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Abstract

Knowledge discovery systems are nowadays supposed to store and process very large data.
When working with big time series, multivariate prediction becomes more and more compli-
cated because the use of all the variables does not allow to have the most accurate predictions
and poses certain problems for classical prediction models. In this article, we present a
scalable prediction process for large time series prediction, including a new algorithm for
identifying time series predictors, which analyses the dependencies between time series using
the mutual reinforcement principle between Hubs and Authorities of the Hits (Hyperlink-
Induced Topic Search) algorithm. The proposed framework is evaluated on 3 real datasets.
The results show that the best predictions are obtained using a very small number of predictors
compared to the initial number of variables. The proposed feature selection algorithm shows
promising results compared to widely known algorithms, such as the classic and the kernel
principle component analysis, factor analysis, and the fast correlation-based filter method,
and improves the prediction accuracy of many time series of the used datasets.

Keywords Time series - Machine learning - Feature selection - Prediction - Scalability

1 Introduction

Time series are sequential data that are generally used to model dynamic systems and pro-
cesses. In various fields, the ability to make accurate predictions is very important because
they provide possible future information about the system being studied. One of the main
challenges in time series prediction is improving the forecast accuracy. The first prediction
models were univariate, which predict a single time series based on its own history. Then,
multivariate models were introduced, which consider multidimensional time series and pre-
dict each variable using its previous values and the previous values of the other predictive
variables. A way of improving the forecast accuracy consists in developing new prediction
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models by changing the structure of existing models and how they analyze the history of data
in order to make predictions. Another way seeks to focus on the other factors that influence
the predictions, by considering this problem as a process where the application of the predic-
tion models is just a step. As such, the forecast accuracy can be improved by many ways, for
instance, (i) determining the most optimized structures of the prediction models with respect
to the underlying set of predictors, (ii) improving the quality of the input data, (iii) adopting
model matching techniques, efc.

In the context of time series prediction with many variables, a common goal is detecting
the most independent and relevant predictors with regard to a given target time series. In
the literature, several approaches were proposed to handle this problem. One of the main
motivations behind these approaches is that using all the available predictor variables does
not necessarily yield to the best forecast accuracy and sometimes renders some statistical
prediction models non-solvable due to the high number of variables compared to the number
of observations [30]. Practically speaking, these approaches can be grouped into two main
classes: (i) prediction models based on regularization or wrapper feature selection models,
where the selection step is performed using the prediction model itself, and (ii) models that
execute the reduction step independently from the prediction step. Such models are usually
based on applying filter feature selection or dimension reduction in a first step and then using
a prediction model on the selected variables.

Despite the advantages of existing methods in the literature, there are still some problems
when dealing with large time series, where the distribution of the data storage and processing
is also a challenge. Generally, on distributed platforms, partitioning data on multiple nodes
makes the adaptation of machine learning algorithms delicate. In addition, it is not always
possible to distribute complex algorithms without loss of information.

The problem we are addressing in this article is the prediction of multivariate time series
that contain many predictors, i.e., predictive variables. The main question we are dealing
with is how to select the subset from the predictors set that allows to obtain the best forecasts
for a given target variable. Theoretically, if we have n variables to predict a target variable,
there are 2" possible sub-set of features, and this problem is NP-hard. In general, algorithms
that deal with this problem are based on heuristics [24], or on statistical models.

This article is an extended version of the paper presented in [9], where we proposed an
novel algorithm for feature selection specific to high-dimensional time series. The extensions
consist in presenting a scalable version of the proposed algorithm and proposing a complete
and scalable framework for large time series prediction, which includes the feature selection
algorithm. The framework takes as input a multivariate time series and permits to (i) make
future predictions and (ii) find the subset of variables yielding the best predictions for each
target time series. Additional functionalities are also provided like the causality graphs of
the input time series and comparisons between the models used by the framework in terms
of their applicability.

The organization of this article is as follows: in Sect. 2, we describe existing concepts that
are connected to our problematic, and then, we discuss related works. In Sect. 3, we detail the
proposed feature selection method. Section4 is for the experiments setup. In Sect. 5, we show
and discuss the obtained results. In Sect. 6, we discuss the scalability of proposed prediction
process and present the distributed version of the proposed algorithm. Finally, in the last
section, we summarize our contributions.
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2 Related work

The aim of this section is to discuss some approaches from related works that address the
problem of large-scale time series reduction for prediction purposes. The cause behind reduc-
ing the number of predictors in a multivariate prediction model is generally based on two
reasons; (i) for some linear models, if the number of variables is large, the estimation of the
parameters may not be achievable [30] and (ii) applying a prediction model with all available
variables is not necessarily the best choice in terms of prediction accuracy, because of the
existence of redundant information within the set of variables.

Researches that handle the problematic studied in this article belong to the intersection of
three topics; feature relevance, dimension reduction and feature selection, and multivariate
time series prediction. Therefore, this section involves a discussion of these topics. Afterward,
we present some related works that combine them to build models for large time series.

2.1 Feature relevance

Determining the relevance between variables is one of the central building blocks in fea-
ture selection. Therefore, it can be exploited to evaluate the importance of predictors in a
multivariate prediction model.

In [15], a relevance definition was proposed by considering that a variable X; is relevant
to Y if there exist x; and y, where P.(X; = x;) > 0 such that:

P(Y = yIXi = x;) # P (Y = y), 1

where P, represents the probability. The idea behind this definition is that X; is relevantto Y,
if the fact of knowing and taking into consideration the information of X; results in changing
the estimate of ¥ compared to the situation where X; is not used. In the same work [15],
other similar definitions were presented, where more than two variables are considered, but
they are based on the same principle.

