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Abstract
Statistical tests are a powerful set of tools when applied correctly, but unfortunately the
extended misuse of them has caused great concern. Among many other applications, they
are used in the detection of biomarkers so as to use the resulting p-values as a reference
with which the candidate biomarkers are ranked. Although statistical tests can be used to
rank, they have not been designed for that use. Moreover, there is no need to compute any
p-value to build a ranking of candidate biomarkers. Those two facts raise the question of
whether or not alternative methods which are not based on the computation of statistical tests
that match or improve their performances can be proposed. In this paper, we propose two
alternative methods to statistical tests. In addition, we propose an evaluation framework to
assess both statistical tests and alternative methods in terms of both the performance and
the reproducibility. The results indicate that there are alternative methods that can match or
surpass methods based on statistical tests in terms of the reproducibility when processing
real data, while maintaining a similar performance when dealing with synthetic data. The
main conclusion is that there is room for the proposal of such alternative methods.

Keywords Biomarker selection · Statistical tests · Reproducibility · Differential
methylation detection

1 Background

In the first quarter of the twentieth century, Fisher popularized the concepts of probability
and statistics in the field of scientific research. Besides developing the basic aspects of
experimental design, Fisher worked on the problem of hypothesis testing and introduced
the well-known (but poorly understood) concept of p-value.
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Fisher’s approach to hypothesis testing was that of a scientist, where one hypothesis is put
to the test and further research steps depend on the result of that test. In such a scenario, the
p-value was conceived as an indicator of the degree of evidence against the null hypothesis
under test according to the gathered data [11].

Neyman and Pearson had a different view of the problem, one that matched the work of
engineers, rather than scientists. In their approach, tests are used repeatedly to test a certain
hypothesis so that the production parameters are within certain limits [20, 21]

There is a fundamental difference between both approximations; while in the view of
Neyman and Pearson, the tests are used to make decisions, Fisher’s tests are used as a guide
in the scientific search quest. More importantly, the repeated use of the test gives meaning to
concepts such as type I and type II errors, which are hardly interpretable when a test is run
just once.

Unfortunately, at some point both approaches got mixed, a mix that became the null
hypothesis significance testing (NHST). Briefly, NHST is a vaguely defined procedure that
borrows concepts from those two different and rather incompatible approaches [7, 12, 22,
23]. Moreover, these tests seem to have reached, in many fields, an indisputable position [7,
29], from which the test that produces a p-value below a certain threshold1 seems to grant a
quality certificate that makes the result and the conclusions fully trustworthy [2, 7, 13, 16,
22, 29].

In addition, the many different misuses and misconceptions regarding the statistical tests
[2, 7, 12, 13, 22, 29] seem to be quite extended [7]. Among others, it is worth mentioning
the incorrect interpretations of the p-value [12, 13], the ignorance of the assumptions made
by the given statistical test [13] or even the “p-hacking” [2, 16, 22], which consists of the
reanalysis of the data in different forms until it yields a desired result.

The conjunction composed of the blind faith in the p-values and the misconceptions of
the statistical tests has been identified as one of the main contributors to what has been called
the reproducibility crisis [2, 29]. There are so many published conclusions drawn based on
p-values that are false that the credibility of the scientific method is at risk [4]. The problem
is so serious that some journals of areas such as psychology have even banned the use of
p-values [13, 26, 30] and, eventually, the American Statistical Association (ASA), in answer
to the long claim of many statisticians, has issued a warning about their misuses [29]. Any
crisis brings changes, and, as many authors claim2 [29], it is time to rethink how scientific
results are analyzed and interpreted.

In this work, we focus on a popular problem in bioinformatics, the biomarker discovery
in high-throughput data, in which mainly the statistical tests are used [14]. In this problem,
the classic approach starts with the measurement of tens or hundreds of thousands of values
(e.g., gene expression or methylation levels) in a few (hundreds or thousands) individuals
from at least two populations (e.g., cases and controls) [1, 15].

A very frequent way to analyze the resulting matrices is to use some statistical tests
to assess the degree of evidence against the null hypotheses, which mainly consist of no
differences between the populations under analysis [14]. So, given that thousands of tests are
run, some mathematical transformations are applied to the resulting p-values to cope with
the problem of multiple testing [14]. Finally, among the n candidate biomarkers analyzed,
the ones for which the corrected p-value is below a given threshold, say the traditional gold
standard 0.05, are declared to behave differently depending on the population of individuals

1 The threshold 0.05 is generally taken as the gold standard.
2 The statement made by the ASA has been published along with the comments of a group of experts to whom
a copy of the statement was sent prior to publication.
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[14]. The corrected p-values are then interpreted in many incorrect ways, such as (1 minus)
the probability of the null hypothesis being false [7, 12, 13, 22, 29] or the probability of
obtaining the same results in a replication of the experiment [7, 12].

