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Abstract
Personalized itinerary recommendation has garnered wide research interests for their ubiq-
uitous applications. Recommending personalized itineraries is complex because of the large
number of points of interest (POI) to consider in order to construct an itinerary based on
visitors’ interest and preference, time budget and uncertain queuing time. Previous studies
typically aim to plan itineraries that maximize POI popularity, visitors’ interest andminimize
queuing time. However, existing solutions may not reflect visitor preferences because when
creating itineraries, they prefer to recommend POIs with short prior visiting periods. These
recommendations can conflict with real-life scenarios as visitors typically spend less time at
POIs that they do not enjoy, thus leading to the inclusion of unsuitable POIs. Moreover, con-
structing itineraries based on selected POIs is a challenging and time-consuming process.
Existing approaches involve searching through a large number of non-optimal, duplicate
itineraries that are time-consuming to review and generate. To address these issues, we pro-
pose an adaptive Monte Carlo tree search (MCTS)-based reinforcement learning algorithm
EffiTourRec using an effective POI selection strategy by giving preference to POIs with long
visiting times and short queuing times along with high POI popularity and visitor interest. In
addition, to reduce non-optimal and duplicated itineraries generation, we propose an efficient
MCTS search pruning technique to explore a smaller, more promising portion of solution
space. Experiment results in real theme park datasets show clear advantages of our proposed
method over baselines, where our method outperforms the current state-of-the-art by 20.89
to 52.32% in precision, 8.36 to 21.35% in F1-score and 40.00 to 67.64% in execution time.
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1 Introduction

Tourism is one of the popular leisure activities for humans where the aim is to visit interesting
attractions in new locations. Visiting all the attractions is typically not possible as visitors
tend to have limited time budgets. Thus, a critical task for visitors is to plan an itinerary
that contains popular and interesting POIs, which must be completed within the visitor’s
specific time limit. This personalized tour planning is complex due to various constraints:
(i) the degree to which a visitor has a preference for popular POIs, POIs aligned to his/her
individual interests or some combination of popularity and interest-aligned POIs; (ii) visitors
do not like to queue, but if they have to, they prefer the POI/attraction to last longer than
conveys the earlier visitors interest; and (iii) visitor has limited time budget to complete
the tour. In particular, neglecting queuing time and solely maximizing visitor’s interest can
create a frustrating experience for visitors as they spend an unnecessarily long time queuing
rather than enjoying the attractions. In contrast, if visitors focus mainly on POIs with short
queuing times, this can also create a frustrating experience and possibly miss preferred
attractions in their itineraries. Considering these issues, it is difficult to manually construct
suitable itineraries that satisfy these constraints. Therefore, an efficient and personalized
tour/itinerary recommendation approach is needed to maximize visitor’s preferences, POI
popularity and minimize queuing time within the visitor’s time budget.

We will repeatedly use three kinds of time duration terminology to introduce these impor-
tant concepts: queuing time, visiting time and traveling time in Fig. 1. Queuing time means
the time to wait to enter a POI, visiting time means the time visitors spend at the POI after
getting access, and traveling timemeasures the amount of time to travel from a POI to another.

Previous research has focused on developing itinerary recommendation algorithms based
on an optimally scheduled path based on POI popularity [48], group pleasure [20,38], manda-
tory POI categories [5,35], demographic features [6] and geographical check-in impact [8].
The prior studies [40] and [12] show that traveling time and visiting time are important fac-
tors for tour planning. However, these approaches did not consider the queuing time of POIs.
Considering queuing time, Lim et al. [36] proposed aMonte Carlo tree search (MCTS)-based
algorithm whose objective is maximizing the POI popularity, user interest and minimizing
the queuing time. However, they prefer a short visiting time POI that indicates earlier visitors
do not like it very much, which may lead to inappropriate POI recommendations when there
is queuing to access POIs.

As an illustration, Fig. 2a shows the POIs average visiting times of California Adventure
Theme Park in the USA. The results suggest that visitors prefer POIs with long visiting times
rather than ones with short visiting times. As a proxy of user’s interests, we use the number
of visitors to gauge the general interest of each POI.

Figure2b shows the Pearson correlation between the number of visitors and visiting time
of each POIs. The correlation coefficient is 0.77, which means the number of visitors and
visiting time are positively correlated. Thus, visiting time could be a consideration for visitors
to prefer specific POIs. We hypothesize that visitors have to wait in a queue to enter a POI. In
the California Adventure theme park scenario, visitors have to spend on average more than
60% time as queuing time. In research on the psychology of waiting in queues [9,43], people
will wait longer for more valuable service. If the queue times are roughly the same across
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Fig. 1 Example of various time duration’s

14
13

12
11

10
9 9

8 8
7 7

6 6
5

4 4
3 3 3 3 3

2 2
1 1

0

5

10

14 13 24 25 16 7 12 19 23 17 18 6 22 4 3 15 1 8 10 11 21 5 20 2 9

POIs ID

V
is

iti
ng

 T
im

e 
(M

in
)

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

Visiting Time

V
is

ito
rs

(a) Average visiting time of POIs (b)Correlation between number of visitors and
visiting time

Fig. 2 Illustration of prior visitors visiting time influence of each POI

POIs, then all things being equal, they prefer the POI with a longer average visiting time to
justify the wait. To consider this psychology, in our proposed method, longer visiting POIs
have been preferred in the itinerary recommendation along with shorter queuing time.

Previous methods [2,35,36] directly or indirectly preferred to recommend POIs with
shorter prior visitor visit duration, as they aim to visit as many POIs in the time budget to
maximize the predicted interest and popularity. However, in light of our analysis, it suggests
this might lead to POIs, which are of less interest to visitors. In addition, previous methods
consider all POIs with the same significance in their evaluation metrics, i.e., precision, recall
and F1-score calculation, because all these metrics count the number of POIs. They do not
consider visiting time, thus in Fig. 2a, POI 9 and POI 14, whose visiting time is one minute
and fourteen minutes, respectively. They are considered equal in desirability. In addition,
visitors have to endure long queuing times before being able to enjoy the attraction/ride.
However, selecting POIs with shorter visiting times may increase recall value, but it can use
a large proportion of time on queuing, which can make visitors bored. In this paper, we have
given special consideration to visiting time that results in our approach may recommend less
number of POIs to the visitors within budget time than the existing research. However, these
POIs are likely of higher interest to visitors as our evaluation shows that our precision and
F1-scores, computed against ground truths, are significantly higher than other works.

The problem of personalized itinerary recommendation considering visiting and queuing
time involves optimizing over POIs across time. The current approach of using integer pro-
gramming to optimize is not sufficient due to its long-running times. This paper proposes
EffiTourRec algorithm to construct POI itineraries for the visitors based on enhanced MCTS
with an effective heuristic and efficient pruning technique. An effective heuristic is introduced
that suggests POIs optimized to the visitor’s interest, POI popularity, prior visitors visiting
time and queuing time. To reduce non-optimal itineraries generation, we introduced a reward-
based pruning strategy that makes our approach efficient than the existing algorithms. The
main contributions of this paper are discussed as follows:

– We propose a new POI selection heuristic for personalized itinerary recommendation
by considering visitors’ various preferences, i.e., POIs popularity, visitors interest, prior
visitors visiting, queuing and traveling time.
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– We introduce an effective itinerary reward function-based level of trade-off among prior
visitors visiting time, POI popularity, visitor interests and queuing time.

– Wepropose adaptiveMCTS-based reinforcement learning algorithmEffiTourRec tomake
visitor itinerary recommendation more effective and efficient by using the new POI
selection heuristic and reward function strategy.

– In addition, to improve the time efficiency of our proposedmethod,we useMCTSpruning
technique to reduce search space by filtering out non-optimal and duplicate itineraries in
the early stages.

– We evaluate our proposed algorithm on five theme parks datasets to show our proposed
method’s effectiveness and efficiency against various state-of-the-art baselines. We test
on theme parks datasets because that is what [36] did to compare the itinerary recom-
mendation with queues.

– Experiment results demonstrate the effectiveness of our proposed method over baselines;
our method outperforms the current state-of-the-art by 21.04% to 50.24% in precision,
7.83% to 21.23% in F1-score, 8.36% to 43.96% in visiting time ratio with total time. It
also shows that the efficiency of our proposedEffiTourRec algorithmoutperforms than the
baselines by reducing 51.62% to 66.59% execution time and 47.49% to 61.99% moves
in MCTS compared to the best baseline PersQ algorithm.

The remaining parts of this paper are organized as follows. Section 2 describes the related
works while some preliminary concepts are discussed in Sect. 3. Problem definition is for-
mulated in Sect. 4. Our proposed EffiTourRec method is described in Sect. 5. Experiments
to evaluate the proposed method’s performance compared with the existing baselines are
demonstrated in Sect. 6. Finally, we conclude our proposed method with some future direc-
tions in Sect. 7.

