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Abstract
Time series classification has received great attention over the past decade with a wide range
of methods focusing on predictive performance by exploiting various types of temporal
features. Nonetheless, little emphasis has been placed on interpretability and explainability.
In this paper, we formulate the novel problem of explainable time series tweaking, where,
given a time series and an opaque classifier that provides a particular classification decision
for the time series, we want to find the changes to be performed to the given time series so
that the classifier changes its decision to another class. We show that the problem isNP-hard,
and focus on three instantiations of the problem using global and local transformations. In
the former case, we investigate the k-nearest neighbor classifier and provide an algorithmic
solution to the global time series tweaking problem. In the latter case, we investigate the
random shapelet forest classifier and focus on two instantiations of the local time series
tweaking problem, which we refer to as reversible and irreversible time series tweaking, and
propose two algorithmic solutions for the two problems along with simple optimizations. An
extensive experimental evaluation on a variety of real datasets demonstrates the usefulness
and effectiveness of our problem formulation and solutions.

Keywords Time series classification · Interpretability · Explainability ·
Time series tweaking

1 Introduction

Time series classification has been the center of attention in the time series community for
more than a decade. The problem typically refers to the task of inferring a model from
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a collection of labeled time series, which can be used to predict the class label of a new
time series. Examples applications of time series classification include historical document
or projectile point classification [42], classification of electrocardiograms (ECGs) [18], and
anomaly detection in streaming data [29].

Several time series classification models have been proposed in the literature, including
distance-based classifiers (see, e.g., Ding et al. [11] for a thorough review), shapelet-based
classifiers [42,42] along with optimizations for shapelet selection or generation [15–17,39],
and ensemble-based classifiers [2]. Recently, the random shapelet forest classifier (RSF) [20]
has been proposed for classifying univariate and multivariate time series. The main idea is
to build a set of decision trees, where each feature corresponds to a shapelet. The decision
condition on an internal node is the presence or absence of a shapelet in a test time series
example.

Despite its competitive performance in terms of classification accuracy on a large collec-
tion of time series datasets, RSF is an opaque classification model. It is, hence, not feasible
to come up with any reasoning behind the predictions that could possibly be helpful to
domain experts and practitioners. Interpretability studies within the time series domain have
been largely dominated by the explanatory power provided by shapelets, which are class-
discriminatory subsequences extracted from training examples [23,40,42]. However, a clear
gap has been present within the time series domain regarding explainability, which this study
has sought to address.

Consider the task of binary time series classification, where a times series may belong
to either the positive (‘+’) or negative class (‘−’). Our main objective in this paper is to
study the following simple problem: given a time series T and an opaque classification model
(e.g., an RSF or the k-nearest neighbor classifier) expressed by function f (·), such that
f (T) = ‘-’, we want to identify the minimum number of changes that need to be applied
to T in order to switch the classifier’s decision to the positive class. That is, we want to
define a transformation of T to T ′, such that f (T ′) = ‘+’. We call this problem explainable
time series tweaking and propose two methods that can provide global transformations or a
series of local transformations. By solving this problem, practitioners will not only be able to
understand the reasoning behind decisions produced by an opaque time series classification
model, but will also be able to take action to change a given time series instance from an
undesired state (e.g., sick) to a desired state (e.g., healthy).

To motivate the problem of explainable time series tweaking, we present two examples:
one from the biomedical domain and one from the biomechanical domain.

Example I: Abnormal versus normal heartbeats. Consider an electrocardiogram (ECG)
recording, such as the one shown in Fig. 1. The original signal (blue curve), denoted as
T, corresponds to a patient suffering from a potential myocardial infarction. An explainable
time series tweaking algorithm would suggest a transformation of the original time series to
T ′ (yellow curve), such that the classifier considers it normal. In the figure, we are showing
a series of local transformations that would change the prediction of the opaque classifier
from one class to the other.

Example II: Gun-draw versus finger-point. Consider the problem of distinguishing between
two motion trajectories, one corresponding to a gun-draw and the other to a finger-point. In
Fig. 2, we can see the trajectory of a regular finger-pointingmotion (blue time series), denoted
as T. The objective of explainable time series tweaking would be to suggest a transformation
of T to T ′ (yellow curve), such that the classifier considers it a gun-point motion instead.
Suppose we have an actor making a motion with her hand. The objective is to be able to
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Fig. 1 Abnormal versus normal heartbeat identification. The original time series is depicted in blue. We
observe that a classifier f classifies the input time series T as Abnormal (blue curve). By applying time series
tweaking, we change the classifier’s decision to the normal class (yellow curve) (color figure online)

Fig. 2 Gun-draw identification. The original time series is depicted in blue. We observe that a classifier f
classifies the input time series T as class Finger-point. When transforming T to T ′ by changing two small
segments (indicated in yellow) converts it to class Gun-draw (color figure online)

distinguish whether that motion corresponds to a gun-draw or to pointing. In Fig. 2, we can
see the trajectory of a regular finger-pointing motion (blue time series).

1.1 Contributions

The main contributions of this paper are summarized as follows:

– we formulate the novel problem of explainable time series tweaking, and focus on two
instantiations of the problem using the k-nearest neighbor and the random shapelet forest
classifiers;

– we propose a generalized method for solving the problem for the k-nearest neighbor
classifier;1

– we propose two methods for solving the problem for the random shapelet classifier, both
of which are based on shapelet feature tweaking, along with optimization techniques;

– for the random shapelet forest, we show that the problem is NP-hard by reduction to the
Hitting Set problem;

1 An earlier version of the algorithm, restricted to k = 1, was presented together with a limited empirical
evaluation in Karlsson et al. [21].
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– we provide an extensive experimental evaluation of the two proposed methods and com-
pare them in terms of three metrics: cost, compactness, and speed of transformation.

The remainder of this paper is organized as follows: in Sect. 2, we discuss the related work
in the area of time series classification with emphasis on interpretability, while in Sect. 3 we
provide the formal problem formulation. In Sect. 4, we describe the two proposed methods,
along with optimization strategies and theoretical properties, while in Sect. 5, we present our
experimental evaluation and results. Finally, in Sect. 6, we conclude the paper and provide
directions for future work.

2 Related work

The majority of time series classification methods typically rely on instance-based classi-
fication techniques. For example, the k-nearest neighbor (k-NN) classifier employs various
similarity (or distance) measures, of which the most common and simplest is the Euclidean
norm. To improve accuracy, elastic distance measures have been proposed, such as dynamic
time warping (DTW), dynamic state warping [14] or longest common subsequence [25] and
variants, e.g., cDTW [32], EDR [7], ERP [6], which are robust to misalignment and time
warps. By regularization using, e.g., a band [28], the search performance and generalization
behavior of k-NN can be greatly improved [11]. For a more complete overview of instance-
based univariate time series classifiers, the reader is referred to, e.g., Ding et al. [11].