The predictive causality is also a very interesting concept in time series analysis. Generally,
there are two common predictive causality measures for modeling complex time series; the
Granger causality [8] and its nonlinear extensions such as the one based on kernel generaliza-
tion [36], and the transfer entropy [28]. The original Granger causality definition presented
in [8] rests on the prediction aspect to define the causality. Let us consider two univariate
time series x, y with # observations. x;1 is unknown at time ¢ and therefore can be expressed
using probability in a set B. Consider [ the set of information available at time ¢ within y,.
y; causes x4 if:

Py(xi41 € BII) # Pr(xi41 € BII\yy). 2)

Practically, the Granger causality test [8] uses two VAR (vector auto-regressive) models
to evaluate the causality from one variable to another one. It evaluates two models: (i) the
first one uses just the previous values of y; and (ii) the second uses both x; and y; in order to
predict y;:

P
=a0+o+ Y oiyiit+é, 3
i=1

=
|

p p
i =00+ o+ foiytfi + Zﬂixtfi + €&, 4)

i=1 i=1
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where [a;, ap, ..., ap] and [B;, Bo, ..., Bpl are the parameters of the models and ¢, is a
white noise error term. The parameter «; is used in case of the time series y, contains some
trends, and it is not required for stationary time series. The Granger causality test evaluates
these two models using the residual sum of squares, to check if adding x; to the model
improves the predictions of y;. A statistical significance can be obtained using the Fisher
test, by providing a p-value indicating the probability of non-causality, if this probability is
low based on a threshold value (e.g., 5%), then we can say that x; causes y;.

Similarly, the transfer entropy proposed in [28] is based on the same general principle of
the previous definition, but uses information theory instead of prediction models. In addition,
it is considered as nonlinear extension of the Granger causality. The transfer of information
from a variable x to another variable y is based on the difference between two conditional
entropies, where in the first one, only previous values of y are used, and in the second, both
previous values of x and y are considered. Formally, the transfer entropy between two time
series, or two processes x and y, measures the information flow from x to y, and can be
expressed as follows:

TEx oy = H(yelyi—1, -1 Yi—p) )
—Hil =153 Yi=p)s (15 -+, Xe—p)), 6)

where H is a Shannon conditional entropy and p is a time delay parameter. Let us underline
that feature relevance concept is quite close to the predictive causality in the sense that both
are based on analyzing two situations; one using the predictive and the target variable and
the other one using only the target variable, and then evaluating the difference between these
two situations. The main difference is that the predictive causality takes time into account,
and this is very important in forecasting with lagged variables and therefore seems more
adequate to model interactions between time series in our problematic.

2.2 Dimension reduction

Dimension reduction methods generate new variables computed as a combination of the
original variables. These variables are generally constructed with regard to two criteria: (i)
they are uncorrelated between them and (ii) must keep as much as possible the characteristics
of the original variables. PCA is one of the most common dimension reduction methods. The
fundamental principle of this method is to find the principal components on which the data

can be better explained. Consider a vector of n variables ¥ = [yi, ..., y,] containing /
observations, and X = %Y TY is its covariance matrix.
The idea of the PCA is to generate k << n linearly uncorrelated factors [p1, ..., pkl,

while preserving the information contained in original variables [16]. These factors can be
expressed as follows:

n
pj=alY =Y ajy Vjellk, @)
i=1
One approach to find the principal components is to use the decomposition of the covariance
matrix X'. X is a positive square and symmetric matrix, so it is diagonalizable, so it can be
decomposed as follows:
¥ =UAUT, ®)

where A is a diagonal matrix and U is a matrix where each column is an eigenvector and
UUT = 1. Based on this property, the principal components are determined such that
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(a]T e, a,I ) are the eigenvectors of X' in the ascending order, i.e., ai is associated with
the k' eigenvalue.

Similarly, factor analysis reduces the size of a vector of n variables by explaining them
by a vector of uncorrelated factors of dimension p < n. But contrary to the PCA, where
the principal components are determined via a decomposition of the covariance matrix, the
determination of the factors with FA is based on a multivariate statistical model [16,27].
Factorial analysis constructs a model where the original variables are expressed linearly
according to the factors:

Y =BF + E, )

where B, F, and E represent resp. the parameters of the model, the factors, and the error
terms.

2.3 Feature selection

Feature selection is the process of eliminating redundant information by extracting a subset
of the most relevant variables. There are two types of feature selection methods: filter and
wrapper-based methods. Wrapper-based feature selection methods use the prediction algo-
rithm itself to select variables, by refining the selected variables with respect to the model’s
performance at each iteration, while filter methods select variables independently from the
prediction model based on the relationships between the variables. Filter feature selection
includes two classes of algorithms: univariate algorithms and subset search algorithms [35].
On the one hand, univariate algorithms consist in ranking variables according to a relevance
measure that we discussed like correlation, mutual information, Euclidean distance, or rele-
vance measures specific to time series like the ones discussed in the first part of this section,
such as Granger causality and transfer entropy. The final variables are then selected by setting
a limit threshold of the measurement used, or according to a desired number of variables. On
the other hand, subset search algorithms evaluate many subsets of features. In general, their
complexity is exponential, because exploring all the search space, i.e., all possible subsets of
a set of variables of size n, requires 2" evaluations. In the literature, many feature selection
methods that are based on correlation have been investigated. The correlation-based feature
selection (CFS, [21]) seeks to find the variables that are correlated with the target and uncor-
related between them. Considering S a set of k features, and a target variable y, the quality
of the set S is computed via the following measure:

krei

RV = =

(10)

where kr.; is the mean of feature-target correlations and kr;;s is the mean of feature-feature
correlations of the set S.

