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Abstract
User-based collaborative filtering (UBCF) is widely used in recommender systems (RSs) as
one of the most successful approaches, but traditional UBCF cannot provide recommenda-
tions with satisfactory accuracy and diversity simultaneously. Covering-based collaborative
filtering (CBCF) is a useful approach that we have proposed in our previous work, which
greatly improves the traditional UBCF and could provide satisfactory recommendations to an
active user which often has sufficient rating information. However, different from an active
user, a new user in RSs often has special characteristics (e.g., fewer ratings or ratings con-
centrating on popular items), and the previous CBCF approach cannot provide satisfactory
recommendations for a new user. In this paper, aiming to provide personalized recommen-
dations for a new user, through a detailed analysis of the characteristics of new users, we
reconstruct a decision class to improve the previous CBCF and utilize the covering reduction
algorithm in covering-based rough sets to remove redundant candidate neighbors for a new
user. Furthermore, unlike the previous CBCF, our improved CBCF could provide personal-
ized recommendations without needing special additional information. Experimental results
suggest that for the sparse datasets that often occur in real RSs, the improved CBCF signif-
icantly outperforms those of existing work and can provide personalized recommendations
for a new user with satisfactory accuracy and diversity simultaneously.
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1 Introduction

Rapid economic and technological development has led to people’s requirements becom-
ing more personalized. Recommender systems (RSs), which can recommend personalized
objects (e.g., books, CDs, movies, and news), are widely used applications in daily life, for
Web sites such as Amazon and Netflix. Their great commercial value and research potential
have rendered RSs increasingly significant in recent years [3,4,16].

Currently, although most studies focus on developing new approaches to improve RS
accuracy, it has been argued that using only an accuracymetric to evaluateRSs is not sufficient
and that the diversity of recommendations must also be considered as an important evaluation
measure [6,7,13,17,29,32]. Because in a real business environment, a company can use RSs
to obtain more benefits by providing recommendations with higher diversity. For example,
as there are many movies in the statistical long tail that have only a few ratings, it would be
profitable for Netflix if RSs would encourage users to rent movies in the long tail, because
these are less costly to license and acquire from distributors than new releases or highly
popular movies. However, recent studies have shown that it is very difficult to obtain a
reasonable trade-off between the accuracy and diversity of an RS [20,37], because increasing
the diversity of recommendations is usually accompanied by a loss in accuracy [14].

Collaborative filtering (CF) approaches are popularly used in RSs owing to their satisfac-
tory performance [28,35]. On the assumption that users who have similar preferences in the
pastwill tend to have similar tastes in the future, user-based collaborative filtering (UBCF) has
been proposed and applied in practice [12]. UBCF is simple and efficient, and it can provide
satisfactory recommendations utilizing only the user’s historical ratings, so it has beendemon-
strated remarkable success in RSs. However, the traditional UBCF usually cannot provide
recommendations with satisfactory accuracy and diversity at the same time [6]. In addition,
recent researches have concluded that improving recommendation diversity can frequently
be accompanied by losing recommendation accuracy, making it difficult to select reasonable
trade-off between accuracy and diversity [14,20,23,37]. Many studies have been conducted
to increase the diversity of recommendations based on UBCF. Among these studies, some
approaches can improve diversity significantly, but accompanied by losses in accuracy [1,2].
Although some methods can improve accuracy and diversity simultaneously, they require
additional information that is often not available or incomplete [9,21]. Covering-based col-
laborative filtering (CBCF) is a useful approach, falling in the latter research line mentioned
above, that we proposed in our previous work to improve accuracy and diversity of the tra-
ditional UBCF by utilizing covering-based rough sets [34,36]. However, all of these studies
focus on providing satisfactory recommendations for an active user which often has sufficient
rating information, but a new user in RSs differs in some aspects (e.g., fewer ratings or rat-
ings concentrating on popular items), recommendation difficulty is increased [5,19,27,30,33].
Therefore, researchers face the difficult problem of how to utilize only easily obtained infor-
mation to provide recommendations for a new user with satisfactory accuracy and diversity
simultaneously.

In this paper, we aim to improve the previous CBCF to provide satisfactory accuracy
and diversity of recommendations simultaneously for a new user in RSs. Because a new user
often has few ratings, the previous CBCF cannot utilize the insufficient information to remove
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redundant candidate neighbors for a new user effectively. In our improved CBCF, in order
to remove as many redundant candidate neighbors as possible for a new user, by analyzing
the proportion and characteristic of new users’ rating scores, we reconstruct the decision
class by the niche items which have fewer ratings from users. In this way, different from the
previous CBCF, our improvedCBCF could remove redundant candidate neighbors efficiently
without requiring any special additional information. Experimental results indicate that our
improved CBCF can not only improve the accuracy metric, but also increase the diversity of
recommendations for a new user for the sort of sparse datasets that often occur in connection
with real RSs.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the traditional
UBCF approach and review some studies that attempt to improve UBCF to obtain better
performance. In Sect. 3, we present our problem setting through an analysis of real-world
datasets. In Sect. 4, we explain themotivation and detailed procedures of our improved CBCF
and then make comparisons between the previous CBCF and improved CBCF. In Sect. 5, we
describe our experiments and compare the results of our improved CBCF with other existing
work. Finally, in Sect. 6, we draw conclusions and offer suggestions for future work.

