the materialization through pattern matching instead of reasoning. Note that it is important
that there is an exact match between the new event and the Cache Structure, i.e., if the event
has relations that are not in theCache Structure, then there is nomatch.We explain the reason
for this in detail in the remainder of this Section.

7.1 Creating cache structures

We first explain how events are converted to Cache Structures and how Cache Enrichment
are extracted.

Definition 6 A Cache Structure is a special abstraction of an event with the property that if
an event matches the Cache Structure, it can be materialized in the same way as the original
enriched event from which the Cache Structure was extracted. The materialization itself is
stored in the Cache Enrichment which contains all the inferred types that need to be added
when an event matches the Cache Structure.

The Cache Structure can impose a number of constraints:

• A Node Check is a constraint in the Cache Structure that requires the same individual to
be present in the event as defined in the Node Check.

• A Type Check is a constraint in the Cache Structure that requires the same type assertion
to be present in the event as defined in the Type Check.

• Variables need to be bound to a unique individual in the event. An individual can only
be bound to a single Variable. Variables allow to match multiple events and thus transfer
the enrichment from one event to another.

• A Property Check is a constraint that requires the same property to be defined over Node
Checks or Variables that have already been successfully matched.

• A Data Check requires data values to be above or below a certain threshold.

The evaluation of the Cache Structure requires all of its constraints to be satisfied. Figure 10
shows an example of the extraction of aCache Structure from an enriched event.We start from
the enriched CO2 observation from Fig. 7, consisting of the inferred types CO2Observation
and SSCoronaAlertObservation, which could only be inferred by adding the sensor and
location meta-data and the domain knowledge.

When extracting the Cache Structure we make a distinction between individuals from the
events and individuals that are a reference to the static data. In Fig. 7, the observation states
that it is made by sensor1, while sensor1 is described in the static background data. Thus
sensor1 is a reference to the static data. All references to the static data should be added
as Node Checks in the Cache Structure. This means that in order to match the structure,
the observation should have been made by sensor1. This is shown in the Cache Structure in
Fig. 10 with the variable dotted circles.

123

1796 P. Bonte et al.

Fig. 10 Cache structure extraction for event enrichment

Example 5 (Static data) Suppose an additional CO2 sensor, sensor2, that is installed in the
library:

CO2Sensor(sensor2), hasLocation(sensor2, room2), Library(room2)

When the same observation from Fig. 7 would be made by sensor2, it would not cause an
SSCoronaAlertObservation, as the library only allows RestingBreathingActivities and the
threshold for alerts in such a location is much higher than the observed value (as specified in
the domain knowledge detailed in Sect. 4).

Individuals from the event that have no references to the static data, should be substituted
to Variables instead, allowing the structure to match various events.

Example 6 (Event data) Suppose a similar event:

Observation(obs2),madeBySensor(sensor1), hasSimpleResult(130)

The materialization of this event will result in the same inferred types as obs1.

The object properties described in the event should be added to the structure as Property
Checks. This means that the same number and same type of properties should be present in
a new event before the structure can be matched.

Example 7 (Object properties) Suppose that Observation obs3 is similar to obs2 but has an
additional object property indicating its battery level:

hasBatteryLevel(obs3, low)

And the following axiom exists that infers low precision observations if their battery levels
are low:

LowPrecisionObservation ≡ Observation � ∃hasBatteryLevel.Low

123

Bridging the gap between expressivity and efficiency in stream reasoning 1797

obs3 can be inferred as LowPrecisionObservation, which was not the case for obs2.

Data properties defined in the event can be ignored, if they are not part of a class definition
that contains a data property restriction, e.g., such as CoronaAlertObservations, which state
that the observed data values should be above a certain threshold. These restrictions are added
as Data Checks to the Cache Structure if one of the concepts that contain a data property
restriction is inferred in the materialization process. We use the same technique for nominal
restrictions.

Example 8 (Data properties) The SSCoronaAlertObservation defines a threshold above
100. This restriction is added as a Data Check to the structure.

Type assertions defined in the event need to be added as Type Checks to the Cache
Structure, for the same reason as object properties required exact matches.

Algorithm 1 gives a simplified version of the conversion algorithm in pseudocode. It
shows the conversion of individuals either as Variables or NodeChecks and the property and
type assertions as either PropertyChecks or TypeChecks, using the converted individuals. For
simplicity reasons, we omitted the conversion of data properties and nominals.

Algorithm 1: CacheStructure extraction algorithm
// Extract the CacheStructure for event E
indStore = { } // stores indiviuals either
// as Variables or NodeChecks
// stores the cache structure
cacheStructure =new CacheStructure()
// Convert indiviuals to Variables or NodeChecks
for ind in Ind(E):

if ind not in static data:
indStore[ind] = Variable(ind)
cacheStructure.addVariableCheck(Variable(ind))

else:
indStore[ind] = NodeCheck(ind)
cacheStructure.addNodeCheck(NodeCheck(ind))

// Convert Object Properties to NodeChecks
for (subj, prop, obj) in objectProperties(e):

cacheStructure.addPropCheck(indStore[subj], prop, indStore[obj])
// Convert Type assertions to NodeChecks
for (ind, a, type) in typeAssertions(e):

cacheStructure.addTypeCheck(indStore[ind], type)
return cacheStructure

7.2 Storing thematerialization

All the inferred types for each individual in the original enriched event, fromwhich theCache
Structure is extracted, are stored in theCacheEnrichment and linked to the extractedVariables
or Node Checks for static reference individuals. When we add a new Cache Structure to the
cache, we first extract the Cache Structure from the event and then combine the event with
the static data to materialize the event. For each individual in the event, we store the inferred
types retrieved through the materialization and link them to the extracted Variable or Node
Check of the Cache Structure. The linking of the inferred types to the Cache Structure is
called the Cache Enrichment and is depicted in Fig. 10 at the bottom right. We note that
Cache Enrichments and Cache Structures are stored together.

123

1798 P. Bonte et al.

Example 9 (Cache Enrichment) In Fig. 10, obs1 is converted to the variable ?obs in the
extracted Cache Structure. Upon materialization, obs1 gets the types SSCoronaAlertObser-
vation and CO2-Observation. As ?obs is extracted from the individual obs1, we store the
inferred types SSCoronaAlertObservation and CO2Observation for the variable ?obs in the
Cache Enrichment. This allows other events, which match the extracted Cache Structure, to
be materialized in the same fashion.

7.3 Checking the cache

When checking the cache, it is important to have an exact match in order to claim a cache
hit. This means that all the Checks should be fulfilled:

1. All references to the static data should be present.
2. The same type assertions should be defined.
3. The same property relations should be present.
4. Each variable should be bound to a unique individual.
5. Data property restrictions, if any, on literals should be evaluated.
6. Nominal restrictions, if any, should be evaluated.