2 Related work

Personalized itinerary recommendation research has recently attracted significant attention
due to its various applications. There are a variety of existing research works that cover
different aspects of the itinerary recommendation problem. In the following subsections, we
discuss various related works and highlight the difference between our work and the existing
works.

2.1 General itinerary recommendation

Many existing research works on itinerary recommendation [10,11,33] are based on orien-
teering problem (OP) [22,49] whose main aim is to maximize a global reward point within
user-defined time budget. POI popularity is frequently used as a global reward in theme park
[23,51] and city [24,33] itinerary recommendation. Many significant tourism-related works
utilize geo-tagged photographs [10,27] for identifying popular POIs to analyzing tourist
interest. While these recommendations are interesting, they do not use visitor’s personalized
interest preferences as a fact of global reward points. Yoon et al. [54] introduced an effi-
cient and balance intelligent tour recommendation using global positioning system (GPS)
itineraries. Lim et al. [37] described a social media data-based tour recommendation and
itinerary planning models in detail as a survey study.
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2.2 Personalized itinerary recommendation

Research in itinerary recommendations has focused on discovering different types of itinerary
recommendations based on the impacts of various constraints. These existing works’ objec-
tives are to recommend itineraries based on visitors’ interest preference [50], particular POI
visit order [21], group pleasure [20,38], mandatory POI categories [5,35], demographic fea-
tures [6], geographical check-in impact [8], etc. Lim et al. [40] introduced PersTour system
for personalized itinerary recommendations based on trip constraints and visitor interest pref-
erences using modified ant colony optimization [15] algorithm. Debnath et al. [12] presented
a time-aware and preference-aware routes recommendation system. Quan et al. [18] pre-
sented a spatial–temporal context-aware mixture model to a user within a geospatial range.
Travel time is one of the important factors of tour planning. To focus on travel time, Irina et
al. [14] designed an adaptive orienteering problem with stochastic travel times (AOPST) that
finds the path between the reward POIs in an integral component of the decision space. Time
constraints-based framework pirT [25] proposed a personalized itinerary in which social
network features and social relationships are used to define visitor preference. Zhixue et al.
[34] introduced a hybrid heuristic-basedRS-H2A algorithm that applies a random simulation-
based hybrid evolution strategy in a time-dependent stochastic environment to handle risk
awareness of the tourists. A collaborative filtering-based WMF-CR [46] approach has been
proposed to the personalized landmark nontrivial recommendations using geo-tagged pho-
tographs. Bowen et al. [16] developed a crowdedness-aware route recommendation model
for predicting the passenger transfer volumes of a specific location at a specific time duration.
These itinerary recommendation approaches do not consider the queuing time of attractions.

2.3 Personalized itinerary recommendation with queuing time awareness

The queuing time has significant effects on a personalized recommendation system where
a visitor has to wait a long time to get rides, i.e., a theme park tour. The theme park ride
access requires a long waiting time which can generate a frustrating experience for the
users. Lim et al. [36] incorporated queuing time to geo-tagged photographs and proposed
the PersQ algorithm by modifying the Monte Carlo tree search (MCTS) for recommending
personalized itineraries. ThePersQ algorithm’s objectives aremaximizing the POI popularity,
user interest andminimizing the queuing time.However, themethod shows that recommended
POIs are inversely proportioned to prior visitor’s visit duration. In the actual scenario, POIs
visit duration expresses visitors’ interest that should be proportion for POIs selection of an
itinerary.

The PersQ [36] algorithm first usedMCTS in itinerary recommendation like single-player
game [42]. Before that,most of the researchers appliedMonteCarlo tree search for two-player
games. MCTS space exponentially increases with the number of iterations and nodes in the
tree. Different kinds of pruning techniques: probability-based [17,44], heuristic-based [45]
reduce MCTS space in two players game. Neil et al. [4] designed a single-player game
whose objective is to transform an initial phase into a set of goal conditions phase using
automatic move pruning. Although our work is based on MCTS, it differs from the earlier
research works. In our work, we consider a different heuristic for potential POI selection and
a new reward function for ensuring visitor’s preferences in the itinerary recommendation.
In addition, our proposed personalized itinerary recommendation system is like one-player
game, and we apply an efficient pruning technique in adaptive Monte Carlo Tree Search to
reduce the tree search space.
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2.4 Top-k POI recommendation

Most of the top-k POI recommendation works are based on collaborative filtering (CF) or
matrix factorization approaches. Their main objective is to make a ranked list and recom-
mend top-k POI to the visitors. User-based collaborative filtering (UBCF) for itineraries
[53] has been proposed to recommend a set of top-k POIs for visitors considering the social
influence and spatial influence. Kotiloglu et al. [32] proposed “Filter-First, Tour-Second”
framework where the first phase finds the top-k optional set of POIs using CF [13] that are
added to mandatory visited POIs to create a possible recommendation. An iterative heuristic
approximation (IHA) [55] method is proposed that makes attractions set based on profits
and recommends these attractions to the visitor until the budget time is reached. Hu et al.
[26] proposed travelogues and check-in information basedmulti-source data to capture user’s
interest and find top-ranked itineraries and recommend that to the users.

2.5 Sequences of locations

A set of locations are ordered to generate an itinerary recommendation where the order of
locations is important. Baral et al. [1] proposed a context-aware personalized POI sequence
recommendation approach by extending the recurrent neural network and its variants. Multi-
source-based personalized travel sequence recommendation [28] has been presented, which
can recommend a travel sequence rather than individuals POIs using heterogeneousmetadata.
Lou et al. [41] focused on sentimental characteristics of POIs and then recommended these
POIs using SPR algorithm. The geographical position has a remarkable impact on POI
recommendation [53] that visitors tend to visit nearby POIs around their homes or office.
The researchworks [7,52] proposedprobability-based recommendations that a closer distance
between visitors and locations has a higher probability for a recommendation. To explore
the impact of spatial, temporal and social influence, STSCR [19] model has been proposed
to handle user’s behaviors properly in sequential attractions recommendation.

2.6 Discussion of differences with previous works

Our proposed EffiTourRec algorithm differs from these previous works in various aspects.
Table 1 shows the main features of tour itinerary recommendation works and the significant
constraints faced by existingmethods. First, unlike top-kPOI recommendations, our proposed
method recommends a set of POIs and constructs an itinerary considering the traveling time
between POIs, visiting time of POI, queuing time of POI and completing this itinerary
within user-defined time budget. Second, in contrast to existing works, our proposed visitor
personalized interest is proportional to visitors’ prior visit duration (e.g., more spending time
means more interest). While existing works’ personalized interest is inversely proportional
to the prior visit duration (e.g., more spending time means less interest), visitors can board.
Third, we formulate a personalized itinerary reward function by giving prior visitors’ time-
based POI visit preferences. In contrast, existing works did not differentiate long and short
POIs visiting time that has significant meaning in itinerary recommendation shown in Fig. 2.
Fourth, previous algorithmswere not concerned about various time ratioswith total expending
time. We have shown the performance analysis based on various time ratios between our
proposed approach and existing baselines. Last but not least, shorter itinerary construction
time is an important feature of the itinerary recommendation system because visitors would
prefer to get their itinerary recommendations without excessive delays. Thus, our proposed
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Table 1 Comparison between proposed algorithm and various baselines, in terms of considering constraints

Algorithms Popularity
based

Interest
based

Queue
time

Visit
time

Travel
time

Heuristics
based

Construct
itinerary

Pruning
technique

UBCF [53] � �
IHA [55] � � min min Heuristic

TripBuilder [2] � � �
pirT [25] � � min min A* �
Lim et al. [35,39] � � min min �
PersQ [36] � � min min min MCTS �
EffiTourRec � � min max min MCTS � �

Here, max and min represent maximize and minimize constraints value, respectively

EffiTourRec algorithm uses an efficient pruning technique to reduce the search space and
makes the system more than 40% time efficient than the existing baseline algorithms.

3 Preliminaries

Suppose that there are some visiting POIs in a city or theme park. To recommend these POIs
based on visitor interest, POIs popularity and time constraints, we introduce the following
terms, some of which have been defined previously.

Definition 1 Point of Interest (POI): Let a set of tourist points be P = {p1, p2, p3, · · · , pn}
in the theme park or city. Each point pi ∈ P can have properties, e.g., points area, points
category, travel time from other POIs, visiting time and queuing time.

Definition 2 Popularity of POI (PoP): Let a POI attraction be pi ∈ P , the popularity of pi
is defined as the number of times pi has been visited by the visitors U and it is defined as:

PoP(pi ) =
∑

u∈U
δ(u, pi ) (1)

where δ(u, pi ) = 1 if the visitor u ∈ U visits POI pi in his/her tour, otherwise δ(u, pi ) = 0.