In [35], as an extension of the CFS method, and in order to avoid the shortcoming of
linear correlation measures, the FCBF (fast correlation-based filter) algorithm was proposed
for feature selection of high-dimensional datasets. The algorithm uses the symmetrical uncer-
tainty as a relevance measure [26]. It is mainly based on the mutual information, which can
be considered as a nonlinear correlation. In a first step, the algorithm selects the most relevant
features, according to the class (the target) based on a threshold on the values of symmetrical
uncertainty. Second, the algorithm eliminates redundant variables by calculating pairwise
correlation between them.
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2.4 Discussion

Feature selection and dimension reduction methods can play the same role in reducing the
dimensionality of the set of predictor variables in a multivariate prediction model. Neverthe-
less, their principles are totally different, since dimension reduction methods generate new
variables, which are generally a combination of the original variables, while feature selection
methods extract variables from the originals. In practice, it is important to know exactly the
relevant and real variables, especially when we are dealing with financial and macroeconomic
data. Furthermore, knowing the most relevant variables is itself an important information as
it can be used for other purposes besides predicting. On the other hand, sometimes we are
just interested in determining input features of the prediction models, even if they are not
part of the original variables. Hence, choosing the appropriate method depends not only on
the accuracy of the predictions obtained, but also on the current problem.

In the literature, many approaches were proposed to handle large time series prediction,
with applications in different fields, like industry, finance, weather forecasting, and so on.
In each application, the time series structure and the domain knowledge hypothesis are
specific to the studied system. The common goal between these approaches is to find the
main time series that cause the future change of the system. In terms of methodology, they
generally differ in the way of constructing a reduced set of features from the set of initial
variables before applying the multivariate prediction model. Dimension reduction and feature
selection methods, in particular principal component analysis (PCA), factor analysis (FA),
and filter-based feature selection methods, are widely used to deal with this problem [6,37].
In [18], a clustering-based sample entropy approach is proposed to identify the temporal
information between time series, and then it is used in a feature selection method for black-
box weather forecasting. In [22], a forecasting approach was proposed to forecast electricity
load time series. First, correlation, mutual information and instance-based feature selection
methods were applied in order to extract the relevant informative lag variables. And second,
a combination of multivariate artificial neural network and statistical models is applied to
make forecasts. In [4], a similar forecasting process was proposed. It includes a filter and
wrapper feature selection approaches in order to select the most important variables, and
then a multilayer perceptron model is used for forecasting. In [1], a forecast approach was
presented by proposing a new feature selection method based on information theory, for the
purpose of modeling nonlinear dependencies between variables. Similarly, in [37], a data
mining process was proposed for forecasting daily stock market using PCA and a feed-
forward neural network prediction model.

3 Our approach
This section covers a description of our approach. First, we present the main steps of our

prediction framework. Then, we detail the proposed feature selection algorithm and illustrate
an example.

3.1 The prediction process
From an input multivariate time series, the process allows to predict target variables based on

their history and the history of other related variables. The particularity of this system is that
is based on a description step that consists in calculating causality graphs and uses a novel
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Fig. 1 Illustration of the transformation from time series to the graph of dependencies through pairwise
causalities, where nodes represent the variables and the edges indicate the causalities

feature selection algorithm that exploits these causalities to find the most relevant predictors
for each target variable. The prediction process consists of main 3 steps:

1. The computation of dependencies between variables via causality graphs: here, we com-
pute the matrix of dependencies (or a graph) between variables using a causality measure.
For example, the graph shown in Fig. 1 represents the graph of dependencies of the second
dataset used in the experiments (cf. Table 1) using the Granger causality test, where the
nodes represent the time series, and the edges represent the pairwise causalities. Using a
matrix representation, if M is the matrix of pairwise causalities, then M[i, j] is the value
of the causality from the variable number i to the variable number ;.

2. Feature selection and dimension reduction with different methods including the proposed
algorithm.

3. Prediction using several prediction models.

3.2 The proposed feature selection method

Let us consider a set of predictors time series P = {yi, ..., y»}, and a target time series x.
Consider also V as the vector of causalities from variables of P to the target, where V[i] is
the causality from y; to x. The goal is to select a set from P of size k << n, which contains
the most important variables in terms of prediction accuracy with regard to the variable
x. The idea is to consider the predictor—predictor dependencies and the predictor—target
dependencies. More precisely, we select predictor variables based on two criteria:

1. Having significant causality to the target: the first criteria is that the predictors should
cause the target. However, this is not sufficient, because if we rank variables based on
their causalities to the target, we get the problem of dependencies. Figure 2 illustrates this
problem: what should be the best two predictors for y4? Selecting y; and y, may not be
the best choice, even if they strongly cause y4, because if y; causes y», then they may
provide the same information to y4. In this case, it is worth to diversify the sources of
information to predict y4.

2. Summarizing as much as possible the information of predictor variables. Similar to the
idea of the PCA technique that, based on the co-variance matrix, constructs the principal
components that drive the others variables, here the second criteria are to choose variables
that represent the source of information in the graph of predictor—predictor causalities.

We can connect our problem to the one of ranking web pages by making an equivalence
between the matrix of dependencies of web pages and the matrix of causalities of time series.
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Fig.2 Example of dependencies
between time series
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Nevertheless, the difference between our problem and web page ranking is that the latter is
an unsupervised model. In our case, we exploit information about the target variable and add
it in the graph of dependencies. Therefore, our approach is based on an adaptation of the Hits
algorithm. In the rest of this part, we first discuss the original Hits algorithm, and then we
describe our approach.

3.2.1 Generalities on the hits algorithm

The Hits (Hyperlink-Induced Topic Search) algorithm, proposed in [20], was originally used
for web page analysis. It was developed to detect the most relevant pages from the Web graph
by analyzing the dependencies between them. It considers two notions of pages relevance:
the Hubs and the Authorities. And this is important in our case (forecasting using many
variables), because we are not only interested in extracting the most relevant variables, but
we distinguish between variables that transfer information, and variables that receive the
information. Each page has an Authority and a Hub score. Good Hubs are pages that point
to many pages (transferring information), while good Authorities are pages that are pointed
by good Hub. The final purpose of the original application of the Hits algorithms is to rank
pages based on their Authorities weights, because the goal was to find pages that are the most

pointed.
The equations for updating the Authorities and a Hubs weights of each page are as follows:
a(p)y= Y h(g), (1)
q:q—>p
hp)= ) a@). (12)
q:p—>q

3.2.2 The principle of the proposed method

Our approach is a particular adaptation and a new application of the Hits algorithm. It aims
to to select the most relevant variables that cause the target while minimizing dependencies
between them. A similar idea was investigated in [34], which uses the Hits algorithm for
ranking items that maximize a profit in an association rule model. But from our knowledge,
this concept was not used before to select predictors for multiple time series prediction based
on the causality graphs.