If all the checks can be fulfilled, there is a cache hit. In this case, the stored extracted
materialization for each variable can be assigned to the individuals that are bound to the
variables in question.

Example 10 (Cache hit)When Observation obs2 matches the Cache Structure, obs2 will be
bound to the Variable ?obs. In the Cache Enrichment, ?obs is assigned to the inferred types
CO2Observation and CoronaAlertObservation. Thus, obs2 gets assigned the inferred types
CO2Observation and CoronaAlertObservation.

This allows us to move from reasoning to pattern matching, i.e., checking the Cache Struc-
tures. In the evaluation, we will show that the latter is a lot more efficient.

7.4 Theoretical foundations

This section details the theoretical foundations of our caching mechanism. It proves that the
cache is correct and complete for the task of event enrichment.

As the cache is looking for similarities in structures of the events, we first define a function
that translates ABoxes to new ABoxes with the same structure:

Definition 7 The translation function ε translates an ABox A to a new Abox A′ such that
all names n ∈ NA (with NA the individual names in A) have a name translation in A′ such
that

(i) there is a one-on-one translation for each n to ε(n),
(ii) for all concept assertions Ci (a) ∈ A the same concept assertion holds in A′ such that

Ci (ε(a)) ∈ A′,
(iii) for all role assertions R ∈ A, i.e., Ri (n j , nq) ∈ A the same relation Ri holds inA′ such

that Ri (ε(n j), ε(nq)) ∈ A′.

This means that when an event Ei is added to the cache, its Cache Structure will match for
any ABox ε(Ei). We now define how the inferred types of Ei can be assigned to ε(Ei) as in
the Cache Enrichment.

123

Bridging the gap between expressivity and efficiency in stream reasoning 1799

Definition 8 A translated equivalence function ≡ε states that if C(a) is entailed in
K = (T ,A) and there exist a translation ε to A′, then C(ε(a)) is entailed in K′ = (T ,A′),
i.e., K |
 C(a) ≡ε K ′ |
 C(ε(a)).

Proof The translation function ε can be seen as a homomorphism h with mappings ∀a ∈
ind(A) : ⋃{a → ε(a)}. Let A and A′ = ε(A) be ABoxes and h : ind(A) → ind(A′) a
homomorphism from A to A′. Then, by the definition of homomorphisms, for every TBox
T and every axiom α, A ∪ T |
 α implies A′ ∪ T |
 h(α). Therefore K |
 C(a) implies
K ′ |
 C(h(a)) with h(a) = ε(a). ��

To make a distinction between events in the data streams and static background data we
define a special translation function:

Definition 9 The background translation function εB is a translation function ε that fixes
the translation for the individuals defined in the static background ABox B. This can be seen
as a translation function that maps the individuals defined in B onto themselves.

This means that for the ABox A = Aevent ∪ B with B the static background data, the
translation function will only translate the individuals defined in the event dataAevent . As εB
still can be seen as a homomorphism that maps the individuals from B onto themselves, ≡εB

still holds. We will now show that when a translation function exists between two events,
their event enrichment is the same under ≡εB :

Theorem 1 If a translation function between two events Ei and E j exists, then their event
enrichment is the same under ≡εB
Proof We need to prove that:

Enrichment(Ei , T ,A) ≡εB Enrichment(E j , T ,A) ⇔ Ei = εB(E j)

Wefirst prove⇒: Enrichment(Ei , T ,A) ≡εB Enrichment(E j , T ,A) ⇒ Ei ≡ εB(E j)

Enrichment(Ei , T ,A) ≡εB Enrichment(E j , T ,A)

(de f Enrich.) ⇒Ei ∪ {C(e j)|(T ,A ∪ Ei) |
 C(e j),∀e j ∈ Ei }
≡εB E j ∪ {C(e j)|(T ,A ∪ E j |
 C(e j),∀e j ∈ E j }

(de f ≡εB) ⇒Ei ∪ {C(e j)|(T ,A ∪ Ei) |
 C(e j),∀e j ∈ Ei }
≡εB(E j ∪ {C(e j)|(T ,A ∪ E j |
 C(e j),∀e j ∈ E j })

(de f εB) ⇒Ei ∪ {C(e j)|(T ,A ∪ Ei) |
 C(e j),∀e j ∈ Ei }
≡ εB(E j) ∪ εB({C(e j)|(T ,A ∪ E j |
 C(e j),∀e j ∈ E j })

(de f ≡εB) ⇒Ei ≡ εB(E j)

Wenowprove⇐: Ei ≡ εB(E j) ⇒ Enrichment(Ei , T ,A) ≡εB Enrichment(E j , T ,A)

Ei ≡ εB(E j)

(de f ∪) ⇒Ei ∪ {C(e j)|(T ,A ∪ Ei |
 C(e j),∀e j ∈ Ei }
≡εB(E j) ∪ {C(e j)|(T ,A ∪ Ei |
 C(e j),∀e j ∈ Ei }

(de f ≡εB) ⇒Ei ∪ {C(e j)|(T ,A ∪ Ei |
 C(e j),∀e j ∈ Ei }
≡εB εB(E j) ∪ εB({C(e j)|(T ,A ∪ E j |
 C(e j),∀e j ∈ E j })

(de f εB) ⇒Ei ∪ {C(e j)|(T ,A ∪ Ei |
 C(e j),∀e j ∈ Ei }
≡εBεB(E j ∪ {C(e j)|(T ,A ∪ E j |
 C(e j),∀e j ∈ E j })

(de f Enrich.) ⇒Enrichment(Ei , T ,A) ≡εB Enrichment(E j , T ,A) ��

123

1800 P. Bonte et al.

The cache can be seen as a structure that verifies if a translation function between a new
event and the stored event exists. For optimization purposes, we store the structure of the
translation, i.e., the Cache Structure, that verifies the existence of a translation function.

7.5 Complexity study

When performing a lookup in the cache, we need to evaluate the stored Cache Structures
and check if one of these structures matches the incoming event. The last step requires the
whole event to be inspected. Thus for a cache of size n consisting of events of size m, the
complexity for a cache look-up would be O(n∗m). However, note thatm the size of the event
is typically very small (m << n) and can often be disregarded, resulting in a complexity of
O(n). Note that the size of the event reflects the number of individuals it contains.

Adding to the cache requires to materialize the event and create a Cache Structure from
the event. The last step takes O(m) for events of size m. The materialization step is more
expensive and depends on the used logic.When using OWL2DL, the complexity can be up to
NEXPTIME, whereas the subprofiles (RL, QL, EL) remain in PTIME. Thus the complexity
of adding to the cache would be O(m + matT ime) with matT ime the time to materialize
the event which depends on the used logic. As m is typically much smaller than matT ime
(m << matT ime), we can simplify to O(matT ime). Note that adding to the cache might
seem expensive, however, keep inmind thatwithout the cache every eventwould be processed
in O(matT ime). The whole purpose of the cache is to eliminate this step.

