Knowledge and Information Systems (2021) 63:2431-2453
https://doi.org/10.1007/s10115-021-01600-5

REGULAR PAPER

®

Check for
updates

Toward data-driven solutions to interactive dynamic
influence diagrams

Yinghui Pan' . Jing Tang? - Biyang Ma3 - Yifeng Zeng? - Zhong Ming*

Received: 5 March 2020 / Revised: 1 July 2021 / Accepted: 3 July 2021 /
Published online: 8 August 2021
© The Author(s) 2021

Abstract

With the availability of significant amount of data, data-driven decision making becomes
an alternative way for solving complex multiagent decision problems. Instead of using
domain knowledge to explicitly build decision models, the data-driven approach learns deci-
sions (probably optimal ones) from available data. This removes the knowledge bottleneck
in the traditional knowledge-driven decision making, which requires a strong support from
domain experts. In this paper, we study data-driven decision making in the context of interac-
tive dynamic influence diagrams (I-DIDs)—a general framework for multiagent sequential
decision making under uncertainty. We propose a data-driven framework to solve the I-DIDs
model and focus on learning the behavior of other agents in problem domains. The challenge
is on learning a complete policy tree that will be embedded in the I-DIDs models due to
limited data. We propose two new methods to develop complete policy trees for the other
agents in the I-DIDs. The first method uses a simple clustering process, while the second one
employs sophisticated statistical checks. We analyze the proposed algorithms in a theoretical
way and experiment them over two problem domains.

Keywords Data-driven - I-DIDs - multiagent sequential decision

B Yifeng Zeng
yifeng.zeng @northumbria.ac.uk

Yinghui Pan
panyinghui @szu.edu.cn

Jing Tang
jing.tang @northumbria.ac.uk

Biyang Ma
biyang.ma@northumbria.ac.uk

Zhong Ming

mingz@szu.edu.cn

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
Newcastle Business School, Northumbria University, Newcastle upon Tyne, UK

Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne,
UK

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01600-5&domain=pdf

2432 Y.Panetal.

1 Introduction

With the development of cloud computing, big data and other new information technologies,
the research paradigm in decision science is changing from knowledge-driven to data-driven
approaches.! The traditional method of decision analysis often firstly builds a decision model
by consulting domain experts in an application and then solves the model to get optimal deci-
sions if it is applicable. The kind of knowledge-driven decision technology is the mainstream
method in most of intelligent systems research.

Due to the complexity of multiagent systems including both agents’ properties and exter-
nal environments, it is difficult to build a precise multiagent decision model with the help of
experts in a problem domain. The model may be rather complex, or it cannot be developed
completely. This may significantly compromise decision quality. Since decision models are
established for better predicting and planning agents’ behavior, we can directly build a behav-
ioral model from data, which may avoid the difficulty in building and solving the models.
This is what we coin as data-driven methods for providing decision support in multiagent
systems. The data-driven method leads to a prescriptive model that directly provides deci-
sions to agents, while the knowledge-driven method intends to build a descriptive model that
represents decision making process and needs to be solved in order to get the decisions.

In a partially observable stochastic game (POSG) setting, interactive dynamic influence
diagram (I-DID) [10] is a general, transparent model of solving multiagent sequential decision
problems in comparison with other models such as interactive partially observable Markov
decision process (I-POMDP) [13], decentralized POMDP [29] and so on. An I-DID solves
the problem from the viewpoint of individual agents and converts a multiagent sequential
decision problem into an individual decision problem by modeling other agent’s decisions in
the I-DID of a subject agent. I-DIDs can effectively use probabilistic graphical representation
to exploit a potential problem structure for improving the solution efficiency.

[-DIDs model a multiagent sequential decision problem through two interactive compo-
nents. For a main [-DID model, we should represent a decision-making process of a subject
agent and take the other agent’s decision models into account in order to reason with the
other agent’s behavior. On the other hand, we should model a sequential decision-making
process of the other agent and solve the models to provide inputs to the main [-DID model. At
present, the I-DID research generally assumes that the subject agent can build the models of
describing other agent decision-making process and then solve the model to get the predicted
behavior of the other agents [38]. But the [-DID modeling is not an easy task because it is
difficult to determine parameters in decision models of other agents, e.g., POMDP, DID [17],
in a POSG problem. At the same time, as the subject agent does not know the true model of
other agents, it is often assumed that a large number of candidate decision models ascribed
to other agents exist. This leads to intractable solutions to I-DIDs [37].

In this paper, we will exploit available agents’ interaction data to automatically learn the
behavior of other agents and directly embed the learnt behaviors into an I-DID model of a
subject agent. The research is inspired by two observations. Firstly, the subject agent only
cares about the behavior of other agents because only the actions of the other agents could
affect decision making process of the subject agent. Hence, if the behavior of the other agents
can be directly predicted, we can avoid to represent decision making process of the other
agents. Secondly, the behavior of the other agents may be various and even cannot be counted
in theory. However, the actual behavior often has a certain tendency. Hence, the behavioral
pattern dimension may not be so large as what we may get from solving many candidate

! https://ail00.stanford.edu.

@ Springer

https://ai100.stanford.edu

Toward data-driven solutions to interactive 2433

models of the other agents. Given a large amount of historical data of agents’ interaction, the
behavior of the other agents could be automatically inferred through well-developed machine
learning techniques.

We aim to learn behavioral models of other agents that are to be integrated into the subject
agent’s I-DID model. We resort to a commonly used model of policy trees to represent the
agent’s behavior, and the model is composed of a set of the other agent’s observation-and-
actions over time-steps. Ideally, the model shall represent all possible behaviors of the other
agent. However, learning such a complete model is hard since agents’ interaction data are
often insufficient leading to incomplete behavioral models of the other agents. In this article,
we develop two methods to fill in the missing actions in the behavioral models learned from
the data. A central idea stems from the concept of behavioral equivalence [37] where the
number of behavioral models ascribed to the other agents is limited and similar behaviors
could be clustered into one behavioral model.

We propose the first method that uses a typical clustering method to generate a number
of model clusters and select a representative model from each cluster. We choose complete
behavioral models to initialize the clustering process and compose the clusters by calculating
the similarity between a pair of behavioral models including complete and incomplete ones.
Since the resulting similarity score does not consider the context of time-steps in behavioral
models, it cannot differentiate behavioral models that have different actions at the same
time-steps. This leads to unstable I-DID solutions. Subsequently, we proceed to develop the
second method that compares behavioral models in a rigorous way. We conduct behavioral
compatibility checks between a pair of observation-and-action at corresponding time-steps
in a pair of behavioral models. Then, we fill in the incomplete behavioral models through
its compatible complete counterparts. More importantly, the new method can guarantee the
solution quality of I-DIDs in a theoretical way when the resulting behavioral models are
embedded in I-DIDs. We empirically test the two methods and compare them with typical
[-DID solutions over two problem domains.

The rest of this paper is organized as follows. We present background knowledge of I-DID
models in Sect. 2. In Sect. 3, we propose a data-driven framework for solving I-DIDs. To
instantiate the framework, we propose two methods to learn behavioral models in Sect. 4
and conduct experiments in Sect. 5. We review the previous research on multiagent decision
models in Sect. 6. In Sect. 7, we conclude this work and discuss future research.

2 Background knowledge of I-DID

Interactive dynamic influence diagrams (I-DIDs) are graphical decision models for individual
agents in the presence of other agents who are themselves acting and observing, and whose
actions affect the subject agent. I-DIDs integrate two components into the decision models:
one basic decision model represents the subject agent’s decision making process, while the
other predicts the behavior of other agents over time.