A growing body of research is related to the domain of interpretable models, in which
investigators have sought to provide greater clarity to decisions made by machine learning
classifiers [22,30,38]. Such a need for interpretability often stems from a stakeholder desire
to trust a model in order to find it useful; a trust which can be built both through the trans-
parency of the model itself and post hoc interpretability such as from local explanations [24].
As mentioned, a variety of studies in the time series domain highlight shapelets as the main
vehicle for providing interpretability [23,40,42] with at least one study providing an alter-
native Symbolic Aggregate approximation (SAX) combined with a vector space approach
[33].

Moreover, instance-based classifiers are supplemented by feature-based classifiers that
typically use class-discriminant features, called shapelets [42], which correspond to time
series subsequences with high utility, measured by different discriminative measures, such as
information gain [34]. For shapelet-based classifiers, the idea is to consider all subsequences
of the training data recursively in a divide-and-conquer manner, while assessing the quality
of the shapelets using a scoring function to estimate their discriminative power, constructing
an interpretable shapelet tree classifier [42].

Shapelet transformation is one instance of a more general concept of feature generation,
which has been thoroughly investigated for time series classification. For example, the gen-
erated features can range from statistical features [10,26] to interval-based features [31] or
other interpretable features, such as correlation or entropy [13]. A typical grouping of features
produced by these transformations includes: correlation-based, auto-correlation-based, and
shape-based, each denoting similarity in time, change, and shape, respectively. For example,
a time series forest based on interval features, such as averages, standard deviations and slope
has been proposed byDeng et al. [10] and a transformation based on time series bag-of-words
Baydogan et al. [3]. Moreover, in order to achieve performance improvements, Hills et al.
[17] introduce a heuristic approach for providing an estimation of the shapelet length. The

123



Locally and globally explainable time series tweaking 1675

described optimization algorithm repeatedly selects the ten best shapelets in a subset of ten
randomly selected time series, searching for subsequences of all possible lengths.

Regarding multivariate time series classification methods, a shapelet forest approach has
been introduced by Patri et al. [27] for heterogeneous time series data. The algorithm employs
the Fast Shapelet selection approach for extracting the most informative shapelets per dimen-
sion. In a similarmanner, a shapelet tree is built from each time series dimension using several
additional techniques for providing search speedups [5].Moreover, various voting approaches
are evaluated for providing the final classification label, demonstrating that one shapelet tree
per dimension outperforms shapelets defined over multiple dimensions [5]. More recently,
the generalized random shapelet forest has been proposed for univariate and multivariate
time series classification, by expanding the idea of random shapelet trees and randomly
selecting shapelet features per dimension [20]. While this approach can achieve competitive
performance against existing classifiers in terms of classification accuracy, it is a black-box
classifier with limited interpretability and explainability of the predictions.

Complementary to interpretability, a number of studies have focused on actionable knowl-
edge extraction[35,37], where the focus is placed on identifying a transparent series of input
feature changes intended to transform particular model predictions to a desired output with
low cost. Many actionability studies exist with a business and marketing orientation, inves-
tigating actions necessary to alter customer behavior for mostly tree-based models [19,41].
In addition, several studies place particular focus on actionability which can be performed
in an efficient and optimal manner [12,36]. For example, Cui et al. specified an algorithm
to extract a knowledgeable action plan for additive tree ensemble models under a speci-
fied minimum cost for a given example [9]. Similarly, an actionability study by Tolomei et
al. investigated actionable feature tweaking in regards to converting true negative instances
into true positives; employing an algorithm which alters feature values of an example to the
point that a global tree ensemble prediction is switched under particular global cost tolerance
conditions [35].

Despite the expansion of explainability, this is an unexplored prospect within the time
series domain. In this paper, we study the problem of altering the prediction of examples,
through the alteration of examples themselves, such that the prediction of a tree ensemble is
changed with minimal cost. Moreover, we achieve such class alterations in an effective and
efficient manner, proving and addressing the NP hard nature of the problem in accord with
several optimization strategies. We then examine the real-world relevancy of this approach
in regard to both medical and biomechanical time series datasets.

3 Problem formulation

In this section, we present our notation and formally define the problem of explainable time
series tweaking.

Definition 1 (Time series) A time series T = {T1, . . . , Tm} is an ordered set of real values,
sampled at equal time intervals, where each Ti ∈ R.

In this paper, we only consider univariate time series, but the proposed framework and
methods can be easily generalized to the multivariate case. For the remainder of this paper,
we will refer to univariate time series simply as time series.

A local, continuous segment of a time series is called a time series subsequence.
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Definition 2 (Time series subsequence or shapelet) Given a time series T, a time series sub-
sequence or shapelet [42] of T is a sequence of � contiguous elements of T, denoted as
T [s, �] = {Ts, . . . , Ts+�−1}, where s is the starting position and � is its length.

Time series classification mainly relies on the chosen distance or similarity measure used
to discriminate between instance pairs. The main task is to employ a distance function d(·)
that compares two time series of equal length, and then given a time series subsequence
(corresponding to a candidate discriminant shapelet) identify the closest subsequence match
in the target time series. Depending on the application domain and the nature of the time
series, various distance measures can be used.

Definition 3 (Time series subsequence distance) Given two time series S and T of lengths �

and m, respectively, such that � ≤ m, the time series subsequence distance between S and
T, is the minimum distance between S and any subsequence of T of length �, i.e.,

ds(S, T) = m−�+1
min
s=1

{d(S, T [s, �])} . (1)

A typical instantiation of d(·), given two time series T and T ′ of equal length �, is the
Euclidean distance, i.e.,

d(T, T ′) = dE (T, T ′) =
√
√
√
√

�
∑

i=1

(Ti − T ′
i )2. (2)

A collection of n time series X = {T 1, . . . , T n} defines a time series dataset.
Definition 4 (Time series classification function) Given a time series T and a finite set of
class labels C, a classification function is a mapping f from the set of all possible time series
to the set C, such that:

f (T) = ŷ ∈ C.

Note that ŷ denotes the predicted class forT, and f can be any type of time series classification
function.

In this paper, we study the problem of explainable time series tweaking, which is formu-
lated below.

Problem 1 (Explainable time series tweaking) Given a time series T, a desired class y′, and
a classifier f , such that f (T) = ŷ, with ŷ �= y, we want to find a transformation function τ ,
such that T is transformed to T ′ = τ(T), with f (T ′) = y′, and c(T, T ′) is minimized, where
c(T, T ′) defines the cost of the transformation.We call a transformation that changes the class
successful and the transformation that minimizes the cost themost successful transformation.