7.6 Cache replacement policies

To avoid that the cache grows to unmaintainable sizes, cache replacement policies can fix
the size of the cache and define how the elements in the cache should be replaced when
the size limit has been reached. We support the four typical types of replacement policies:
first in first out (FIFO), last in first out (LIFO), least recently used (LRU), and most recently
used (MRU). The choice of the optimal replacement policy depends on the use case at hand.
The LRU policy is the most popular cache replacement policy [23] and thus the standard
configured replacement policy in our cache.

7.7 Relation with query rewriting

Query Rewriting is the process of rewriting the reasoning inside the query, such that no rea-
soning is required during query evaluation. This results in a much larger query, containing
many UNIONs in order to include the logic defined in the TBox. Note that the larger the
query and the more UNIONs it contains, the longer it takes to evaluate these queries. Fur-
thermore, Query Rewriting for expressive logics as used within OWL2 DL is not possible.
Our structural cache can be seen as a lazy query rewriting process. Compared to traditional
rewriting techniques, our cache cannot perform the rewriting at query registration time, since
a complete rewrite is not possible; however, it adds rewritten queries at run time to its cache.
This results in an expressive rewritten query that can grow in size at run time and contains
only the actually used concepts, instead of all possible rewritten concepts. The downside is
that as the rewriting process cannot happen at query registration time, it needs to happen at
run time, in a lazy fashion, i.e., only when reasoning steps need to be evaluated that are not
yet added to the cache. On the upside, the cache will only contain a kind of rewritten query

123

Bridging the gap between expressivity and efficiency in stream reasoning 1801

for the reasoning steps that are actually are being used and a much higher expressiveness can
be obtained.

7.8 Implementation details

We build our structural caching mechanism in a reasoner agnostic fashion by building upon
the OWL-API [25] interfaces. This implies that our caching approach can be used around
any reasoner implementing the OWL-API reasoner interface in order to speed up event
enrichment. In the standard configuration, the HermiT reasoner is used to perform the mate-
rialization of the events combined with the static data. The storage and evaluation of the
Cache Structures has been custom built5, to assure the exact matches with the events (as
explained in Sect. 7.3).

8 Evaluation

This section evaluates the performance of our cache and compares it with existing OWL2
reasoning techniques. We compare the scalability in terms of increasing static data and
increasing cache size. We have used the OWL2Streams [8] benchmark for the evaluation of
dynamic OWL2 reasoners, consisting of three scenarios:

1. A Smart Building case, on which the running example is based. CO2 sensors are pro-
ducing observations in a variety of building locations. Each location has a different set
of activities. Based on the static and domain knowledge explained in Sect. 2, the CO2
events need to be enriched as AlertObservations, i.e., when the CO2 values are exceeding
the allowed CO2 threshold based on the activities occurring at the location of measuring.
The static data describes properties about the locations and the sensors contained within
each location. The data are synthetically generated based on the data distributions found
in real smart buildings, producing streams up to 100.000 events with each an average
size of three RDF triples.

2. AUniversityManagement scenario,which is an extensionof theOWL2Benchbenchmark
[39] where the stream consists of students registering to a certain university. This is not
an IoT use case, but as the stream consists of events that are similar in shape and size, it
can be used for evaluation of our approach as well. Based on the courses that students are
following, their hobbies and the type of university, each of the students can be enriched
as a specific type. For example, a student with many hobbies, a leisure student, a self-
aware student, etc. Each type is described in the domain knowledge. Note that the static
data consist of the information of the university, its personnel and information of the
courses. The data for this scenario is also generated, allowing to configure the size of
the university. The streams produce up to 10.000 events, each with an average size of 16
RDF triples.

3. A Smart City scenario. This is an extension of the CityBench benchmark [2], containing
more elaborate domain knowledge. In this smart city use case, various traffic observations
throughout the city are captured, e.g., the congestion level, the average vehicle speed,
parking occupation, etc. The version of CityBench contained in OWL2Stream describes
more expressive types for the observations that can be used for event enrichment, from
simple type inference for observations based on their observe the property, e.g., Con-

5 The source code can be found on https://github.com/IBCNServices/LOCERS.

123

https://github.com/IBCNServices/LOCERS

1802 P. Bonte et al.

gestionObservation observe the property CongestionLevel, to observations that lead to
alerts when high traffic has been observed near certain types of locations. Note that infer-
ring the traffic levels and which locations require these kinds of alerts is also defined in
the domain knowledge and is based on the types of roads, surroundings, and location
properties. The static data describes information regarding the properties of the different
roads and properties about the locations that are near the sensor observations. The data
for this scenario is a replay of the data captured in the smart city of Aarhus, consisting of
streams up to 15.000 events, each with an average size of 6 RDF triples. This scenario
can be scaled by varying the number of sensors that produce data throughout the city.

Each of the scenarios consists of a data stream, a static knowledge base describing additional
information regarding the events in the stream, and an expressive OWL2 DL ontology. All
evaluations were conducted on the same hardware, i.e., Intel(R) Xeon(R) CPU E3-1220 with
16GB of ram running Ubuntu 18.04 LTS.

We first evaluate the scalability of the cache itself in terms of computation time and
memory usage when the cache and the events increase in size. Next, we will compare the
performance of the proposed cache with existing techniques for both materialization of the
events, i.e., event enrichment, and query tasks. The last evaluation measures the performance
of the different cache replacement policies.

8.1 Cache scalability

To evaluate the scalability of the cache itself, we used the Smart Building scenario. In this
evaluation we check how the cache reacts to:

1. Increasing cache size: number of Cache Structures stored.
2. Increasing event size: number of individuals in the events in the stream. Larger events

will result in larger Cache Structures, and thus a larger number of Variables that needs
to be evaluated.

In order to check how the cache performs with increasing cache size, we generated sensor
streams originating from a large number of locations. In this case: 100, 200,..., till 1000
unique locations. As the locations are unique and have links with the static data, observations
originating from a unique location results in a distinct Cache Structure. Thus with increasing
number of unique locations, we can grow the size of the cache. We also evaluate what
happens if the sizes of the Cache Structures increase. This is artificially done by combining
combinations of observations originating from unique locations, resulting in larger events.
Thus, with increasing size of the events, the number of variables increases in the Cache
Structures. It is important to note that this is only to really stress-test the cache. In realistic
settings, event sizes rarely exceed size 10.