Figure 1 shows a level [I-DID for the subject agent i that models the other agent j. The
hexagon is the model node M ; 1, which accommodates candidate models of agent j. A
model in the model node may be a DID or I-DID. The candidate models of agent j could be
many, in theory, infinite, since agent i does not know the true model of agent j and needs
to hypothesize a large number of possible models of agent j. The oval nodes modeling the
state S and the observation O reflected in the observation function are the chance nodes. The
rectangle is the decision node A, and the diamond is the reward function R.

@ Springer

2434 Y.Pan et al.

Fig.1 A generic two time-slice level / I-DID for agent i

The dashed policy link is a model update link shown as a dotted arrow in Fig. 1. The update
of the model node over time involves two steps. First, given all candidate models at time 7, we
identify the updated set of models that reside in the model node at time 7+1. When the other
agent acts and receives observations, its models are updated to reflect its changed beliefs.
In some cases, the update may result in a model whose structure may be different from that
previously. Since the set of optimal actions for a model could include all the actions, and the
agent may receive any one of [§2;| (§2; is the observation set of the other agent j) possible
observations, the updated set at time step ¢ + 1 will have at most |M ; 1—111A;1182;] models.
Here, |M 5 ;—1|1s the number of models at time step 7, |A ;| and |§2;] are the largest spaces of
actions and observations, respectively, among all the models. Second, we compute the new
distribution over the updated models given the original distribution and the probability of the
agent performing the action and receiving the observation that lead to the updated model.

If a decision model is itself a DID or an I-DID, its solution can be represented as a policy
tree that is considered as a behavioral model and prescribes how an agent shall act over a
number of time steps. As shown in Fig. 2, the left is a DID model with three time-steps and the
right is the corresponding policy tree (we will formally define it later). We denote the policy
tree of horizon, T, as nnij iy Hence, the model solutionis denotedas O PT (m ;1) = nf -1
. In the policy tree, each path is from a root node to a leaf node, which is an action-observation
sequence, as represented in h]Tfl = {a;., 0;+1}ZT:7()1.

[-DIDs, from the viewpoint of individual agents, predict the other agents’ behaviors
through mutually modeling techniques, so as to optimize the subject agent decision-making.
I-DIDs do not make any assumptions in the behavior of agents, and the subject agent and other
agents have no communication and prior agreements with the behavior. Each agent is inde-
pendent, while it can only receive observations in the environment. Therefore, I-DIDs have
the natural advantage to solve general multiagent sequential decision problems that include
either a collaborative multiagent case or a competitive multiagent setting. But I-DIDs must
solve a lot of candidate models of other agents, because the subject agent does not know
the true models of the other agents. At the same time, the subject agent should update the
model of the other agents in the case of different observations. Consequently, the number
of updated models grows exponentially with time, which makes it difficult to solve I-DIDs.
I-DID algorithms mainly use behavioral and utility equivalence principles to compress model

@ Springer

Toward data-driven solutions to interactive 2435

(ar,az) (ar,az) (an,a2) Vi /Policy Tree
/
SN N Gy e
[~
GOy ‘y ev N /
Pr(s") Pr(s?S A" 4

Pr(0'ls") Pr(0%S?,A") R(S%AY)

31e3 A2 /
Pr(05%A9) R(SC"AJ)// ° e time t=2
_____________________ —

R(S',A")
[of]
Actions (node labels): as, a;
Observations (edge labels): 01, 02 e ° e e time =3

Fig.2 a A DID model (consisting of three types nodes: chance nodes—circle with a conditional probability
Pr(-]), decision nodes—rectangle with a set of actions, and utility nodes—diamond with a reward function
R(-)) for agent decision making; b a policy tree describes agent’s behavior that is a solution to the DID model

space of the other agents in order to solve the multi-time slice models [37]. Hence, solving
I-DIDs requires more innovative techniques.

3 Data-driven framework to solving I-DIDs

Data-driven multiagent decision making research has just begun with the fast development
of Al technologies. A special seminar for this new research direction was discussed in depth
for the first time at the AAAI Conference in 2014. The main idea expands reinforcement
learning (RL) into big data research environment, and optimizes systems through independent
study of agent decision-making behavior. In RL, agents conduct decisions, adapt actions in
accordance with expected rewards, and ultimately get the maximum value. Given the reward
or punishment according to the environment, each agent can learn decision-making ability,
which develops multi-stage optimization learning control by data-driven multiagent systems.
The RL techniques enable the agents to interact with their environment and discover their
optimal decisions through the trial-and-error and rewarding mechanism. It generally requires
a clear reward system to develop good policies for the agents.

Itis noticed that the optimal policies can be summarized from the resulting action traces in
the RL process. Assume that historical data that record agents’ interaction exist, learning their
behaviors becomes possible through machine learning methods. Inspired by this observation,
we convert the previous I-DID solution framework into a data-driven framework for solving
I-DIDs. We do not intend to propose a new RL-based method, but to focus on the data-driven
framework to solve I-DIDs.

3.1 Knowledge-driven solutions

Figure 3 shows the previous I-DID solution framework that heavily depends on domain
knowledge. From the problem description, we need to model decision making process of the
other agent j using DIDs. In general, a large number of candidate models would exist due to
the lacking of a true model ascribed to the other agent. Subsequently, we need to solve j’s
models and get its behavior, which is generally represented by a policy tree. We then expand
the subject agent i’s I-DID using solutions to agent j’s models. Finally, we solve the I-DID
and let agent i interact with agent j using the policies that are solutions of i’s models. In
their interactions, agent i may update the I-DID according to online observations. It inserts

@ Springer

2436 Y.Panetal.

i e e Other agent &
Domain Description and Specification . The online
The representation method of luti
behavior model q solution
pdate based on
qdel active
OR learning
The modeling method based on dynamic e
— oa el |

Candidate models of agent j The Model I-DID
modeling Offline
_’ method _’ .—’ algorithm Provide optimai
of of I-DID decision il
behavior model -
model

Fig.3 Knowledge-based solutions to I-DIDs demands the input of domain knowledge

the evidence of observations in the I-DID model and updates its belief in the next time step,
which leads to a next decision for agent i in the interaction.

Given manually built models of other agents (e.g., the DID models in Fig. 2a), we solve
their models and integrate their solutions (e.g., the policy tree in Fig. 2b) into the expansion of
the subject agent’s I-DID. However, domain knowledge is not always accessible to construct
precise models of other agents. Although modeling how the other agents make decisions
is important in I-DID representation, the subject agent’s decisions are only affected by the
predicted the behavior of the other agents that are solutions of the other agents’ models.
Hence, it will be equally effective if either the models or the behavior ascribed to the other
agents are known for solving I-DIDs. With the inspiration, we learn behavior of the other
agents automatically, which provides an alternative to manually crafted models for solving
I-DIDs.

3.2 Data-driven methods

We consider the case that a large amount of data exist in a problem domain and the data
describe how agents i and j interact in the settings including their actions and observations.
Given the data, we could actually learn agent j’s behavior without building its models. We
may employ different models to represent the learned behavior of agent j. We use a policy
tree in this work. Once we learn agent j’s behavior, we could follow similar steps to expand
agent i’s I-DIDs and solve the models. Figure 4 shows the data-driven solutions to I-DIDs.
Different from the knowledge-based solutions, the new framework learns agent j’s behavior
instead of constructing and solving models to predict other agents’ behavior through domain
knowledge.