2 Related work

2.1 New user cold-start problem in the traditional UBCF

UBCF was first proposed by Herlocker et al. [12], which is one of the most successful
approaches popularly used in RSs. The traditional UBCF involves the following four pro-
cedures: similarity computation between users, neighborhood selection, rating prediction,
and item recommendation [28]. Similarity between a pair of users is computed based on
ratings of the co-rated items, which makes UBCF perform poorly on new users’ recom-
mendations, because a new user often has insufficient number of co-rated items in a given
rating data. Currently, many approaches have been present to solve new users’ personalized
recommendation. Generally, these researches can be classified into two lines. In the first
line, researches employ information from other sources, such as demographic information
or user profiles. Kim et al. [15] utilized collaborative tagging to grasp and filter users’ pref-
erence for items. Lika et al. [19] incorporated classification methods into traditional UBCF
approach and used demographic data to identify users with similar behavior. Niu et al. [22]
utilized the side information which was beyond user-item rating matrix from various online
recommendation sites to compute the similarity of different users. However, approaches in
the first line need the additional information which is often not available or incomplete. In
the second line, researches aim to improve similarity or prediction computation methods.
Gan and Jiang [9] proposed a network-based collaborative filtering approach to improve the
diversity without lowing the accuracy of recommendations; however, the performance of this
approach depended on the selected parameter, and the optimal value of parameter was still
unknown. Adomavicius and Kwon [1] developed a sophisticated graph-theoretic approach
to maximize the diversity of recommendations; however, the more items were selected as
candidate items, the more diverse and the less accurate were in recommendations. They also
improved the recommendation diversity by re-ranking the candidate items through a new
re-rank technology. This approach could provide recommendations with good diversity, but
it comes at the expense of accuracy [2]. Said et al. [26] decreased the impact of popular items
and increased the impact of unpopular items. This approach could improve the diversity of
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recommendations for a new user with acceptable accuracy; however, it was unstable and
performed differently for different selected datasets.

2.2 The previous CBCF approach

To increase the diversity of recommendations while maintaining comparable levels of rec-
ommendation accuracy, we developed in our previous work a CBCF approach to improve
the traditional UBCF [34,36]. The rationale of CBCF is the covering reduction algorithm
in covering-based rough sets. Rough set theory was first presented by Pawlak in the early
1980s [24]. Covering-based rough sets extend classical rough sets by using a covering of
the domain rather than a partition [31], making it easier to use in real applications. Here, we
define covering and covering approximation space, and more detailed explanations can be
found in the literature [38,40].

Definition 1 Let T be the domain of discourse, and C a family of subsets of T . If none of
the subsets in C is empty and ∪C = T, then C is called a covering of T .

Definition 2 Let T be a non-empty set, and C a covering of T . We refer to the ordered pair
〈T,C〉 as the covering approximation space.

Covering reduction is a significant concept in covering-based rough set theory. It can
remove redundant elements to form the minimal covering that generates the same covering
approximations and thus is also a key concept in reducing redundant information in data
mining [39,40]. Different covering reduction algorithms correspond to different types of
covering-based rough sets. Since the previous study [36], it has been clear that the algorithm
provided by Zhu et al. [40] is the most appropriate means of removing redundant information
in real applications. Detailed information regarding this algorithm is provided in Definition 3
and Algorithm 1.

Definition 3 Let C be a covering of domain T , and K ∈ C . If there exists another element
K ′ of C such that K ⊂ K ′, then K is a redundant element of covering C . When we remove
all redundant elements from C , the set of all remaining elements is still a covering of T , and
this new covering has no redundant element. We refer to this new covering as the reduct of
C .

Algorithm 1 CRA (covering reduction algorithm)
Require: A covering of a domain: C .
Ensure: An irreducible covering of a domain: reduct(C).

Ki , K j : Elements in the covering C .
1: set reduct(C)=C ;
2: for i = 1 to |C | do
3: for j = 1 to |C | do
4: if K j ⊂ Ki then
5: if K j ∈ reduct(C) then
6: reduct(C) = reduct(C) − {K j };
7: end if
8: end if
9: end for
10: end for
11: return reduct(C);
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Table 1 Proportion of items and ratings in the MovieLens dataset

Item number Item rate (%) Rating number Rating rate (%)

Ratings ≥ 10K 174 1.63 2,757,120 27.57

5K ≤ ratings < 10K 296 2.77 2,112,854 21.12

1K ≤ ratings < 5K 1564 14.64 3,562,589 35.62

Ratings ≤ 1K 8647 80.96 1,569,491 15.69

Table 2 Proportion of items and ratings in the Netflix dataset

Item number Item rate (%) Rating number Rating rate (%)

Ratings ≥ 50K 501 2.82 45,020,066 45.63

10K ≤ ratings < 50K 1541 8.67 34,889,199 35.36

1K ≤ ratings < 10K 5084 28.61 17,193,080 17.42

Ratings ≤ 1K 10,644 59.90 1,569,491 1.59

In previous CBCF, combining with the characteristics of redundant users in UBCF and
redundant elements in covering-based rough sets, we inserted a neighbor selection procedure
into the traditional UBCF that could remove redundant candidate neighbors by covering
reduction algorithm. To remove as many redundant users as possible, according to the suf-
ficient information from an active user, we first extracted relevant attributes of the active
user, then constructed decision class by all items that fit the active user’s relevant attributes,
and reduced the domain from all items to decision class. Because the CBCF approach could
select more appropriate users to comprise the neighborhood of an active user, CBCFwas able
to provide recommendations with satisfactory accuracy and diversity simultaneously for an
active user. However, CBCF needs additional information (e.g., item attribute); besides that,
its good performance is based on sufficient ratings which new users often do not own.

3 Analysis and problem setting

In this section, first, we analyze two popular datasets that are often used to evaluate RS
approaches. Then, in accordance with the analysis result, we discuss the problem setting of
this paper.