Any distance or similarity measure can be employed as a cost function. In this paper,
we use the Euclidean distance, and consider two instantiations of Problem 1. In the first, f
is a k-nearest neighbor classifier, and in the second f is the random shapelet forest (RSF)
classifier [20].
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4 Explainable time series tweaking

In this section, we instantiate the problem of explainable time series tweaking as either global
or local, and provide three algorithms for solving the problem. In the former case, we provide
a solution for the k-nearest neighbor classifier (Sect. 4.1) and in the latter case we introduce
two solutions for the random shapelet forest [20] algorithm (Sect. 4.2).

4.1 Global tweaking: k-nearest neighbor

We define the problem of global explainable time series tweaking for the k-nearest neigh-
bor classifier2 and present a simple solution to tackle this problem. Eventually, we show
that our algorithm for finding a transformation T ′ for the k-nearest neighbor classifier is a
generalization of the 1-nearest neighbor approach presented by Karlsson et al. [21].

The most widely adopted time series classifier is the nearest neighbor classifier, which
has been predominantly and successfully used together with the Euclidean distance measure
[28]. In short, the k-nearest neighbor classifier is a proximity-based model, that assigns the
majority class among the k closest time series in the training data. Although any distance
measure can be used to define the proximity between time series, in this work we opt to use
the Euclidean distance for ease of comparison, as well as its simplicity and often state-of-the-
art predictive performance. We note, however, the proposed algorithm can be applied along
with other distance measures, since superior predictive performance can often be achieved
with alternative measures, such as dynamic time warping [32]

The first step is to define a transformation function τ(·) for global explainable time series
tweaking. Given a desired number of nearest neighbors k, a training set of time seriesXwith
corresponding class labelsY, and a target time series T, we define the transformation function
τNN with the goal of suggesting a transformation of T, such that the transformation cost is
minimized and the classifier changes its decision to the desired class label. In this case, the
smallest cost corresponds to the transformation that imposes the lowest Euclidean distance
between the original and transformed time series.

More formally, the global explainable time series tweaking subproblem is defined as
follows.

Problem 2 (Global time series tweaking) Given a time series T, a target class y′, and a k-
nearest neighbor classifier R, such that f (T,R) = ŷ, with ŷ �= y′, we want to transform T
to T ′ = τ(T), such that f (T ′,R) = y′, the Euclidean distance dE (T, T ′) is minimized, and
τ(T) defines a transformation T → T ′.

Algorithm 1 outlines the k-nearest transformation procedure. The first step, Line 1, is to
define the number of cluster centroids, C , to use in the transformation. In this paper, we
suggest to use a simple heuristic: given that centroids are placed uniformly, we allocate k
points to each centroid, allowing those centroids to be selected with a majority of the desired
class. The next step of the algorithm is to cluster the training data into C partitions using
the k-means clustering algorithm, and to select those centroids that fulfill the majority class
condition (Line 3). More specifically, the majority class condition states that the majority of
the time series are labeled as y′ and that the number of time series labeled as y′ should be
greater than or equal to k

|C| + 1. The former condition is required, since we do not guarantee

2 Note that this is a generalization of the baseline method for 1-nearest neighbor presented in Karlsson et al.
[21].
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Fig. 3 Example of transforming an example of the blue class to an example of the yellow class using the k-
nearest neighbor algorithmwith k = 3. The top-right figure shows the clustering of the k-means algorithmwith
� 1003 = 33� centroids, marked as black crosses. The bottom-left figure shows the centroids that can guarantee
a transformation from blue to yellow. Finally, the bottom-right figure shows the result of transforming a new
point ‘+’ to a point of the desired class (red cross) (color figure online)

that a cluster cannot contain more than k time series, while the latter condition is required,
since a cluster may contain less than k time series.

To exemplify the algorithm, using k = 3 neighbors, consider Fig. 3. In Fig. 3 (top-right),
we see the � 100

3 = 33� centroids (black) identified by the k-means algorithm. Moreover, in
Fig. 3 (bottom-left), we select the centroids that fulfill the conditions defined in Line 3 of
Algorithm 1. Finally, in Fig. 3 (bottom-right), we transform the new time series, denoted as
‘+’, to the closest centroid of the desired class (i.e., the red cross).

Note that for k = 1, the algorithm proposed here is equivalent to the baseline algorithm
for the 1-nearest neighbor proposed by Karlsson et al. [21]. The explanation to this is simply
that for the case of 1-nearest neighbor, where, by definition, k = 1, we have that C = |X|.
As a result, the centroids selected in Line 3 are the centroids of the target class y′, which

Algorithm 1: Global time series tweaking algorithm (τNN )
input : A desired number of k nearest neighbors, a training set of time series X with corresponding

labels Y, a time series T to be transformed and a desired class y′
output: A transformed time series T ′

1 C ← �|X|
k �

2 Apply k-means clustering with C clusters to X, resulting in a set of centroids K
3 Select the centroids in K such that a majority of the time series closest to K ∈ K are labeled as y′ and
the number of time series labeled as y′ > k

|C| + 1, i.e.,

K ′ ←
{

K ∈ K | majority(K ,X,Y) = y′ ∧ count(K ,X,Y, y′) >
k

C + 1

}

4 T ′ ← argminK∈K ′ dE (K , T)

5 return T ′
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results in the 1-nearest neighbor (1-NN) under the Euclidean distance, among the time series
labeled as the target transformation label, i.e.,

argmin
{T ′|(ŷ,T ′)∈X,ŷ=y′}

dE (T, T ′). (3)

Overall, the computational complexity of the global tweaking algorithm is O(nmC),
where n is the number of time series in the training set, m the number of time points and
C the number of cluster centroids. Also note that Algorithm 1 can be extended to support
multivariate time series transformation by defining a multivariate distance measure, e.g., the
dimension-wise sum of Euclidean distances.

4.2 Local tweaking: random shapelet forest

In this section, we define local explainable time series tweaking for the random shapelet
algorithm and describe the shapelet transformation function, which is the primary building
block of our solution. Next, we describe two algorithms to tackle the problem and present
simple optimization strategies for both algorithms. Finally, we prove that the problem we
study is NP-hard, when considering forests of shapelet trees.

In short, an RSF, denoted asR = {F1, . . . , F|R|}, is a shapelet tree ensemble of size |R|,
where each Fj denotes a shapelet tree, constructed using a random sample of shapelet features

[42]. Each shapelet tree Fj ∈ R comprises a set of t decision paths {P(y1) j
1 , . . . , P(yt ) j

t },
where yi is the decision class of path i .

Let p j
ik denote the kth non-leaf node in the i th path P(yi ) j

i , such that

P(yi ) j
i = {p j

i1, . . . , p
j
iu} → yi ,

where u is the length of path P(yi ) j
i , i.e., |P(yi ) j

i | = u and each p j
ik is described by a tuple

〈S j
k , θ

j
k , δ

j
ik〉

defining a condition over shapelet S j
k using a distance threshold θ

j
k ∈ R and a comparison

operator {≤,>}, such that δ j
ik equals−1or 1 if the comparisonoperator is≤or>, respectively.