Nowadays, photo sharing and social media sites provide many avenues for users to share
photographs of their daily experiences, many of which involve interesting places they have
visited. Thus, visitors are interested in taking photographs in their preferred attraction and
the number of taking pictures reflects the level of interest of any attraction. Although POI
popularity is the same for all visitors, the interest relevance of a POI differs from visitor to
visitor. Each visitor will have their independent interest preferences. We can find user’s inter-
est in particular categorical POIs in three different ways: (i) number of taken photographs;
(ii) amount of spending time; and (iii) number of repeated visits. Therefore, in this paper, we
consider user interest based on the number of taken photographs, which has been applied in
the baseline algorithm PersQ [36]. User’s interest feature selection may change the efficiency
of the proposed and baselines algorithms. Effective user interest features selection or con-
catenation approach of multiple features to express users interest may be another research
direction. However, this research’s main aim is to propose an effective and efficient itinerary
recommendation considering similar features like baselines.
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Definition 3 Interest of POI (IoP): Suppose that C represents the set of all POI categories
and each pi ∈ P is associated with a certain category c ∈ C . Furthermore, F is the set
of photographs taken by visitor u in these POIs. Therefore, the interest level of visitor u in
category c is defined as:

I oPu(c) = 1

|F |
∑

q∈F
λ(cq = c),∀c ∈ C (2)

where λ(cq = c) = 1 if the visitor u takes photograph q which category is cq in a POI that
belong to category c, otherwise λ(cq = c) = 0. The intuition of this definition is that the
visitor takes more photographs of a POI (category) if he/she likes it.

Definition 4 Itinerary History (IH): Suppose a visitor u visits k number of POIs, we can
represent visitor itinerary history as an order of visiting points sequence,

I Hu =
(
(p1, t

a
up1 , t

d
up1), (p2, t

a
up2 , t

d
up2) · · · , (pk , t

a
upk , t

d
upk )

)
(3)

in which the triplet (pi , taupi , t
d
upi ) conveys the visited POI pi , the arrival time and departure

time at POI pi are taupi and t
d
upi , respectively.

Definition 5 Itinerary Sequence: Based on the itinerary history I Hu of a visitor u, we fur-
ther process this extended travel history into smaller travel sequences. Thus, we divide this
itinerary history into multiple itinerary sequences, i.e., sub-sequences of I Hu if the travel
duration between two constitutive POI is T DoP(px , px+1) > τ . In this paper, we consider τ
= 8 hours. For a visitor u with n number of itinerary sequences, we use I H1

u , I H2
u , · · · , I Hn

u
that represent travel sequences in temporal order, i.e., I H1

u visited before I H2
u .

Definition 6 Visit Duration of POI (VDoP): Suppose a visitor u ∈ U visits pi ∈ P at time taupi
and leaves at time tdupi , then the visit duration of visitor u at pi is V DoP(u)pi = tdu pi − tau pi
which represents one visit duration. For all visitors W ⊆ U who have visited pi , we can
determine the average visit duration of POI pi as follows.

V DoP(pi ) = 1

|W |
∑

u∈W
(tdu pi − tau pi ) (4)

where |W | is the number of visitors who visit the POI pi .

Definition 7 Travel Duration of POI (TDoP): Suppose a visitor u completes his/her visit at
POI pq at time tdupq and start/arrival visit at POI pr at time taupr , then we define the travel

duration of two sequential POI from pq to pr as T DoP(pq , pr ) = taupr − tdupq .

Definition 8 Queuing time of POI: In general, each POI pi ∈ P can also be associated with
a queuing time after arriving at POI pi , e.g., queuing to buy a ticket, to ride a roller coaster,
etc. Suppose that visitors W ⊆ U who visit POI pi and t is the visiting time, then we can
designate the queuing time as a function of timestamps t and POI pi as follows.

Queuetpi = 1

|W |
∑

u∈W
μ(pi )

(
(tdupi − taupi ) − V DoPpi

)
, where taupi ≤ t ≤ tdupi (5)

where μ(pi ) = 1 if visitor u visit POI pi at timestamps t , otherwise μ(pi ) = 0. In short, we
find the queuing time at POI pi based on the total time spent at an attraction subtracted by
its average visiting time.
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4 Problem definition

We define the personalized itinerary recommendation problem, with the main objectives of
maximizing the popularity, visitor interest, visiting time of each POI visited/recommended
and minimizing the queuing and travel times. As visitor interest is determined by the visitors
spending time and visitors taking photographs of visiting attractions, it is relevant to con-
struct a personalized itinerary. We denote this problem as the EffiTourRec problem. Another
objective is to recommend attractions to the visitor in a shorter time than the existing systems.

Given a set of POIs P = {p1, p2, p3, · · · , pn}, a time budget T , a starting POI p1
and destination POI pn . Our main goal is to recommend itinerary I = {p1, · · · , pn} that
maximize the total reward ensuring the itinerary is completed within the given time budget
T . The reward function is calculated based on POI popularity, visitors’ interest, visiting time
and queuing time of POI p j as follows.

max
∑

pi∈I

∑

p j∈I ,pi �=p j

Pathtpi ,p j
∗

( PoP(p j ) ∗ I oP(cp j ) ∗ V DoP(p j )

Queuetp j

)
(6)

where Pathtpi ,p j
= 1 if visitor visits pi and p j as a sequence in an itinerary history, and

Pathtpi ,p j
= 0 otherwise. PoP(p j ) represents the popularity of POI p j , while I oP(cp j )

indicates user interest based on number of taken photographs in the category of POI p j

and V DoP(p j ) indicates the prior visitors average visiting time of p j . Moreover, Queuetp j
conveys average queuing time at timestamp t in POI p j . The main objective of this research
is to maximize popularity, interest, visiting time and minimize queuing time. Therefore, we
maximize popularity, visitor interest and prior visiting time as the numerator and queuing time
as the denominator in Eq.6. To emphasize the balance among popularity, interest and visiting
time, we use multiplication among them. The idea is similar to probability multiplication,
which is known to work well when different measures are independent and have equivalent
value ranges.

Moreover, the following constraints are aggregated to solve the Eq.6.
∑

pi∈I ,i �=1

Pathtp1,pi =
∑

p j∈I , j �=n

Patht+d
p j ,pn = 1 (7)

Constraint 7 ensures that the recommended itinerary starts at a particular POI p1 and ends
at specific POI pn .

∑

pi∈I ,k �=n

Pathtpi ,pk ≤ 1 and
∑

p j∈I ,k �=1

Patht+d
pk ,p j

≤ 1 (8)

Constraint 8 indicates that all selected POIs in an itinerary are connected and no POIs are
included more than once.

∑

pi∈I

∑

p j∈I ,pi �=p j

T imet (pi , p j )Path
t
pi ,p j

≤ T (9)

Constraint 9 confirms that the recommended itinerary will be completed within budget
time T. Here, the time function is calculated based on travel time, visiting time and queuing
time using the following Eq.10.

T ime(pi , p j ) = T DoP(pi , p j ) + V DoP(p j ) + Queuetp j
(10)

Themain goal of this research is to propose an effective and efficient personalized itinerary
recommendation system that can conduct practical and significant tourism parameters, e.g.,
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Fig. 3 Working steps of proposed EffiTourRec recommendation system

POIs popularity, visitors’ interest, starting and ending POIs, and time constraints including
budget time, queuing time, visiting time and travel time.

5 Proposed EffiTourRecmethod

In this section, we introduce our proposed approach. We design an adaptive Monte Carlo
tree search (MCTS)-based Efficient Tour Recommendation (EffiTourRec) system for per-
sonalized itinerary recommendation using realistic effective heuristic and efficient pruning
technique. The main purpose of using adaptive MCTS is that it can be adaptive to run only
a fixed number of iteration or a fixed amount of time and has been shown [36] to be a good
search strategy for showing itinerary paths. Figure3 depicts our proposed EffiTourRec rec-
ommendation system working steps. At the first step, the system takes the data from the
input databases, which consists of a POI network, visiting sequence and queue information.
Second, the EffiTourRec system finds a set of POIs for the visitor by using an effective heuris-
tic. These POIs create a personalized itinerary recommendation that visitors get maximum
entertainment by maximizing visitors’ interest, POI popularity, visiting time and minimizing
queuing time. Our proposed effective heuristic method is applied to select potential POI at
the adaptive Monte Carlo tree search selection step. We also applied an efficient pruning
technique that allows us to explore a smaller, more promising portion of the solution space,
thus our method requires a shorter running time. The following subsection formalizes the
concepts and presents a detailed description of adaptive MCTS that is used in our proposed
EffiTourRec method.

5.1 Monte Carlo tree search

Monte Carlo tree search (MCTS) is a well-known reinforcement learning algorithm that
not only has been successfully applied to artificial intelligent (AI) games (e.g., chess, go,
Othello) [3] but also has been applied in personalized itinerary recommendation [36]. In the
personalized recommendation system, each move from a node to a child node is considered
as a variable cost, such as tour time, in contrast to the uniform cost of board games. This
variable cost is time dependent because queuing time at the same attraction depends on
the crowd, which is high at peak time and low at the off-peak time. Thus, the itinerary
recommendation result is measured by the complex reward function that aims to maximize
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POIs popularity, visitors’ interest, visiting time and minimize queuing time instead of board
game binary reward win or lose. MCTS and our approach run over a number of iterations
and each iteration consists of four steps.