Interestingly, regardless of all those interpretations [13], it is generally accepted that the
candidate biomarkers that obtained corrected p-values below the given threshold, though
promising, are still candidate biomarkers that have yet to be validated [19]. That is, further
validations are the only way to give credibility to the results. Certainly, these high-throughput
experiments should be viewed as screening studies where promising candidate biomarkers
are identified, promising candidate biomarkers that need to be properly validated in later
studies from a biological perspective.

Now the question is are we forced to use statistical tests for this kind of analysis? Fur-
thermore, if all the candidate biomarkers identified as promising (and not just some random
ones) have yet to be validated, should the number of promising candidate biomarkers be
determined by a hard-to-interpret probability (the p-value) and an arbitrary threshold, or by
the available resources?

If the workflow to follow includes the validation of every promising candidate biomarker
in later studies from a biological perspective, the first step should be to rank the candidate
biomarkers according to the expected chances of confirming the observed differences in
future studies (i.e., the reproducibility of the results). Even if such chances may be glimpsed
through the degrees of evidence against the null hypotheses, the p-values tell very little about
the reproducibility of results [2, 8]. Anyway, this step of generating a ranking of candidate
biomarkers is by nomeans a new idea [14], as many studies end up with, among other results,
a ranking of candidate biomarkers according to the corrected p-values of the given applied
statistical test.

Consequently, if thefinal goal of the analysis is just ranking the candidates andnot selecting
a certain subset, there is no need to compute any p-value (corrected or not), as directly using
the statistic defined in the test yields exactly the same ranking as both the p-values and the
corrected p-values.

Moreover, the use of statistical tests to rank candidate biomarkers implies a set of con-
straints. Namely, for a given statistical test, the distribution of its statistic under its null
hypothesis needs to be known so as to be able to compute p-values, which narrows the
amount of eligible statistics. However, since there is no obligation to use methods that satisfy
such a constraint for the task of ranking candidate biomarkers, there is way more freedom to
devise alternativemethods. Such freedomprovides flexibility for the development ofmethods
that can be as specific and ad hoc, or conversely as general, as needed. Consequently, bearing
in mind such freedom, the question is—can we use alternative simple and intuitive methods
to get good rankings? Moreover, how can we assess the goodnesses of both statistical tests
and alternative methods, taking into account both their performance and their reproducibil-
ity? Therefore, in this article we make two contributions, consisting of the proposal of two
alternative methods and the proposal of an evaluation framework, to answer each of those
two questions.

In this work, in order to compare different methods that deal with the problem of the
discovery of biomarkers in high-throughput data, we propose a general workflow, which
is composed of several steps of increasing complexity, for the evaluation of such methods.
Within that workflow, a combination of the ability to build rankings with synthetic data and
the degree of reproducibility in real data are gathered as an assessment of the given methods.

Later, to illustrate that it is possible to design simple and intuitive alternative methods,
which are able to build rankings as good (or better) as those achieved with statistical tests, the
specific problem of differential methylation biomarker detection is tackled. We have chosen

123



1552 A. Urkullu et al.

this problem of the differential methylation biomarker detection because nowadays it is a
popular topic in biology [24]. Within such problem, we compare several methods based on
statistical tests with two alternative methods we have designed.

2 Methods

We have divided this section into two parts, one dedicated to the description of the general
workflow and the other focused on the exposition of a particularization of this workflow for
the differential methylation biomarker detection problem. In the first part, a general strategy
to evaluate both the performance (in synthetic data) and the reproducibility (in real data) of
any given ranking-based candidate biomarker selection (RCBS) method is exposed, together
with the description of the evaluation measures used to assess the goodnesses of the results of
the different RCBS methods compared. The second part illustrates a particularization of the
processwith an example, the analysis ofRCBSmethods applied to the differentialmethylation
biomarker detection problem. Besides, within the second part, four RCBS methods based on
statistical tests are presented. In addition, two alternative RCBS methods that are not based
on statistical tests are proposed and described. Finally, the different approaches are compared
using the proposed workflow.

2.1 General workflow for the evaluation of RCBSmethods

In the general workflow to evaluate RCBS methods, we differentiate between two parts,
namely the performance evaluation with synthetic data (Sect. 2.1.1) and the reproducibility
evaluation with real data (Sect. 2.1.2). The use of synthetic data enables the performance of
the RCBS methods to be evaluated under controlled circumstances. However, when using
real data, unfortunately we do not know which candidate biomarkers really have differences
or not, namely, we do not know which candidate biomarkers are true biomarkers or not.
Consequently, the estimation of the performance with real data can hardly be made. Instead,
our purpose is to evaluate the reproducibility of the results using real data.

2.1.1 Performance evaluation of RCBSmethods with synthetic data

The part of the general workflow dedicated to the estimation of the performance using syn-
thetic data is subdivided into three different stages. These three stages havemultiple properties
in common:

– All the data are sampled from known probability distributions.
– There are two populations of individuals (e.g., cases and controls).
– From one population a sample ofM individuals is drawn, while from the other population

a sample of N individuals is drawn.
– There is a subset of candidate biomarkers that are sampled from the same probability

distribution for the two samples of individuals (non-biomarkers), while the rest of can-
didate biomarkers are sampled from different probability distributions for the different
samples of individuals (true biomarkers).