3.1 Data analysis

Here, we analyze two popular datasets that were collected from the real world and are often
used to evaluate RSs. One is the MovieLens dataset [12], obtained from the Web site of the
GroupLens lab. This dataset contains 71,567 users, 10,681 movies, and a total of 10,002,054
ratings on a scale of {0.5, 1, 1.5, …, 5}. Each user has rated at least 20 movies, resulting in
a sparsity of 95.81%. The other is the Netflix dataset, obtained from the Netflix Prize Web
site (http://www.netflixprize.com). This dataset contains a total of 100 million ratings from
480,189 users over 17,770 movies (98.81% sparsity). The ratings are on a {1, 2, 3, 4, 5}
scale, and each user has rated a different number of movies. In this paper, considering the

123

http://www.netflixprize.com


3138 Z. Zhang et al.

Rating Score

Th
e 

nu
m

be
r o

f r
at

in
gs

0
20

00
00

60
00

00
10

00
00

0
14

00
00

0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 2 3 4 5

Rating Score

Th
e 

nu
m

be
r o

f r
at

in
gs

0.
0e

+0
0

5.
0e

+0
6

1.
0e

+0
7

1.
5e

+0
7

Fig. 1 Proportion of rating scores on popular items in the MovieLens (left) and Netflix (right)
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Fig. 2 Percentage of ratings on popular items by users with no more than n ratings in the MovieLens (left)
and Netflix (right)

size of datasets and the number of experiments we conducted, we used the full datasets for
analysis and smaller subsets for some of the experiments in Sect. 5.

First, we perform statistical analyses for these two datasets. Tables 1 and 2 show the
number of items and the corresponding ratings, as well as their proportions according to the
different number of ratings. As shown in the tables, for the MovieLens dataset, items that
havemore than 5K ratings account for only 4.40%of all items, but their corresponding ratings
comprise 48.69% of all the ratings. In the Netflix dataset, this performance is more obvious,
even though items that have more than 50K ratings comprise only a 2.82% proportion of
all items, with ratings corresponding entirely to them accounting for 45.63% of all ratings.
From the data analysis above, we can conclude that in real-world database, after sorting all
items by descending order according to the number of ratings, the top fewer items usually
correspond to a large proportion of the ratings. Therefore, in this paper, we call them popular
items.

Next, we consider the proportion of rating scores on popular items. Figure 1 shows the
results. As found in the figure, in the MovieLens dataset, the rating range is from 0.5 to 5
with half-star increments, but most of the rating scores are concentrated on {3, 4, 5}. In the
Netflix dataset, although the rating range is just from 1 to 5, most of the rating scores are also
included in {3, 4, 5}. These results indicate that users’ rating scores on popular items are
relatively concentrated, with the difference between these rating scores not being very large.
Because the similarity computation is based on the rating scores of co-rated items, the closer
the rating scores, the more similar the two users. Therefore, if most of the co-rated items
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between two users are popular items, then the rating scores between themwill be similar, and
they will achieve higher similarity. From the above, we can conclude that if co-rated items
between two users concentrate on popular items, the similarity between them will be higher.

Finally, we discuss the percentage of ratings on popular items by users with ratings no
more than {20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200} in the two datasets. Figure 2 shows
the results. As shown in the figure, the two datasets have the same performance in that the
percentage of ratings on popular items decreases as the number of ratings by users increases.
Users with having no more than 20 ratings have the highest percentage, almost 74.72% in
the MovieLens dataset and 72.74% in the Netflix dataset. In general, new users often have
fewer ratings (i.e., no more than 20 ratings). Therefore, we can conclude that most ratings of
new users concentrate on popular items.

3.2 Problem setting

According to our conclusions obtained above, if co-rated items between two users con-
centrate on popular items, then they will have higher similarity. Because most ratings of a
new user are on popular items, if there are other users whose ratings also concentrate on
popular items, the similarity between them will be very high, and these users can easily
be selected into the neighborhood of the new user. Therefore, in traditional UBCF, a new
user’s neighborhood is usually comprised of users whose ratings concentrate on popular
items.

However, neighborhoods comprised of users whose ratings concentrate on popular items
can make predictions only for fewer types of items, perhaps even only popular items.
Hence, in traditional UBCF, candidate items with high predicted scores are the most pop-
ular items, resulting in a low diversity of recommendations for a new user. In addition,
these users can predict accurate rating scores only for popular items rather than for all
types of items. Thus, the accuracy of recommendations for a new user will also be unsat-
isfactory. Here, we define users whose ratings concentrate on popular items as redundant
users of a new user. In the traditional UBCF approach, as the neighborhood of a new user
often contains many redundant users, recommendations they produce might concentrate
on popular items. A new user’s acceptance of these recommendations will substantially
increase the percentage of ratings on popular items and further improve the similarity
between the new user and redundant users. Under these circumstances, redundant users
are easier to select into a neighborhood. Finally, as a consequence, a vicious circle is estab-
lished, and a new user might be able to obtain only recommendations determined by popular
items.

4 Improved CBCF for new users’ personalized recommendations

To introduce our improved CBCF approach, we first present some RS-related notations and
terminologies. Given an RS, let U = {u1, u2, . . . , um} and I = {i1, i2, . . . , in} be finite sets
of users and items, respectively, R ∪ {�} the set of possible item rating scores, and RM the
user-item rating matrix. Absence of a rating is indicated by an asterisk (�). The rating score
of user u for item i is denoted by ru,i ∈ R ∪ {�}, and the average of the valid ratings of user
u is denoted by r̄u . Iu = {i ∈ I |ru,i 
= �} is the set of all items rated by user u, and I cu is the
complementary set of Iu , indicating items that have not yet been rated by user u.
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4.1 Motivation of improved CBCF

In order to provide recommendations with satisfactory accuracy and diversity simultaneously
for a new user, our improved CBCF aims to remove as many redundant users as possible and
utilizes the remaining more appropriate users to comprise the neighborhood of a new user.