To do that, we weight the coefficient of the Hubs and Authorities with predictor—predictor
and predictor—target causalities as expressed through the following equations:

h(p)= ) alg) x Mlp,q] x VIpl, (13)
q:p—>4q

a(p)=)_ hig) x Mlg, pl x VIql. (14)
q9:q—>p
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These equations can be compactly expressed as follows:

h = Ga, (15)
a=GTh, (16)

where M is the matrix of pairwise causalities, G[i, j] = M[i, j] x V[i]. With the use of
this weighting method, the algorithm computes for each variable the Hub and the Authority
scores by including the causality to the target. In the end, contrary to the first application of
Hits algorithm were pages are ranked based on the Authorities scores, we are interested in the
top variables based on their Hub scores, because this is our objective, i.e., the computation of
these scores is basically designed to detect variables that represent the source of information
in the causality graph by considering the causality to the target (cf: Egs. 13 and 14).

3.2.3 The algorithm of the proposed method

In this part, we describe the proposed PEHAR (predictors extraction using Hubs and Authori-
ties ranking) algorithm (cf. Fig. 1). The exact method for finding the Hubs and the Authorities
vectors is based on matrix resolution using linear algebra [3]; more precisely, it is about
eigendecomposition of diagonalizable matrices. Formally, by replacing the Hubs and the
Authorities vectors in Egs. 15 and 16, we obtain the following equations:

a = G7Ga, (17)
h=GGTh. (18)

Consequently, the Authorities vector converges to the eigenvector of the matrix GT G, and the
Hubs vector converges to the eigenvector of the matrix GGT. In our case, what is important
is the first eigenvector of GGT, which corresponds to the highest eigenvalue. Although this
method is exact, it has some drawbacks. First, the computation time to find the eigenvec-
tors can be important, especially if the matrix G is large and dense. Second, it requires a
computation of all eigenvectors of GGT, but in our case, just one is needed.

In this paper, we adopt an iterative method based on the power iteration technique, as it
generally converges in a reasonable number of iterations. The proposed Algorithm 1 shows
an implementation of this method. It consists in executing Eqs. 13 and 14 iteratively, with
a normalization step in each iteration, until stability [20]. Thus, the user can control the
computational time through the number of iterations or an expected error. We consider that
the values of dependencies between variables are computed separately, in such a way that
the algorithm takes as input the matrix of predictor—predictor causalities M and the vector
of predictor—target causalities V.

3.2.4 Example

In this example, we apply the proposed algorithm on a small set of variables. Consider a set
of 5 predictors P = {y1, ..., ys}, and a target variable x. Consider also M as the matrix of
causalities of P, and V the vector of causalities from P to x (following the same notations
in Sect. 3.2.2), which are computed using the transfer entropy as follows:

0 038 052 051 0.70 0.07

0.8 0 091 0.401 0.89 0.90
M=108 034 0 09 0.71], V=]0.65
095 0.62 0.56 0 0.67 0.16

092 096 0.99 0.77 0 0.35
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Algorithm 1: The PEHAR algorithm.

Input : n: the number of predictors;
M: the causality matrix between predictors of size (n x n);
V: the vector of predictor—target causalities of size n;
iters: the number of iterations;
min_error: the minimum error;
Output: /: the vector of Hubs scores of size n;
1 h(p) < %, p=1,...,n;
2 while i < iters or min_error < error do
3 hlast < h;

4 h(p) <0, p=1,...,n;

5 a(p) <0, p=1,...,n;

6 for p € [1,n] do

7 for g € {[1,n], p # g} do

8 | a(qg) < a(q) + hlast(p) x M[p,q] x V[pl;
9 end for

10 end for
1 for p € [1,n] do

12 for g € {[1,n], p # g} do
13 | h(p) < h(p)+alg) x M[p.q] x VIpl;
14 end for

15 end for
16 Sq < max(a);

17 sy < max(h);

18 | h(p) < h(p)/sp, p=1,....m

1 | a(p) < a(p)/sa, p=1,..., n;

20 error < 0;

21 for p € [1,n] do

22 ‘ error < error + abs(h(p) — hlast(p));

23 end for

24 if error > min_error then
25 | return;

26 end if

27 end while

28 return /;

We compute the matrix G as indicated in Sect. 3.2.2: G[i, j] = M[i, j] x V[il],

0 0.026 0.036 0.035 0.049
0.792 0 0.819 0.360 0.801
G =]0.578 0.221 0 0.624  0.461
0.152 0.099 0.0896 0 0.107
0.322 0.336 0.3465 0.2695 0

As discussed in Sect. 3.2.3, the algebraic resolution method for finding the Hubs vector
is based on the eigenvectors of GGT. By computing all normalized (/{ norm) eigenvector of
GTG, and ranking them according to eigenvalues, the first eigenvector is as follows:

Ve = (0.0196 0.4639 0.2853 0.0661 0.1651). (19)

If we apply the power iteration method as detailed in Fig. 1, we obtain the following Hubs
vector in just 3 iterations:

v.I =(0.0196 0.4638 0.2854 0.0661 0.1651). (20)

iter
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Table 1 Datasets

Datasets Description

Ausmacrodata An Australian quarterly macroeconomic time series in the period
1984-2015, containing 117 variables and 119 observations [12]

Stock-and-Watson an USA quarterly macroeconomic time series in the period
1960-2008, containing 143 variables and 200 observations [31]

Sales transactions Weekly purchased quantities of products over 52 weeks, containing

811 variables and 52 observations [5,32]

The final step consists simply in ranking variables based on the Hubs vector. In the
example, despite the small difference between the two vectors obtained by the iterative and
the algebraic methods (Egs. 19, 20), they lead to the same ranking.