– The nature of the differences that the candidate biomarkers present between populations
(if they present any differences) is known beforehand (e.g., differences in centrality or
differences in spread).
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In the first stage, the motivation is to make a raw and simplified approximation to the real
problem at hand. So, the artificial data are generated sampling just two certain probability
distributions. Therefore, the comparison between populations is binary, i.e., two types of
candidate biomarkers are distinguished in terms of differences, those for which there exists a
difference between populations (the individuals of each sample have been drawn from differ-
ent distributions), the true biomarkers, and those for which there are no differences between
populations (the individuals of both samples have been drawn from the same distribution),
the non-biomarkers. Besides, the distributions are simple parametric models, such as normal
or beta distributions.

Regarding the evaluation of the results of the first stage, it is convenient to recall that
after drawing the samples and applying a given RCBS method, a ranking of the candidate
biomarkers is obtained. In addition, it is known whether each of those ranked candidate
biomarkers is a biomarker or not. As any reordering of the candidate biomarkers of the same
type is irrelevant3, we propose the use of the AUC (area under the ROC curve) to evaluate
such ranking in terms of how likely a biomarker will be before a non-biomarker in the ranking
[10]. For instance, in the case of a RCBS method that perfectly ranks both types, namely
ranking all the true biomarkers before all the non-biomarkers, the AUC will be 1, while for
a RCBS method that ranks them randomly, the AUC will be 0.5 on average.

In the second stage, the motivation is to introduce the magnitude of the difference in
play. Consequently, the complexity is increased and passes from a binary behavior of the
candidate biomarkers to amultilevel one, i.e., now they are capable of showing several sizes
of differences between populations. This change implies that now there aremore than just two
types (non-biomarkers and true biomarkers) of candidate biomarkers in terms of differences.
Intuitively, it can be considered that the bigger the differences between populations for a
given candidate biomarker, the higher the degree of its relevance.

In the ranking yielded by the given RCBSmethod in this second stage, there are more than
just two types of candidate biomarkers. Therefore, now the AUC cannot be straightforwardly
used anymore for evaluation purposes. Consequently, we propose the use of Kendall’s τ

distance, as it is a natural extension of the AUC [17] that enables the evaluation of rankings
with more than just two types of candidate biomarkers. For instance, in the case of a RCBS
method that perfectly ranks all the types4, the Kendall’s τ distance will be 0, while for a
RCBS method that ranks them randomly, the Kendall’s τ distance will be 0.5 on average.

In the third stage, we aim to make the synthetic data more realistic. In particular, we
give room to situations in which the populations are not “homogeneous”, such as when the
populations are composed of subsets of individuals or when outliers are present. So, the com-
plexity is increased again by sampling the values from distributions that are “heterogeneous”,
namely, multimodal distributions.

The evaluation of the results of the third stage is also conducted usingKendall’s τ distance.

2.1.2 Reproducibility evaluation of RCBSmethods with real data

The part of the workflow dedicated to the estimation of the reproducibility using real data
is composed of a single stage. In this fourth stage, we use the general workflow presented
in a recently published paper [27]. Briefly, the idea presented in that paper is composed of

3 The differences between the distributions of the populations they have been sampled from are the same.
4 Namely, all the candidate biomarkers of the most relevant type are ranked first, all the candidate biomarkers
of the remaining most relevant type are ranked right after, and so on until all the candidate biomarkers of the
least relevant type are ranked last.
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several steps, an idea in which, first, two sets of data are sampled from a given original
real dataset. Secondly, a ranking-based feature selection method under analysis is applied
to those two sets of data, thus producing two different rankings of the n features of the
given problem under study. Thirdly, the consistency between the two rankings is quantified
so as to assess the reproducibility. Such consistency is quantified through the use of the
consistency index developed by Kuncheva [18]. Specifically, Kuncheva’s consistency index
is applied to each possible pair of equally i-sized sets of top-ranked candidate biomarkers
from the two rankings, thus obtaining a vector of n consistency indexes, for i ∈ 1, . . . , n. The
sequence 1, . . . , n (in the abscissa axis) and the computed vector of n consistency indexes
(in the ordinate axis) compose the curve (referred to as the reproducibility curve) that is the
outcome of the third step.

The three aforementioned steps are run several times, and the different assessments of
the reproducibility obtained in different runs are used to compute an average. Namely, the
different obtained reproducibility curves are used to compute an estimation of the expected
reproducibility curve.

Finally, a theoretical model for the reproducibility in ranking-based feature selections is
fitted to the estimation of the expected reproducibility curve so as to gain insights, through the
parameters of the fitted model, about how many relevant features there are and how relevant
they are. For more details, see the aforementioned paper [27]. Briefly, the main outcome of
the model is a sequence of n Booleans, identifying for each position of the sequence whether
it issues a true biomarker or a non-biomarker. In addition, it also issues a weight which
assesses the tendency to issue first (in the first positions of the ranking) true biomarkers to
the detriment of non-biomarkers.