Definition 5 (Condition test) Given a non-leaf node p j
ik = 〈S j

k , θ
j
k , δ

j
ik〉 of shapelet tree Fj

and a time series T, a condition test of path i on non-leaf node k is defined as:

φ(T, p j
ik) =

{

true, if (ds(S j
k , T) − θ

j
k )δ

j
ik ≤ 0

false, otherwise.
(4)

More concretely, φ(·) returns true if T fulfills the kth condition of the i th path of the j th
tree.

To clarify the notation, consider the simple tree in Fig. 4, with two internal nodes and
three terminal nodes. This tree can be converted into a set F1 of 3 distinct paths:

P(‘+’)1
1 = {〈S11 , θ11 , 1〉}

P(‘-’)1
2 = {〈S11 , θ11 ,−1〉, 〈S12 , θ12 , 1〉}

P(‘+’)1
3 = {〈S11 , θ11 ,−1〉, 〈S12 , θ12 ,−1〉}.
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Fig. 4 A simple decision tree
example of two internal nodes
and three leaf nodes

+ -

+

Finally, observe that each non-leaf node performs a binary split depending on whether the
time series subsequence distance between S (i,k) and T is within a distance range θ . The
decision label of Fj for T is denoted as y j = f (T, Fj ), while the decision label ofR for T is
defined as ŷ = f (T,R) = M(y1, . . . , y|R|), where M(·) is the majority function. For more
details on the actual structure and implementation of RSF, the reader may refer to [20].

The final step is to define a suitable transformation function τ(·) for explainable time
series tweaking. Given a time series example T and an RSF classifier R, we define the
transformation function τ(·) used at each conversion step while traversing a decision path in
each tree of the ensemble. Recall that our goal is to suggest the transformation of T, such that
the transformation cost is minimized and the classifier changes its classification decision.
Again, remember that the smallest cost corresponds to the transformation that imposes the
lowest Euclidean distance between the original and transformed time series.

We study two versions of τ(·), hence defining the following two subproblems: reversible
time series tweaking (τRT ) and irreversible time series tweaking (τIRT ).

Problem 3 (Local time series tweaking) Given a time series T, a target class y′, and an RSF
classifier R, such that f (T,R) = ŷ, with ŷ �= y′, we want to transform T to T ′ = τ(T),
such that f (T ′,R) = y′, the Euclidean distance dE (T, T ′) is minimized, and τ(T) defines
a sequence of transformations T → T 1 → T 2 → . . . → T ′, where each subsequent trans-
formation T i can override (reversible time series tweaking) or cannot override (irreversible
time series tweaking) any earlier transformation T j , with j ≤ i .

Note that reversible time series tweaking is amore general version of Problem3 as it allows
any change applied to the time series to be overridden by a later change, while irreversible
time series tweaking locks the time series segments that have already been changed, hence
not allowing for any change to be reversed. By restricting overriding transformations in Prob-
lem 3, the Euclidean distance between the current and transformed time series is guaranteed
to be monotonically increasing as more transformations are applied. Since this monotonicity
property is guaranteed, transformations can be abandoned early if the cumulative cost of
a transformation is above the currently best successful transformation so far. In contrast,
reversible time series tweaking does not guarantee that the Euclidean cost is monotonically
increasing and, as a consequence, does not allow for early abandoning of the transformation.
Despite this, we will show in Sect. 4.2.2 that a simple optimization can achieve substantial
speedups for the reversible time series tweaking algorithm.
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Fig. 5 Example of moving the
point T to the closest point on the
circle representing the distance
threshold θ , where the distance
between d(S, T) = θ

1 2 3
−1.0

−0.5

0.0

0.5

1.0

1.5

S = [1, 0]

S = [1.5, 1.0]

S = [1.22, 0.45]

θ

S

S
T

4.2.1 Shapelet tweaking

Given a non-leaf node p j
ik containing a shapelet S

j
k , and a threshold θ

j
k , we define two types

of time series tweaks:

– increase distance: if S j
k exists in the current version of the time series (i.e., ds(S j

k , T) ≤
θ
j
k ) and the current kth condition demands that S j

k does not (i.e., demanding that

ds(S j
k , T) > θ

j
k ), we want to increase the distance of all matches falling below θ

j
k

to > θ
j
k ;

– decrease distance: if S j
k does not exist in the current version of T (i.e., ds(S j

k , T) > θ
j
k )

and the current kth condition demands thatS j
k does (i.e., it demands that ds(S j

k , T) ≤ θ
j
k ),

we want to decrease the distance of its best match to ≤ θ
j
k .

As depicted in Fig. 5, these time series tweaks can be achieved by considering any shapelet
S as an m-dimensional point, and by defining an m-sphere with point S j

k as its center and

radius θ
j
k .

Intuitively, if dE (S,S j
k ) ≤ θ

j
k , then S falls inside the circle, and hence the resulting time

series corresponds to the point on the circle that intersects the line connecting the two points.
Given a target distance threshold (radius) θ

j
k , the transformed time series that satisfies θ

j
k

exactly, is given by:

τS(S, p j
ik , ε) = S j

k + S j
k − S

‖S j
k − S‖2

(θ
j
k + (εδ

j
ik)) (5)

where ε ∈ R, ε ≥ 0 is a parameter that controls if the transformed time series distance falls
inside the m-sphere (ε < 0), outside the m-sphere (ε > 0), or exactly on the circumference
(ε = 0). Note that in Eq. 5, we use δ

j
ik to control the direction of the move, i.e., if the test of

condition k is ≤, then ε is negated, and if the test is >, then ε is not negated.
In summary, transforming a time series T predicted as ŷ to a time series T ′ predicted as

y′ for a single decision tree is a matter of changing the time series such that all conditions of
the decision path, resulting in a transformation with the lowest cost, are successful. Next, we
will present two greedy algorithms for giving an approximate solution to Problem 3 using
forests of randomized shapelet trees.
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Algorithm 2: Reversible time series tweaking algorithm (τRT )

input : A shapelet forest R, a time series T and a desired class y′ and transformation strength ε

output: A transformed time series T ′
1 T ′ ← T.copy
2 cmin ← ∞
3 for j ← 1 to |R|, k ← 1 to |Fj | do
4 for i ← 1 to u do

5 if yk = y′ ∧ φ(T ′, p j
ik ) is false then

6 T ← T ′.copy
7 if ds (S j

k , T) ≤ θ
j
k then

8 while ds (S j
k , T) ≤ θ

j
k do

9 idx ← start index of subsequence with lowest distance, ds (S j
k ,T)

10 S ′ ← τS(T[idx : idx + |S j
k |], p j

ik , ε)

11 Assign S ′ to T[idx : idx + |S j
k |]

12 else

13 idx ← start index of subsequence with lowest distance, ds (S j
k ,T)

14 S ′ ← τS(T[idx : idx + |S j
k |], p j

ik , ε)

15 Assign S ′ to T[idx : idx + |S j
k |]

16 if c(T, T) < cmin ∧ f (T,R) = y′ then
17 T ′ ← T
18 cmin ← d(T ′, T)

19 return T ′

4.2.2 Reversible shapelet tweaking

Given an ensembleR of shapelets trees, where each tree Fj is converted to a set of decision

paths {P(y1)
i j , . . . , P(yt )

t j }, a desired class label y′ and a transformation strength parameter ε,
which controls the amount of transformation applied, Algorithm 2 enumerates and applies
the changes recommended by each condition k, for each path i , of all trees in the forest that
are labeled with the target class label y′.