4 Experiments setup

In this section, we present the setup used to perform the experiments. We describe the used
datasets, the prediction procedure, and the evaluated prediction models and the reduction
methods. The aim of these experiments is to select the best reduction algorithm, the appro-
priate number of predictors and the best prediction model, not only for each dataset, but for
each variable. These evaluations will help us to identify and rank algorithms based on their
applicability on each variable in terms of prediction accuracy.

4.1 Datasets

The experiments are conducted on 3 real time series datasets. A description of these datasets
is provided in Table 1.

4.2 The used reduction methods

We compare our algorithm to dimension reduction and feature selection methods that are
widely utilized in the literature, including PCA, kernel PCA, factor analysis, and FCBF
(fast correlation-based filter) (see Sect. 2 for more details). Two versions of our algorithm
are implemented, the first one using the Granger causality test for computing causalities
(PEHAR-gc), and the second using the transfer entropy (PEHAR-te). We use a p-value
threshold equal to 0.05 for the statistical significance of the causality test.

4.3 The used prediction models

Different prediction models are used of type univariate and multivariate and belong to two
categories. The first one includes multivariate models that are used after the reduction step.
Essentially, the chosen models are characterized by the ability to consider long-term rela-
tionships between variables, but using two different mechanisms:

— A statistical model: the vector error correction model (VECM) [14]. It uses the cointegra-
tion of non-stationary time series to exploit long-term dependencies between variables.
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1104 Y. Hmamouche et al.

The cointegration is simply when two time series are non-stationary, and there is a sta-
tionary linear combination of them. Let us consider a non-stationary multivariate time
series Y; that is integrated of order 1. The VECM model can be written as follows:

p—1
AY, =Y, + Y LAY, +uy, 1)
i=1

where AY; is the stationary time series resulting from the differentiation of ¥; (computing
the difference between two consecutive observations), /7 is the matrix representing the
co-integration equations, I; are the coefficients of the model, and u; are white noise
error terms. If 7k (IT) = 0, then there are no cointegration relationships. In this case, the

VECM model is reduced to the VAR model:

p—1
AY, =Y LAY, +u;. (22)
i=1
— An artificial neural network model: the LSTM model [10]. It is a particular recurrent
neural network, which supports time lags of the input variables, and it becomes very
useful for time series prediction. Its structure contains a specific unit that includes artifi-
cial neurons responsible for forgetting and remembering old information passed through
the network. For this model, we used an architecture composed of one LSTM hidden
layer and a fully connected output layer containing one neuron to provide one predic-
tion each time using the sigmoid activation function. The network is trained using the
ADAM optimization algorithm [19], and the mean squared error is considered for the
loss function.

The second category includes prediction models that do not require a selection or a dimen-
sion reduction step. Here, we use the following models:

— The ARIMA (auto-regressive integrated moving average) model. It used as a baseline
model and in order to check if there exist some variables that could be predicted better
without the use of predictors. Let us consider a univariate time series y; that is integrated
of order d (i.e., we have to differentiate it d times to become stationary).

The ARMA(p, g) model expresses y; according to the last ¢ errors terms and the last p
past values of y;:

p q
i =oa0+ Zai)’z—i + Z,Bift—i + €.
i=1 i=1
where «; and B; are the coefficients of the model and ¢; is an error term. The
ARIMA(p, d, ¢) model is an extension of ARMA for non-stationary time series. It
transforms the time series to be stationary, and then it applies the ARMA model. In our
case, the lag parameter p is fixed to 4 (cf. Sect. 4.4), the parameter d depends on the
stationary order of the time series, and ¢ is determined based on the Akaike information
criterion (AIC) [2].

— A vector auto-regressive combined with shrinkage methods. Shrinkage methods repre-
sent another approach to estimate the coefficients of linear models that contain many
variables. They consist in minimizing the impact of irrelevant variables of a regression
model iteratively by the prediction model itself. Thus, a regression model after estimat-
ing their coefficients with the regularization methods can contain many variables with
a regularization on the non-important coefficients, for example, by pushing them close
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to 0 [11]. Classical shrinkage methods are in fact specific to linear multiple regression
models. Butin our case it is different because we build models based on lagged variables.
To overcome this limitation, we implemented an adaptation of the vector auto-regressive
model with shrinkage representation. In this category, we employ Bayesian ridge, ridge
and Lasso methods.

4.4 The prediction procedure

The prediction procedure used is similar to the one used in [25,31], where the two first datasets
described in Table 1 have been used. We forecast all variables for each dataset and evaluate the
last 75 and 100 values of Australian and US datasets, resp., and for Sales-Transactions dataset,
we evaluate the models with the last 20% observations. These predictions are performed
based on a rolling window procedure with one step ahead forecast. The lag parameter for
prediction models is set to 4, which is equivalent to 4 quarters for US (Stock-and-Watson)
and Australian (Ausmacrodata) datasets, and 4 weeks for the third dataset. Two prediction
accuracy measures are used, the root mean square error (RMSE), and the mean absolute
scaled error (MASE). The MASE is a new forecast accuracy proposed in [13], independent
of the data scale, and based on the errors of the forecasts and the mean absolute error of the
naive method:

h
Zt:l elz
=
Y el
h

RMSE =

MASE =

1~ ’
T ot |V = yi-1l

where ¢, is the prediction error and # is the number of predictions.
To summarize, the main steps of the prediction procedure, including the used methods
and models, are as follows:

— Description step: computing the matrices of causalities using two measures, the Granger
causality test and the transfer entropy.

— Reduction: this step includes the application of feature selection and dimension reduction
methods. All available methods are applied using different reduction sizes k. The methods
used are: PCA, kernel PCA, FCBF, factor analysis, and our method PEHAR with two
variants, PEHAR-gc that uses the Granger causality test, and PEHAR-te that uses the
transfer entropy. We evaluate values of k from 1 to 20, since using higher values does
not improve the predictions.