Specifically, in the aforementioned paper, the described procedure which, departing from
a given real dataset, obtains a fit of the model is carried out twice, applying each time a
different partition strategy to the original dataset. One of the partition strategies consists
of dividing the original dataset into two equally sized subsets. This partition strategy has
the characteristic of deriving two disjoint sets of half the size of the original real dataset,
more than likely leading to a pessimistic estimation of the reproducibility. The other partition
strategy consists of using a bootstrap scheme to derive the two sets. This partition strategy
has the characteristics of deriving two sets that have instances in common and that are of the
same size as the original real dataset, more than likely leading to an optimistic estimation of
the reproducibility. This provides us with bounds for the true reproducibility.

2.2 Case of use: methylation biomarker ranking

In this subsection, the aforementioned general workflow is particularized for the differential
methylation biomarker detection problem. In this problem in particular, the differential spread
ofmethylation level can be as relevant as the differential centrality of themethylation level [6].
Indeed, some statistical tests have been specifically designed to be used in such situations [6].
So, in this experimentation, taking into account that property of the differential methylation
biomarker detection problem, we compare between them statistical tests and alternative
methods designed to detect differences only in centrality, and differences in both centrality
and spread.

In the differential methylation biomarker detection problem, a standard way to output
the DNA methylation level among the platforms based on microarray technologies con-
sists of outputting β-values [9]. These β-values measure the relative amount of methylated
molecules, expressing it within the range [0, 1]. Another standard way to express the DNA
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methylation level is throughM-values [9], which can be computed from the β-values through
the use of the logit function, it being thus defined within the range (−∞,∞) [9]. For this
reason, in the stages in which synthetic data are used, we have considered mainly two fami-
lies of probability distributions, the Beta and the Normal, so as to synthetically generate the
β-values and the M-values, respectively. Further details about the experimentation can be
found in the supplementary material (Online resource 1).

In Sects. 2.2.1, 2.2.2 and 2.2.3, we particularize the first three stages dedicated to evaluate
the performance of RCBSmethodswith synthetic data. In Sect. 2.2.4, we particularize the last
stage dedicated to evaluate the reproducibility of RCBS methods with real data. Finally, in
Sect. 2.2.5, we present the six RCBS methods that are compared during the experimentation
and we specify how two alternative RCBS methods which are not based on statistical tests
that we propose can be computed.

2.2.1 First stage

In this stage, we have just 2 distributions (referred to as ‘reference’ and ‘alternative’), 425
candidate biomarkers are drawn from the reference distribution for both samples, 425 can-
didate biomarkers are drawn from the only one alternative distribution available for both
samples, and, finally, 150 candidate biomarkers are drawn using each distribution for one
of the samples. This imbalance between the amounts of candidate biomarkers regarding the
differences between populations follows what is expected to happen in high-throughput data
in general. Namely, the amount of candidate biomarkers that show differences is expected
to be much lower than the amount of candidate biomarkers that do not show differences [3].
This procedure is repeated for all the combinations of:

– Type of density function (Beta or Normal).
– Size of the samples (20 − 20, 50 − 50 or 100 − 100).
– Type of differences between the two distributions (centrality, or both centrality and

spread).

For the sake of clarity, the sampling procedure is illustrated in Fig. 1.
Within each combination, 100 runs are carried out.

2.2.2 Second stage

In the second stage, instead of using just two distributions to generate the samples, we use
five distributions. The two extremes are the same as in the previous stage and the other three
are equally spaced between them (in terms of the centrality, or both the centrality or the
spread).

All the candidate biomarkers are sampled from the reference distribution for one of the
samples. For the other sample, the candidate biomarkers are sampled from the reference dis-
tribution (850 candidate biomarkers) and the other distributions (80, 40, 20 and 10 candidate
biomarkers from the distribution with the smallest differences to the one with the largest
differences, respectively).

Again, this procedure is repeated for all the combinations of type of distribution, sample
size and type of difference. The sampling procedure is illustrated in Fig. 2.
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Fig. 1 Drawing procedure for the first stage for a given combination. Note that the distributions drawn in the
figure are just used as an example and do not correspond to the actual distributions used in the experimentation

2.2.3 Third stage

The only change in this stage with respect to the previous one is that now the distributions
are mixtures of two normal distributions. Three pairs of weights have been used for these
mixtures, 0.5–0.5, 0.75–0.25 and 0.95–0.05. The latter case represents data with some degree
of outliers.

For each pair of weights, the procedure followed is identical to that of the previous stage.
Figure 2 also serves to illustrate the sampling procedure of this third stage, although that
instead of using unimodal distributions, multimodal distributions are used.

2.2.4 Fourth stage

In this last fourth stage, we use real data to assess the reproducibility. Specifically, we have
used two different real datasets (available at the GEO repository5). Each of them has two
samples derived from two different populations (e.g., cases and controls) in which the methy-
lation levels of 27578CpG sites have beenmeasured through the Illumina® Infinium® Human
Methylation27 Beadchip technology.