InAlgorithm2, transformations are applied one condition at a time, for each a pathwith the
desired class label. Consequently, the first step, in Line 5, is to check if the current condition
test k is fulfilled for the time series T ′, whose label we want to transform to y′. This check
investigates the need for applying any of the two tweaks for the current test condition to hold.
In the case where the condition does not hold, i.e., if φ(·, ·) returns false, we check, in Line 7,
if there is a need to increase or decrease the distance to fulfill the kth condition. In the first
case, i.e., the closest distance is larger than the threshold, while it needs to be smaller, the
transformation is simple: we find the shapelet (starting at idx and ending at idx + |S j

k |) with
the closest distance and apply Eq. 5 to tweak the shapelet so that its distance is slightly smaller
than θ

j
k , hence replacing the shapelet in T[idx : idx + |S j

k |] with the new subsequence, S ′.
In the second case, i.e., the closest distance is smaller than or equal to the threshold, while
it needs to be larger, the transformation is slightly more convoluted, since there might exist
many positions where the distance is smaller than θ

j
k . In the proposed algorithm, we find

and transform each time series subsequence corresponding to the lowest distance position
incrementally (Line 8) until there exists no subsequence in the transformed time series with
a distance smaller than θ

j
k .
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After all conditions k, . . . , u of the i th path have been applied, the algorithm computes
the cost of transforming T to T ′, i.e., c(T, T ′), and if this cost is lower than the best so far
and the classification according to f (T,R) has changed to y′, we record the current score
as the lowest and keep track of the best transformation. This procedure is repeated for all
paths, until the path with the lowest cost is returned.

The computational complexity of the greedy local tweaking algorithm is, assuming a
given random shapelet forest, O(|R|n log(n)m2), where n is the number of examples and
m the number of time points. More concretely, in the worst case where each leaf consists of
one example, the number of paths in a forest is |R|n. Moreover, since each path has log n
conditions and we need to compute the minimum distance between time series of size m,
we have for each path a cost of m log n. Finally, we have the additional cost of ensemble
prediction, which for an ensemble of sizeR, is O(|R|m log n) for each n paths.

Finally, Algorithm 2 can trivially be extended to allow for transforming multivariate
time series by constructing a multivariate random shapelet forest [20] and for each condition
transform the time series dimension corresponding to the dimension fromwhich the condition
shapelet was extracted. As such, the only alteration introduced in Algorithm 2, similar to the
global tweaking algorithm, that need to be introduced is a multivariate cost measure, e.g.,
the dimension-wise sum of Euclidean distances.

Early abandoning of transformations. Since the prediction cost of the random shapelet forest
is higher than the cost of transforming a time series, one possible optimization is to compute
all transformations, T ′

1, . . . , T ′
I for a particular time series T and order the transformed time

series in increasing order of transformation cost, c(T, T ′
i ), where i ∈ {1, . . . , K }. The first

transformation for which f (T ′,R) = y′ is true, is by definition the transformation with the
lowest cost that also changes the class label. Although this might seem a simple optimization,
the pruning power and runtime reduction are very significant in practice, as seen in Sect. 5.

4.2.3 Irreversible shapelet tweaking

The irreversible tweaking algorithm (τIRT ) introduces a locking data structure that stores the
start and end positions (i.e., idx and idx+ |S j

k | in Algorithm 2) of the transformed regions of
the time series T. Consequently, we modify Algorithm 2 to store these locked regions after
the transformations have been applied (Lines 11, 15). We also ensure that the subsequence
with the lowest distance does not overlap with a region that has been previously locked
by introducing additional checks in Line 8 and after Line 13. Note that by introducing the
irreversible criterion, it is not guaranteed that the changes introduced by the algorithm will
change the prediction of even the current tree j . However, as we show in Sect. 5 this does
not significantly affect the transformation cost and allows the algorithm to produce more
compact transformations.

Early pruning of predictions and transformations. For the irreversible tweaking problem,
early abandoning of transformations is not possible. However, if we specifically lock regions
(as for τIRT ) of the time series that have already been transformed by an earlier condition p·

ik ,
the cost is guaranteed to be monotonically increasing as we progress with further transforma-
tions. As soon as a transformation is successful, i.e., f (T ′,R) = y′ (Line 7), the conditions
for which the partial cost is greater than or equal to c(T, T ′) can be safely ignored by intro-
ducing a partial cost indicator and checking if the current cost is increased above this value
after each transformation, i.e., after Line 15. Using this simple technique, we can prune both
predictions and transformations, reducing the computational burden.
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Fig. 6 (Top/middle) Example of transforming time series (blue) classified as 1 by the classifier transformed to
time series (yellow) labeled as 6 by the classifier, using both the reversible and irreversible tweaking algorithms.
(bottom) Average time series belonging to each of the classes, used for comparison (color figure online)

Examples of both shapelet transformation algorithms are provided in Fig. 6 (top/middle).
In the figure, a time series representing different insects flying through an audio recording
device are transformed from being predicted as class 1 (blue) to class 6 (yellow). We can
note that both tweaking algorithms increase the amplitude around time t = 35 and reduce
the amplitude around t = 100 and t = 175. All changes seem to correspond well with the
intuition provided by the average time series for each class (Fig. 6 (bottom)).

4.2.4 NP-hardness

Let us consider a very simple model where time series are sequences of binary values, and
the tree classifier tests whether certain elements of the time series have a certain value.

Let T be the time series, and let R = {F1, . . . , Fm} be the set of all decision trees in the
ensemble.

Theorem 1 Given a time series T and an ensemble R, the problem of making the smallest
number of changes in the time series so as to change the ensemble prediction is NP-hard.

Proof We consider the decision version of the problem, where a number k is given and we
ask whether there exists a solution that requires at most k changes in the time series.