8.1.1 Time performance

Figure 11 shows the influence of both increasing cache size (the number of stored Cache
Structures) and size of the events. We depict the cache lookup time when the size of the cache
increases while feeding various sizes of events. Note that larger events result in larger Cache
Structures. We see that for small events (event size 10) the lookup times stay below 5ms,
even for extremely large cache sizes. Even below 1ms for realistic cache sizes up to size 500.
When increasing the size of the events, the lookup times increase as well. This was expected
as larger Cache Structures need to be evaluated. In realistic settings, event size rarely exceed

123

Bridging the gap between expressivity and efficiency in stream reasoning 1803

Fig. 11 Evaluation of the time to check the cache as a function of the cache size, with growing sizes of events

Fig. 12 Evaluation of the memory consumption of the cache as a function of the cache size, with growing
sizes of events

size 10, as events are kept small on purpose [47]. Note that the reported times represent the
average cache look-up time over the whole scenario provided by OWL2Streams. As we are
investigating the scalability of the cache itself, i.e., in growing number of variables and sizes
of events, only cache hits are taken into account. The time for cache misses depends on the
used reasoner that performs the materialization. We have used the HermiT reasoner as the
underlying reasoner, which takes up to 8 seconds for events with size 100 for this specific
use case.

8.1.2 Memory consumption

Our structural cache is a typical example of the space-time trade-off. In order to decrease
reasoning time, we store Cache Structures and thus sacrifice memory. Figure 12 visualizes

123

1804 P. Bonte et al.

the memory consumption as a function of the size of the cache while storing different sizes of
events. The memory increases in a rather linear fashion when the cache size increases or the
size of the stored Cache Structures increases. Note that while the cache size might become
large, the size of events typically stays rather small. In our experiments, the size of the events
in the streams did not exceed size 10, thus resulting in very limited memory impact.

8.2 Comparison with existing reasoners for event enrichment tasks

The second evaluation evaluates the scalability in terms of increasing static data to compare
the performance of the cache with the following reasoning approaches:

• OWL2 DL reasoners Hermit [38] and Pellet [40]: these are the baselines in terms of
performance, as they are complete in terms of the expressivity of the used ontologies.
JFact and Konclude were initially included in the evaluation; however, they either did
not reach a conclusion within one hour or crashed.

• OWL2 EL reasoner ELK [30] and OWL2 RL reasoner RDFox [34]: these reasoners are
added as a reference only. They are a lot faster, as they do not infer all facts due to
the lower supported expressivity. This is indicated in the completeness columns of the
various result tables. We wanted to investigate if our cache could even have added value
for these OWL2 reasoners with lower expressiveness. Note that both ELK and RDFox
allow incremental reasoning, i.e., when new data arrives, they can incrementally update
their materialization, without the need to start the reasoning process from scratch.

• Approximation approaches TrOWL [44] and Subset Reasoner [10]: these reasoners
support OWL2 DL expressivity, however, make some approximations to speed up the
reasoning over data steams, possibly resulting in incompleteness. A form of incremental
maintenance is provided, but as an approximation.

• A rule engine approach that uses the part of the ontology that can be expressed as rules.
We used the RETE-based rule engine that is part of Jena6 as it can process RDF data and
allows querying using SPARQL. This approach is also added as a reference only and can
perform incremental reasoning.

We evaluate the performance on the different scenarios described above to perform Event
Enrichment on the events in each stream. This means that the events are combined with the
static data and the domain knowledge and all possible axioms with respect to the individuals
in the events are inferred. For each approach, we compute the completeness, i.e., the average
percentage of correctly inferred axioms over all events in the stream. For each scenario, we
grow the static data, as the reasoning performance typically decreases with growing datasets
and thus stresses their performance. Note that the reported times are the average time to
perform event enrichment over all the events in the whole scenario.

8.2.1 Stream of students

We start with the extension of OWL2Bench, where the stream consists of students registering
to a certain university. The students follow certain courses and have various hobbies and
interests. Various students can follow the same curriculum or have the same interests. Even
though these are different students, they are classified in the same way. This is the type of
students that are matched by the cache. Instead of growing the number of universities, we

6 jena.apache.org.

123

http://www.jena.apache.org

Bridging the gap between expressivity and efficiency in stream reasoning 1805

Table 1 Evaluation of performing event enrichment over the student streams extracted from OWL2Bench.
The reasoning time is shown as a function of the number of departments in the static data. Furthermore, the
completeness of each approach is shown. All reported times are in milliseconds. (TO = Time Out, compl. =
completeness)

Engine Compl. #Departments
1 5 10 15 20

Pellet [40] 100% 1905.52 TO TO TO TO

HermiT [20] 100% 1823.93 6166.73 15403.37 15730.57 35012.41

Subset [10] 100% 1160.12 1776.92 708.94 413.14 2498.76

TrOWL [44] 76% 28.44 162.31 507.76 1052.77 1864.25

RDFox [34] 72% 10.42 8.07 7.19 9.48 7.34

ELK [30] 67% 3.89 4.19 4.66 5.91 5.76

Jena 76% 109.82 403.72 851.07 1413.72 6343.59

Cache 100% 0.79 0.74 0.75 0.63 0.98

The bold values indicate the best obtained performances

grow the number of departments within a single university. The reasoning time for expressive
reasoners to reason over more than one university is far beyond the real-time requirements
[39], and thus not considered.

Table 1 shows the results for each of the reasoning techniques to enrich events describing
students. To make a fair comparison, we ask the reasoners to only infer the types of the
individuals contained in the events and not to materialize the whole static data. We see that
the fully fledged reasoners become very slow very quickly with increasing static background.
Pellet timed out after 5 departments. Our caching technique is the fastest in event material-
ization, even faster than the approximation approaches or the less expressive reasoners such
as RDFox and ELK or the RETE-based approach using Jena. Note that our cache produces
results that obtain 100% completeness for the task of event enrichment.We note that these are
the times when the events have already been added to the cache, as the cache internally uses
the HermiT reasoner, upon cache misses the same performance as HermiT can be expected.
While the overhead to add events to the cache is minimal as well, only a few milliseconds.

8.2.2 Traffic stream

Compared to the student stream, the streams considered in theSmartCity require reasoning
on a data property level, which is a typical requirement in the IoT. The observations get
classified differently based on the sensed values and their location. In the previous evaluation,
no data property reasoning was considered. As the cache supports it, we evaluate it here as
well. Table 2 shows the results for each of the reasoners for increasing city sizes, i.e., number
of intersections where the traffic sensors are positioned. We can see that the cache is able
to enrich the events in less than one millisecond, and it is clearly the fastest approach, even
faster than the less expressive reasoners.While being very scalable, the cache produces results
with the same completeness as the fully fledged OWL2 DL reasoners. Note that these are
the reported times for cache hits, cache misses have similar time consumption as the HermiT
reasoner, as HermiT is used under the hood by our approach.