5 https://www.ncbi.nlm.nih.gov/geo/.
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Fig. 2 Drawing procedure for the second and third stages for a given combination. Note that the distributions
drawn in the figure are just used as an example and do not correspond to the actual distributions used in the
experimentation

The first real dataset (accession number GSE197116) [25] belongs to the United Kingdom
Ovarian Cancer Population Study (UKOPS) and has been used in several papers [6, 25,
28].The dataset denotes through β-values the methylation level of the peripheral whole blood

6 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19711.
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of 540 postmenopausal women. Among them, there are 274 healthy controls and 266 ovarian
cancer cases (131 pre-treatment cases and 135 post-treatment). The samples are age-matched,
and the range of ages covered by the database is from 49 to 91 years.

The second dataset (accession number GSE200677) [5, 25] belongs to a study of diabetic
nephropathy in type 1 diabetes mellitus through an analysis of the DNA methylation [5, 25].
In this dataset, there are 195 individuals, 97 cases and 98 controls, including both men and
women in an age range of 24 to 74 years old.

These datasets have been preprocessed according to the original papers [5, 25, 28]. The
details of the preprocessings can be found in supplementary material (Online resource 1).

The reproducibility curves have been computed using two strategies to generate pairs of
datasets (partition and bootstrap), and both are stratified in terms of size of the populations
and general features (age, gender, etc.). Specifically, the whole strategy of sampling two
datasets, processing them with the given RCBS method under analysis and computing the
reproducibility curve, is run 10 times for each of the sampling procedures conceived (partition
and bootstrapping). Finally, the 10 reproducibility curves are used to compute the estimation
of the expected reproducibility curve to which the model is fitted right after.

2.2.5 Compared RCBSmethods

One of the goals of this paper is showing that simple, more interpretable metrics can be used
to rank biomarkers without the need for statistical tests. We will illustrate this in the context
of methylation data.

A comparison will be conducted in two scenarios, one in which we are looking for dif-
ferences in centrality and the other one in which we are looking for differences in both
centrality and spread. For each case, we will compare three RCBS methods: a parametric (or
semi-parametric) test, a nonparametric tests and an alternative simple metric. In particular:

– To identify differences in location only: T-test, as the parametric test; Wilcoxon test,
as the nonparametric test; the Absolute Sum of the Differences (ASD) of the empirical
cumulative distributions, as the alternative to the tests.

– To identify differences in location and spread: Tl test, a semiparametric test proposed by
[6];Kolmogorov–Smirnov as the nonparametric test; the Sumof theAbsoluteDifferences
(SAD) of the empirical cumulative distributions, as the alternative to the tests.

The two alternatives to the tests, ASD and SAD, share some calculations. For each site,
the common part begins with the computation, for each sample, of the values of its empirical
cumulative distribution (F̂1 and F̂2) at each of the values of both samples (z j ∈ G1 ∪ G2,
G1 = {x1, . . . , xM } and G2 = {y1, . . . , yN }). Next, the vector of one of the samples is
subtracted from the other, thus obtaining the vector of signed differences:

F̂1(z j ) − F̂2(z j )

for j ∈ 1, . . . , M + N . For each site:

– ASD: Sum all the differences and then get the absolute value:

ASD =
∣
∣
∣
∣
∣
∣

M+N
∑

j=1

F̂1(z j ) − F̂2(z j )

∣
∣
∣
∣
∣
∣

7 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse20067
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Fig. 3 Example 1: Computation of the two alternative methods in an example that fits in a scenario of
differences in location

The intuition behind this method is that, as the differences in centrality become greater,
it is more likely that more and more differences F̂1(z j ) − F̂2(z j ) for j ∈ 1, . . . , M + N
tend to be further away from zero and in the same direction (positive or negative). If the
differences are only in spread, then this statistic will be close to 0.

– SAD: Sum the absolutes of all the differences:

SAD =
M+N
∑

j=1

∣
∣
∣F̂1(z j ) − F̂2(z j )

∣
∣
∣

The essence of this method lies in the fact that as the centralities and/or the spreads of
the two distributions tend to differ, such differences tend to be portrayed in the terms
∣
∣
∣F̂1(z j ) − F̂2(z j )

∣
∣
∣ for j ∈ 1, . . . , M + N .

In order to clarify this explanation, the computation of the two alternative methods is
shown for two different examples in Figs. 3 and 4.

It is worth mentioning that the two alternative methods designed and proposed, ASD and
SAD, can be used in many different problems apart from the one in which they are used in
this manuscript, the differential methylation biomarker detection problem. ASD and SAD
do not make parametric assumptions and are not subject to the multiple conditions statistical
tests have to meet. Therefore, it can be said that ASD and SAD are at least as flexible and as
general as the statistical tests they are compared with.
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Fig. 4 Example 2: Computation of the two alternative methods in an example that fits in a scenario of
differences in spread

3 Results and discussion

In this section, the results of the different stages are presented and discussed.
Each configuration of the three synthetic stages has been run 100 times, and the perfor-

mance measures are displayed in boxplots in Fig. 5 (differences in centrality) and Fig. 6
(differences in both centrality and spread). Specifically, the AUC is displayed for the first
stage and 1 − τ is displayed for the rest; consequently, in Figs. 5 and 6 the closer a boxplot
is to 1, the better the performance.