We reduce a variant of the Hitting Set problem to the problem of explainable time series
tweaking (Problem 1). An instance of the Hitting Set problem is the following: We are given
a ground set U of n elements, subsets S1, . . . , Sm ⊆ U , and an integer k. We ask whether
there is a set H ⊆ U of cardinality |H | at most k, so that H ∩ S j �= ∅, for all j = 1, . . . ,m,
that is, whether there are at most k elements in U that “hit” all the sets S1, . . . , Sm . Here we
consider the variant where we ask whether there are at most k elements in U that hit at least
half of the sets S1, . . . , Sm . This is also an NP-hard problem, as it is equivalent to Maximum
Cover.
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Given an instance of this variant of Hitting Set problem, we create an instance to the
explainable time series tweaking problem as follows. We first create a time series of length n,
where all its entries are 0s, that is, T [i] = 0, for all i = 1, . . . , n. Then we create an ensemble
R = {F1, . . . , Fm}, so that there is a tree Fj for each subset S j . In particular, the tree Fj is
constructed as follows. If i ∈ S j , then the tree Fj contains a node of the form “if T [i] = 1,
then T is classified to class 1, otherwise 〈pointer to another node〉”. The tree Fj is organized in
an left-unbalancedmanner, so that if none of these rules are satisfied, they will all be checked.
The last (leftmost) leaf has the form “if T [i] = 1 then T is classified to class 1, otherwise to
class 0”. It follows that the tree Fj classifies the time series to 1 if and only if the series has
a value equal to 1 in at least one position that corresponds to an element of the input set S j .

We see that T is initially classified to class 0. We ask whether it is possible to change at
most k positions in T so that it is classified to class 1. One can easily see that the answer to
this question is affirmative, if and only if there exists a solution to the instance of the Hitting
Set variant that is given as input. Thus, we conclude that the explainable time series tweaking
problem is NP-hard. ��

Note that we prove NP-hardness for a very special case of our problem. As a result, the
most general case of our problem, where we have real-valued time series, complex shapelets,
and arbitrary decision trees in the ensemble, is also NP-hard.

Finally, note that when the forest consists of a single shapelet tree, Problem 1 is trivial and
can be solved by enumerating all paths leading to a desirable output and choosing the path
with the lowest cost. However, if the forest consists of more than one tree, simply choosing
a path with the lowest cost does not necessarily change the prediction for a majority of the
trees in the forest.

5 Experimental evaluation

5.1 Experimental setup

We evaluate the proposed algorithms on datasets from the UCR Time Series repository [8].
The datasets represent a wide range of different classification tasks varying from motion
classification, e.g., GunPoint to sensor reading classification, e.g., ECG200. In the paper,
we have selected all binary classification tasks and the multiclass classification tasks with
fewer than 10 classes to empirically evaluate the proposed time series tweaking algorithms.
Moreover, to reduce the computational burden we limit the multiclass tasks to datasets with
a maximum of 1000 time series and 600 time points. Specifically, the task is to convert time
series that are correctly classified as ŷ �= c to y′ = c, which amounts to converting each true
negative classification to each of the other classes. As such, the results presented in the paper
are the average of all |C| transformations. In the experiments, we set aside 20% of the data
for transformation and testing and use the remaining 80% for training the models. We also
note that, in terms of actionability, not every dataset examined possesses a domain where the
benefits or realism of tweaking examples apply. We still include such datasets for the sake
of comprehensive experimentation.

5.1.1 Parameters

The random shapelet algorithm requires several hyper-parameters to be set, e.g., the number
of shapelets to sample at each node, the number of trees in the forest, and the minimum and
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maximum shapelet sizes. Since our goal is not to evaluate the effectiveness of the shapelet
forest algorithm, the hyper-parameters are set to their default values, which amounts to 100
random shapelets at each node and shapelets of all possible sizes. To have a viable number of
paths to use for transformation, we let the learning algorithm grow 100 trees. Moreover, we
set the transformation strength for both the reversible and irreversible tweaking algorithms
to ε = 1,3 which corresponds to relatively small changes. Similarly, the nearest neighbor
classifier requires the number of nearest neighbors k to be set. Here, we adopt k = 1 since the
gain is often minimal for optimizing the number of nearest neighbors [1]. For completeness,
however, we show how the cost of transformations is affected by the number of nearest
neighbors k for τNN . Similarly, we show how τRT and τIRT are effected by ε.

5.2 Performancemetrics

We compare the algorithms using the average cost over the test set, which we define as:

cμ(τ, y′) = 1

n

n
∑

i=1

c(Ti , τ (Ti , y′))

where n is the number of time series in the test set not classified as y′.We report the average of
cμ(·, y′) with y′ ∈ C. Moreover, we examine which fraction of the original time series must
be altered. Given T, its transformation T ′, and a threshold e ∈ R,4 assuming that |T| = |T ′|
we define the compactness of a transformation of T to T ′ as

compact(T, T ′) = 1

|T|
|T|
∑

i=1

diff (Ti , T
′
i ) ,

where

diff (Ti , T
′
i ) =

{

1, if |Ti − T ′
i | ≤ e

0, otherwise.

Note that a compactness of 1 means that the entire time series is changed, whereas a
compactness of 0 indicates that the transformed and original time series are identical. We
report the average compactness, defined as:

compactμ(τ, y′) = 1

n

n
∑

i=1

compact(Ti , τ (Ti , y′))

where n is the number of time series in the test set not classified as y′. We report the average
of compactμ(·, y′) with y′ ∈ {‘+’, ‘-’} for the binary datasets and y′ ∈ C for the multiclass
datasets.

Finally, we examine the fraction of correct predictions, i.e., the accuracy, produced by
our classifiers as a means of judging the trustworthiness of the classification approaches, and
consequently the trustworthiness of the transformations.

3 We also evaluate the impact of ε in subsequent experiments.
4 We set e to 1 × 10−8.
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5.3 Empirical results

The performance of the globally and locally explainable time series tweaking algorithms is
compared both in terms of classification accuracy, cost, compactness and runtime of perform-
ing transformations. The results are presented in four stages: in Sect. 5.3.1, we investigate
the effect of the number of neighbors, k, for the global tweaking approach using the nearest
neighbor algorithm for both binary and multiclass time series. In Sect. 5.3.2, we explore
the effect of ε for transformations using the local tweaking algorithms τRT and τIRT . In
Sect. 5.4, the performance, measured by cost and compactness of transformation, of the two
local tweaking approaches and the global tweaking approach is evaluated and compared. We
also investigate the computational performance and scalability of the three algorithms, as
measured by the time it takes to transform a single time series. Finally, in Sect. 5.5, we show
the applicability of the algorithms as well as motivation for their usefulness.