Table 3 details the speed up times of equipping each evaluated engine with our cache on
the Smart City scenario. As our cache is reasoner agnostic, it can easily be combined with
other reasoners, allowing these reasoners to benefit from the speed up from the cache. We see

123

1806 P. Bonte et al.

Table 2 Evaluation of materializing traffic observations of CityBench. The reasoning time is shown as a
function of the number of intersections in the city. Furthermore, the completeness of each approach is shown.
Pellet was not included as it was producing errors while handling the data property reasoning. All reported
times are in milliseconds. (compl. = completeness)

Engine Compl. #Road intersections
1 100 200 400 600 800

HermiT [20] 100% 112.68 749.06 1807.75 4724.34 9419.08 14197.38

Subset [10] 100% 686.19 673.41 673.73 667.28 672.52 672.91

TrOWL [44] 52% 17.37 33.47 48.29 80.44 135.08 196.72

RDFox [34] 85% 6.30 5.91 6.03 5.70 5.58 7.58

ELK [30] 74% 34.00 60.24 89.67 148.33 230.15 332.35

Jena 81% 42.53 146.92 300.09 622.25 707.28 1398.99

Cache 100% 0.62 0.72 0.67 0.84 0.68 0.66

The bold values indicate the best obtained performances

Fig. 13 Scenario run time
comparison between HermiT and
the Cache

major improvements in reasoning speed up times for HermiT, i.e., thousands of times faster,
while still hundreds of times faster for less expressive reasoners in the EL profile, such as
ELK, and up to 10 times faster for the OWL2 RL reasoner RDFox. The speed up depends on
the hit rate of the cache, in this scenario the hit rate was up to 99.96%. These high hit rates
can be expected in IoT scenarios where the structure of the events is fixed due to the format
of the sensor output.

Figure 13 shows the scenario run time for the first 100 events and compares the reasoning
times between HermiT and our cache. There occur three cache misses (resembled by the
three peaks), which result in the same reasoning times as HermiT. The other scenario steps
are cache hits, resulting in great performance gains for our cache.

8.3 Comparison with existing reasoners for query tasks

We have evaluated the cache for materialization tasks above, now we compare the perfor-
mance of the cache with query-driven approaches. Note that query-driven approaches do not
necessarily need to fully materialize the dataset before answering a certain query, but perform
the reasoning necessarily to answer the query at query time. We compare these query-driven
techniques with our cache. Our cache performs event enrichment as usual with the additional
step of query evaluation on top of the performed materialization. Thus, the reported times
for our cache are both event enrichment and query evaluation times. Note that for our cache,
no reasoning is required at query evaluation time, due to the materialization process.

123

Bridging the gap between expressivity and efficiency in stream reasoning 1807

Ta
bl
e
3

E
va
lu
at
io
n
of

m
at
er
ia
liz

in
g
tr
af
fic

ob
se
rv
at
io
ns

of
C
ity

B
en
ch

fo
r
ea
ch

re
as
on

er
eq
ui
pp

ed
w
ith

ou
r
ca
ch
e.
W
e
sh
ow

th
e
sp
ee
d-
up

tim
e
as

a
re
su
lt
of

us
in
g
th
e
ca
ch
e
fo
r

ea
ch

re
as
on
er

ov
er

th
e
w
ho
le
sc
en
ar
io

E
ng

in
es

w
ith

ca
ch
e

A
V
G
Sp

ee
d
up

#R
oa
d
in
te
rs
ec
tio

ns
1

10
0

20
0

40
0

60
0

80
0

H
er
m
iT

[2
0]

17
73

.7
0

21
97

.8
0

81
4.
75

13
46

.2
0

18
82

.5
9

21
46

.8
6

22
54

.0
2

Su
bs
et
[1
0]

75
8.
11

76
7.
35

75
7.
39

75
7.
64

75
2.
57

75
6.
69

75
7.
00

T
rO

W
L
[4
4]

12
6.
94

27
.7
2

52
.8
6

75
.5
6

12
3.
39

20
0.
48

28
1.
66

R
D
Fo

x
[3
4]

9.
94

10
.1
2

9.
50

9.
69

9.
16

8.
97

12
.1
7

E
L
K
[3
0]

21
1.
22

53
.6
8

93
.5
6

13
6.
77

21
8.
43

32
3.
33

44
1.
55

Je
na

56
2.
52

66
.7
9

21
6.
53

40
5.
64

71
6.
34

78
3.
55

11
86

.2
4

123

1808 P. Bonte et al.

Table 4 Evaluation of query task on the students streams extracted from OWL2Bench. The reasoning and
query time is shown as a function of the number of departments in the static data. Furthermore, the completeness
of each approach is shown. All reported times are in milliseconds.(QR = Query Rewriting, TO = Time Out,
compl. = completeness)

Engine Compl. #Departments
1 5 10 15 20

Pellet [40] 100% 776.46 TO TO TO TO

HermiT [20] 100% 1225.31 17017.50 61481.21 132448.14 228852.50

TrOWL [44] 29.5% 28.78 186.94 532.61 1092.18 1841.70

QR [12] 48.1% 40.63 87.87 127.38 178.20 217.43

ELK [30] 29.5% 4.06 10.00 11.71 11.63 12.86

Cache 100% 5.79 6.69 6.29 6.22 6.47

The bold values indicate the best obtained performances

The OWL2Bench benchmark is accompanied by a set of SPARQL queries. We have
selected all the type queries7 as they allow to easily translated to DL-queries and answered
by the reasoners that do not support SPARQL out of the box. For the query evaluation task,
we compare against the following reasoners:

• OWL2 DL reasoners Hermit [38] and Pellet [40] as baselines and evaluate DL-queries.
• The lesser expressive OWL2 EL reasoner ELK [30] evaluating DL-queries.
• The approximation approach TrOWL [44] evaluating DL-queries.
• A Query Rewriting approach [12] that evaluates large rewritten SPARQL queries that

contain the TBox logic instead of reasoning.

Table 4 shows the results of the evaluation of the type queries as a function of growing
static data. Table 4 also shows the completeness, which is computed as the mean of the
percentage of correct answers for each query. The cache outperforms the other approaches
in terms of completeness and reasoning/query answering time. Even the Query Rewriting is
slower than the cache due to the very large queries that need to be evaluated. Note that some
of the queries are very large and contain up to 324 UNIONs. The times shown in Table 4 for
our cache are a little higher than in Table 1 as both the event enrichment and the querying
of the whole static data needs to be performed. For our cache approach, a conversion is
necessary to allow the evaluation of SPARQL queries8, hence the small increase in time. It is
important to note that the caching approach assumes a fully materialized version of the static
data, which is expensive to compute. Luckily, the static data does not change very often and
can be computed as a preprocessing step.

8.4 Cache replacement strategies

Next, we evaluate the different cache replacement strategies for the Smart City scenario.
Figure 14 visualizes the cache hit rates as a function of cache size and replacement policy
for the Smart City scenario consisting of traffic streams resulting from 20 unique locations,
producing a total of 60 distinct events. The MRU and LIFO policies work best for smaller
cache sizes, while LRU and FIFO work best for large cache sizes. Once the cache sizes

7 Queries of the form: Select ?s WHERE{?s a :someType}.
8 We used Jena for the evaluation of the queries.

123

Bridging the gap between expressivity and efficiency in stream reasoning 1809

Fig. 14 Evaluation of different cache replacement policies. Hit rates for each policy as a function of the cache
size

exceed the size of 20, LRU and FIFO perform really well. This is due to the fact that there
are 20 unique locations that send their observations around the same time, resulting in 20
unique events, making it impossible for LRU or FIFO policies to achieve a cache hit. The
computation overhead for each of the policies is very limited and only around 0.003 ms.