The target of previous CBCF is to provide satisfactory recommendations for an active
user. Because an active user has rated many items, there is sufficient information that could
be utilized. Therefore, in the previous CBCF, the decision class consists of items that fit
the active user’s relevant attributes, and relevant attributes can be obtained from sufficient
rating information. However, for a new user, ratings are usually very few, and it is unreliable
to extract relevant attributes according to a new user’s rating information. Moreover, in the
previous CBCF, the item attribute matrix had to be inputted as the indispensable condition,
even though some datasets do not have this information. Therefore, for a new user’s person-
alized recommendations, in our improved CBCF approach, we must make full use of the
characteristic of a new user (e.g., fewer ratings or ratings concentrating on popular items)
and reconstruct the decision class while ensuring as far as possible that the new approach
requires no special additional information.

Note that, generally speaking, new user cold-start problems in RSs include two types [30]:

1. Complete new user cold-start where no rating records are available;
2. Incomplete new user cold-start where only a small number of ratings are available.

For complete new user cold-start (the first type), to provide personalized recommendations,
some other special additional information (e.g., user profiles or demographic) should be
utilized, but they are often unavailable or difficult to obtain. Our improved CBCF only needs
few rating information; therefore, the main purpose of our improved CBCF is to provide
personalized recommendations for incomplete new users (the second type) by only utilizing
the easily available rating information.

4.2 Reconstruction of decision class for a new user

In accordance with the discussion in Sect. 4.1, we reconstruct the decision class for the new
user as the set of niche items in the dataset used for recommendation. As we discussed in
Sect. 3.1, in real-world database, after sorting all items by descending order according to the
number of ratings, the top fewer items correspond to a large population of the ratings, and
we called them popular items. We then define niche items as items that are not popular in the
dataset.

There are the following three reasons why we reconstruct the decision class for the new
user as the set of niche items:

1. Redundant candidate neighbors for a newuser are able to be removed asmany as possible;
2. The decision class as the set of niche items is easily constructed from the user-item

matrix;
3. Computation of the decision class can be performed off-line.

The first reason is that we can remove redundant candidate neighbors for a new user as
many as possible. Generally, in candidate neighbors of a new user, items rated by a redundant
user u1 are the most popular items and the set of niche items rated by u1 is very small or
even empty. Under these circumstances, it is very easy to find another user u2 whose rated
niche items’ set includes u1’s. In other words, in the entire set of niche items, u2 can not only
make predictions for items as u1 does, but also predict ratings for other types of niche items.

123



Improved covering-based collaborative filtering for new… 3141

Algorithm 2 Decision class construction algorithm for new user
Input: User-item rating matrix RM , ratio threshold r t
Output: Decision class Dnu for new user
1: for all i ∈ I do
2: ni ← Count the number of users u ∈ U such that ru,i 
= �.
3: end for
4: Dnu = I .
5: while |Dnu |

|I | ≥ r t do
6: i ← Select an item with highest value ni in Dnu .
7: Dnu ← Dnu \ {i}.
8: end while
9: return Dnu

Therefore, u2 might be more appropriate for being selected into the neighborhood than u1,
even though the similarity of u1 might be a little higher. When reducing the domain from
item set I to the decision class comprised by the set of niche items, some redundant users
who have not rated niche items will be removed first. Then because a redundant element in a
covering is also included in other elements, which has the same characteristics as the set of
items rated by redundant users, we can utilize covering reduction to remove redundant users.
Even using the covering reduction algorithm cannot remove all the redundant users, but it
can remove most of them, and our experiments in Sect. 5 confirm this.

The second reason is that, by utilizing the set of niche items, decision class can be con-
structed easily without requiring any other special additional information. It is because the
niche items could be extracted easily from the user-item rating matrix which can be obtained
from almost all types of RSs.

The third reason is that the decision class can be constructed off-line by the set of niche
items, because computation of the decision class is independent from any user. In this way,
the user reduction procedure can also be computed off-line. Therefore, our improved CBCF
has better computational complexity than the traditional UBCF and the previous CBCF, and
we also discuss this in Sect. 4.3.

Algorithm 2 constructs a decision class Dnu for new user from the user-item rating matrix
RM and the ratio threshold r t (0 < r t < 1). In this algorithm, the set of popular items is
regarded as the top (1− r t) × 100% items which have the largest number of ratings in I and
the decision class Dnu for new user is constructed by removing popular items from the set
of all items I .

4.3 Improved CBCF approach and computational complexity analysis

Algorithm 3 shows detailed procedures of the improved CBCF. Comparing with the previous
CBCF, our improved CBCF has three main differences:

1. The target user is different. The previous CBCF aims to provide satisfactory recommen-
dations for an active user who often has sufficient ratings, but it cannot perform well on a
new user who usually has insufficient rating information. However, our improved CBCF
can only utilize few rating information to provide personalized recommendations for a
new user with satisfactory accuracy and diversity simultaneously.

2. Input information is different. To generate satisfactory recommendations, the previous
CBCF needs both user-item rating matrix and item attribute matrix, but item attribute
information in some RSs is unavailable. However, our improved CBCF only needs to
input the user-item rating matrix rather than any other special information.
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3. Decision class is different. In the previousCBCF, decision class is constructed by all items
that fit active users’ relevant attributes, but relevant attributes should be extracted through
sufficient rating information. However, our improved CBCF constructs the decision class
by niche items which could be extracted easily from the user-item rating matrix.