The challenging issue is on learning agent j’s behavior from agents’ interaction data. In
particular, the data are not sufficient to infer complete behavior of agent j. For example,
agent j’s actions may not be learned given some specific observations. We will provide two
new methods to fill in the incomplete policy, which re-uses actions given other observations.

4 Learning behavioral models

Given the data-driven framework to solving I-DIDs, we focus on developing techniques to
learning behavioral models of other agents. The new techniques will avoid to manually build

@ Springer

Toward data-driven solutions to interactive 2437

The online

behaviors The representation method of solution
21,01,32,07,31,01,37,02,31,01,32,02,32,02,31,01, behavior model date based
= ased on
32,02,31,01,3,02,32,02,31,01,32,02,31,01,32,02, odel ti
active
°""@2,02,31,01,32,02,32,02,31,01,32,02,31,01,32, OR

A large number of historical data in agent Other agent &

learnin
02,32,02,31.. E

The method of data segmentation based END

The new data exchange 5 Q

on landmark OR 4 ==

l 31,01,32,02,31,01,32/02,32 £
Behavioral data after pretreatment
Offline
_’ algorithm Provide optim3
of D-I-DID decision

model

Datal: a,0,a;0,,31,01,32,0231,
ubject agent{

The

Data2: a,,0,,3;02,31,01,32,02,31,01,32,02,31 learning

Data3: 2,,01,3,,0,,31,01,3,,0, g Zlfgamhm =
Data4: -

behavior
Datan: a,0,31,01,3;,02,32,02,31,01,3 .

Fig.4 Data-driven solutions to I-DIDs requires to learn j’s behavior from data

decision models of the other agents and solve the I-DIDs with the learned behaviors of the
other agents. In I-DIDs, behavior of the other agent j is represented by a length-T policy tree
which is a solution from a horizon-7' DID model in the previous knowledge-based approach.
We first formally define a behavioral model of the other agent j and then propose two methods
to automatically learn the model from available data of agents’ interactions.

4.1 Behavioral model

Solutions of a horizon-T DID are represented by a depth-T policy tree that contains a set of
policy paths from the root node to the leaf. Every length-T7 policy path is an action-observation
sequence that prescribes agent j’s behavior over the entire planning horizon. Formally, we
define a length-T policy path below.

Definition 1 (Policy Path) A policy path, hJT is an action-observation sequence over T plan-

I+1}T—] T

ning horizons: th = {a;., 0;"};Zy » where o} is null with no observations following the

final action.

Since agent j can select any action and receive every possible observation at each time
step, all possible length-T policy paths are H jT =A;x 1_[1T=_11 (£2; x Aj). A depth-T policy
tree is the optimal plan of agent j in which the best decisions are assigned to every observation
at each time step. We may impose an ordering on a policy tree by assuming some order for
the observations, which guard the arcs in the tree. The total number of policy paths is up to

12;17! in a depth-T policy tree. We formally define a policy tree below.

Definition 2 (Policy Tree) A depth-T policy tree is a set of policy paths, HJT:U th, that is
structured in a tree 7=(V,€) where V is the set of vertices (nodes) labeled with actions A and
£ is the set of ordered groups of edges labeled with observations 2.

Figure 2b shows the policy tree that is the solution to one DID model. A policy tree
specifies the predicted actions of other agent j at each time step that directly impacts the
subject agent i’s decisions. Most of the previous I-DID research assumes the availability of
domain knowledge to construct precise models of other agents and then solves the models
to build the policy tree. However, this is somewhat unrealistic in some applications with
complicated behaviors. Hence, we aim to learn a set of policy trees, 7 = {71, ..., ¢}, from
each D; where D = {Dy, ..., D;} is the entire data set encoding j’s action-and-observation
sequence over T time-steps.

@ Springer

2438 Y.Panetal.

Algorithm 1 shows the development of policy trees from the data. The data contain a
sequence of action-and-observation that agents interact over time. To facilitate the devel-
opment of a policy tree, we extract a set of policy paths from the data. As a policy tree
is composed of multiple policy paths, we first construct the policy paths through the func-
tion (line 5-13) and then add them into the tree (line 3). Given the paths, we can build the trees
by checking the actions given the observations at each time step. The paths with the same
action-and-observation at ¢ =0 are to be placed into the same policy tree. Subsequently, we
could build multiple policy trees from the set of policy paths. Due to the limited agents’ inter-
actions, the data may not exhibit the full profile of the other agent’s behavior. Consequently,
the learnt policy tree is incomplete since some branches may be missing.

Algorithm 1 Build Policy Trees
1: function LEARN PoLICY TREES(D, T)

2 H < PolicyPathConstruction(D, T)
3 7 < Build Trees From H

4 return 7

5: function POLICY PATH CONSTRUCTION(D, T)
6 ‘H set of policy paths

7 for all D; € D do

8 New hJT

9 for all D" € D; do

10: hf - th Ud'l (e DJ'[A]

11: if m = 1 then

12: hY < 1T Ut (e DP'2])
13: H < HUKT

14 return 'H

Figure 5 shows one example of converting a set of policy paths into two policy trees. We
add one policy path at a time and initialize a new tree when a new path cannot be considered
as one new branch in the existing trees by following a sequence of action-and-observation.
For example, when the path (C) is picked, it cannot be added into the existing tree ((1b) A+B,
although it is still incomplete) since the sub-sequence {L, GL, L} does not follow the one
{L,GL, OR} in the tree ((1b) A+B). Hence, we initialize the new tree ((2b) C+D). As we
continue, the two trees are generated. One is incomplete and lacks the right-most branch.

We shall notice that the interaction data may generate multiple policy trees although the
data are consistent with agents’ decisions in their interactions. The trees could be incomplete
since the interaction data may not cover all the branches that are agents’ possible behaviors
over time. This leads to the difficulty in expanding a model node in I-DIDs.

4.2 Clustering policy trees

The learnt policy trees could be either complete (containing all branches over T’ time-steps)
or incomplete (some branches do not exist) due to limited data. This often occurs to decision
problems with large planning horizons. Notice that a single policy tree represents one possible
behavior of an agent and the behavior is determined by the agent’s belief over its environment.
The agent exhibits similar behavior when they have sufficiently close beliefs. The similar
behaviors could be merged into one cluster that represents one type of the agent’s behavior.
By doing this, we could select a representative, complete policy tree to represent the agent’s

@ Springer

Toward data-driven solutions to interactive 2439

=
2
=
C)
C

© (D)

@20

oD oD

B 8686 b svde

@

Q
&
Q
=

—— e N

(O
@re-Ere®
—(—

SEe®

L _—_
(1b) A+B (lc) AB+E (1d) ABE+F

'® ® e

|
Q QP Y
| GR GR || GrR Gl

|
|
' | é?
:GL GR || GL | GR G ™ G o™
lololfollc §660 0
LN |

(a) A Set of Policy Paths (2b) C+D (2¢) CD+G

Fig.5 We build two policy trees from a set of policy paths. One tree (1d) is complete, while the other (2¢) is
incomplete

behavior and simultaneously avoid incomplete policy trees. In other words, we use a complete
policy tree to represent an incomplete policy tree if their behaviors are similar enough in the
comparison.