Parametric methods are designed to deal with data sampled from a given type of statistical
distribution. Consequently, it can be expected that the methods T-test and Tl test, which are
parametric and semi-parametric, respectively, perform better when the synthetic data fit into
their parametric or semi-parametric frames. That is, we can expect the T-test to achieve a
better performance when dealing with data sampled from normal distributions, and the Tl
test to achieve a better performance when dealing with data sampled from beta or normal
distributions.Moreover, we can expect thesemethods to suffer themost with the data sampled
from mixtures.

In the results of the first stage, it can be seen that, as expected, the parametric and semi-
parametric tests behave better than the rest in the contexts they have been designed for.
In addition, the T-test performs better than the Wilcoxon test and the ASD method even
when the synthetic data are generated using beta distributions. When only differences in
centrality are present,Wilcoxon and theASDmethodbehavevery similarly.Whendifferences
both in centrality and spread are present, it appears that the SAD method achieves a better
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Fig. 5 Results in the synthetic stages of the methods for differences in centrality. The labels of the abscissa
axes of the boxplots specify information about the distributions used: “N.”—normal distributions, “B.”—beta
distributions, “50 − 50”, “75 − 25” or “95 − 05”—mixtures of normal distributions in which the weights of
the normal distributions are equal to the values specified by the corresponding label
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Fig. 6 Results in the synthetic stages of the methods for differences in centrality and spread. The labels of the
abscissa axes of the boxplots specify information about the distributions used: “N.”—normal distributions,
“B.”—beta distributions, “50 − 50”, “75 − 25” or “95 − 05”—mixtures of normal distributions in which the
weights of the normal distributions are equal to the values specified by the corresponding label
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performance than the Kolmogorov–Smirnov test when the samples are small (20 individuals
per sample) but worse when the samples are bigger (50 and 100 individuals per sample).

Regarding the results of the second stage, it can be seen that the performances of all
the methods drop because the problem has become more difficult. Again, as expected, the
parametric and semi-parametric tests behave better within their natural contexts. Also in
this second stage, the T-test performs better than the Wilcoxon test and the ASD method
when the synthetic data are generated using beta distributions. Besides, Wilcoxon and ASD
keep obtaining similar performances. However, changes appear in the relative performance
between the Kolmogorov–Smirnov test and the SAD method, this last one reaching better
average results than the Kolmogorov–Smirnov test in every configuration of the second stage.

In the third stage, as expected, the performance of the (semi-)parametric methods drops
in comparison with the other two. In the case of the T-test, it achieves worse performances
than both the Wilcoxon test and the ASD method in every configuration of the third stage.
However, the similarity in the performance between the Wilcoxon test and the ASD method
still remains. In the scenario of differences in both centrality and spread, the SAD method
achieves, in every configuration of the third stage, the best average performance, while the
Tl test and the Kolmogorov–Smirnov test interchange positions between them depending on
the specific configuration.

The results of experimentation with real data are shown in Fig. 7 and in Tables 1, 2, 3
and 4. This time, in Fig. 7, the x axis shows the logarithm of the sizes of the tops, while the
y axis shows the estimations derived from the data of the n expected consistency indexes.
Further details can be found in the aforementioned paper [27]. In each subfigure, for each
one of the three methods compared, two different lines are shown. One corresponds to the
estimation of the expected reproducibility when the original dataset given is partitioned into
disjoint subsets (the pessimistic lower curve). The other one corresponds to the estimation of
the expected reproducibility when the two new datasets are derived with a sampling through
bootstrapping in the original dataset given (the optimistic higher curve). Namely, due to their
nature, the two estimations have opposite biases, and thus, the true curve most likely lies
somewhere between both. Finally, it is worth mentioning that the n expected consistency
indexes of a method which assesses candidate biomarkers according to a random uniform
distribution is 0.

The reproducibility displayed in the plots can be summarized in two values. Assuming
the simplification of having only two types of candidate biomarkers (true biomarkers and
non-biomarkers), we can estimate the number of candidate biomarkers with differences and
their relative weight (the tendency to consistently appear in the first positions). These values
are shown in Tables 1, 2, 3 and 4. Specifically, in each cell of the tables two values are
displayed, the first one associated with the use of a stratified partition and the second one
associated with the use of bootstrapping.