Algorithm 3 Improved CBCF approach
Input: User-item rating matrix RM and a new user nu.
Output: The top N recommended items for the new user nu.

k : Number of users in the neighborhood Nr
nu(k) of the new user nu.

N : Number of items recommended to the new user nu.
Dnu : Decision class of the new user nu.
Ur : Users after user reduction, reduct-users.
I cnu : Items that have not yet been rated by the new user nu.
CNr

nu : Candidate neighbors of the new user nu after user reduction.
pnu,i : Rating prediction of item i for the new user nu.

1: for each user u ∈ U do
2: Cu = Iu ∩ Dnu .
3: end for
4: Let C∗ = Dnu − ∪Cu . Then, C = {C1,C2...C|U |,C∗} − {∅} is a covering for the new user nu in domain

Dnu .
5: reduct(C) = CRA(C).
6: Reduct-user Ur = {u ∈ U |Cu ∈ reduct(C)}.
7: CNr

nu = Ur , compute the similarity between the new user nu and each user u ∈ CNr
nu .

8: for each item i ∈ I cnu do
9: Find the k most similar users in CNr

nu to comprise neighborhood Nr
nu(k);

10: Predict rating score pnu,i for item i by neighborhood Nr
nu(k).

11: end for
12: Recommend to the new user nu the top N items having the highest pnu,i .

Next, we analyze the computational complexities of the traditional UBCF, previous CBCF,
and improved CBCF according to the number of users m, the number of reduct-users mr ,
the number of similar users k, and the number of recommended items N . In all of three
approaches, we assume the situation that a newuser receives recommendations. This situation
consists of the following four steps:

1. Computation of similarity between the new user and other users;
2. Sorting of other users by descending order of the similarity score (this corresponds to

select k nearest users);
3. Computation of rating score for each item that the new user has no rating score, and
4. Sorting of items by descending order of the predicted score (this corresponds to select

top N items).

In the traditional UBCF, first, the computational complexity of similarity computation
is O(mn) because at most n items are searched for computation for each user. Next, the
computational complexity of sorting ofm users by descending order is O(m logm) by using
some fast sorting algorithm, e.g., quick sort. In general, the number k of similar users is very
small relative to the number m of all users, i.e., k � m, the number k does not affect the
computational complexity of step 2. Moreover, to predict the rating score for each item, it
is required to search at most k similar users to use their similarity score and rating score,
and because the new user has few rating score, rating scores of almost n items are predicted.
It concludes that the computational complexity of step 3 is O(n). Note that, similar to the
case of step 2, the number k is very small relative to the number n, and k does not affect
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the computational complexity of step 3. Finally, the computational complexity of sorting of
almost n items is O(n log n). Totally, the computational complexity of recommendation to
the new user by the traditional UBCF is O(mn + m logm + n + n log n) ∼= O(mn).

Then, we consider the computational complexities of recommendation to the new user
by the previous CBCF and improved CBCF. The following three processes are used in both
previous CBCF and improved CBCF before recommendation: construction of a decision
class, construction of a covering in the decision class, and covering reduction. In the previous
CBCF, the decision class is extracted from the newuser’s relevant attributes. Because different
users have different relevant attributes, the decision class should be extracted online, which
will result in the previousCBCF requiringmore computational complexity than the traditional
UBCF. However, in our improved CBCF, we do not need to consider the computational
complexity of these three processes: becausemakingof decision class byAlgorithm2,making
of a covering of the decision class (steps 1–4 in Algorithm 3), and covering reduction by
Algorithm 1 are independent from any user and are able to compute off-line before using RS.
Hence, for our improved CBCF, similar to the case of the traditional UBCF, we concentrate
on the computational complexity of the above 4 steps.

To consider the computational complexity of recommendation by the improved CBCF,
we can use the similar discussion for the case of the traditional UBCF. The main difference
in this discussion is the number mr of the reduct-users, and we obtain that the computational
complexity of recommendation by the improvedCBCF is O(mrn). In general, the numbermr

is smaller than m, and practically, the improved CBCF has better computational complexity
than the traditional UBCF based on using off-line computation of the decision class, covering,
and covering reduction.

5 Experiments and evaluations

In this section, we introduce the evaluation dataset andmetrics, and compare the performance
of the improved CBCF approach with other work using different datasets.

5.1 Experimental setup and evaluationmetrics

In our experiments, we used the MovieLens and Netflix datasets to evaluate our improved
CBCF approach. We also used the Jester dataset [10], obtained from the online jokeWeb site
http://www.ieor.berkeley.edu/~goldberg/jester-data, because it has characteristics different
from the former two datasets. This dataset contains ratings of 100 jokes from 24,983 users
(27.53% sparsity). Each user has rated 36 or more jokes. The value range of rating scores is
−10 to 10. A value of 99 represents an absent rating. From the information of these three
datasets, we find that MovieLens and Netflix are the same type of dataset, each containing
a huge number of items; however, each user has rated fewer items, with the number of
rated items being substantially smaller than the number of unrated items. Therefore, the two
datasets are very sparse, and popular items can be found easily. In contrast, the Jester dataset
contains only 100 items, each user has rated a sufficient number of items relative to all items,
and unrated items are fewer than rated ones; hence, this dataset is not sparse. In addition, in
the Jester dataset, every item has been rated by many users, with the result that it is difficult
to distinguish whether an item is popular. In fact, we can even say that each item is popular.