5.3.1 Global time series tweaking

In this section, we explore the effect of the number of neighbors k for the k-nearest neighbor
transform algorithm (τNN ). As seen in Figs. 7 and 8, the cost of transformation increases
as the number of neighbors increases. One possible explanation for the increased cost of
transformation can, as seen in Figs. 7 and 8, be attributed to the fact that the accuracy
decreases with increasing k. Moreover, to guarantee that a cluster centroid has at least k

|C| +1,
and a majority, of the target class examples in its neighborhood, the transformation is pushed
further from the decision boundary and, as such, closer to the major density of the class, i.e.,
increasing the cost and, equivalently, the distance. Similarly, in Table 1, we can see that both

k

9.0

9.5

Cost

1 3 5 7 9 11 15 1 3 5 7 9 11 15
k

0.80

0.82

Accuracy
τNN

Fig. 7 Cost and accuracy, averaged of over all binary datasets (|C| = 2), as a function of the number of k
neighbors for the k-nearest neighbor transform algorithm

k

7.0

7.5

8.0

8.5

Cost

9 11 151 3 5 7 135 7 9 11 15
k

0.78

0.80

Accuracy
τNN

Fig. 8 Cost and accuracy, averaged over all multiclass (|C| > 2) datasets, as a function of the number of k
neighbors for the k-nearest neighbor transform algorithm

123



1688 I. Karlsson et al.

Table 1 Average cost and
compactness for different
numbers of neighbors (k) for the
k-nearest neighbor
transformation algorithm

k Multiple classes (|C| > 2) Binary classes (|C| = 2)

Cost Compactness Cost Compactness

1 8.7491 0.9999 7.0824 0.9997

3 9.0793 1.0000 7.5192 0.9999

5 9.3427 1.0000 7.5096 0.9999

7 9.3954 1.0000 8.3643 1.0000

9 9.7221 1.0000 8.0862 0.9999

11 9.5110 0.9999 8.5439 1.0000

15 9.5078 1.0000 8.3459 1.0000

Note that the cost is generally increasing as the number of nearest neigh-
bors increases. The best score is highlighted in bold

the minimum cost and the minimum compactness are achieved by setting k = 1, for both the
multiclass datasets and the binary datasets, confirming our intuition.

5.3.2 Local time series tweaking

In this section, we analyze and discuss the effect of the ε parameter on the reversible and irre-
versible shapelet tweaking algorithms. In the experiments, we set ε ∈ {0.01, 0.05, 0.1, 0.5,
1, 5}, where a smaller value, as seen in Fig. 5, results in a smaller local transformation and
a larger value results in a larger local transformation. That is, the larger ε is set, the farther
from the decision condition the new shapelet resides. In Figs. 9 and 10, we can see that

0.01 1.00 5.00

2

4

Cost

0.01 1.00 5.00

0.6

0.7

Compactness
τRT

τIRT

Fig. 9 Cost and compactness, averaged of over all binary datasets (|C| = 2), as a function of the transformation
strength ε for both the reversible and irreversible tweaking algorithm

0.01 1.00 5.00

4

6

Cost

0.01 1.00 5.00

0.65

0.70

0.75

Compactness
τRT

τIRT

Fig. 10 Cost and compactness, averaged of over all multiclass datasets (|C| > 2), as a function of the trans-
formation strength ε for both the reversible and irreversible tweaking algorithm
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Table 2 Average cost and compactness while adjusting the transformation strength (ε) for the both the
reversible and irreversible tweaking algorithms

ε Multiple classes (|C| > 2) Binary classes (|C| = 2)

Cost Compactness Cost Compactness

τRT τIRT τRT τIRT τRT τIRT τRT τIRT

0.01 3.353 3.228 0.742 0.752 1.796 2.017 0.632 0.601

0.05 3.315 3.207 0.734 0.739 1.788 1.994 0.641 0.597

0.1 3.283 3.158* 0.723 0.724 1.781* 2.008 0.614 0.589

0.5 3.339 3.354 0.679 0.659 1.789 1.973 0.598 0.549

1 3.391 3.454 0.687 0.633 1.891 2.117 0.608 0.528*

5 5.364 6.136 0.754 0.647* 3.943 5.186 0.718 0.594

The lowest score for each level is highlighted with bold text, and the lowest score is marked by a star

the cost of transformation increases for both τRT and τIRT as we increase the value of ε.
The reason for the increased cost can be attributed to the fact that each local transformation
incurs a larger change to the time series, i.e., each adjusted segment is moved farther from
the decision boundary. Consequently, the transformed time series deviates more from the
original time series. Interestingly, the compactness of the solutions is, in both experiments,
minimized when we set ε = 1. This can possibly be explained by the fact that by limiting
the strength of transformation, more local segments must be adjusted for the transformation
to be successful, i.e., change the decision of the ensemble. Again, by increasing the strength
of transformations more local segments need to be adjusted.

Another interesting finding, as seen in Table 2, is that for the multiclass datasets the
irreversible transformation algorithm has a lower transformation cost than the reversible
tweaking algorithm for smaller values of ε. This finding strengthens the intuition that weak
transformation strength requires more overlapping local segments to be adjusted, which
as a result increases the cost. In conclusion, there seems to be a trade-off between mov-
ing the new shapelet too far or too close to the decision threshold, to achieve the optimal
transformation.

5.4 Comparing global and local tweaking

Figures 11 and 12 show a comprehensive comparison of the global and local transformation
approaches, with k = 1 and ε = 1, in terms of the solution quality measured by the cost and
compactness for binary and multiclass datasets, respectively.5 We can observe in regard to
cost and compactness, that both the reversible tweaking τRT and irreversible tweaking τIRT
approaches greatly outperform the nearest neighbor τNN approach, with τRT demonstrating
the best average cost by a small degree compared to τIRT , and τIRT showing the best level of
compactness by a small degree compared to τRT . In fact, τRT has the lowest cost for 22/26
datasets and τIRT in 4/26 datasets; similarly τIRT produces the most compact solutions with
23/26 wins compared to τRT with 3/26 wins.

Although these results are mostly pronounced for the binary datasets, the multiclass
datasets show similar tendencies, i.e., that τRT produces transformations with lowest cost
and τIRT the most compact transformations. In fact, by inspecting Table 3 we can see that τRT

5 A complete overview of the solution quality is available in Tables 3 and 4.
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Fig. 11 Cost and compactness for datasets with |C| = 2. For an exact overview of the performance of the
different methods, please refer to Table 4
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Fig. 12 Cost and compactness for datasets with |C| > 2. For an exact overview of the performance of the
different methods, please refer to Table 3

has the lowest cost in 12/20 datasets, τIRT in 4/20 datasets and τNN in 4/20 datasets. On the
other hand, the most compact solutions are still provided by the τIRT algorithm, with 15/20
wins compared to 5/20 wins for the τRT algorithm.
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As seen in Tables 3 and 4, RSF consistently and on average provides more trustworthy
predictions, i.e., has higher accuracy, compared to τNN and thus the explainable tweaking
produced by RSF would not only result in less costly and more compact transformations but
potentially also be considered more trustworthy by domain experts.

5.4.1 Computational performance

In Table 5, we present a runtime comparison of τIRT against τRT with and without pruning,
limiting this discussion to binary datasets only since the runtime is not affected by the
number of classes. In Table 5, we can observe that τRT with pruning provides the best run-
time performance on average. The superior runtime of τRT with pruning can be explained by
the fact that the relative cost of an ensemble prediction by the RSF is, on average, more costly
than a transformation using the proposed algorithm. As such, the improved performance of
τRT can be attributed to its ability to prune more predictions than τIRT . In fact, for datasets
with costly transformations (e.g., PhalangesOutlinesCorrect), the τIRT algorithm, which is
able to prune 90% of the transformations, outperform τRT . As a result, one should prefer
τIRT when transformations are complex and the compactness of transformations are deemed
important.