9 Discussion

In this section, we discuss how our caching approach tackles the set objectives from Sect. 1,
provide some additional insights into the evaluation results, and discuss the limitations of
our caching approach.

9.1 Objectives discussion

Looking back at the Objectives set in Sect. 1, we can now discuss how our caching approach
tackles the various objectives:

1. Expressive reasoning our cache can be used with any OWL2 reasoner implementing the
OWL API interfaces and provides huge performance gains for OWL2 DL reasoners and
even for lesser expressive OWL2 EL and RL reasoners. We have shown that our caching
approach is complete and correct for the task of event enrichment when reasoning over
expressive OWL2 DL ontologies.

2. Eliminate reoccurring reasoning steps our caching approach can store the reasoning
results by exploiting the fact that events in IoT streams typically have the same structure
and size. Through a smart look-up mechanism that takes the static data into account, it
can eliminate reasoning steps when a similar event has been processed in the past. In this
case, the reasoning results can be transferred to the new event, moving from reasoning
to pattern matching.

3. Scalable as seen in the evaluation, the cache itself scales really well in the number of
stored events and size of the events. Furthermore, as performing event enrichment through
our caching approach is just a simple cache look-up, it can be easily distributed, allowing

123

1810 P. Bonte et al.

horizontal scaling as well. A synchronization step would be required when one of the
distributed caches has a miss and a new event is added to the cache. In this case, the other
cache instances would require the new event as well.

4. Integrate static knowledge as our caching approach can differentiate between static and
streaming data, all connections with the static knowledge base are kept. This allows to
correctly perform event enrichment over a variety of events, that have similar structure
and size.

9.2 Evaluation discussion

In Sect. 8, we have first evaluated the scalability of the cache in terms of the number of stored
events and the size of the events. We have seen that for smaller size events, the cache scales
very well, even with large amounts of events stored. For larger events, the cache tends to
become slower as more events are stored. Fortunately, the size of the events in the IoT, and
in stream processing in general, are typically kept small, making the cache ideal for these
situations. We also see that as investigated in Sect. 7.5, the complexity of the cache is indeed
linear in the size of the cache.

In comparison with existing reasoners, we have shown that our cache scales really well
with increasing size of static background knowledge. This is because the other reasoners
need to take larger amounts of data into account during reasoning when the size of the static
background knowledge increases. Our cache circumvents this problem by turning to pattern
matching in order to eliminate reoccurring reasoning steps. It is important to stress that this is
only in the case when there is a cache hit, if not, the same reasoning times can be expected as
for the traditional reasoners. As the HermiT reasoner is used under the hood to fill the cache
in case of a cache miss, the same reasoning times as HermiT can be expected. However, as
the events in an IoT setting are typically very similar in shape and size, the cache can provide
very large performance gains, with very limited overhead. If one is willing to sacrifice some
memory consumption to increase performance during event enrichment, then the cache is
very beneficial.

We note that even for lesser expressive reasoners, such as RDFox and ELK that support
the lesser expressive OWL2 RL and OWL2 EL profiles, our cache can still provide large
performance gains. Our cache still outperforms these reasoners and is at least ten times
faster. (And up to 300 times for large datasets using ELK.) This means that for streams
with similar structure and size, we can employ expressive OWL2 DL reasoning and still
be competitive in terms of event enrichment times compared to lesser expressive and more
performant reasoners such as RDFox and ELK. This is very beneficial, as most of the IoT
ontologies require OWL2 DL reasoning to be fully interpreted [10]. On the other hand,
this also means that we can use our cache in combination with RDFox or ELK and still
gain large performance gains. At this point, the OWL2 DL reasoner HermiT is used for the
materialization of the events upon a cache miss. We can easily switch to another reasoner to
perform this initial materialization.

9.3 Limitations

Our approach makes a number of assumptions, limiting its use to specific scenarios. We now
go deeper into the limitations of the fact that events should have similar structure and size
and that we focus specifically on the task of event enrichment.

123

Bridging the gap between expressivity and efficiency in stream reasoning 1811

9.3.1 Fixed event structure

The cache is optimized to exploit reoccurring reasoning steps over streams that contain
events that are similar in shape and size. This is typical in an IoT setting where various
sensors produce observations. Each observation is unique, in the sense that the observed
value is unique, the sensor that made the observation may vary or the observed property.
However, these observations are all still mostly the same structure and size. Outside the IoT
this assumptionmay hold aswell, e.g., as we have seen in the universitymanagement scenario
in Sect. 8. However, in other Stream Processing scenarios such as Social Media analysis, this
hypothesis typically does not hold. Social Media posts can have a different number of likes,
followers, comments, and so on. This variability in the number of properties would lead to a
huge number of cache misses and thus minimize the benefits of the cache. At this point, the
cache can thus not be used in scenarios with variable event structures. However, evaluating
if the event structure is fixed is possible. When the original generated data are not in the
RDF format, a mapping step is necessary to map it to the RDF model, e.g., through RML
[17]. By analyzing the mapping file that indicates how the raw data needs to be mapped to
semantic data, we can be sure that the structure of the resulting stream is fixed. If the stream
is original an Ontology stream, and thus no mapping phase is available for analysis, still we
can monitor the structure of the events and evaluate how much they vary before employing
our cache solution. The latter can easily be done with our cache itself, by adding an alert on
the number of stored events.

9.3.2 Event enrichment

As indicated in Sect. 3, our approach is optimized for Event Enrichment, i.e., we only infer
the types of the individuals that were contained within the event. Thus if the event invokes
a change of types in the static data, that was not linked in the event, then these changes
will not be captured. The latter is the problem of Static Enrichment, which we did not study
here. Figure 15 shows a visual explanation between the different enrichments. In theory, the
possible enrichments of the static data could be cached as well. The only requirement is that
the reasoner provides some intuition which additional types have been added to the static
data. HermiT does not allow to extract these insights, requiring to query the whole static
knowledge base for possible changes. This is by no means a scalable solution as (1) the
larger the static data, the more data needs to be queried, and (2) one needs to maintain a list
with all the current types of all individuals in the static data to be able to verify if additional
types have been added through the reasoning process. Reasoners that do provide this intuition
allow to use the cache for both Event and Static Enrichment.