Let §(7k, Tk+1) = |7k — Tx+1| be counts of different actions between the two policy
trees 7 and 7;41. We propose the first method on clustering policy trees in Algorithm 2.
The algorithm conducts the clustering procedure similar to K-means. We start to choose all
the complete policy trees as the cluster centroids (lines 2-3). If none of the policy trees is
complete, we choose r most nearly complete ones from the learnt policy trees, which rarely
occurs in actual datasets. Subsequently, we assign the policy tree to its closest cluster by
computing its § distance from the cluster centroid (line 5). After that, we recompute the
cluster centroids and choose the ones that have a sum of the minimum intra-distances from
all the other policy trees within the clusters (line 7). The clustering procedure is terminated
when the cluster centroids do not change any more. We then choose the cluster centroids
as the representative policy trees from all the trees. The time complexity of Algorithm 2 is
polynomial in the size of data D.

Similar to the spirit of K-means clustering, the algorithm adopts a heuristic process to
group complete and incomplete policy trees and does not consider relations of actions over
times. This leads to the difficulty in analyzing the solution quality when the clustered policy
trees are integrated into [-DIDs. It may lead to unknown errors on predicting the agent’s
behavior. Meanwhile, we notice that the § distance metric is a natural idea of counting the
action difference between a pair of policy trees. It does not follow the triangle inequality as the
Euclidean distance metric. But it is a good approximation in terms of K -means performance.

@ Springer

2440 Y.Pan et al.

We have tested a number of cases in the experiments. There is no visible difference in the
results.

Algorithm 2 Clustering Policy Trees

1: function CLUSTERING PoLICY TREES(7 Set of policy trees)
2: Get aset of complete policy trees T T

3 Initialize a set of cluster C=(Cy, - - -, C;-) with centroids (T,, Sl ’Tr/)
4: repeat
/
5 Compose r clusters by assigning each policy tree 7y € (7 — 7) to its closest centroid through the

8 measurement
for all clusters C=(Cy, -- -, C;) do

. / . / /
Recompute the cluster centroid 7, =argmin 7 > T cc, 8(7,,7,)

until the cluster centroids do not change
return C

L®e IR

4.3 Filling in policy trees through behavioral compatibility

We observe that agents may have identical post-behavior even if they act differently in
the past. This is particularly true in some applications, e.g., real-time strategy games. For
example, players may approach their opponents in different ways; however, they often attack
them through similar mechanisms once the opponents are within the attacking distance. This
inspires a heuristic for filling in the partial policy tree.

Inspired by the learning of probabilistic finite automata [15], we propose the branch fill-
in algorithm by testing the behavioral compatibility of two nodes in Algorithm 3. 7T [a’]
retrieve the action a where the sub-tree 7" has incomplete branches starting from the time
t. Tla't1|o'T1] is the action at the time ¢+1 given the corresponding observations at #+1.
We start with the search of where the policy tree becomes incomplete and decide the ¢
value (line 8). For example, in Fig. 5, the incomplete sub-tree occurs at #=2 since the right-
most branch ({L, GR, L, GR, *}) does not exist in 2(c).

Once we find an incomplete sub-tree in Q, we expect to fill in the missing branches using
the sub-trees from a complete policy tree in 7. We use a compatibility test to decide how the
sub-tree is selected and filled in the missing branches. The compatibility test requires: (1)
the nodes in two sub-trees (7") to have the same label(action) (line 9); and (2) the difference
between their successors to be bounded by a threshold value (line 17). In line 9, we test the
first condition whether the incomplete sub-tree has the same actions in the root. The second
condition demands the compatibility to be recursively satisfied for every pair of successor
nodes (lines 10-11). In line 15, we test the actions over all the possible observations. Once
the compatibility of the two nodes is confirmed, we can share their successors and fill in the
missing branches accordingly. If multiple sets of nodes satisfy the compatibility, we select
the most compatible one with the minimum difference. The .count operator calculates the
frequency of actions given a specific observations in a policy tree. The time complexity of
Algorithms 1 and 3 is also polynomial in the size of data D.

@ Springer

Toward data-driven solutions to interactive 2441

Algorithm 3 Filling in Incomplete Policy Trees

1: function FIND MISSING NODES(7 Set of policy trees)

Q Set of policy trees with missing branches identified from 7
3 for all Q € Q do

4 forall 7 € 7 do

5: if Behavioral Compatibility(Q, 7°) then

6.

7

8

Fill missing nodes in Q from 7~
: function BEHAVIORAL COMPATIBILITY(Q,7)
: Find ¢t < when the branch is missed in Q
9: if Q[a’] # T[a’] then return False

10: else
11: if Test(Q’, 77) then return True
12: else return False

13: function TEST(Q,7)
14: ny < Qla'l.count, ny < Tla'].count
15: forallo't! € 2 do

16: fl < Q[a”rllo”rlj count, fo < Tla' T o't .count
17: lf(Zol———|<a)ﬂ(t<T)then

18: t= l‘+1

19: if c=Test(Q’, 77) then return c=True

20: else return c=False

21: returnc

19 30
Gy 6‘2*
10 7Y,]r
| |
| |
Gy o™ | Gy c%* || GL & |
6 4 | éx él()“ %7 |
& & | (ONE
ST =
_ Fillin ____--~
(a) Incomplete policy tree (b) Complete policy tree

Fig.6 We fill in one missing branch in the policy tree (a) using its compatible branch in (b)

Figure 6 shows the procedure of filling in one incomplete policy tree through a compatibil-
ity test. The number close to the action node is the action frequency in a policy tree. We can find
the left sub-tree (with the light-yellow framework) is incomplete at =2 in Fig. 6a. In Fig. 6b,
the two sub-trees have the same actions given the corresponding observations ({L, GL, L}).
However, the left-most sub-tree is the most compatible (| 14—0 — %| < |% - % |). Hence, the
missing branch will be filled with the branch {L, GR, OL}.

The policy tree we learn from data prescribes the agent’s actions at every time step.
Intuitively, the learnt policy tree (7 ;) will become the true behavior (H;‘.) of the agent if the

amount of replay data is infinite. Let a?’t be the missing action and be filled in using action

@ Springer

2442 Y.Pan et al.

1,t
J
Pr(a} IH;) after N amount of data, based on which a>" will be complemented.

Using the Hoeffding inequality [16], Proposition 1 provides the sample complexity bound-
ing the probable rate of convergence of the fill-in actions to the true actions.

a; at time ¢ in ;. The branch fill-in assumes that Pr(a }'t |H ;) has approached the true

Proposition 1

PrIY e |Pr(a;" M) — Priai|H?)| < n]
j 1)
—2NT ()2 (
> 1—|Aj-e
where Pr(ajz.’tlH j) 1is the probability of actions at time ¢ we learn from the data (com-

puted as n% in line 20 of Algorithm 3), Pr(a}lHj) the true actions of the agent and

n = max Za./_ |Pr(a;|Hj,l_1) - Pr(a;.lij)|)

Let AiT=|V(m,',1) — V*(m; ;)| where V (m;) is agent i’s expected rewards by solving
level / I-DID model through learning j’s behavior and V*(m;, 1) is i’s expected reward given
Jj’s true behavior. Following the proof in [7], the reward difference is bounded below.

Al < pRIM(T = D)(1+3(T = DI112;) + 1) (@)

L
where p = Y1 |Pr(aj1-”|7-lj) — Pr(ang’;-)| is the worst error on predicting a} in the
J

learning.
Furthermore let 7 = Zaz_,f |Pr(a]2.’t|H.,-) — Pr(a}”l?—(j)l. Since 71, p and T compose a
J

triangle, we get p < t + n with an upper-bound 7 and obtain 1 with probability at least

—2NT ()2 . . .
1—Aj|-e 14j1” (Details of proof are in Appendix.)

Recall the test of line 20 in Algorithm 3, we have T < Be, where BB is the number of tests,
so that we control the learning quality using the ¢ value in the algorithm. Note that more data
will reduce the branch fill-ins, therefore improving predictions of agent j’s behavior, which
directly impacts the agent i’s plan quality in Eq. 2.