Selection step is used for traversing the POIs from starting POI to last visit POI. After that,
the expansion step is used to decide how many and which POIs are considered as the next
potential POIs in the itinerary recommendation. Then, the simulation step is used to complete
the itinerary recommendation starting POI to ending POI. Finally, the reward function of
Monte Carlo evaluation is propagated back to the starting POI using a back-propagation
strategy. We describe each part of our proposed adaptive MCTS steps in detail.

Step 1: Selection: At each iteration, the MCTS begins at starting POI as a tree root node
and moves recursively through the tree child node to expand based on the tree policy until it
reaches destination POI or unvisited POI. In the most common tree policy, the next node is
selected by the upper confidence bound tree (UCT) [29], which is improved and applied in
the personalized itinerary recommendation by the PersQ [36] algorithm, using an additional
heuristic for selecting the next potential POI p j .

UCT PersQ
p j

=

Potential POI︷ ︸︸ ︷
PoP(p j ) + I oP(cp j )

V DoP(p j ) + T DoP(pi , p j ) + Queuetp j

+

Path Reward︷ ︸︸ ︷
total Rewardp j

visi tCountp j︸ ︷︷ ︸
Exploitation

+ 2Cp

√
2lnvisi tCountp j

visi tCountpi︸ ︷︷ ︸
Exploration

(11)

In Equation 11, the first part potential POI used a heuristic to select the next potential POI
to favor the POIs with higher popularity and interest but with the lower associated traveling,
visiting and queuing time. The second part path reward used for existing path rewards based
on POI popularity, visitor interest and queuing time from starting POI to POI pi . These
two parts express the exploitation of itineraries from source to potential candidate POI p j .
The exploitation ensures the best itinerary path is found thus far. The third part, exploration
controls the number of POIs that have not been visited previously. The parameterCp fixed the
value of exploration of POIs which the best value is 1√

2
determined by Kocsis and Szepesvári

[30] as it satisfies Hoeffiding’s inequality.
We observe that the proposed UCT in the earlier PersQ suffers from three shortcomings.

First, the PersQ [36] system did not consider visitor visiting time as visitors’ interest or
preferences, it only considers the number of visitors who visited the POI and the number of
taken photographs in that POI as the visitor interest. Second, PersQ cannot differentiate the
persons’ interest who spend more time in an attraction than the others because the popularity
of attraction is measured by the number of visitors, not their spending time. Third, in the
proposed PersQ algorithm next potential POI selection is inversely proportional to prior visit
time, which means if prior visit time is large, then POI selection probability will be less. This
is contradictory with real-world behavior because prior visit time is typically proportional to
the visitors’ interest. That means if prior visitors spend more time in a POI, they will likely
like it very much.

To overcome these three shortcomings, we propose an effective heuristic-based potential
POI selection method which is based on the POI popularity, visitors’ interest, POI visiting
time and POI queuing time.
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UCT E f f iT our Rec
p j =

Potential POI︷ ︸︸ ︷
PoP(p j ) ∗ I oP(cp j ) ∗ V DoP(p j )

T DoP(pi , p j ) + Queuetp j

+

Path Reward︷ ︸︸ ︷
total Rewardp j

visi tCountp j︸ ︷︷ ︸
Exploitation

+ 2Cp

√
2lnvisi tCountp j

visi tCountpi︸ ︷︷ ︸
Exploration

(12)

The main reason for the effectiveness of our proposed method compared to the existing
PersQ method is due to its exploitation part. Exploration part is the same for both methods.
The exploitation part consists of two parts that ensure the best itinerary path is found from
starting POIs to current POI pi and select next potential POI p j , respectively. In the first
part, potential POI ensures the selected p j maximize popularity, visitor interest and prior
visitors’ preferences and minimize queuing time and traveling time. Here, POI popularity
depends not only on specific user previous visits but also on previous users’ repeated visits.
Similarly, POI visiting time does not depend on signal users, and it also depends on other
users spending time on that particular POI. That is why user interest measured by the number
of taken photographs does not depend on POI popularity and POI visiting time. On the
other hand, POI popularity and POI visiting time are not dependent each other. Thus, we
consider these three factors and there are potential overlaps between them.Maximizing these
three factors, we cover potential overlap and balance the multi-factors preferences, which
finds the strong relationship among the factors. It will cover both user’s interest independent
and dependent factors. We have used multiplication among these features that objectives
are maximizing values. This multiplication value tends to be affected by one feature which
value is very large. To avoid this unexpected trend, we use normalization and all factors
values within 0 to 1 range. In the second part, path reward mentions that the existing itinerary
from starting POI to current POI pi is the best itinerary based on the reward function. The
reward functionmeasures itinerary rating considering POIs popularity, visitors’ interest, prior
visitors’ preferences and queuing time.

Figure4 illustrates a toy example that highlights the difference between our proposed
and existing heuristics. Assume that visitor u completes POI A visit. The next POI to be
visited will be selected based on UCT values among these three POIs. Consider path reward
and exploration are the same at this moment. Therefore, the value of UCT to select the
next potential POI depends on the only potential POI part. The existing PersQ selects next
potential POI C because it potential POI value is larger than others. The potential POI values
of these POIs are like this: POI B = (250+200)/(10+5+30) = 10, POI C = (250+200)/(5+5+30)
= 11.25, and POI D = (250+200)/ (15+5+25) = 10. On the other hand, our proposed heuristic
recommends the next potential POI D because its potential POI value is maximum among
these three POIs. These values are: POI B =

(
(200/200) ∗ (250/250) ∗ (10/15)

)
/((5 +

30)/35) = 0.667, POI C =
(
(200/200) ∗ (250/250) ∗ (5/15)

)
/((5 + 30)/35) = 0.33 and

POI D =
(
(200/200) ∗ (250/250) ∗ (15/15)

)
/((5 + 25)/35) = 1.17.

In the above discussion, it is clear that the existing PersQ method always recommends
minimumvisiting, travel and queuing time inwhich visitor spends only 5minutes for enjoying
POI C and 35 minutes for traveling and queuing purposes. This recommendation spends
much waiting and traveling time. In contrast, our proposed method recommends POIs whose
visiting time is maximum and traveling and queuing time are minimized. Hence, a visitor
spends 15 minutes to enjoy POI D and 25 minutes for traveling and queuing purposes that
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Fig. 4 The example illustrating the effectiveness of our proposed heuristic compared to the existing PersQ
heuristic. It shows that prior visiting time is proportion to user interest in itinerary recommendation

makes visitors happier than the state of the art PersQ. For the readers’ easy understanding,
we consider all POIs popularity is same and visitor interest to all these three categories are
uniform.

Step 2: Expansion: If the selected POI is not the ending POI, then one POI is added to
the itinerary to represent this move by selecting one unvisited POI child, which is selected
randomly.All these unvisited POIs are not significant. There are somePOIswith long queuing
times that can make visitors bored. To avoid these POIs, we have used a pruning technique
that will be described in detail in the next section.

Step 3: Simulation: The selection and expansion steps are repeated until the visitor
reaches the destination POI or exceeds the time budget. If the process continues and does
not reach the destination POI within a fixed budget time, then the system cannot create a
recommended itinerary. These itineraries, which are not ending with destination POI, are not
considered as successful itineraries.

Step 4: Back-propagation: The itineraries of simulation results are backpropagated from
the current POI to starting POI through the ancestor-selected POIs, updating the reward
function until it reaches the starting POI. We choose a reward function that reflects the POI
popularity, interest, visiting time and queuing time. The reward function is associated with
each iteration, and it differs from the existing PersQ [36] algorithm, and it is defined as:

Reward =
∑

p j∈I Htemp

PoP(p j ) ∗ I oP(cp j ) ∗ V DoP(p j )

Queuetp j

(13)

In this reward function, our main objectives are to maximize POI popularity, user interest
and visiting time andminimize queuing time. This function is more effective than the existing
function because the existing reward function does not consider visiting time as a factor to
determine the reward function.

5.2 Efficient move pruning

MCTS runs a fixed number of iterations and each iteration generates an itinerary, which may
be successful or unsuccessful. An itinerary that ends at the specified destination POI is a
successful itinerary, while one that fails to do so is an unsuccessful one. All these successful
itineraries do not achieve the same reward points. Therefore, the itineraries that achieve
non-optimal we want to avoid to reduce unnecessary search and expansion time. On the
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Fig. 5 The example illustrating the efficiency of our proposed pruning technique. It prunesMCTS space which
makes non-optimal and duplicate itineraries

other hand, the proposed method can generate the same successful itineraries multiple times,
which is again redundant and time-consuming. To solve these time-consuming itinerary
generations, we propose a new MCTS pruning technique that can prune duplicate itineraries
and non-optimal itineraries at the early stage. This pruning technique reduces search space
remarkably without the loss of successful itineraries. This pruning reduces time complexity
or space complexity and makes the system more efficient.