10 Conclusion & future work

In this paper, we presented a caching technique to solve the mismatch between expressive
reasoning and real-time processing requirements in data-intensive domains. In order to sig-
nificantly speed up reasoning time for the task of event enrichment, we exploit the fact that
events in IoT data streams are often similar in structure and size. Our caching technique is
ideal for the semantic enrichment of events, in combination with rich backgrounds and com-
plex domain knowledge. In these cases, the proposed caching technique is up to thousands of
times faster than fully fledged OWL2 DL reasoners for event enrichment, while preserving

123

1812 P. Bonte et al.

Fig. 15 Difference between event and static enrichment. Event enrichment: materialization based on the
influence of the static data on the event. Static enrichment: materialization based on the influence of the event
on the static data. The event is enriched as a CO2Observation, it needs the static knowledge stating that the
sensor observes CO2. It is also a CoronaAlertObservation because it is a CO2Observation measuring a value
above 100 in a ClassRoom. The static knowledge is enriched as an AlarmRoom, as one of the sensors in the
room has captured an AlertObservation

the correct and completeness of reasoning. The caching technique is beneficial even for less
expressive profiles, such as OWL2 RL and EL, where we obtain up to tenths and hundreds
faster reasoning times.

In our future work, we will investigate the possibility to pre-fill the cache, based on the
stream description such as provided by VoCaLS [46]. To further limit memory consumption,
we will incorporate various encoding schemes. We will also investigate how to exploit our
cache for non-IoT streams, i.e., streams consisting of events that have no similar structure or
size. This is typical in Social Media analysis. We also aim to extend the technique to enable
the enrichment of windows of events, while we currently only considered single events. In
this paper we have limited the scope to the enrichment of the events only, disregarding the
enrichment of the static data.Wewill further extend our technique to include both enrichment
influences. This will allow to further bridge the gap between expressivity and efficiency of
reasoning over high-velocity data streams.

Acknowledgements Pieter Bonte is funded by a postdoctoral fellowship of Fonds Wetenschappelijk Onder-
zoek Vlaanderen (FWO) (1266521N).

123

Bridging the gap between expressivity and efficiency in stream reasoning 1813

References

1. AdamsT,Dullea J, Clark P, Sripada S, Barrett T (2000) Semantic integration of heterogeneous information
sources using a knowledge-based system. In: Proc 5th Int Conf on CS and Informatics (CS&I’2000).
Citeseer

2. Ali MI, Gao F,Mileo A (2015) Citybench: a configurable benchmark to evaluate RSP engines using smart
city datasets. In: ISWC, pp 374–389. Springer

3. BaaderF,CalvaneseD,McGuinnessD,Patel-Schneider P,NardiD (2003)Thedescription logic handbook:
theory, implementation and applications. Cambridge university press

4. Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) Incremental reasoning on streams
and rich background knowledge. In: Extended semantic web conference, pp 1–15. Springer

5. Barbieri DF, Braga D, Ceri S, Valle ED, Grossniklaus M (2010) C-sparql: a continuous query language
for rdf data streams. Int J Semant Comput 4(01):3–25

6. Barnaghi P, Wang W, Henson C, Taylor K (2012) Semantics for the internet of things: early progress and
back to the future. Int J Semant Web Inform Syst (IJSWIS) 8:1–21

7. Bazoobandi HR, Bal H, van Harmelen F, Urbani J (2020) Handling impossible derivations during stream
reasoning. In: ESWC, pp 3–19. Springer

8. Bonte P, Ongenae F (2020) OWL2Streams a benchmark for expressive stream reasoning for dynamic
owl2 reasoners. https://github.com/IBCNServices/OWL2Streams

9. Bonte P, Ongenae F, De Backere F, Schaballie J, Arndt D, Verstichel S, Mannens E, Van de Walle R, De
Turck F (2017) The massif platform: a modular and semantic platform for the development of flexible iot
services. Knowl Inf Syst 51(1):89–126

10. Bonte P,Ongenae F,DeTurckF (2019) Subset reasoning for event-based systems. IEEEAccess 7:107533–
107549

11. Bonte P, Tommasini R, Della Valle E, De Turck F, Ongenae F (2018) Streaming MASSIF: cascading
reasoning for efficient processing of IoT data streams. Sensors 18(11):3832

12. Calbimonte JP, Mora J, Corcho O (2016) Query rewriting in rdf stream processing. In: European semantic
web conference, pp 486–502. Springer

13. Compton M, Barnaghi P, Bermudez L, Garcia-Castro R, Corcho O, Cox S, Graybeal J, Hauswirth M,
Henson C, Herzog A et al (2012) The ssn ontology of the w3c semantic sensor network incubator group.
Journal of Web Semantics 17:25–32

14. Della Valle E, Ceri S, Van Harmelen F, Fensel D (2009) It’s a streaming world! reasoning upon rapidly
changing information. IEEE Intell Syst 24(6):83–89

15. Della Valle E, Dell’Aglio D, Margara A (2016) Taming velocity and variety simultaneously in big data
with stream reasoning: tutorial. In: DEBS, pp 394–401

16. Dell’Aglio D, Della Valle E, van Harmelen F, Bernstein A (2017) Stream reasoning: a survey and outlook.
Data Science (Preprint), 1–24

17. Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens E, Van de Walle R (2014) Rml: a generic
language for integrated rdf mappings of heterogeneous data. In: Ldow

18. Dodaro C, Eiter T, Ogris P, Schekotihin K (2020) Managing caching strategies for stream reasoning with
reinforcement learning. Theory Pract Logic Program 20(5):625–640

19. Giustozzi F, Saunier J, Zanni-Merk C (2018) Context modeling for industry 4.0: an ontology-based
proposal. Proc Comput Sci 126:675–684

20. Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z (2014) Hermit: an OWL 2 reasoner. J Autom Reason
53(3):245–269

21. Glimm B, Kazakov Y, Tran TK (2017) Ontology materialization by abstraction refinement in horn shoif.
In: AAAI, pp. 1114–1120

22. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing? Int J Hum
Comput Stud 43(5–6):907–928

23. Guo F, Solihin Y (2006) An analytical model for cache replacement policy performance. In: Proceedings
of the joint international conference on Measurement and modeling of computer systems, pp 228–239

24. Heyvaert P, De Meester B, Dimou A, Verborgh R (2018) Declarative rules for linked data generation at
your fingertips! In: European Semantic Web Conference, pp 213–217. Springer

25. Horridge M, Bechhofer S (2011) The owl api: a java api for owl ontologies. Semantic web 2(1):11–21
26. Horrocks I, Kutz O, Sattler U (2006) The even more irresistible SROIQ. Kr 6:57–67
27. Hustadt U, Motik B, Sattler U (2005) Data complexity of reasoning in very expressive description logics.