In the case of the ovarian cancer database, in general, the behaviors of the RCBS methods
show, in Subfigures 7a and b, similar shapes that tend to follow a pattern. This pattern of the
shapes first makes a hill-shaped curve moving away from the random behavior, through a
steep slope until the top of the hill is reached. Then, its reproducibility decreases approaching
the random behavior until finally the amount of candidate biomarkers in the top rankings is
the whole set of candidate biomarkers. This general behavior matches a scenario in which
the RCBS methods consistently assess a few candidate biomarkers as more relevant than the
rest of the candidate biomarkers. Consequently, they tend to appear in the first positions of
the rankings consistently, while the orders of the rest of candidate biomarkers are frequently
interchanged by the RCBS methods. More specifically, the T-test shows curves of repro-
ducibility that are in general lower than the reproducibility curves of the other two RCBS
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(a) (b)

(c) (d)

Fig. 7 Results in the ovarian cancer database, when 7a methods for differences in centrality are applied and
7bmethods for differences in centrality and spread are applied; and results in the nephropathy database, when
7c methods for differences in centrality are applied and 7d methods for differences in centrality and spread
are applied

methods. Besides, for theWilcoxon test and the ASDmethod, the values that the fitted model
issues offer a mixed outcome, issuing a lower amount of true biomarkers with greater weights
for both of them than for the T-test. Regarding the comparison of the RCBS methods used to
face the scenario with both differences in centrality and spread, in the ovarian cancer database
the curves of SAD are in general higher than the curves of the other two RCBS methods. In
terms of values issued by the fitted model, SAD issues weight values higher than the other
two RCBS methods, but it issues an amount of true biomarkers comparable to the amount
issued for the Kolmogorov–Smirnov test.
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Table 1 Amounts and weights of
candidate biomarkers with
differences for the methods for
differences in centrality when
applied to the ovarian cancer
database

Method Amounts Weights

T-test (734, 2578) (105.21, 26.34)

Wilcoxon (1340, 3508) (43.73, 24.02)

ASD (1339, 3500) (43.78, 24.09)

Table 2 Amounts and weights of
candidate biomarkers with
differences for the methods for
differences in centrality and
spread when applied to the
ovarian cancer database

Method Amounts Weights

Tl (1349, 3941) (33.12, 17.15)

Kolmogorov-Smirnov (1310, 3619) (33.10, 17.55)

SAD (1336, 3611) (43.91, 21.90)

Table 3 Amounts and weights of
candidate biomarkers with
differences for the methods for
differences in centrality when
applied to the nephropathy
database

Method Amounts Weights

T-test (7459, 7780) (0.78, 1.00)

Wilcoxon (6956, 6809) (1.04, 1.11)

ASD (7661, 6596) (1.04, 1.15)

Table 4 Amounts and weights of
candidate biomarkers with
differences for the methods for
differences in centrality and
spread when applied to the
nephropathy database

Method Amounts Weights

Tl (8680, 10288) (0.87, 1.32)

Kolmogorov-Smirnov (9127, 10075) (1.03, 1.20)

SAD (8065, 6395) (1.15, 1.15)

In contrast, in the case of the nephropathy database, the behaviors of the RCBS methods
show, in Subfigures 7c and d, a very different pattern. Specifically, the pattern consists of a
totally flat curve, which matches a scenario in which all the RCBS methods fail to achieve
a reproducibility any different from that of a random RCBS method. Namely, such behavior
indicates that none of the RCBS methods can consistently assess any candidate biomarkers
as any more relevant than any other. One possible explanation for this general behavior is
that the differences between populations are so small that the RCBS methods are barely able
to detect them. Subsequently, any change in the sample leads to changes in the rankings the
RCBSmethods produce. Another possibility is that theremay be some problemwith the data.
Another possible explanation is that the RCBSmethods do not show preferences towards any
candidate biomarker, and therefore, they produce rankings at random. In addition, the values
that the fitted model issues are clearly congruent, issuing for all the cases weights which are
really close to one. Such an occurrence suggests that if there are any true biomarkers in the
dataset, they do not tend to be drawn consistently before the non-biomarkers by the RCBS
methods.

Finally, it is worthy mentioning that the results displayed in this paper are not the only
ones generated by our research. In the supplementary material (Online resource 1), results
corresponding to some other alternative methods that we studied are gathered.
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(a) (b)

Fig. 8 Results in the ovarian cancer database when outliers are removed, when 8a methods for differences in
centrality are applied and 8b methods for differences in centrality and spread are applied

Table 5 Amounts and weights of
candidates with differences for
the methods for differences in
centrality when applied to the
ovarian cancer database in which
outliers have been removed

Method Amounts Weights

T-test (1851, 4644) (30.44, 21.06)

Wilcoxon (1682, 4161) (34.79, 22.33)

ASD (1690, 4147) (35.53, 22.63)

Table 6 Amounts and weights of
candidates with differences for
the methods for differences in
centrality and spread when
applied to the ovarian cancer
database in which outliers have
been removed

Method Amounts Weights

Tl (1914, 6343) (18.97, 13.40)

Kolmogorov-Smirnov (1555, 4281) (27.61, 16.01)

SAD (1635, 4147) (36.26, 22.63)