5 Experimental behavioral models

We implement all the algorithms and demonstrate their performance over two problem
domains. One is the UAV benchmark with two settings of different scales: one is the 3 x 3
space (|S| =9, |A| = 5 and |§2| = 5), while the other is the 5 x 5 space (|S| = 25, |[A| =5
and |£2| = 5)—the largest problem domain studied in I-POMDP/I-DID, based multiagent
planning research [38]. The application involves two UAV in a common space where one
UAV (the subject agent i) aims to capture the other UAV (agent j) within a specific number
of time steps. We build the I-DID model for agent i who needs to consider the predicted
behavior of agent j, therefore leading to a good plan to achieve its aim. In addition, we
conduct simulations in a real-world data of real-time strategy game, namely StarCraft. In
this game, one NPC (non-player character modeled as the subject agent i) expects to make a
good response to actions of another NPC or human-player (the other agent j) by predicting
what the new actions from them. The replay data records real-time game states, time-stamp
and the status of units controlled by players. We build the learning engine using the BWAPI
library 2 to interface with the games. We then develop I-DID controlled NPCs (agent i) that
reason from learning behavior of other NPCs (agent j) and optimize its actions in the game.

2 https://code.google.com/p/bwapi/.

@ Springer

https://code.google.com/p/bwapi/

Toward data-driven solutions to interactive 2443

For all the experiments, we compare the policy tree learning techniques with either random
fill-ins (Rand), clustering policy trees (CPT) or the behavioral compatibility test (BCT). All
the three methods are embedded in the data-driven framework for solving I-DID in Fig. 4.
To deal with the incomplete policy tree, the Rand method fills in the missing actions given
observations by sampling an action from the action set. The CPT and BCT methods are
implemented following Algorithms 2 and 3, respectively. All the three methods are run sep-
arately in the same dataset. To further evaluate the algorithm performance, we also compare
the aforementioned methods (in the data-driven I-DID framework) with the Exact method in
the knowledge-driven framework for solving the I-DID [37,38]. The Exact method builds the
DID decision model for agent j in the I-DID through the knowledge of transition, observa-
tion and reward functions in the problem domains [37,38]. As we simulate their interactions
through the I-DID and learn their behavioral models (through the other three policy tree learn-
ing algorithms) from the interaction data, it is feasible and fair for the comparison among the
methods in either the data-driven or knowledge driven I-DID framework.

The number of experiments is used to compute the average rewards for each application.
In general, the StarCraft simulations take more times than the UAV simulations. Hence, we
use a smaller number of experiments. There is not strict rule to decide the T value in I-DID.
The T value decides the I-DID model complexity. Hence, we try different scales of I-DIDs.
For the StarCraft application, the I-DIDs are significant different even when the 7 values are
5 and 7, respectively.

5.1 UAV simulations

We simulate interactions between agents i and j, and collect different sizes of data for learning
agent j’s policy trees. Subsequently, we build i’s I-DID given the learned j’s behavior, and
use the action equivalence (AE) [36] to solve the I-DID since the exact technique is not
scalable to solve the complex domain. Using the generated policies, agent i plays with j that
selects one model from 8 possible models of j used in the simulation.

Figures 7 and 8 show the performance of our proposed techniques for 100 simulations of
the UAV domain for 3 x 3 and 5 x 5 space, respectively. The performance evaluates both
average rewards of agent i and the learning times for building j’s policy trees over T=3, 5
and 6. A better [-DID algorithm has larger rewards preferably with less time.

In Figs. 7a and 8a, the horizontal lines (Exact) are the agent i’s average rewards when i
adopts the policies generated by the I-DID, which is manually built by considering 8 possible
models of agent j. The set of 8 models including j’s true model are weighted uniformly in
i’s I-DID. The I-DID model is far more complex than what we use by learning j’s behavior
from the data. The Exact method is implemented in the knowledge-driven framework for
solving I-DID in Fig. 3.

We observe that agent i achieves better performance when more data are used for learning
Jj’s behavior. The learning algorithm using BCT outperforms both the Rand and CPT tech-
niques since it generates more accurate policies of agent j. Notice that the CPT technique
actually performs much better Rand since the clustering results predict sensible behavioral
patterns of agent j that are used in agent i’s I-DID models. However, it provides unstable
results when the domain space is large in Fig. 8a. The learning algorithm performs even better
than the Exact technique because agent i can focus on the true or most probable models of
agent j from learning policy trees. Negative rewards are received since it is difficult for agent
i to intercept j in a short planning time (7 = 3) and the agent may mis-act based on the
improper policies. It shows that more data are required to learn the behavior of large planning

@ Springer

2444

Y.Panetal.

Average Rewards

&

Average Rewards

Average Rewards

oo 300 400 500 800
Training Data

(]

e ox
Training Data

15k 20

ok 20k 40k
Training Data

(a) Average rewards for I-DID agent i for T =3, T=5and T =6

Times (ms)

Times (ms)

— - ceT
—e—soT

ER 60k

Times (ms)

o0 00) 500 w00
Training Data

o o
Training Data

15k 200

B
ok 206 o
Training Data

(b) Learning times to build agent j’s policy trees for T =3, T =5and T =6

50k 60k

Fig.7 Performance of agent i by learning behavior of agent j in the UAV domain with the space of 3 x 3

Average Rewards

Average Rewards
S N b & b b b L o o

Average Rewards

100 300 500 800 1000 Vs 10k 30k 40k 50k 20k 30k 50k 60k 70k
Training Data Training Data Training Data
(a) Average rewards for I-DID agent i for T =3, T=5and T =6
! o
- [—-cer
09} —a—scr 4 45 —=—scT
08 e 4 7
1% as
—_ — 6
7, n 3
£ £ E
20 22 25
8 8 8 /
Eo £ E -
[e S o
03 1 N T
02 B L
01 0s —

00 00 500 a0 000
Training Data

10k ER a0k ER

Training Data

2
206 30c B
Training Data

(b) Learning times to build agent j’s policy trees for T'=3,T =5and T'=6

Fig. 8 Performance of agent i by learning behavior of agent j in the UAV domain with the space of 5 x 5

horizons (T = 5 and 6). Agent i consistently improves its rewards once more data of agent
J become available. Finally, we also show the standard deviation values (the corresponding
up and bottom bars) for each curve in the figures. The BCT method exhibits more reliable
performance (with a small deviation value) in most the cases.

In Figs. 7b and 8b, we show the computational times for learning policy trees of agent j
through the BCT and CPT techniques over different sets of simulation data. The learning time
of the Rand technique is not exhibited here since the method provides unacceptable decision

@ Springer

Toward data-driven solutions to interactive 2445
7 8
—&—Rand —&—Rand
el —~¥-cpT 7L --%-cpT
—&—BCT —&—BCT
--&-- Exact --&-- Exact
1) 5 3f—/53/{ [2) [
8 L —] - s 8
[T ¥ [0}
o e - I x
[} ’\€ [0}
g g
< <
1
of
4 . . . 0 . . .
15 30 60 100 140 80 150 200 300 400
Replay Data Replay Data
(a) Average rewards for I-DID agent ¢ forT =5 and T =7
120 T >
20 ——-cPT — =k~ CPT L
—&—BCT 110 —&—BCT P
18 * //
’ 100 [L
16 , q e
¥ 90 [¥
,.gm // g sol /*/—'
S 12r ’ £ s
P // » 0T /
qg’ 10F A 8 60 | /
£ L £ ,
F st 7 1 P sl ///
6F /'/ 1 4a0r /’(/
4k //* 4 30t //'/
2b == 1 20k
15 30 60 100 140 80 150 200 300 400
Replay Data Replay Data

(b) Learning times to build agent j’s policy trees for T'=5and T =7

Fig. 9 Performance of NPC (agent i) learns behavior of other NPC (agent j) from the replay data in the
StarCraft domain

quality (in terms of the average rewards). The times are relatively low due to the randomness
of filling in the policy trees. We also do not show the Exact times since the technique does
not involve the learning phase. As expected, the clustering method CPT costs more times
because it demands a number of iterations to run the clustering, which can not be predicted in
a dataset. BCT becomes more efficient through a direct comparison among the policy trees.