IJCAI 5:466–471
28. Isah H, Abughofa T, Mahfuz S, Ajerla D, Zulkernine F, Khan S (2019) A survey of distributed data stream

processing frameworks. IEEE Access 7:154300–154316

123

https://github.com/IBCNServices/OWL2Streams

1814 P. Bonte et al.

29. Jordan H, Subotić P, Zhao D, Scholz B (2019) A specialized b-tree for concurrent datalog evaluation. In:
Proceedings of the 24th symposium on principles and practice of parallel programming, pp 327–339

30. Kazakov Y, Krötzsch M, Simancik F (2012) Elk reasoner: architecture and evaluation. In: ORE
31. Keskisärkkä R, Blomqvist E, Hartig O (2011) Optimizing rdf stream processing for uncertainty manage-

ment. In: Further with Knowledge Graphs, pp 118–132. IOS Press
32. Le-Phuoc D, Dao-Tran M, Xavier Parreira J, Hauswirth M (2011) A native and adaptive approach for

unified processing of linked streams and linked data, pp 370–388. Springer Berlin Heidelberg, Berlin,
Heidelberg

33. Nelis J, Verschueren T, Verslype D, Develder C (2012) Dyamand: dynamic, adaptive management of
networks and devices. In: 37th Annual IEEE conference on local computer networks, pp 192–195. IEEE

34. Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J (2015) Rdfox: A highly-scalable rdf store. In:
ISWC, pp 3–20. Springer

35. Pan JZ (2009) Resource description framework. In: Handbook on ontologies, pp 71–90. Springer
36. Peng Z, Jimenez JL (2020) Exhaled CO2 as COVID-19 infection risk proxy for different indoor environ-

ments and activities. medRxiv
37. Petrolo R, Loscri V, Mitton N (2017) Towards a smart city based on cloud of things, a survey on the smart

city vision and paradigms. Trans Emerg Telecommun Technol 28(1):e2931
38. Shearer R, Motik B, Horrocks I (2008) Hermit: A highly-efficient owl reasoner. OWLED 432:91
39. Singh G, Bhatia S, Mutharaju R (2020) Owl2bench: a benchmark for owl 2 reasoners. In: International

semantic web conference, pp 81–96. Springer
40. Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. Web

Semantics: science, services and agents on the World Wide Web 5(2):51–53
41. Steigmiller A, Liebig T, Glimm B (2012) Extended caching, backjumping and merging for expressive

description logics. In: IJCAR, pp 514–529. Springer
42. Stuckenschmidt H, Ceri S, Della Valle E, Van Harmelen F (2010) Towards expressive stream reasoning.

In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik
43. Teymourian K, Paschke A (2016) Semantic enrichment of event stream for semantic situation awareness.

In: Semantic Web, pp 185–212. Springer
44. Thomas E, Pan JZ, Ren Y (2010) TrOWL: tractable OWL 2 reasoning infrastructure. In: Extended

Semantic Web Conference, pp 431–435. Springer
45. Tommasini R, Bonte P, Ongenae F, Della Valle E (2021) Rsp4j: an api for rdf stream processing. In:

European Semantic Web Conference, pp 565–581. Springer
46. Tommasini R, Sedira YA, Dell’Aglio D, Balduini M, Ali MI, Le Phuoc D, Della Valle E, Calbimonte JP

(2018) Vocals: vocabulary and catalog of linked streams. In: International semantic web conference, pp
256–272. Springer

47. Westermann U, Jain R (2007) Toward a common event model for multimedia applications. IEEE Multi-
media 14(1):19–29

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Pieter Bonte received his Ph.D. degree in computer science from
Ghent University, Ghent, Belgium, in April 2019. His Ph.D. focused
on extracting knowledge and insights from heterogeneous IoT sys-
tems using logic-based reasoning. Pieter is now a postdoc at IDLab,
Ghent University - imec. He is active in the stream reasoning research
area, an intersection between stream processing, database technology,
logic inference, and the Semantic Web. He focuses mainly on complex
query answering and the efficient evaluation of reasoning algorithms
over high-volatile data streams. During his research, he has participated
in several interdisciplinary research projects, providing personal and
context-aware analytics in the area of IoT, smart buildings, smart cities,
pervasive health, etc. Recently, he started working on the scalability of
the decentralized web.

123

Bridging the gap between expressivity and efficiency in stream reasoning 1815

Filip De Turck is a Full Professor at the Department of Information
Technology (Intec) of Ghent University with expertise in communica-
tion software, network resource management, adaptive service delivery,
and efficient large-scale data processing. In this research area, he is
involved in and successfully completed many research projects with
industry and academia, served as Chair of the IEEE Technical Com-
mittee on Network Operations and Management (CNOM) and former
chair of the Future Internet Cluster of the European Commission, is on
the TPC of many international network and service management con-
ferences and workshops, and serves on the Editorial Board of several
network and service management journals. Prof. Filip De Turck was
named a Fellow of the IEEE (Institute of Electrical and Electronics
Engineers) for outstanding technical contributions to network resource
management and adaptive service delivery.

Femke Ongenae received her Ph.D. degree in computer science from
Ghent University, Ghent, Belgium, in August 2013, pertaining to
knowledge discovery and management for eHealth applications by
using ontologies and semantic reasoning. During this time, she worked
on several eCare projects to improve the continuous care of patients
in institutionalized care settings. She is a full-time Research Manager
and a Senior Scientist at the imec research hub, Ghent, for
nanotechnologies and digital technologies. She has also been a
part-time Assistant Professor at the IDLab, Ghent University, since
October 2019. She is part of PREDICT and KNOWS research teams
of IDLab and performs research into expressive semantic stream
and distributed reasoning; the incorporation of expert knowledge in
data analytics algorithms; hybrid artificial intelligence (AI), fusing
semantic models, and machine learning; and explainable AI by
leveraging knowledge graphs. This research is mainly applied to the
domains of predictive healthcare and industry 4.0 in order to realize

context-aware and personalized decision support systems.

123

	Bridging the gap between expressivity and efficiency in stream reasoning: a structural caching approach for IoT streams
	Abstract
	1 Introduction
	2 Running example
	3 Background
	3.1 Ontologies and description logic
	3.2 Relation to RDF
	3.3 Events and streams
	3.4 Semantic sensor network ontology
	3.5 Conversion to the ontology model

	4 Defining the domain knowledge for the running example
	5 IoT architecture
	6 Related work
	7 Caching for event enrichment
	7.1 Creating cache structures
	7.2 Storing the materialization
	7.3 Checking the cache
	7.4 Theoretical foundations
	7.5 Complexity study
	7.6 Cache replacement policies
	7.7 Relation with query rewriting
	7.8 Implementation details

	8 Evaluation
	8.1 Cache scalability
	8.1.1 Time performance
	8.1.2 Memory consumption

	8.2 Comparison with existing reasoners for event enrichment tasks
	8.2.1 Stream of students
	8.2.2 Traffic stream

	8.3 Comparison with existing reasoners for query tasks
	8.4 Cache replacement strategies

	9 Discussion
	9.1 Objectives discussion
	9.2 Evaluation discussion
	9.3 Limitations
	9.3.1 Fixed event structure
	9.3.2 Event enrichment

	10 Conclusion & future work
	Acknowledgements
	References