5.5 Use-case examples

In this section, we provide two use-case examples of the proposed time series tweaking
framework by revisiting the motivating examples from Sect. 1. The examples originate in
two domains: electrocardiogram classification and motion detection.

5.5.1 Electrocardiograms

Revisiting the problem of heartbeat classification (Example I), we demonstrate a use-case
example from the ECG200 dataset, which contains measurements of cardiac electrical activ-
ity as recorded from electrodes at various locations on the body; each time series contains the
measurements recorded by one electrode. The binary classification objective is to distinguish
between Normal and Abnormal heartbeats.

In Fig. 13, we observe that the original time series T (blue curve) exhibits a low-amplitude
QRS complex, whichmay suggest a pericardial effusion or infiltrativemyocardial disease [4],
and is hence classified as Abnormal by the RSF classifier. Our locally explainable time series
tweaking algorithm τRT suggests a transformation of the original time series to T ′ (yellow
curve), such that the low-amplitude QRS complex is changed, by increasing the amplitude
of the S-wave. This is illustrated by the yellow curve. Since τRT is the best performing
transformation of the two proposed ones in terms of cost for this dataset, we apply it to
T resulting in the classifier to label T ′ as Normal. Moreover, we observe that the baseline
competitor τNN suggests a much costlier transformation (dotted curve).

5.5.2 Gun-draw versus finger-point

Revisiting the problem ofmotion recognition (Example II), we demonstrate a use-case exam-
ple from theGunPoint dataset, which containsmotion trajectories of an actormaking amotion
with his or her hand. The objective is to distinguish whether that motion corresponds to a
gun-draw or to finger-pointing.
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Table 5 Summary of the runtime of the two algorithms including the pruning power of the proposed opti-
mization protocols

Dataset |T| Runtime Pruning

No pruning τRT τIRT τRT τIRT

BeetleFly 512 1.763 0.622 0.646 0.181 0.142

BirdChicken 512 1.966 0.576 0.622 0.328 0.261

Coffee 286 1.099 0.067 0.092 0.774 0.677

Computers 720 194.992 13.676 29.358 0.902 0.738

DistalPhalanx… 600 14.271 0.918 0.772 0.941 0.863

Earthquakes 512 117.447 23.904 46.285 0.724 0.474

ECG200 96 2.194 0.234 0.269 0.719 0.588

ECGFiveDays 136 1.173 0.083 0.104 0.718 0.601

GunPoint 150 1.966 0.144 0.197 0.748 0.598

Ham 431 17.898 2.270 3.494 0.761 0.605

Herring 512 14.642 1.710 2.556 0.829 0.725

ItalyPowerDemand 24 3.217 0.294 0.232 0.917 0.837

Lightning2 637 16.765 3.867 5.479 0.612 0.390

MiddlePhalanx… 80 17.903 1.404 1.158 0.949 0.906

MoteStrain 84 11.668 1.062 1.478 0.779 0.457

PhalangesOutlinesCorrect 80 69.298 7.515 5.690 0.949 0.904

ProximalPhalanx… 80 16.599 1.351 1.160 0.948 0.881

SonyAIBORobot…1 70 1.641 0.111 0.134 0.847 0.692

SonyAIBORobot…2 65 3.842 0.373 0.460 0.821 0.592

Strawberry 235 22.119 1.336 1.727 0.923 0.864

ToeSegmentation1 277 3.208 0.582 0.755 0.600 0.442

ToeSegmentation2 343 2.574 0.695 0.790 0.350 0.252

TwoLeadECG 82 2.400 0.158 0.144 0.941 0.871

Wafer 152 18.709 2.163 34.402 0.815 0.558

Wine 234 2.766 0.147 0.233 0.917 0.788

WormsTwoClass 900 105.508 28.217 40.302 0.566 0.333

Avg. 25.678 3.595 6.867 0.752 0.617

While τRT pruning does not prune any transformations, the τIRT pruning algorithm does. Hence, for τIRT
the fraction of early abandoned transformations is the same as the fraction of pruned predictions. Moreover,
note that the runtime of the nearest neighbor approach is omitted, since a transformation is a simple nearest
neighbor search and as such only takes fractions of a second for the included datasets. Please note that due to
space constraints some dataset names have been truncated with ‘…’. The best score is highlighted in bold

In Fig. 14,weobserve the trajectory of a pointingmotion (blue curve), for three consecutive
motions recording, classified as finger-point by the RSF classifier. By observing the bottom
recording (yellow curve), we see the transformations needed to change the decision of RSF to
Gun-point, using τRT (which has again achieved the lowest transformation cost, according to
Table 4). Following our experimental findings, we also observe that the baseline competitor
τNN suggests a much costlier transformation (dotted curve).
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1696 I. Karlsson et al.

Fig. 13 Abnormal versus normal heartbeat identification: the original time series is depicted in blue. We
observe that a classifier f labels the three segments of the input time series T as Abnormal (top). By applying
τRT , we can transform these heartbeats to the normal class (bottom). We also show the transformations using
τNN (bottom) (color figure online)

Fig. 14 Gun-draw versus finger-point identification. The original time series is depicted in blue. We observe
that RSF classifies the three segments of the input time series T as finger-point (top). By applying τRT ,
we can transform these finger-point motion trajectories to gun-draw trajectories (bottom). We also show the
transformations using τNN (bottom) (color figure online)

123



Locally and globally explainable time series tweaking 1697

6 Conclusions

In this study, we have sought to exploit and expand upon the interpretability afforded by
shapelets in the time series domain as a means of permitting explainability. We defined the
problem of locally and globally explainable time series tweaking and provided two solutions
for the k-nearest neighbor algorithm and the random shapelet forest algorithm. Moreover,
for the random shapelet forest we showed that the proposed problem formulation isNP-hard
and provided two instantiations of the problem.

Experiments were performed to examine our approaches in-depth, in terms of Euclidean
distance cost, compactness of transformations, and time needed for altering time series exam-
ples. We have demonstrated that the local explainable algorithms using the random shapelet
forest outperform the global k-nearest neighbor solution in terms of cost and compactness,
both of which are important factors in permitting actions pertaining to time series that are
actually feasible in the sense that alterations can be realistically performed in a given domain.
Future work includes the investigation of alternative distancemeasures, such as dynamic time
warping, as well as expanding our approach to permit transformations exploiting trade-offs
between cost and trustworthiness of classifier predictions.

Reproducibility. Source code and data are available at: http://github.com/isakkarlsson/
tsexplain.
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