We consider cumulative itinerary reward point (IR) and cumulative itinerary time (IT) data
structures to remove these low-quality and duplicate itineraries. The cumulative itinerary
reward point and cumulative itinerary time are represented by I Ri

p j
and I T i

p j
, where i

indicates the itinerary POIs length and p j mentions POI in the itinerary. Then, whenever the
algorithm creates a new itinerary from starting POI to destination POI, its prune factor (PF)
defined by the ratio of cumulative reward points and itinerary time will be checked. If the
itinerary consists of the same POIs at the same length position with less or equal prune factor
value compared to the existing optimal one, the algorithm prunes search space considering
low rewarded itinerary or duplicate itinerary using the following equation.

MCT SPrune = I f
(
current_PFi

n j
<= existing_PFi

n j

)
(14)

where current_PFi
n j

and existing_PFi
n j

mention current prune factor and existing prune
factor at POI n j in position i , respectively. The following equation represents the prune factor.

PFi
p j

=
( |i |∑

1,p j∈I
I Ri

p j

)/( |i |∑

1,p j∈I
I T i

p j

)
(15)

where I Ri
p j
mentions cumulative itinerary reward and I T i

p j
indicates the cumulative itinerary

time from starting POI to POI p j and i presents the length of the creating itinerary.
We further elaborate on this pruning technique using the following example. Suppose

that, in Fig. 5 a successful itinerary is I = (
A → D → E → C

)
, which length is 4. The

cumulative itinerary reward points and cumulative itinerary time are I R1
A = 5, I T 1

A = 3,
I R2

D = 10, I T 2
D = 5, I R3

E = 17, I T 3
E = 7 I R4

C = 20 and I T 4
C = 10. Then, the algorithm

creates a second itinerary A → C as POI C is not visited yet as the second POI in the
itinerary. After that, when POI E is selected as the next potential POI it creates low prune
factor (17/9 = 1.89) than the existing POI E prune factor (17/7 = 2.43) at the third position in
the first itinerary. Thus, the system can prune remaining MCTS traversing, which generates
low-quality itineraries. In this same process, the algorithm can prune remaining tree search
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whether they find a low prune factor at POI C and POI E in third and fourth itineraries, respec-
tively. This approach ensures low-quality itineraries generation are pruned early, making our
proposed system faster without losing any information. Besides this, sometimes MCTS gen-
erates duplicate itineraries with the same prune factor. Suppose the fifth iteration generates a
duplicate itinerary. In that case, the algorithm can prune this itinerary generation whenever it
finds that the prune factor of POID is the same as the existing value. Therefore, the system can
avoid huge tree searching using this pruning technique. This example exhibits that itinerary
reward and time are small in which the ratio value may be the same for different levels. In
reality, it is infrequent to find the same prune factor in different levels of itineraries because
the prune factor depends on five constraints, e.g., POI popularity, visitor interest, traveling,
visiting and queuing time. In this way, our proposed MCTS pruning technique reduces the
MCTS space, making the algorithm more efficient than the existing system.

5.3 EffiTourRec algorithm

Algorithm 1 shows an overview of our proposed EffiTourRec algorithm in which inputs
are POIs information (e.g., popularity, queuing time, visiting time and traveling time, etc.)
represented by P = {p1, p2, · · · , pn}, starting POI p1 ∈ P , ending POI pn ∈ P , starting
time ts and time budget T for completing the visitor itinerary. The output of this algorithm is
recommended itinerary I = {p1, · · · , pn}, which starts from POI p1 at time ts and reaches
at POI pn within the time limit ts + T .

To applyMCTS in our itinerary recommendation system, we consider the root node as the
starting POI of an itinerary and its child nodes as next potential POIs that can be visited. The
start of Algorithm 1, it initializes three similar trees for measuring the amount of spending
time, reward points and prune POI named Tvisi ts , Treward and Tprune by the emptyTree ( in
lines 1 and 2). The emptyTree root node is POI p1 and child nodes are set of POIs pi ∈ P , up
to a depth of |P| (the number of POI in the visiting theme park). Here, the traversal of POI
from root to leaf represents an itinerary I = {p1, p2, · · · , pn}, with p1 as the selected POI at
depth 1, p2 at depth 2, and so on until it reaches leaf pn at depth n. Initially, Ilist set is empty
at line 3 that is used to store a set of exploring itineraries from iteration 1 to maxLoop. This
algorithm runs a fixed number of iterations maxLoop in line 4. Each iteration (lines 4–29)
executes a single run of adaptive MCTS and generates a possible recommended itinerary.
The possible itinerary Itemp is initialized by first visiting p1 at line 5. Then, line 6 set current
POI is staring POI p1, next POI is empty, and expending time totalTime and tempReward
are zero. The procedure SelectNextPOI() selects next potential POI using effective upper
confidence bound heuristics until the visitor expending time exceeds the given budget time
or next POI selects ending pn in lines 7–19. This SelectNextPOI() method in line 8 reflects
the selection and expansion steps of our proposed adaptive MCTS and describes further in
Algorithm 2. Every time the selected POI appends to the temporary itinerary and visitors
expending time and temporary itinerary reward update in lines 9–11. Then, the temporary
itinerary is checked whether it has been explored already or has generated low quality or
duplicate itinerary in line 12. If it generates low quality or duplicates itinerary, the search
stops and prunes the remaining POI traversing in line 13. On the other hand, if the temporary
itinerary is new or creates a high-quality itinerary, select next POI as the current POI and
continue until it reaches budget time or find the destination POI as selected POI in lines
15–18.

After that, BackPropagation() method updates visited POIs in Tvisi ts based on the rec-
ommended POIs in temporary itinerary Itemp at line 20. If the temporary itinerary Itemp
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Algorithm 1: EffiTourRec-Overview of Algorithm

Data: P = {p1, p2, · · · , pn}: POI information; QueuetP : Queuing time of POI at different times;
p1 ∈ P: Staring POI; pn ∈ P: Ending POI; ts : Staring time of itinerary, T: Total time budget;
maxLoop: Number of Iterations

Result: I = {p1, · · · , pn}: Recommended Personalized Itinerary
1 Tvisi ts ← emptyTree; Treward ← emptyTree; /* Initialize visit count and reward tree */
2 Tprune ← emptyTree; /* Initialize MCTS pruning tree */
3 Ilist ← NULL; /* Initialize list of itineraries */
4 for Iterations ← 1 to maxLoop do
5 Itemp ← p1;
6 pi ← p1; p j ← ∅; totalT ime ← 0; tempReward ← 0;
7 while totalT ime ≤ T do
8 p j ← Select Next PO I (pi , Tvisi ts , Treward , Itemp);
9 Itemp ← Itemp

⋃
p j ; /* Append p j to temporary itinerary */

10 totalT ime ← totalT ime + T DoP(pi , p j ) + Queuetp j + V DoP(p j );

11 tempReward ← tempReward + Reward(p j )

12 if Tprune[ j, p j ] �= null and Tprune[ j, p j ] ≥ tempReward
totalT ime then

13 Break Loop ; /* Prune low rewarded and duplicate itineraries */

14 if p j == pn then
15 Break Loop;

16 pi ← p j ;

17 BackPropagationC(Itemp, Tvisi ts );
18 if p j == pn then
19 Reward ← Simulate(Itemp);
20 BackPropagationR(Itemp, Tvisi ts , Treward );
21 for ∀p j ∈ Itemp do

22 Tprune[ j, p j ] = CumulativeReward(Itemp ,p j )
CumulativeT ime(Itemp ,p j )

; /* Update Pruning Tree

*/
23 Ilist ← Ilist

⋃
Itemp ;

24 I ← maxReward(Ilist );
25 Return I; /* Return best itinerary */

completes with the ending pn , the model applies the obtained reward to the itinerary Itemp at
line 22. Then, it updates the accumulated rewards of visited POIs in Treward at line 23. Then,
the pruning tree Tprune is updated based on cumulative reward and cumulative time in lines
24–26. Here, CumulativeReward(Itemp, p j ) and CumulativeT ime(Itemp, p j ) calculate
cumulative reward and cumulative time spending from staring POI to POI p j in itinerary
Itemp , respectively. After that, the temporary itinerary Itemp appends to the itinerary list Ilist
at line 27 and finds the best (highest rewarded) itinerary I at line 30. Finally, the algorithm
EffiTourRec returns the best itinerary I to the visitor at line 31.