To evaluate the performance of our improved CBCF approach, we utilized stratified sam-
pling method to extract 1000 users and 1000 items from MovieLens, Netflix, and Jester
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Table 3 Experimental items versus original data in the MovieLens dataset

Experimental items Original items Item rate (%)

Ratings ≥ 10K 16 174 1.63

5K ≤ ratings < 10K 28 296 2.77

1K ≤ ratings < 5K 146 1564 14.64

Ratings ≤ 1K 810 8647 80.96

1000 10,681 100

Table 4 Experimental items versus original data in the Netflix dataset

Experimental items Original items Item rate (%)

Ratings ≥ 50K 28 501 2.82

10K ≤ ratings < 50K 87 1541 8.67

1K ≤ ratings < 10K 286 5084 28.61

Ratings ≤ 1K 599 10,644 59.90

1000 17,770 100%

datasets. It is because utilizing subset of original datasets is very popular to evaluate the per-
formance of recommendation approaches [8,18,25]. First, we select 1000 items based on the
item and rating structure of the original dataset by stratified sampling (detailed information
is given in Tables 3 and 4). Next, because we only select 1000 experimental users from the
whole users (71,567 users in theMovieLens dataset, 480,189 users in the Netflix dataset), the
sample size is very small relative to the original data. In order to ensure experimental users
as similar with the original datasets as possible, we extract users that satisfy the following
two conditions as candidate users:

1. The user has at least one rated item in the selected 1000 items;
2. Percentage of popular items in the user’s rated items is no less than the minimum value

shown in Fig. 2.

For example, in the case of the MovieLens dataset, a user is extracted as a candidate user
if the user has at least one item in the selected 1000 items and the percentage of popular
items in this user’s rated items is no less than 64.26%. Similarly, for the Netflix dataset,
the percentage of popular items in a candidate user’s rated items is no less than 71.02%. In
this way, users who have quite different rating proportion with original datasets will not be
extracted, so that every experimental user selected from candidate users could have a rating
proportion as closely with the original datasets as possible. Then, we select 200 test users
and 800 training users from the candidate users. First, we randomly select 200 users who
have ratings numbering no less than five and no more than 25 as the test users, and randomly
mask 20% of the ratings in each test user. We regard every test user as a new user, and each
new user has at most 20 ratings as training ratings by the masking of ratings and at most
5 ratings as test ratings in our experiments. Finally, 800 users are randomly selected from
candidate users as the training users. Note that the selection of the ratio threshold r t directly
affects the efficiency of user reduction.

– If the ratio threshold r t is too small, the size of decision class will be too small, and some
users’ rated items set will include decision class easily. In this case, most of users will
be removed as redundant users, so it will lose the meaning of user reduction;
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– If the ratio threshold r t is too big, the size of decision class will be too large. In this case,
only fewer redundant users can be removed, so it will greatly reduce the efficiency of
user reduction.

In this paper, based on statistical results obtained from MovieLens and Netflix in Tables 1
and 2, we have concluded that after sorting all items by descending order according to the
number of ratings, the top 5% items correspond to about 50% of the ratings. So in our
experiment, we set the ratio threshold r t = 0.95; it means the top 5% of items that have the
most ratings are treated as popular items, with the remaining 95% items being considered as
niche items.

In contrast, for the Jester dataset, because there are only 100 items, we treat the top 50
items that have themost ratings as popular items and the remaining items as niche items in the
experiments. Since each user has rated 36 or more jokes in Jester dataset, here we randomly
select 200 test users and remove some of their ratings to make them as new users, and 800
users are selected randomly as training users. To avoid the impact of accidental phenomena,
we repeat the experiments 20 times for each dataset and compute the average values as our
results. After selecting our experimental items and users from original datasets, the average
sparsities of selected datasets from MovieLens, Netflix, and Jester are 98.90%, 88.83%, and
36.42%, respectively. Although the sparsities are a little different with original datasets, we
can also call selected datasets from theMovieLens and Netflix which are sparse, and selected
dataset from the Jester is not sparse.

To measure the performance of the improved CBCF approach, we used the mean absolute
error (MAE) and root-mean-square error (RMSE) to represent the predictive accuracy of
recommendations. Precision and recall metrics were used to evaluate the classification accu-
racy of recommendations. In addition, we used coverage, mean personality (MP), and mean
novelty (MN) to evaluate the diversity of recommendations. In accordance with Herlocker’s
research [11], tomaintain real-time performance, we selected different sized k neighborhoods
from candidate neighbors, k ∈ {20, 25, 30, . . . , 60}. Furthermore, to calculate the precision
and recall values, we treated items rated no less than 3 as relevant items, and the number of
recommendations was set to 2, 4, 6, 8, 10, and 12.

The MAE and RMSE metrics demonstrate the average error between predictions and real
values; therefore, the lower these values, the better the RS accuracy.

MAE = 1

|U |
∑

u∈U

⎛

⎝ 1

|Ou |
∑

i∈Ou

|pu,i − ru,i |
⎞

⎠ , (1)

RMSE = 1

|U |
∑

u∈U

√√√√ 1

|Ou |
∑

i∈Ou

(pu,i − ru,i )2, (2)

where Ou = {i ∈ I |pu,i 
= � ∧ ru,i 
= �} indicates the set of items rated by user u that have
prediction values.

The precisionmetric refers to the proportion of relevant recommended items from the total
number of recommended items for the new user, and recall metric indicates the proportion
of relevant recommended items from all relevant items for the new user. Here, higher values
of two metrics indicate better performance. Assume that Ns is the number of recommended
item for the new user, and Nr denotes the number of items preferred by the new user, Nrs

denotes the amount of the new user’s relevant items that appear in the recommended list. The
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precision and recall metrics are defined as follows:

Precision = Nrs

Ns
, Recall = Nrs

Nr
. (3)

The coverage metric can be interpreted and defined differently in different research areas.
We define the coverage metric as calculating the percentage of situations in which at least
one k-nearest neighbor of a new user can rate an item that has not yet been rated by that
new user. Here, let Su,i be the set of user u’s neighbors who have rated item i , and define
Zu = {i ∈ I |Su,i 
= ∅}.