— Prediction: applying all prediction models: ARIMA, VECM, LSTM, and the VAR model
with shrinkage methods.

— Evaluation: evaluating the prediction accuracy using the RMSE and the MASE measures.

5 Results

In this section, we show the obtained results associated with the selection and the prediction
steps, and we discuss the performances of the algorithms evaluated. Since we predict all
variables of each dataset, the total number of variables evaluated is 1071. For the sake of
readability, we present only a global comparison between methods and models by computing
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Table 2 Prediction models applicability

Datasets Models Number of usages
RMSE MASE
Stock-and-Watson Arima 8 17
Var+BayesianRidge 2 3
Var+Lasso 3 2
Var+Ridge 6 6
Vecm 34 26
Lstm 75 74
Ausmacrodata Arima 49 56
Var+BayesianRidge 0 1
Var+Lasso 3 3
Vecm 13 12
Lstm 52 45
Sales-Transactions Arima 15 20
Var+BayesianRidge 7 24
Var+Lasso 7 4
Var+Ridge 12 12
Vecm 294 264
Lstm 477 487

the number of time where each algorithm outperform the others, and the best method’s average
RMSE and MASE. However, the detailed results of each variable separately, in addition to
the implementations, are available online!.

5.1 Evaluation of prediction models

In this part, we compare the applicability of the prediction models. To do this, we execute
the prediction process on each dataset separately using the procedure described in Sect. 4.4,
and based on the predictions obtained of the test data, we count the number of variables for
which each prediction model leads to the best predictions. Consequently, the best models are
those how lead to better predictions for more variables.

Table 2 shows the usages of the prediction models. We remark that each one outperforms
the others on a subset of variables. But overall, the LSTM model is the most selected for
Ausmacrodata and Stock-and-Watson datasets, and the VECM is the most selected for Sales-
Transactions dataset. Shrinkage models are the less selected, especially for Ausmacrodata
dataset, as they are not selected for any variable.

As for the ARIMA model, we notice a quite surprising result. It also provides good
results and allows to have the best forecasts for a serious number of variables, especially for
Australian datasets. Let H be the set of variables that are predicted better by the ARIMA
model. The question that might arise is why such a simple univariate model, which needs just
the history of a univariate time series to generate forecasts, predicts better the variables of H
than the used multivariate models? We can tackle this question based on three explanations:

1 https://github.com/Hmamouche/Large-Time- Series-Prediction.
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1. Variables of the set H are independent, i.e., they do not require external information from
other variables.

2. The used multivariate models do not exploit well the dependencies between variables of
H and the associated predictors.

3. The selected variables by the used reduction methods are not the best predictors for
variables of H.

In our opinion, the first point is the most logical, because it is very normal to find independent
variables in a given dataset, those which are at the top of the causality graph. We can consider
them as pure Hubs, since they just transfer information to other variables.

5.2 Evaluation of reduction methods

In this part, we compare the reduction methods with respect to the obtained prediction accu-
racy. Like the previous part, we evaluate the performance of the reduction methods in terms
of RMSE and MASE measures.

5.2.1 Methods applicability

The goal of this evaluation is to rank methods by their usages on variables of each datasets.
Here again, we count the number of variables on which each method provides predictors
leading to the best predictions. These results are shown in Fig. 3. The first column of each
plot shows the number of variables where each method is the first best method. The second
column shows the number of variables where each method is the second best method, and
SO on.

Figure 3 shows that there is no method that outperforms the others on all variables.
However, the distribution methods applicability is not uniform. These results show that the
proposed feature selection algorithm is the most appropriate reduction method for many vari-
ables compared to other methods. More precisely, it the first best algorithm for Ausmacrodata
and Stock-and-Watson datasets in terms of RMSE and MASE, and it is the second best algo-
rithm for Sales Transactions dataset. For example, in terms of RMSE, it is the best for 29
variables for Ausmacrodata, and the second algorithm is PCA with 11 variables. For Stock-
and-Watson dataset, our algorithm is also the first with 43 variables, and the second algorithm
is factor analysis with 25 variables. For Sales-Transactions data, factor analysis is the first
method with 181 variables, followed by PCA with 157 variables, and then PEHAR-te with
150 variables.

5.2.2 Methods average RMSE and MASE

In this part, we compare method’s best normalized RMSE and MASE obtained when applying
reduction methods on variables of each datasets. The results show that the proposed algorithm
provides the best average RMSE and MASE for Stock—Watson and Ausmacrodata datasets.
For Sales-Transactions dataset, the best algorithms are factor analysis and PCA. Note that the
MASE measure indicates aimplicitly acomparison with a naive benchmark model (predicting
next values based on the average of p last values, where p is the lag parameter), where the
MASE is equal to 1. Therefore, acceptable MASE values must be less than 1. This is achieved
for all datasets, except for the one, where only FCBF and PEHAR-gc methods satisfy this
condition.
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Fig.3 Comparison between the applicability of the reduction methods in terms of RMSE and MASE measures.
The number associated with a method on the column number i indicates the number of variables where the

method is the ith best method

5.2.3 The number of predictors

Table 4 shows the average number of predictors found by each method which allow obtaining
the best predictions. There is no major difference between methods. But for all of them, the
obtained numbers are very small compared to the initial number of variables. We have tested
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Table 3 Methods average RMSE and MASE for each dataset

Methods Stock—Watson data Ausmacrodata Sales-transactions
RMSE MASE RMSE MASE RMSE MASE

FCBF 0.14 0.98 0.12 0.59 0.20 0.81
PEHAR-gc 0.10 0.93 0.12 0.64 0.22 0.86
PEHAR-te 0.13 1.22 0.10 0.53 0.23 0.96
FactA 0.13 1.54 0.12 0.55 0.19 0.76
Kernel PCA 0.14 1.37 0.13 0.55 0.19 0.80
PCA 0.13 1.61 0.13 0.62 0.19 0.76