5.2 StarCraft simulations

We experiment with our algorithms using replay data over a number of battles in StarCraft.
We retrieve 3 observations and 3 actions from the data, and learn the policy trees given
different planning horizons. We learn agent j’s policy trees with the planning horizons =5
and 7, and expand agent i’s I-DID accordingly to j’s policy in the low level.

In Fig. 9a, we show the average reward of agent i when it competes with agent j over
80 competitions. We observe that i receives higher rewards when it learns j’s behavior from
more replay data through the BCT method, where each battle records a fight/battle between
2 opposing units until one or both units dies. Similar to the performance in the previous UAV
domain, CPT still leads to lower average rewards than BCT and its performance does not
seem to be stable upon the increasing size of replay data.

@ Springer

2446 Y.Pan et al.

Figure 9b reports the times for learning the policy trees of agent j through the BCT and
CPT methods. Learning policy trees of larger planning horizons (7'=7) takes much more
time in our experiments. Executing compatibility tests in BCT spends fewer times than the
tedious clustering process in CPT.

In summary, the BCT technique shows better and stable performance than the CPT method
in both the UAV and StarCraft domains. CPT shows potential capability in providing good
solutions through a simple clustering process and requires sophisticated design of similarity
measurement function (remains to be further investigated).

6 Related works

Solving multiagent sequential decision problems in POSG is challenging in artificial intelli-
gence research. We review the relevant research on this topic and particularly elaborate the
I-DID model and its solutions.

6.1 Multiagent decision making in POSG

A single-step multiagent decision problem is solved by building a payoff matrix or game tree,
which faces with difficulty in solving Nash equilibrium in a huge search space [14]. Different
from traditional methods, Koller et al. [21] proposed multiagent influence diagram (MAID)
to effectively represent static structure relationships among agents. MAID can decompose
search space of feasible solutions, and deal with complex multiagent game problems. It is
often assumed that knowledge of each agent are shared in MAID. Networks of influence
diagram (NID) [12] model uncertainty of other agents based on MAID, and solve multiagent
decision problems in a hierarchical way. Regardless of MAID or NID, their solutions are still
in finding Nash equilibrium. Since Nash equilibrium is incomplete and multiple solutions
may exist, the existing methods based on game theory cannot be applied to a general decision
control problem.

Compared with a single-step multiagent decision problem, multiagent sequential decision
problems not only consider immediate rewards, but also take into account future rewards
of agents’ decisions. At present, researches are mainly developed based on decentralized
partially observable Markov decision process (DEC-POMDP) [29]. By considering decision
making processes of all agents, a DEC-POMDP model is difficult to be solved, which belongs
to an NEXP complete problem. One efficient DEC-POMDP solution is on expectation max-
imization algorithm based on sampling techniques, which can solve a large-scale multiagent
decision problem [35]. Marecki et al. [24] made use of agent local cooperation relations to
improve the solving ability of DEC-POMDP. Velagapudi et al. [34] allowed agents to carry
out part of communication and consultation for decisions, and it can solve decision problems
of more than 100 agents. The latest technique uses macro-action in the planning process
[2]. The DEC-POMDP algorithms suppose a common belief of environmental states for all
agents. Hence, the method is generally applied to collaborative multiagent systems.

In parallel, learning agent behavior is important in building autonomous systems, partic-
ularly with human-agent interaction [23,41], as well as developing social interactive media
platforms [27]. Carmel and Markovitch [4] propose finite automata to model strategies of
intelligent agents and found it difficult to learn the model. Suryadi and Gmytrasiewicz [33]
learn influence diagrams [17] that model agents’ decision making process. Instead of learn-
ing a specific model of agents, Albrecht et al. [1] identify a type of agent behavior from a

@ Springer

Toward data-driven solutions to interactive 2447

predefined set using a game-theoretical concept. Similarly Zhou and Yang [40] exploit action-
models through transfer learning techniques to improve the agent planning quality. In parallel,
learning other agents is one of the core issues in ad hoc team settings—a recognized challenge
in agent research [32]. Barrett and Stone [3] simplify the MDP learning to develop coop-
erative strategies for teammates without prior coordination. Sammie et al. [18,19] employ
Bayesian reinforcement learning and Monte Carlo tree search to solve POMDPs. Thiago and
Matthijs [30] exploit policy structures to improve plan quality for agents in MDP.

Research and applications of multiagent decision systems are one of the popular topics
in artificial intelligence. It is related to various fields like from the traditional soccer robots
to the current concern of smart grids, national security and electronic markets. For example,
Sycaraetal. [22] studied multiagent decentralized control decision problems, and applied it in
soccer robots, urban search and rescue fields and so on. Stone et al. [20] focused on the study
of cooperative multiagent systems in the field of robot soccer competition, robot navigation,
smart grids, and so on. Valentin et al. [26] used multiagent technologies in improving energy
efficiency, and optimized allocation of energy mainly through the behavioral prediction of
users and their energy suppliers. The TEAMCORE research team mainly studied multiagent
game problems, and applied the results to airports (terminals), public transportation security
systems [9], wild animal protection [11] and cybersecurity [28].

6.2 I-DID research

Interactive dynamic influence diagrams (I-DIDs) [37,38] are a well-recognized framework
for sequential multiagent decision making under uncertainty. They explicitly model how the
other agents behave over time, based on which the subject agent’s decisions are to be opti-
mized. Importantly, I-DIDs have the advantage of a graphical representation that makes the
embedded domain structure explicit by decomposing domain variables, which yields compu-
tational benefits when compared to the enumerative representation like partially observable
Markov decision process (POMDP) [31], interactive POMDP [13] and so on [10]. Compared
to other models like Dec-POMDP, MAID and DID, I-DID can solve a general multiagent
sequential decision problem including both collaborative and competitive settings. Since it
converts a game problem into a decision problem, it avoids solutions of Nash equilibrium
therefore leading to more general control in applications.

Current I-DID research assumes that models of other agents can be manually built or
needs to consider a large number of random candidate models where the actual models
of the other agents are unknown [37]. Hence, the existing I-DID research mainly focuses
on reducing the solution complexity by compressing the model space of other agents and
scaling up planning horizons [37]. The improved scalability benefits from clustering models
of other agents that are behavioral or utility equivalence, and the behavior could be either
complete or partial [8,39]. Recently identifying other agents’ on-line behavior is used to
improve [-DID solutions [7], which still needs to construct candidate models of other agents.
Meanwhile, Panella and Gmytrasiewicz [25] attempt to learn models of other agents using
Bayesian nonparametric methods in a small problem. Chandrasekaran et al. [5] intend to
use reinforcement learning techniques for inferring agent behavior, which turns out to be
extremely hard to reveal complete behavior and extend the solutions to N agents [6].