Algorithm 2 illustrates the selection process of next potential POI by SelecNextPOI()
function that takes current pi , visit count tree, reward tree as input, current creating itinerary
and returns next potential POI (pp) which maximizes the upper confidence bound denoted

asUCT E f f iT our Rec
pp . At first, the algorithm counts the number of visitors who visit pi based

on Tvisi t tree at line 1. Initially, the next potential POIs, upper confidence bound and existing
itinerary are initialized in lines 2–4. To select the best next potential POI, each p j connected
with pi but does not exist in the current creating itinerary Itemp calculates upper confidence
bound and finds a best potential POI in the lines 5–16. Each POI p j connects to POI pi counts
the number of visitors at line 6. Then, the total reward of these POIs is measured based on
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Algorithm 2: Select Next PO I (pi , Tvisi t , Treward , I )
Data: pi ∈ P: Current Point of Interest; Tvisi ts : Tree of visit count; Treward : Tree of reword count;

Itemp : Existing Itinerary;
Result: pp : Next potential POI of personalized itinerary

1 visi tCountpi ← GetV isi tCount(pi , Tvisi t );
2 pp ← ∅; /* Next potential POI is empty */

3 UCT E f f iT our Rec
max ← 0; UCTmax ← 0;

4 Itemp ← Itemp
⋃

pi ;
5 for p j ∈ P and p j /∈ Itemp do
6 visi tCountp j ← GetV isi tCount(p j , Tvisi t );

7 total Rewardp j ← ∑
p j∈Treward

(
PoP(p j )∗I oP(cp j )∗V DoP(p j )

Queuetp j
);

8 GetT otal Reward(p j , Treward );

9 exploi tp j ← PoP(p j )∗I oP(cp j )∗V DoP(p j )

T DoP(pi ,p j )+Queuetp j
+ total RewardpJ

visi tCountp j
;

10 explorep j ← 2Cp

√
2ln(visi tCountp j )

visi tCountpi
;

11 UCT E f f iT our Rec
p j ← exploi tp j + explorep j ;

12 if UCT E f f iT our Rec
p j > UCTmax then

13 pp ← p j ;
14 UCTmax ← UCT E f f iT our Rec

p j ;

15 Return pp ; /* Return next potential POI */

popularity, interest, visiting time and queuing time in lines 7 and 8. The exploitation value of
p j represents the itineraries with high rewards, relative to the number of chosen POI at line
9 considering POI popularity, interest, visiting time, queuing time and reward. The explore
part controls the POIs that have not been selected previously, thus ensuring the different
POIs are considered in line 10. After combining exploitation and exploration, we find our
proposed EffiTourRec upper confidence bound at line 11. If the upper confidence bound
UCT E f f iT oruRec

p j is greater than the previous bound, it has been stored as maximum upper
bound and considered the pp as the next selected POI in lines 12–15. Finally, the algorithm
returns the best potential next selected POI pp within all connected POIs at line 17.

6 Experiments

In this section, we present and discuss the experimental datasets, baseline algorithms and
evaluationmetrics. For these comparisons, our proposedEffiTourRec algorithm and the exist-
ing baseline methods are implemented in the R language. The experiments are run on 2.50
GHz Intel Core i5 with 8GB RAM, in Windows 10.

6.1 Datasets

For our experiments, we used geo-tagged photographs in five real theme parks from August
2007 toAugust 2016 thatwas used in [36]: DisneyLand, Epcot, CaliforniaAdventure, Disney
Hollywood, Magic Kingdom. These datasets were collected in four steps: First, Flickr API 1

1 https://www.flickr.com/services/api/.
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Table 2 Parameters description of various theme park datasets

Theme Park # Photos POI Visits # Visitors # POIs # Visit Sequences

Disney Land (disland) 181,735 119,987 3,704 31 11,758

Epcot (epcot) 90,435 38,950 2,725 17 5,816

California Adventure (caliAdv) 193,069 57,177 2,593 25 6,907

Disney Hollywood (disHolly) 57,426 41,983 1,972 13 3,858

Magic Kingdom (MagicK) 133,221 73,994 3,342 27 8,126

is used to retrieve all geo-tagged photographs with visitor ID, geo-coordinates and timestamp
within the theme parks. Second, each photograph geo coordinates maps to a POI coordinates
if its Haversine [47] distance is less than 100m. If there are multiple POI coordinates within
100m range, then the photograph maps to the nearest POI coordinate. Third, visit sequences
are constructed based on photographs taken time of these POIs. If the time gap between two
consecutive taken photographs is greater than 8 hours, it is considered as a new visit sequence.
Finally, in these visit sequences, POI popularity, visitors’ interest, queuing time, visiting time
and traveling time are determined by the number and timestamp of taken photographs. The
variation of five theme parks including the number of POI, number of photographs, number
of visitors, number of POI visits and visit sequences is shown in Table 2.

6.2 Baseline algorithms

In the personalized itinerary recommendation system, practical constraints play a significant
role in effective and efficient tour planning. Our main baseline is the existing work PersQ
[36] as it also considers POI popularity, visitor interest, starting and ending POIs and time
constraints including traveling, visiting and queuing time simultaneously. Moreover, there
are various state-of-art baselines in which all these constraints are considered separately. The
baseline algorithms related to our proposed algorithm are as follows.

– Personalized Tours with Queuing Time Awareness (PersQ) [36]: Itinerary starts at start-
ing POI, selects potential POIs based on maximum popularity and interest, minimizing
queuing time and completes the itinerary at ending POI within a time budget.

– Personalized Tour Recommendation (PersTour) [39]: This algorithm recommends
itineraries based on POI popularity and time-based visitor interest within budget time.

– Tour Recommendation with Interest Category (TourRecInt) [35]: The algorithm intro-
ducesmandatory visit POI category-based tour recommendation system inwhich visitors
are most interested in visit frequently visited POIs category.

– Trip Builderer Algorithm (TripBuilder) [2]: The main objective is to define visitor
interest by the spending time of visited POI of a certain category, corresponding to
his/her total visiting time.

– Iterative Heuristic Approximation (IHA) [55]: A heuristic-based recommendation sys-
tem that starts with a tour staring pi , completes at pn and repetitively adds new POI into
the itinerary until the budget time is reached.

– User-Based Collaborative Filtering for Itineraries (UBCF)[53]: One of the popular user-
based collaborative filtering variations is proposed to recommend a set of top-k POIs for
another user to utilize user interest similarities.
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6.3 Performance evaluation

To evaluate the performance of our proposed EffiTourRec algorithm and existing baseline
algorithms, we consider visitors who have at least two visit sequences and each sequence has
at least three visiting POIs, including starting and ending POIs. Then, we apply the leave-
one-out evaluation [31] strategy into these sequences where one visit sequence is used for
evaluation and the other visit sequences are used to determine visitor preferences. For each
visit sequence, we use starting and ending POIs as input to the algorithm and the budget
time is determined by the actual time spent in the visit sequence. After that, we evaluate
the performance of our proposed algorithm against the various baselines using the following
standard metrics [36,39].

– Precision: The ratio of POI recommended itinerary I that are present in a visitor’s real-
life visit sequence. Let Preal be the set of POIs in the real visit sequence and Prec be the
set of POIs recommended in itinerary I , the tour precision is defined as: Precision =
|Preal ⋂ Prec |

|Prec| .
– Recall: The proportion of POI visits in a visitor’s real-life visit sequence that also be

present in the recommended itinerary I . Using the same notation for Preal and Prec, the

tour recall is defined as: Recall = |Preal ⋂ Prec |
|Preal | .

– F1-Score: The harmonic mean of both tour recall I RI and tour precision I PI of an
itinerary I , defined as: F1 − Score = 2∗I PI ∗I RI

I PI+I RI
.

– Popularity: The average popularity of all POIs in a recommended itinerary I , exposed
as: Populari t y = 1

|I |
∑

pi∈I PoP(pi ).
– Interest: The average interest of all POIs in a recommended itinerary I , exposed as:

I nterest = 1
|I |

∑
pi∈I I oP(pi ).

– Rank: The average rank of our proposed EffiTourRec algorithm is defined based on
popularity and interest scores ranked compare with other algorithms, exposed as:
Rank = 1

|I |
∑

pi∈I Max Range − ( Norm(PoP(pi ))+Norm(I oP(pi ))
2 × MaxRange

) + 1,
where Norm(.) is a normalization function converts score within [0,1] andMaxRange is
maximum Rank value (we assume 1 = best and 12 = worst).

– Visiting Time Cost Ratio (V TCR): The ratio of visiting time of an itinerary I , relative
to itinerary total time, defined as:
VTCR = ∑

pi∈I ,i �=1
V DoP(pi )

T DoP(pi−1,pi )+V DoP(pi )+Queuetpi
.

– Queuing Time Cost Ratio (QTCR): The ratio of queuing time an itinerary I , relative
to itinerary total time, defined as:

QTCR = ∑
pi∈I ,i �=1

Queuetpi
T DoP(pi−1,pi )+V DoP(pi )+Queuetpi

.

– Queue Time Popularity Ratio (QT PR): The ratio of queuing time an recommended
itinerary, relative to the popularity of an itinerary I , defined as:

QT PR = ∑
pi∈I

Queuetpi
PoP(pi )

.
– Maximum Queuing Time (MQT ): The average queuing time of POIs in itinerary I ,

relative to their maximum queuing time, defined as:

MQT = 1
|I |

∑
pi∈I

Queuetpi
Maxt∈T (Queuetpi )

.

– Execution Time: Execution time means algorithm run time to recommend itineraries
for particular datasets.