Table 4 The average best number of predictors

Methods Stock—Watson data Ausmacrodata Sales-transactions
RMSE MASE RMSE MASE RMSE MASE
FCBF 2 4 5 2 2 2
PEHAR-gc 5 5 5 6 3 2
PEHAR-te 4 2 4 4 2 2
FactA 3 2 3 1 3 2
Kernel PCA 2 2 4 4 3 3
PCA 4 3 3 2 3 2

different numbers, and we found out that using more than 20 variables decrease the prediction
accuracy. This finding confirms results of work presented in [25], which is conducted on the
Ausmacrodata dataset, where the authors show that the best prediction accuracy is obtained
with a number of predictors less that 20-40. In our case, we found less number of predictors
for all datasets, which does not exceed 10 (cf. Table 4). This reduction is very important for our
research in terms of computational time, especially when using neural network prediction
models. For example, in our case, the computation time of the LSTM model is the most
important among the used models, and reducing the search space from all variables to less
than 10 is a significant gain.

5.3 Discussion

Through these experiments, we demonstrated an application of the presented prediction
process on three datasets, which allows to find the best reduction method and prediction
model for each variable of the multivariate time series. The proposed algorithm (PEHAR) is
included in the process and can also be used separately for feature selection, but it is specific
to time series because it considers temporal dependencies between variables.

Starting with discussing the evaluations, the results show that the proposed method pro-
vides competitive predictions in terms of usage, and also in terms of average of RMSE and
MASE compared to existing methods of type dimension reduction (PCA, kernel PCA, fac-
tor analysis) and feature selection (FCBF). Let us underline a difference between the used
reduction methods, the used dimension reduction methods belong to the unsupervised learn-
ing category, because they reduce the dimension of variables just based on their statistical
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characteristics, without considering the target variable. Usually, in forecasting, the data his-
tory contains passed values of target variables. In this case, it is worth to exploit it. This may
be one cause why dimension reduction methods do not outperform in our experiments.

This is one of the motivations behind the proposed feature selection algorithm (PEHAR),
which is a supervised learning model that considers relationships between predictors and
target variables. However, it is possible to make an unsupervised version of it, by simply not
considering causalities to the target in Eqgs. 13 and 14. In this case, it will be close to the
classic Hits algorithm.

The Ridge and Lasso shrinkage methods have been experimented on the first datasetin [31]
and show good performance compared to the dynamic factor model. Unlike these findings,
we found that the evaluated shrinkage methods are not competitive compared to models
based on feature selection methods (cf. Table 2). In our opinion, the explanation of these
results comes back to the basic principle of shrinkage models. They eliminate the impact of
non-important variables, but these variables sometimes remain in the model. Therefore, the
presence of these variables, even with low coefficients, may affect the prediction accuracy.

One common problem is how to allow feature selection methods to provide an automatic
number of variables. This does not necessarily guarantee finding the optimal set of predictors,
but it is useful in practice. For the proposed PEHAR algorithm, to allow it to generate his
own number of variables, one idea is to fix a threshold on the Hubs scores using a statistical
test. This method is practical if we use the Granger causality, since it is naturally computed
using a statistical test. However, with transfer entropy as a causality measure, it is not clear
how doing a significance test for the obtained values.

6 Scalability of the prediction process

When forecasting big time series, there are two problems related to the size of datasets; the
number of observations, and the number of variables. In our opinion, the latter is the most
difficult problem because some prediction models, like the ones based on artificial neural
networks, are hard to distribute when they are applied to this type of data, or they require a
change in their structure in order to adapt to distributed platforms. In this case, we may lose
the original form of the model. In addition, we have seen in the previous section that using
all variables does not yield to the best results; instead, the best predictions are obtained with
a small number of variables (cf: Table 4), therefore, the more variables there are, the more
difficult it is to find the best predictors.

In the other hand, time series with small number of variables and many observations do
not present a real problem, because it is possible to use some techniques to reduce the number
of observations like data discretization and quantization, or using sliding window techniques
and batch based parallel training [33]. In addition, for financial forecasting, for example, all
history of data is not necessary useful; that is, at a certain time, old observations are not very
relevant.

From this point of view, we propose a distributed version of the presented prediction pro-
cess that can process large multidimensional time series. The particularity of this system is
that it rests on a distributed feature selection step as a means of reducing multivariate pre-
diction models into many small models that can be executed in parallel. The implementation
of this process is performed using Spark and Hadoop!.
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Fig.4 Illustration of the scalable
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6.1 The structure of the proposed system

To distribute the prediction process, we propose a system that boils down into the following
steps:

Storing time series in a set of partitions of variables.

Preparing data.

Computing dependencies between time series.

Applying a distributed version of the PEHAR algorithm to determine predictors of each
target variable, and generating models input ({target, predictors}).

Running prediction models in parallel.

The schema of this system is shown in Fig. 4, where {vy, ..., v,} are the original variables,
c;,j represents the causality from v; to vj, and {f;, P;} constitutes a prediction model input
(target variable and the associated set of predictors), {t1, ..., ,} are the target variables,
and {Py, ..., P;} is the set of the selected predictors. The size of each set P; is k << n.
Let us underline that different values of k can be tested, like in the experiments shown in
the previous section. In this case, the results must be grouped by target variables to find the
appropriate number of variables.

6.2 Data preparation

In big time series, the data may contain outliers and noises that may affect the quality
of the information extracted from these data. On the other hand, eliminating outliers is a
risky task because it is difficult to detect them. In addition, extreme values can provide
important information and they may be detected as outliers. In our process, we set up a
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preparation step by filtering data using low-rank matrix approximation via the singular value
decomposition (SVD). SVD is a matrix decomposition technique and a generalization of the
PCA technique for rectangular matrices. Consider a real matrix M of dimension (m X n), the
SVD factorization of M is as follows:

M=USVT, (23)

where U and V are two orthogonal and square matrix of size (m x m) and (n x n) resp. And
S is the matrix of singular values (diagonal) of size (m x n).