Coverage = 1

|U |
∑

u∈U

(
100 × |I cu ∩ Zu |

|I cu |
)

. (4)

MP indicates the average degree of overlap between every two users’ recommendations.
For example, for two users ui and u j , we count the number of recommendations of the
corresponding top N items, Reci (N ) and Rec j (N ) and further normalize this number by the
threshold value N to obtain the degree of overlap between two sets of recommendations.
It is clear that an approach of higher recommendation diversity will have a larger MP. As
discussed by Gan and Jiang [14], we use N = 20 in our calculation of this metric.

MP(N ) = 1 − 1

N

2

|U |(|U | − 1)

∑

1≤i< j≤|U |
|Reci (N ) ∩ Rec j (N )|. (5)

MN indicates the novelty of recommendations provided to users. First, it calculates the
fraction of users who have ever rated each recommendation and then computes the sum over
all recommendations in Recm(N ) to obtain the novelty for userUm . Finally, we calculate the
average novelty over all users.

MN(N ) = − 1

|U |
∑

1≤m≤|U |

∑

n∈Recm (N )

log2 fn, (6)

where fn indicates the fraction of users who rated the nth item. We also set N = 20 in
the calculation of this metric, and an approach will have a larger MN if it can make newer
recommendations.

In addition, the reduction rate is defined as an evaluation metric, which measures the
effectiveness of removing redundant users from among all users. The reduction rate is given
as follows:

ReductionRate = 1

|U |
∑

u∈U

|CNu − CNr
u |

|CNu | , (7)

where CNu indicates the candidate neighbors of user u and CNr
u represents user u’s candidate

neighbors after user reduction.

5.2 Performance of the improved CBCF approach

To show the performance of the improved CBCF, we compared it with traditional UBCF
and previous CBCF approaches. Comparisons were also made with the linear collaborative
filtering (LINCF) and inverse user frequency collaborative filtering (IUFCF) presented by
Said et al. [26]. For convenience, we refer to the improved CBCF approach as ICBCF in the
rest of this subsection. In all of the experiments, we used the Pearson correlation coefficient
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Table 5 Number of candidate
neighbors for the traditional
UBCF and ICBCF approaches

UBCF ICBCF Reduction rate

MovieLens 800 331 0.586

Netflix 800 369 0.539

Jester 800 588 0.265
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Fig. 3 Results of accuracy measures (MAE, RMSE, precision, and recall) on three datasets
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as the similarity measure, and the weighted sum to predict the rating scores. Table 5 shows
the results for the number of candidate neighbors for the traditional UBCF and ICBCF
approaches on the MovieLens, Netflix, and Jester datasets. As can be seen, in the MovieLens
and Netflix datasets, after user reduction, on average, more than half of the users are removed
as redundant users. In the Jester dataset, the reduction rate is slightly lower, which means
that approximately 26.5% of the users are removed as redundant users on average, with the
result that in the ICBCF approach, the average number of candidate neighbors is 588.

Figure 3 shows the results for MAE, RMSE, precision, and recall measures on the Movie-
Lens, Netflix, and Jester datasets, respectively. As shown in the figure, in the MovieLens
dataset, both the MAE and RMSE values of the UBCF approach are higher than in the other
four approaches. The CBCF has lowest values when the size of neighborhood is nomore than
30, but it decreases more slowly than other approaches. Furthermore, although the MAE and
RMSE values of ICBCF are higher than those of CBCF, IUFCF, and LINCF in the beginning,
ICBCF decreases faster than the other approaches as the neighborhood size increases. In the
Netflix dataset, the MAE and RMSE values of UBCF are lower than those of LINCF and
IUFCF over all sizes of neighborhood, indicating that the accuracy of UBCF outperforms that
of LINCF and IUFCF; however, the values of UBCF are also higher than those of CBCF and
ICBCF, demonstrating CBCF and ICBCF have improved the accuracy of traditional UBCF.
Comparing CBCF with ICBCF, it can be found that values of CBCF are lower than ICBCF
when sizes of neighborhood are 20 and 30, but ICBCF has lower values than CBCF as the
size of neighborhood increases. On the other hand, in both MovieLens and Netflix, precision
values decrease as the number of recommendations increases; on the contrary, recall values
increase when increasing the number of recommendations. Values of precision and recall
for CBCF are better than UBCF, IUFCF, and LINCF; however, they are lower than ICBCF
because higher values of precision and recall indicate better classification accuracy, indicat-
ing that ICBCF outperforms other related approaches in terms of classification accuracy. In
contrast, experimental approaches have different performances on the Jester dataset. MAE
and RMSE of UBCF have lowest values, indicating that the predictive accuracy of UBCF
is highest among all approaches. Although values of CBCF are lower than IUFCF, they are
higher than ICBCF obviously. Values of precision and recall have almost same performances
as the number of recommendation increases, and thus, ICBCF and CBCF cannot improve
the classification accuracy of the traditional UBCF.

Experimental results in Fig. 3 indicate that in sparse datasets (e.g., MovieLens and Net-
flix), the predictive and classification accuracy of the ICBCF approach outperform that of
the other approaches. However, in non-sparse datasets (e.g., Jester), the ICBCF cannot pro-
vide recommendations with better predictive and classification accuracy than other related
approaches.