@ Springer

2448 Y.Pan et al.

7 Conclusion

We revisit the knowledge-driven solutions to I-DIDs—a general framework for solving mul-
tiagent sequential decision making problems—that depends largely on the input from domain
experts. Given available agents’ interaction data, we propose a data-driven framework for
solving I-DIDs in which complete policy trees shall be learned for other agents. The limited
data lead to the difficulty in learning complete policy trees for the other agents. Inspired
by the behavioral equivalence concept, we propose two algorithms to filling in the missing
branches in the incomplete policy trees. The clustering method conducts a simple grouping
strategy and provides a representative set of policy trees. It shows unstable performance due
to the heuristic process. We further propose a more formal method that exploits the statistical
compatibility to deal with the incomplete policy trees. The method provides a theoretical
bound on the solution quality. We demonstrate their performance in two problem domains
with different datasets.

Data-driven solutions to multiagent decision problems are still in the nascent stage
although machine learning techniques have been well studied in the past decade. The research
in this article provides one example of learning behavior of other agents upon limited data
in the I-DIDs model. However, the learning techniques are general enough to be applied in
other agent learning context. They will open the space of applying I-DID in many applications
where domain expertise is not easy to be obtained, while relevant data exist. For example,
we could learn behavioral models of human-players from historical players’ interaction data
and develop intelligent NPCs in real-time strategy games.

Future work would continue to improve the reliability of such solutions and focus on the
behavior learning in agents’ real-time interactions. We will consider more challenging work
on extending the current I-DID research into the environmental setting of more than two
agents, which is seldom studied in the previous work. Learning behavior allows this complex
setting since it does not need to manually build a large number of models for every agent. In
addition, we will also investigate how inconsistent data impact the behavior learning when
agents may perform differently even in the same belief states. A potential solution may adapt
behavioral compatibility in this unexpected case.

Acknowledgements This work is supported in part by the National Natural Science Foundation of China
(Grants Nos. 61772442 and 61836005). Both Biyang and Yifeng are partially supported by the EPSRC
project (Grant No. EP/S011609/1).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix
[Proof of Proposition 1]

Let HJT = ;:/.T’(l), ng,(z) st 5/?’(N) be the paths of agent j obtained from the historical
data of interactions, where N is the number of paths contained within the data. These paths

@ Springer

http://creativecommons.org/licenses/by/4.0/

Toward data-driven solutions to interactive 2449

Fig. 10 f;,(ST,andeforma P,~((1.|H’%)
triangle TR

Pr(aj|H;) Pr((lj|7-[:f.)

are likely to represent agent j’s true policy tees. Then,

A
Pr(ajIHJT) = Z T’(k))

T Ve Priajlt;
Pr(a; |HT) could be viewed as the sample mean and Pr (a jIH%) as the true mean. Hoeffding’s
inequality [16] provides a bound on the probable rate of convergence of the sample mean to

true mean:

2
Pr(\Pr(aIHT) — Pr(|5)| > &) < 2¢7*NT

N _ 2
Pr(ZZ|Pr(a_’/.|HJT.) — Pra;|H)I > |A;ITé) < |A;|T2e ZNT

toaj

2
Pr(y_ Y IPr(@iH]) = PraIH| > €) < |A4;|T2eNT

toaj

where € = |A |€.
Subsequent{y,

P’(ZZ |Pr(a;|H;) - Pr(a;\H;f)| <€) =1- |Aj|e_2NT2 3)

t aj
Recall that,n = max >, |Pr(al|H,j1-1)—Pr(a}|H})| ands” =Y, Yajea, |Pr(a;|n,§j)

— Pr(ajHD).
Letj =Y, ,. |Pr(a5.|7-{j) - Pr(a;lij)| where n < 7. Figure 10 shows the rela-
tionships between the three differences. Subsequently, from the law of triangle inequality,

—2NT ()2
n < il < (87 +¢€) where upper bound € obtains with probability at least 1 —|A j |e (mjp) .

References

1. Albrecht SV, Stone P (2018) Autonomous agents modelling other agents: A comprehensive survey and
open problems. Artif Intell 258:66-95

2. Amato C, Konidaris G, Kaelbling LP, How JP (2019) Modeling and planning with macro-actions in
decentralized pomdps. J Artif Intell Res (JAIR) 64:817-859

3. Barrett S, Stone P (2015) Cooperating with unknown teammates in complex domains: A robot soccer
case study of ad hoc teamwork. In: Proceedings of the 29th international conference on association for
the advancement of artificial intelligence (AAAI), pp 2010-2016

4. Carmel D, Markovitch S (1996) Learning models of intelligent agents. In: Proceedings of the 13th
international conference on association for the advancement of artificial intelligence (AAAI), vol 1, pp
62-67 (1996)

@ Springer

2450 Y.Panetal.

20.

21.

22.

23.

24.

25.

26.

27.

Chandrasekaran M, Doshi P, Zeng Y, Chen Y (2014) Team behavior in interactive dynamic influence
diagrams with applications to ad hoc teams. In: Proceedings of the 13th international conference on
autonomous agents and multiagent systems (AAMAS), pp 1559-1560

Chandrasekaran M, Zhang J, Doshi P, Zeng Y (2017) Robust model equivalence using stochastic bisim-
ulation for n-agent interactive DIDs. In: Proceedings of the thirty-third conference on uncertainty in
artificial intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press

Chen Y, Doshi P, Zeng Y (2015) Iterative online planning in multiagent settings with limited model
spaces and PAC guarantees. In: Proceedings of the 14th international conference on autonomous agents
and multiagent systems (AAMAS), pp 1161-1169

Conroy R, Zeng Y, Cavazza M, Tang J, Pan Y (2016) A value equivalence approach for solving interactive
dynamic influence diagrams. In: Proceedings of the 15th international conference on autonomous agents
& multiagent systems (AAMAS), Singapore, May 9-13, 2016, pp 1162-1170

Delle Fave FM, Brown M, Zhang C, Shieh E, Jiang AX, Rosoff H, Tambe M, Sullivan J (2014)Security
games in the field: an initial study on a transit system. In: Proceedings of the 13th international conference
on autonomous agents and multi-agent systems (AAMAS), pp 1363-1364

Doshi P, Zeng Y, Chen Q (2009) Graphical models for interactive pomdps: representations and solutions.
J Auton Agents Multi-Agent Syst JAAMAS) 18(3):376-416

. Ford B, Kar D, Delle Fave FM, Yang R, Tambe M (2014) Paws: Adaptive game-theoretic patrolling for

wildlife protection (demonstration). In: Proceedings of the 13th international conference on autonomous
agents and multi-agent systems (AAMAS), pp 1641-1642

Gal Y, Pfeffer A (2003) A language for modeling agents’ decision making processes in games. In:
Proceedings of the 2nd international joint conference on autonomous agents and multiagent systems
(AAMAS), pp 265-272

Gmytrasiewicz PJ, Doshi P (2005) A framework for sequential planning in multiagent settings. J Artif
Intell Res (JAIR) 24:49-79

Harsanyi JC (1967) Games with incomplete information played by bayesian players. Manage Sci
14(3):159-182

. Higuera Cdl (2003) Grammatical inference: learning automata and grammar. Cambridge University Press,

Cambridge

Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J] Am Stat Assoc
(JASA) 58:13-30

Howard RA, Matheson JE (2005) Influence diagrams. Decis Anal 2(3):127-143

Katt S, Oliehoek FA, Amato C (2017) Learning in pomdps with monte Carlo tree search. In: Proceedings
of the 34th international conference on machine learning (ICML), pp 1819-1827