– Number of Moves: The total number of POI moves require to create itineraries for
particular datasets.
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6.4 Results and discussion

In this section, we describe our proposed EffiTourRec algorithm results compared to the
existing baseline algorithms.

6.4.1 Precision, recall and F1-score

The main evaluation process of an itinerary recommendation method is how well the recom-
mended itineraries satisfy visitors’ requirements. The evaluationmetrics precision, recall and
F1-scores measure how well the recommended POIs match with real-life user preferences.

The results in Fig. 6 show the overview of the average precision, recall and F1-score,
respectively, in five theme parks, for our proposed EffiTourRec and the baseline algorithms.
The results show that the proposed EffiTourRec outperforms the six baselines in terms of
precision and F1-scores. In terms of recall scores, the proposed method outperforms all
baselines except PersQ in California Adventure andMagic Kingdom datasets among the five
datasets. Now, we explain the performance of our EffiTourRec algorithm and the baseline
algorithms in detail.

The first column of Fig. 6 depicts the proposed EffiTourRec algorithm performance on
the itinerary precision score is maximum 79.10% in Hollywood and minimum 62.90% in
Disney Land dataset, whereas the best baseline algorithm performs maximum 64.23% in
Hollywood and minimum 43.31% in California Adventure. Our proposed algorithm shows
improvement results compared to the baselines maximum 52.32% (the proposed method is
65.97% and existingPersQ is 43.31%) in California Adventure dataset andminimum20.89%
( EffiTourRec method is 70.61% and existing PersQ is 58.41%) in Epcot dataset.

The second column of Fig. 6 presents the itinerary recall score performance analysis on our
proposed EffiTourRec algorithm and baselines. The results show that the proposed method
underperformed 5.87% to 11.11% than the existingPersQ algorithm,whereas it outperformed
than the other baselines. The main reason for these results is that PersQ algorithm prefers
minimum visiting times POIs. Even though these POIs may not show visitors’ interest accu-
rately, they create long itineraries that may be likely makes recall value high. To distinguish
our performance analysis, we focus on F1-score that provides a balanced representation of
itinerary precision and recall scores.

The third column of Fig. 6 illustrates the result of F1-scores for all theme parks and
EffiTourRec outperforms all baselines from 8.36% to 21.35%. The results show that the
proposedmethodunderperformson tour recall scores but outperformsonF1-score scores. The
results improve performanceminimum8.36% inEpcot dataset (proposedEffiTourRecmethod
is 60.90% and best existing PersQ is 56.2%) to maximum 21.35% in Disney Hollywood
dataset (proposedEffiTourRec and best existingPersQ are 55.70% and 45.86%, respectively).
These results prove that the recommended itineraries of our proposed EffiTourRec algorithm
are highly significant to the real-life visitors than the other baselines.

6.4.2 Popularity, interest and rank of POI

The evaluation metrics’ popularity and interest reflect how well the visitors like these recom-
mended POIs and how well the category of recommended POIs match with real-life visited
POIs category, respectively. The results in Table 3 show that the maximum average popu-
larity of POI of our proposed EffiTourRec method is 3822 in Disney Land dataset, whereas
the existing best PersQ method is 2860. On the other hand, the minimum average popular-
ity of the proposed method is 2376 in Epcot dataset, which is also best among all baseline
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Fig. 6 Comparison among proposed EffiTourRec and various baselines, in terms of precision, recall and F1-
score (1st to 3rd column) of tours recommendation for Disney Land, Epcot, California Adventure, Hollywood
andMagic Kingdom (1st to 5th row) datasets. The x-axis of the graph shows the algorithms analyzed, namely:
EffiTourRec, PersQ, PersTour, TourRecInt, TripBuild, IHA and UBCF (left to right)

algorithms. The results show that our proposed algorithm recommends the most popular POI
for all theme parks datasets compared to the baselines, while PersQ offers the second-best
performance. It shows that our proposed EffiTourRec creates itineraries based on POIs that
are 23.30% to 81.17% more popular than the existing baselines.
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Table 3 Comparison between EffiTourRec and various baselines, in terms of the mean and standard errors of
popularity and interest whose higher values are better, and lower values of rank is better

Datasets EffiTourRec PersQ PersTour TourRecInt TripBuilder IHA UBCF

disland Popularity 3822 ± 64 2860 ± 49 2443 ± 41 3263 ± 48 2940 ± 41 1651 ± 33 2314 ± 42

Interest 157.8 ± 20.2 147.5 ± 15.9 100.9 ± 11.1 122.8 ± 21.1 109.8 ± 12.5 173.2 ± 18.6 127.3 ± 11.3

Rank 5.65 ± 0.06 6.05 ± 0.07 5.75 ± 0.09 5.76 ± 0.07 5.98 ± 0.10 4.47 ± 0.04 5.68 ± 0.05

Epcot Popularity 2376 ± 64 1927 ± 44 1415 ± 31 1376 ± 29 1377 ± 33 1666 ± 35 1175 ± 28

Interest 23.21 ± 2.4 22.61 ± 1.9 15.1 ± 1.3 15.1 ± 1.2 18.8 ± 2.0 21.7 ± 1.5 12.2 ± 1.0

Rank 4.60 ± 0.11 4.89 ± 0.12 5.38 ± 0.09 5.08 ± 0.10 5.50 ± 0.10 4.69 ± 0.08 6.06 ± 0.08

caliAdv Popularity 2834 ± 37 1603 ± 26 1518 ± 41 1554 ± 43 1560 ± 50 1446 ± 33 1416 ± 35

Interest 242.3 ± 37.8 238.2 ± 34.1 145.0 ± 33.2 188.3 ± 34.1 161.9 ± 29.9 239.2 ± 32.7 130.5 ± 18

Rank 4.14 ± 0.09 5.71 ± 0.08 5.58 ± 0.08 5.3 ± 0.08 5.56 ± 0.13 4.19 ± 0.06 5.84 ± 0.07

disHolly Popularity 3142 ± 74 2480 ± 54 1990 ± 51 2016 ± 52 1803 ± 54 2976 ± 44 1737 ± 47

Interest 15.6 ± 1.3 16.2 ± 1.4 12.0 ± 1.2 12.4 ± 1.2 11.9 ± 1.1 16.1 ± 1.4 11.4 ± 1.1

Rank 3.61 ± 0.13 4.33 ± 0.14 4.73 ± 0.10 4.33 ± 0.12 4.53 ± 0.10 3.65 ± 0.08 4.98 ± 0.09

MagicK Popularity 3724 ± 78 1960 ± 35 1767 ± 79 1629 ± 70 1591 ± 68 2125 ± 26 1616 ± 36

Interest 31.16 ± 2.7 30.41 ± 2.3 18.4 ± 0.4 18.2 ± 2.6 26.2 ± 2.4 27.6 ± 2.4 14.2 ± 0.9

Rank 4.27 ± 0.09 5.70 ± 0.09 5.84 ± 0.12 5.91 ± 0.15 6.09 ± 0.14 4.36 ± 0.06 6.07 ± 0.06

In each metric, bold numbers express the best result

Table 3 illustrates proposed EffiTourRec method recommends the highest interest scores
for three datasets among the five theme parks, while PersQ and IHA algorithms lead POI
interest for one theme park.

Besides these, ranking expresses the user’s interest and POI popularity values as a function
to show the POIs ranks.We can see that our proposedmethod’s average POIs rank value is best
compared to the other baselines. We consider an effective heuristic to maximize popularity,
user interest, and visiting time, along with minimizing queuing time. In this evaluation, we
consider rank value from 1 to 12, and the smallest rank value expresses the better result.

6.4.3 Visiting, travel and queuing timemetrics

Time constraints are important parameters for an itinerary recommendation because every
visitor has specific time limits. Thus, the recommended itinerary should be more effective in
which the visitor gets maximum visiting time to visit POIs rather than traveling and queuing
time to access that POI. These time metrics indicate the effectiveness of visitor spending
time.

Visiting time cost ratio (VTCR) represents the proportion of POI visiting time compared
to the total spending time of visitors. Table 4 shows the comparison of VTCR for the five
datasets among our proposed method and existing six baseline methods. All results show that
our proposed EffiTourRec algorithm outperforms the baselines with an increment of 6.69%
to 44.93% in VTCR. The main reason for these performances is that our proposed potential
POI selection focuses on visiting time as a proportion factor to show the visitor preferences.

Travel time cost ratio (TTCR)means the part of the traveling time from one POI to another
POI with the total spending time of visitors to complete their itineraries. Most of the datasets
travel time cost ratio is 5-7% as traveling time makes up a small part of the itinerary in this
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theme park context. Thus, as the results for the baselines and EffiTourRec are almost similar
and we do not present this in the table.