3.1 Analysis of the impact of the outliers

In addition to all the experimentation previously exposed, we decided to run an additional
experiment so as to assess how much the outliers present in real databases impact the com-
pared RCBS methods in terms of reproducibility. Specifically, we decided to rerun the
experimentation carried out with the ovarian cancer database, modifying the preprocess-
ing done. We added to it steps so as to systematically remove every single value from the
data labeled as an outlier. Further details can be found in supplementary material (Online
resource 1). This decision was based on two motivations: One is that we wanted to see how
much the withdrawal of outliers in real data helps to increase the reproducibility of the RCBS
methods that showed a worse performance when dealing with synthetic data in which out-
liers were present. The other motivation that encouraged us to rerun only the experimentation
performed on the ovarian cancer database is that it is the experimentation with real data in
which the different RCBS methods show different behaviors. The results corresponding to
this additional experimentation can be seen in Fig. 8 and in Tables 5 and 6.
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Analyzing the new results and taking into account the previous ones, in comparison with
the RCBS methods for differences in centrality it can be seen that, as expected, the T-test
method is that which benefits the most. In the new results, it achieves a reproducibility curve
comparable to the ones of the other two RCBSmethods for differences in centrality. Besides,
some improvement can be seen in the curves of the three RCBS methods in the leftmost
part (first positions) of them. In terms of the values issued by the fitted model, now the
previous mixed outcome reverts, this time the T-test being the one with a greater amount of
true biomarkers with lesser weight values.

Comparing the RCBS methods for differences in centrality and spread in terms of repro-
ducibility curves, although it is not as clear as in the previous comparison, it seems that the
Tl method benefits more than the other two. Again, all the methods improve their curves in
the leftmost part. Additionally, in the case of the Tl method, it seems that its curve of repro-
ducibility when a stratified partition is performed improves mainly by shifting leftwards. In
addition, in the case of the reproducibility curve of the Tl method when bootstrap is done,
it can be seen that it also improves in the most right-sided part. Besides, in terms of values
issued by the fitted model, the amounts of true biomarkers issued for Tl increases proportion-
ally more than it increases for the other two methods. In contrast, the weights of the Tl are the
ones that drop more. In general, all the methods increase their amounts of true biomarkers
while dropping their weights, except for the SAD method when bootstrapping is applied,
which increases in both.

In global terms, considering the results of the analysis of the impact of the outliers and
taking into account the previous results, it seems that the alternative RCBS methods show at
least a better robustness to outliers in comparisonwith theRCBSmethods based onparametric
and semi-parametric statistical tests.

4 Conclusions

Since the computation of p-values is not necessary to rank candidate biomarkers, in this work
we have explored mainly one question: Is it possible to design simple, alternative metrics
to get better rankings? In order to answer this question, we have developed two alternative
metrics and we have developed an evaluation workflow where both the performance and the
reproducibility of any method can be assessed.

As an example, we have compared very simple RCBS methods with classical and state-
of-the-art tests in the context of methylation data. From this comparison, we can draw some
conclusions, and, more important, an answer to the main question. The results of the com-
parison show that, as expected, parametric models work great when their assumptions are
true but, in more complex situations, such as multimodality or the presence of outliers, non-
parametric methods work better. As for the proposed alternative RCBS methods not based
on statistical tests, their behavior is similar to the RCBS methods based on nonparametric
statistical tests in the case of differences in centrality, but shows a better compromise between
different scenarios in the case of differences in both centrality and spread.

The plots used in the last stage of our workflow show in a simple, visual way the stability
of the methods in a particular dataset. As such, they can be a good tool to analyze the RCBS
methods or the effect of the preprocessing, as shown in the differences between the curves
of the RCBS method based on the T-test when a more aggressive removal of outliers is
conducted. Moreover, they can also be a great tool to analyze the data itself (in the case of
nephropathy data, none of the methods is able to obtain consistent results, suggesting that
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there may be a problem with the data itself). Regarding the reproducibility, we can see that
the proposed alternative RCBS methods not based on statistical test are, in general, more
stable than the other RCBS methods.

To sum up, going back to the main question, the results show that, indeed, we can design
good, competitive methods to rank biomarkers without the restrictions imposed by the sta-
tistical tests. This freedom enables both the proposal of methods as specific as needed so as
to cope with the particularities of any given problem at hand and the proposal of methods as
general as desired for their application to a wide range of problems. For that task (propos-
ing new metrics), evaluating the alternatives is absolutely mandatory. In this paper, we have
shown how this comparison can be made, not only in the results of performance but also from
the reproducibility point of view. Moreover, this analysis workflow can be used to evaluate
other procedures (such as preprocessing steps or strategies to increase the robustness of the
analysis) in terms of reproducibility.

Finally, we would like to outline some possible future work research lines. One possible
work line could be the development and testing of strategies to increase the robustness of
the methods used to rank biomarkers. Another possibility consists of the extension of the
workflow through the introduction of a new stage in which the RCBS methods would have
to deal with data generated through simulation. Briefly, in contrast to the synthetic stages
in which too simplistic distributions are used, in this new stage the biology underlying the
given specific problem at hand would be simulated. This way, the performance of the RCBS
methods could be assessed in scenarios far more similar to the real problem under study than
the scenarios in which synthetic data have been used. Lastly, the design of new specific RCBS
methods for particular problems is another research line that should be taken into account.

Supplementary Information The online version contains supplementary material available at https://doi.
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