Katt S, Oliehoek FA, Amato C (2019) Bayesian reinforcement learning in factored pomdps. In: Proceed-
ings of the 18th international conference on autonomous agents and multiagent systems (AAMAS), pp
7-15

Khandelwal P, Stone PH (2014) Multi-robot human guidance using topological graphs. In: Proceedings
of the 28th international conference on association for the advancement of artificial intelligence (AAAI),
pp 65-72

Koller D, Milch B (2003) Multi-agent influence diagrams for representing and solving games. Games
Econom Behav 45(1):181-221

Lewis M, Sycara K(2011) Network-centric control for multirobot teams in urban search and rescue. In:
The 44th 2011 Hawaii international conference on systems sciences (HICSS). IEEE, pp 1-10

Loftin RT, MacGlashan J, Peng B, Taylor ME, Littman ML, Huang J, Roberts DL (2014) A strategy-aware
technique for learning behaviors from discrete human feedback. In: Proceedings of the 28th international
conference on association for the advancement of artificial intelligence (AAAI), pp 937-943

Marecki J, Gupta T, Varakantham P, Tambe M, Yokoo M (2008) Not all agents are equal: Scaling up
distributed pomdps for agent networks. In: Proceedings of the 7th international conference on autonomous
agents and multi-agent systems (AAMAS), pp 485—492

Panella A, Gmytrasiewicz P (2015) Nonparametric bayesian learning of other agents’ policies in multi-
agent pomdps. In: Proceedings of the 29th international conference on association for the advancement
of artificial intelligence(AAAI), pp 1875-1876

Robu V, Vinyals M, Rogers A, Jennings NR (2014) Efficient buyer groups for prediction-of-use electricity
tariffs. In: Proceedings of the 28th international conference on association for the advancement of artificial
intelligence (AAAI), pp 451-457

Salah AA, Hung H, Aran O, Gunes H (2013) Creative applications of human behavior understanding. In:
International workshop on human behavior understanding (HBU). Springer, pp 1-14

@ Springer

Toward data-driven solutions to interactive 2451

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Schlenker A, Thakoor O, Xu H, Fang F, Tambe M, Tran-Thanh L, Vayanos P, Vorobeychik Y(2018)
Deceiving cyber adversaries: A game theoretic approach. In: Proceedings of the 17th international con-
ference on autonomous agents and multiagent systems (AAMAS), vol 2, pp 892-900

Seuken S, Zilberstein S (2008) Formal models and algorithms for decentralized decision making under
uncertainty. J Auton Agents Multi-Agent Syst 17(2):190-250

Simao TD, Spaan MTJ (2019)Structure learning for safe policy improvement. In: Proceedings of the 28th
international joint conference on artificial intelligence (IJCAI), pp 3453-3459

Smallwood RD, Sondik EJ (1973) The optimal control of partially observable Markov processes over a
finite horizon. Oper Res (OR) 21(5):1071-1088

Stone P, Kaminka GA, Kraus S, Rosenschein JS (2010) Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In: Proceedings of the 24th international conference on association for the
advancement of artificial intelligence (AAAI), pp 1504-1509

Suryadi D, Gmytrasiewicz PJ (1999) Learning models of other agents using influence diagrams. In:
International conference on user modeling. Springer, pp 223-232

Velagapudi P, Varakantham P, Sycara K, Scerri P (2011) Distributed model shaping for scaling to decentral-
ized pomdps with hundreds of agents. In: Proceedings of the 10th international conference on autonomous
agents and multi-agent systems (AAMAS), pp 955-962

WuF, Zilberstein S, Jennings NR (2013) Monte-carlo expectation maximization for decentralized pomdps.
In: Proceedings of the 23rd international joint conference on artificial intelligence (IJCAI), pp 397-403

Zeng Y, Doshi P(2009) Speeding up exact solutions of interactive influence diagrams using action equiv-
alence. In: Proceedings of the 21st international joint conference on artificial intelligence (IJCAI), pp
1996-2001

Zeng Y, Doshi P (2012) Exploiting model equivalences for solving interactive dynamic influence diagrams.
J Artif Intell Res (JAIR) 43:211-255

Zeng Y, Doshi P, Chen Y, Pan Y, Mao H, Chandrasekaran M (2016) Approximating behavioral equivalence
for scaling solutions of i-dids. Knowl Inf Syst 49(2):511-552

Zeng Y, Mao H, Pan Y, Luo J(2012) Improved use of partial policies for identifying behavioral equiva-
lences. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems
(AAMAS), pp 1015-1022

Zhuo HH, Yang Q (2014) Action-model acquisition for planning via transfer learning. Artif Intell 212:80—
103

Zilberstein S (2015) Building strong semi-autonomous systems. In: Proceedings of the 29th international
conference on association for the advancement of artificial intelligence (AAAI), pp 4088-4092

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Yinghui Pan received her Ph.D. degree from Xiamen University in
2012. She is a Research Professor in Shenzhen University, China, and
was an Associate Professor in Jiangxi University of Finance and Eco-
nomics, China. Her research interests include intelligent agents and
machine learning. Her articles often appear in AAMAS, AAAI and
other top Al conferences.

@ Springer

2452

Y.Panetal.

@ Springer

Jing Tang received her Ph.D. degree from Nanyang Technological Uni-
versity, Singapore, in 2006. She is a Senior Lecturer at Newcastle
Business School in Northumbria University, UK. Her research inter-
ests include evolutionary algorithms, memetic algorithms and artificial
intelligence. Her publications have appeared in CEC, GECCO, IEEE
Transactions on Evolutionary Computations, etc.

Biyang Ma received her Ph.D. degree from Xiamen University in 2012.
He is a Research Fellow in the Department of Computer & Infor-
mation Sciences, Northumbria University, UK. His current research
interests include multiagent planning and decision making, recommen-
dation systems and machine learning.

Yifeng Zeng received the Ph.D. degree from National University of Sin-
gapore, Singapore, in 2006. He is a Professor with the Department of
Computer & Information Sciences, Northumbria University, UK. Prior
to the role in Northumbria University, he was a Professor in Teesside
University, UK. His research interests include intelligent agents, deci-
sion making, social networks, and computer games. Most of his publi-
cations appear in the most prestigious international academic journals
and conferences, including Journal of Artificial Intelligence Research,
Journal of Autonomous Agents and Multi-Agent Systems, Interna-
tional Conference on Autonomous Agents and Multi-Agent Systems,
International Joint Conference on Artificial Intelligence, and Associa-
tion for the Advancement of Artificial Intelligence.

Toward data-driven solutions to interactive 2453

Zhong Ming is a professor in the National Engineering Laboratory for
Big Data System Computing Technology and the College of Computer
Science and Software Engineering at Shenzhen University, China. His
research interests include software engineering and Web intelligence.
Ming received a PhD in computer science and technology from Sun
Yat-Sen University, China.

@ Springer

	Toward data-driven solutions to interactive dynamic influence diagrams
	Abstract
	1 Introduction
	2 Background knowledge of I-DID
	3 Data-driven framework to solving I-DIDs
	3.1 Knowledge-driven solutions
	3.2 Data-driven methods

	4 Learning behavioral models
	4.1 Behavioral model
	4.2 Clustering policy trees
	4.3 Filling in policy trees through behavioral compatibility

	5 Experimental behavioral models
	5.1 UAV simulations
	5.2 StarCraft simulations

	6 Related works
	6.1 Multiagent decision making in POSG
	6.2 I-DID research

	7 Conclusion
	Acknowledgements
	Appendix
	References