SVD has many applications; one of them is dimension reduction. Another specific appli-
cation of SVD is low-rank matrix approximation, called also the truncated SVD. The idea
behind this application is to reconstruct the original matrix with only the most important
singular values, i.e., those who represent the most variation in the data. The approximation
of the matrix M using the top k singular components is expressed as follows:

M ~ UcSi V)], (24)

where Uy (m x k), Sk (k x k), and Vi (n x k) are the truncated matrices of U, S, and V resp.,
according to the top k singular values (diagonal values of S). Several works have shown
that this decomposition allows to filter and attenuate noise when processing signal data and
image restoration [7,17,29]. We adopt this technique in our process using an implementation
of SVD from the Spark machine learning library (MLIib) [23]. Nevertheless, we let this step
optional, which means the user can avoid it in case of the input data do not contain noises,
or if he wants to execute the process on the original data directly.

6.3 Computing causalities

In the actual version of this process, we store time series in partitions of variables on a Hadoop
distributed file system and process them using Spark.

In this step, we describe the dependencies between variables by computing the matrix of
causalities of each datasets using two measures; the Granger causality test and the transfer
entropy. For both of these measures, this step requires the calculation of a set of tuples
G = (P x P), where P is a set of time series. Consequently, all computations can be
performed independently, and the global matrix of causalities can be stored by blocks of
sub-matrix in the available nodes.

Note that here we suppose that we can compute each pairwise causality in at most one
node, which means that we suppose that each pair of time series is short enough, in terms of the
number of observations, to be processed in one node. For time series with many observations,
a distribution of each single causality computation is required, and this is possible for the
Granger causality for example, because it is mainly based on two VAR models, and the VAR
model uses linear multiple regression to fit its parameters, which is scalable using for example
the Spark MLIib library. However, this out of scope of this research because we concentrate
on the problem of data with many variables.

6.4 Feature selection

In this step, we apply feature selection to reduce the set of input variables for multivariate
prediction models. We use a distributed version of the proposed algorithm (cf. Algorithm 2).
One property of the PEHAR algorithm is that it is flexible and easily scalable, because
the steps of normalizing and updating the Hubs and Authorities vectors can be performed
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using straightforward MapReduce operations. Algorithm 2 allows to have the Hubs scores
of the predictor variables regarding a target variable. It requires as input a causality matrix
of predictors M organized by pairs, as described in Sect. 4,

M = {(vi,v2,¢1,2), ..o, (Vn—1, Vp, Cn—1,0)}s (25)

which can be expressed as a distributed list, where each element (v;, v;, ¢;, ;) contains the
names of two predictor variables (v;, v;) and the causality (c;, ;) from the first variable to the
second one. The algorithm also requires the vector of predictor—target causalities V and the
list of predictors names. First, the algorithm computes the distributed matrix G = M x V
as described in Sect. 3.2.2 and then applies the same steps of Algorithm 1 with a distributed
way.

Algorithm 2: A Distributed PEHAR Algorithm.

Input : n:the number of predictor variables;
M:: a distributed matrix of causalities between predictors of size (n2 x 3);
V: the vector of predictor-target causalities of size (n x 2);
colnames: list of predictors names;
iters: the number of iterations;
min_error: the minimum error;
Output: hubs: the vector of Hubs scores of size n;

/* Compute the matrix G */
1 G <~ M. join (V, on="M.v1”). rdd. map (lambda x: (x[0], (x[1], (x[2]) * (x[31))));
/* Initialize the Hubs vector */

2 hubs = colnames. rdd. map (lambda x: (x[0], 1))
3 while (i <iters or min_error <error) do

4 hlast < hubs;

5 hubs <« hubs. map (lambda x: (x[0], 0));

6 auths < hubs;

/* Update authorities */
7 G’ < G. map (lambda x: (x[1][0], (x[0], x[1][1])));

8 auths <— hubs.join (G”). map (lambda x: (x[1][1][0], x[1][0] * x[1][1][1])).

9 reduceByKey (lambda x, y: x +y);
/* Update hubs x/
10 hubs < auths.join (G. map (lambda x: (x[1][0], (x[0], x[1][1]))).
11 map (lambda x: (x[1][1][0], x[1][0] * x[1][1][1])).
12 reduceByKey (lambda x, y: x +y);
/* Normalization */

13 normalize_rdd (hubs);
14 normalize_rdd (auths);

/* Compute the error */
15 error <— hubs. join (hlast). map (lambda x: (abs (x[1][0] - x[1][1]))).
16 reduce (lambda X, y: X +Y);

17 iter < iter + 1;
18 end while
19 return hubs;

6.5 Prediction
After the selection step, we obtain a set of models inputs where each one contains a target

variable and the related predictors. In the prediction step, we compute predictions by executing
prediction models in parallel. In this case, parallel computing is sufficient and we do not need
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to distribute prediction models, because each model will predict a target variable separately
with a small number of predictors.

7 Conclusions

In this article, we have proposed a complete prediction process for large multidimensional
time series prediction. The methodology adopted is based on (i) a graph representation of
time series, in which we introduced a way for modeling dependencies between time series and
(ii) on a selection step by representing a new feature selection algorithm that considers direct
links between variables using Hubs and Authorities concept. The experiments are performed
on real macroeconomic and financial datasets, and several algorithms are evaluated. We
have found very important results, in terms of prediction accuracy, and also in terms of the
number of predictor variables that lead to the best predictions. The proposed feature selection
algorithm can be used separately from the process, and based on the evaluations performed, it
is an interesting alternative to existing methods. Finally, a distributed version of the prediction
process is presented, including the proposed feature selection algorithm, and implementation
is provided using Spark/Hadoop.
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