Figure 4 shows the results for coverage,MP, andMNon theMovieLens, Netflix, and Jester
datasets, respectively. As shown in the figure, the values of the coverage for all approaches
increase as the neighborhood size increases. Furthermore, the coverage of ICBCF is signif-
icantly higher than that of the other approaches, especially for the MovieLens and Netflix
datasets. CBCF has second-best performance in MovieLens and Netflix, but it has lowest
coverage values than other approaches over all sizes of neighborhood in Jester dataset. For the
MPmeasure, in both the MovieLens and Netflix datasets, the IUFCF and LINCF approaches
have improved the MP of the traditional UBCF slightly. CBCF and ICBCF increase the MP
of UBCF clearly, and values of ICBCF are higher than CBCF greatly. In contrast, for the
Jester dataset, the MP decreases as the neighborhood size increases, and the MP of tradi-
tional UBCF has the highest values. For the MNmeasure, in both the MovieLens and Netflix
datasets, the MN values for UBCF, IUFCF, and LINCF are nearly the same; however, CBCF
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Fig. 4 Results of diversity measures (coverage, MP, and MN) on three datasets

and ICBCF obviously have higher MN values than the other approaches, showing that CBCF
and ICBCF can improve MN significantly, and values of ICBCF are higher than CBCF as
the size of neighborhood increases. On the other hand, for the Jester dataset, although the
MN values of CBCF and ICBCF are higher than that of UBCF at first, they decrease faster
as the neighborhood size increases.

Experimental results in Fig. 4 demonstrate that in sparse datasets (e.g., MovieLens and
Netflix), the recommendation diversity of the proposed ICBCF approach outperforms that
of the other approaches. However, in non-sparse datasets (e.g., Jester), the ICBCF cannot
always obtain better recommendation diversity than other related approaches.

5.3 Analysis and discussion

Our experimental results indicate that the ICBCFapproach showsdifferent performanceswith
different datasets. For the MovieLens and Netflix datasets, there are huge numbers of items;
however, for each user, the number of rated items is substantially smaller than the number of
unrated items.Therefore, the twodatasets are very sparse.Under these circumstances, because
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of users’ different behaviors, there might exist some users whose ratings concentrate only
on popular items (users whom we have defined as redundant users). As we have confirmed
that a new user’s ratings also concentrate on popular items, the similarity between redundant
users and the new user might be very high, and the neighborhood of the new user might
consist almost entirely of redundant users, causing recommendations from these redundant
users to concentrate on fewer types of items, perhaps even only popular items. The ICBCF
approach used the covering reduction algorithm to remove asmany as these redundant users as
possible.After user reduction, the neighborhood of a newuser in the ICBCFapproach consists
of users who have rated diverse items, with the result that the diversity of ICBCF greatly
outperforms that of the other existing approaches. In addition, because ratings of redundant
users concentrate on popular items, they have no ability to make accurate predictions for
niche items, resulting in lower recommendation accuracy in the traditional UBCF approach.
In the ICBCF approach, redundant users in a neighborhood are mostly removed, with the
result that a neighborhood in the ICBCF approach can make predictions for many types of
items rather than only popular items, thereby also improving accuracy.

In contrast, for the Jester dataset, the total number of items is 100, and each user has rated
at least 36 items. Hence, each user has rated sufficiently many items relative to all 100 items,
and each item can be considered as a popular item. Therefore, this dataset is not sparse. In this
case, in the ICBCF approach, each user can be considered as a redundant user, with the result
that reduction loses its significance. Recommendations from ICBCF might also concentrate
on popular items, with the result that the diversity of the ICBCF approach is inferior to those
of traditional UBCF. However, because user reduction can select users who have rated more
types of items, the coverage of ICBCF is still higher than that of the other approaches. In
addition, co-rated items between two users are sufficient, so neighbors with higher similarity
can ensure the prediction of more accurate ratings; however, some neighbors with higher
similarity might be considered as redundant users to be removed, with the result that the
accuracy does not improve but decreases.

Generally, in practical applications, RSsmust handle large data that include huge numbers
of users and items. Thus, for each user, only a small number of items have been rated compared
with the huge number of unrated items. Therefore, most RSs have sparse datasets, such as
the MovieLens and Netflix datasets. However, for a sparse dataset, the ICBCF approach can
remove redundant users to create more appropriate neighborhoods than the UBCF approach
and provide recommendations for a new user with more satisfactory accuracy and diversity
values than in existing work. Thus, the ICBCF approach is significant for RSs.

6 Conclusions and future work

In this paper, we have improved CBCF to achieve personalized recommendations for a new
user. The improved CBCF approach reconstructs the decision class to account for the set of
niche items and uses covering reduction in covering-based rough sets to remove redundant
users from candidate neighbors. By removing redundant users who have high similarity with
the new user but can make predictions for only a few types of items, improved CBCF makes
great improvements in both the accuracy and diversity metrics while utilizing only the user-
item rating matrix with no other special information. Our experiments also show superiority
of our approach by comparing it with traditional UBCF and other existing work. Although
the improved CBCF is inferior to the traditional UBCF in non-sparse datasets (e.g., the Jester
dataset), it greatly outperforms other relevant work in sparse datasets (e.g., the MovieLens
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and Netflix datasets), which occur more often in the real world. Therefore, our approach
could be applied to provide satisfactory recommendations for a new user in real-world RSs.

Because the CBCF belongs to CF approaches, so although the CBCF approach is proposed
to focus on improving UBCF, the principles of our approach can also be incorporated into
item-based collaborative filtering; however, how to define the redundant items requires further
consideration. On the other hand, the CBCF approach aims to improve the diversity of
recommendations for both new and active users, with the result that we can summarize it
to propose a CBCF framework for RSs. Furthermore, our improved CBCF aims to solve
incomplete new user cold-start problem where rating information is provided, but cannot
work on the complete new user cold-start problem where no ratings are available. We will
pursue these goals in our future work.
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