Thequeuing time cost ratio (QTCR) inTable 4 presents visitorswaiting time ratiowith total
expending time. More QTCRmeans the recommended itinerary spends more time as waiting
time than the visitor preferences POI visiting time. The table clearly shows that queuing time
is an important factor in visitors’ theme park travel because it requires more than 58% budget
time for all datasets. Thus, less value of QTCR elicits the visitors spend less time as waiting
time. Therefore, it points out that the proposed method EffiTourRec outperforms all baselines
with a reduction of queuing time. Table 4 depicts the queue time popularity ratio (QTPR)
of itineraries. We know that long queuing time makes visitors disappointed, which means
the small value of the queuing time popularity ratio indicates visitor preferences. The results
show that the proposed method outperforms QTPR than the existing baseline algorithms in
the five datasets, reducing 6.97% to 23.56%. The maximum queuing time (MQT) conveys
the queuing time association of each POI in an itinerary. The larger value represents that
the recommended POI is more similar to queuing time than the less valued queuing time.
It shows that our proposed method outperforms all baseline algorithms except the disland
dataset, where UBCF performs well than the proposed method.

In the above analysis, we see that our proposed EffiTourRec method outperforms 37
evaluation values for different datasets, whereas existingPersQ outperforms 6 values and IHA
and UBCF outperform one evaluation value. Thus, it is clear that the superior performance
of EffiTourRec is due to its effective itinerary creation approach using POI popularity, user
interest, queuing and visiting times.

6.4.4 Runtime analysis between existing methods and EffiTourRec

Previously, we have shown the effectiveness of our method. This part analyzes why our
method run time is faster than the baselines. The result on Table 5 shows that the proposed
algorithm EffiTourRec finds recommended itineraries from theme park datasets more effi-
ciently than the existing baselines. The existing IHA andUBCF algorithm recommend top-k
POIs based on heuristic and they do not make these POIs as an itinerary recommendation
nor they consider the various practical spatial and temporal constraints which are associated
with the itinerary plan. Thus, in this itinerary planning, we do not consider these two algo-
rithms (IHA and UBCF) time complexity analysis. We consider time comparison among our
proposed algorithm and other baseline algorithms that recommend itinerary paths. We have
used adaptive Monte Carlo tree search with effective heuristics to select potential next POI
for creating itinerary paths in our proposed method. We also used MCTS search pruning
that avoids non-optimal and duplicate itineraries generation. Thus, the time efficiency of the
proposed EffiTourRec algorithm is the best among all baseline algorithms for all datasets. We
setmaxLoop = 1000 as the value allows the algorithms to complete itinerary in a reasonable
time.

The results show that the run time of algorithms to find a successful itinerary changes with
the number of sequences and number of POIs. The run time is proportional to the number
of sequences and the number of POIs. Table 5 shows that the average itinerary constructing
time of the proposed method is only 0.16 minutes at Hollywood dataset that consists of
13 POIs. The execution time depends on number of POIs and number of sequences in each
dataset. The run time of different datasets shows that the proposedEffiTourRec algorithmfinds
personalized recommended itineraries more efficiently than the existing baseline algorithms.
We can see the ratio(%) efficiency values with the best existing algorithm and our proposed
EffiTourRec algorithm in the last column of Table 5. It is clear that the proposed algorithm is
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Table 5 Execution time (Minutes) of each successful itinerary comparison among the proposed EffiTourRec
and existing algorithms of various datasets

Datasets EffiTourRec PersQ PersTour TourRecInt TripBuilder Efficiency

disland 0.34 0.69 4.2 5.06 5.74 50.72%

Epcot 0.21 0.35 1.57 1.59 1.87 40.00%

caliAdv 0.26 0.64 3.6 3.8 4.01 59.39%

disHolly 0.16 0.31 0.74 0.88 1.02 48.39%

MagicK 0.22 0.68 8.95 6.93 5.63 67.64%

The bold numbers express the best result

Table 6 Number of moves comparison of proposed EffiTourRec and existing PersQ algorithm of various
datasets

Algorithms disland Epcot caliAdv disHolly MagicK

PersQ 6087171 2069796 4838537 1334913 5165181

EffiTourRec 3492072 997044 1795576 638150 2068937

Moves Reduce 42.63% 51.83% 62.89% 52.19% 59.77%

Fig. 7 Effects of MaxLoop threshold value in Disney Hollywood dataset

a minimum 40.00 % faster than the bests existing baselines in Epcot dataset and maximum
67.64% faster in Magic Kingdom dataset. All other baselines are more time-consuming than
the proposed method.

6.4.5 Number of moves analysis between EffiTourRec and Existing Method

Number of moves indicates the efficiency of the algorithms. If number of moves is less
number that means it requires less time to generate an itinerary to the visitor. The number
of potential POI moves of proposed EffiTourRec and existing PersQ algorithms are viewed
in Table 6 for five datasets. All the values show that our proposed algorithm requires fewer
number moves than the existing algorithm. The last row of the table 6 depicts the number of
moves reduce ratio in percentage. We can see that our proposed algorithm efficiently prunes
unnecessary moves using pruning rules and makes our model time efficient. It shows that
compared to PersQ algorithm, our proposed method is able to reduce the number of moves
by 42.63% to 62.89% in various datasets.

123



988 S. Halder et al.

6.4.6 Effectiveness and efficiency analysis based onMaxLoop

In this work, the execution time and other evaluation metric values change with MaxLoop
values change, which is significant for our proposed EffiTourRec and existing PersQ algo-
rithms. These two algorithms used adaptive Monte Carlo Tree Search consideringMaxLoop,
whereas other baseline algorithms are maximum loop-free. The effects of the maximum loop
iteration threshold on F1-score, execution time and the number of moves of our proposed
method and existing method are shown in Fig. 7. In this research paper, we have twofold con-
tributions: effective heuristic and efficient pruning technique. To show the impact of heuristic
and pruning technique, we have used two different approaches that are EffiTourRec: without
Pruning and EffiTourRec: with Pruning. The results show that EffiTourRec:without Pruning
method is effective and efficient than the existing PersQ method. On the other hand, Effi-
TourRec: with Pruning technique is the most effective than the without pruning technique
and existing PersQ algorithm. Although all datasets show the same result trends, Fig. 7 shows
Disney Hollywood dataset results. First, second and third figure in Fig. 7 depicts F1-score,
the execution time of a successful itinerary and the total number of moves, respectively.

6.5 Discussion

The vast application of personalized itinerary recommendation system increases due to the
importance of tour planning researches in real life theme parks tours or unknown city tours.
The proposed EffiTourRec algorithm outperforms because of its effective heuristic and effi-
cient pruning technique. In the proposed heuristic, we focus on POI popularity, user’s interest,
travel time, visiting time and queuing time which are essential fundamental factors. Previous
studies were concerned about the shortest visiting time POI visit priority, but they did not
notice each POI queuing time relatively high. That is why the queuing time ratio increases
instead of the POI visiting time ratio, which makes visitors bored. On the other hand, the
user’s interest measurement depends not only on the number of POI visits and the taken
photographs but also on spending time on that particular POI. Existing models did not con-
sider spending time impact to measure users interest. These two issues make our algorithm
more effective than the baselines. Moreover, we use the pruning technique, which avoids
low rewarded POI path exploration and avoids repeated exploration in the early stage. This
technique saves a huge number of moves and time. Tables 5 and 6 show the time and move
efficiency, respectively.

These results present the best performance of our proposed EffiTourRec algorithm over
the baseline algorithms. The baseline algorithms were included to depict only effectiveness
based on evaluation metrics, which did not consider the efficiency measurement of these
algorithms. To compare the time efficiency of our proposed algorithm and existing baseline
algorithms, we show that our proposed algorithm is at least fifty percent faster than the
baseline algorithms. Moreover, the proposed algorithm is able to reduce around fifty percent
of POI moves because of its efficient pruning technique. However, our proposed method is
able to consistently recommend itineraries that consist of higher precision, recall, F1-score
and visiting time, and lower queuing time. Moreover, the itineraries recommended by the
EffiTourRec algorithm utilize the visiting time more efficiently than the existing baselines.
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7 Conclusion and future work

In this work, our main goal is to propose an effective and efficient itinerary recommendation
that users get the maximum reward within budget time. We have designed a new algorithm
EffiTourRec to recommend personalized itineraries based on adaptiveMonteCarlo tree search
using effective heuristic and efficient pruning techniques. Our proposed EffiTourRec shows
that visitors’ preferences proportion to prior visit time along with POI popularity and visitor
interest. We evaluate experimental results on five theme park real datasets and show that
proposed algorithm outperforms the state of the art in terms of tour precision, recall, F1-score,
visiting time, queuing time, POI popularity and visitor interest alignment of POI visits. It
also shows that proposed method is 40.00% to 67.64% faster than the existing baselines and
prunes 42.63% to 62.89% moves than the existing algorithm. To our knowledge, it is the
first work in personalized itineraries recommendation that considered both effectiveness and
efficiency evaluation metrics simultaneously.

In our future work, we will consider dynamic queuing time managements and queuing
capacity in each POI, instead of static queuing time management. We also intend to address
a visitor’s dynamic sentiment and activity-based interests for personalized tour recommen-
dations.
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