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Abstract
Social network data is typically made available in a graph format, where users and their
relations are represented by vertices and edges, respectively. In doing so, social graphs need
to be anonymised to resist various privacy attacks. Among these, the so-called active attacks,
where an adversary has the ability to enrol sybil accounts in the social network, have proven
difficult to counteract. In this article, we provide an anonymisation technique that successfully
thwarts active attacks while causing low structural perturbation. We achieve this goal by
introducing (k, �G,�)-adjacency anonymity: a privacy property based on (k, �)-anonymity
that alleviates the computational burden suffered by anonymisation algorithms based on
(k, �)-anonymity and relaxes some of its assumptions on the adversary capabilities. We
show that the proposed method is efficient and establish tight bounds on the number of
modifications that it performs on the original graph. Experimental results on real-life and
randomly generated graphs show that when compared to methods based on (k, �)-anonymity,
the new method continues to provide protection from equally capable active attackers while
introducing a much smaller number of changes in the graph structure.

Keywords Social network privacy · Information disclosure · Active attacks · Anonymity ·
Graph perturbation methods

B Yunior Ramírez-Cruz
yunior.ramirez@uni.lu

Sjouke Mauw
sjouke.mauw@uni.lu

Rolando Trujillo-Rasua
rolando.trujillo@deakin.edu.au

1 CSC, University of Luxembourg, 6 Av. de la Fonte, 4364 Esch-sur-Alzette, Luxembourg

2 SnT, University of Luxembourg, 6 Av. de la Fonte, 4364 Esch-sur-Alzette, Luxembourg

3 School of Information Technology, Deakin University, 221 Burwood Hwy,
Burwood, VIC 3125, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1283-x&domain=pdf
http://orcid.org/0000-0002-1750-5756


486 S. Mauw et al.

1 Introduction

Online social networks (OSNs) have become the most successful digital application of our
time. Over two billion persons1 regularly use some OSN to interact with friends, share infor-
mation, etc. As a result of this, massive amounts of information about personal relationships,
consumption patterns, personal preferences, andmore, are generated every day. An important
part of this information is encoded in the form of social graphs. In a social graph, a vertex
corresponds to a person (a user of the OSN), whereas edges represent relations between
individuals. Personal information, such as name and e-mail address, is usually associated
with vertices as attributes. Edges can also have associated attributes.

This massive amount of information is enormously valuable. OSNs themselves analyse
this data in order to determine the advertisements they show to their users, filter out infor-
mation that they consider not to be relevant, etc. As data holders, the OSN can effectively
access the totality of the available data. However, third parties, such as social scientists, mar-
ket researchers and public institutions, are also interested in accessing and analysing part of
this information for conducting population studies, assessing the effect of communication
campaigns, surveying public opinion and many other purposes. In order to enable these stud-
ies, it is necessary that OSN administrators release samples of their social graphs. However,
despite the usefulness of the studies that can be conducted on the released data, the sensitive
nature of the information encoded in social graphs raises serious privacy concerns.

In releasing a social graph for analysis, an indispensable first step for preserving user
privacy is to remove all personally identifiable information from its vertices and edges.
However, as shown by Narayanan and Shmatikov [21], even a graph with no identifying
attributes can leak sensitive information, since some structural properties (e.g. the degree
and neighbours of a vertex) can be unique to certain users. A re-identification attack seeks
to leverage some knowledge about a set of users, the victims, to re-identify them after the
graph is released. For example, an adversary who knows the number of friends of a victim
can later re-identify her in the released graph if such value happens to be unique. Once a set
of users is re-identified, the attacker can learn sensitive information, such as the existence of
relations between two users or the affiliation of some of them to a community.

According to the means by which adversaries obtain the knowledge used to re-identify the
victims, they are classified as passive or active [1]. On the one hand, a passive adversary relies
on existing information, obtainable from publicly available sources, such as other OSNs, but
does not attempt to purposely alter the structure of the network. On the other hand, an active
adversary creates a set of accounts in the network and links them to other users, in such a
manner that each victim is induced to uniquely satisfy some structural property allowing the
adversary to re-identify all the victims after publication of the graph.

A common approach in counteracting re-identification attacks is to transform the original
graph into another (similar) graph that satisfies a given privacy property. In this approach, the
original graph is first stripped of any vertex and edge attributes, obtaining a pseudonymised
graph, which is isomorphic to the original graph, but user information is replaced by uninfor-
mative, randomly generated labels. Then, a series of vertex/edge additions and removals are
performed until the privacy property is satisfied. To that end, a number of privacy properties,
based on the well-known notion of k-anonymity [27,29], have been proposed. The first such
property proposed for counteracting passive attacks was k-degree anonymity [14], which
protects social graphs from adversaries that know the degrees of the victim vertices. Liu and
Terzi [14] provided an efficient algorithm for obtaining k-degree anonymous graphs with

1 Source: statista.com.
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a reasonable utility preservation, and later authors have proposed utility-oriented improve-
ments on this type of methods [2,3,7,15,16,25,26,32]. Additionally, new privacy properties,
for example k-neighbourhood anonymity [35], that account for stronger passive attacks have
been proposed. Each newproperty in this family accounts for increasing amounts of structural
knowledge. The strongest among them is k-automorphism anonymity [37], which subsumes
the rest. In all cases, every strengthening of the attacker model has come at the cost of
obtaining anonymisation methods that alter the graph structure to a larger extent [37].

Regarding active attacks, a single privacy property, named (k, �)-anonymity [30], has been
proposed for quantifying the resistance of a graph to this type of attack. This property suffers
from similar issues as k-automorphism anonymity; both are remarkably hard to evaluate and
enforce. Indeed, current transformation approaches aiming at (k, �)-anonymity [18] consid-
erably affect the structure of the original graph. As we will discuss in the following sections,
some aspects of this measure can be better tailored to serve as the basis for anonymisation
methods.

The goal of this article is to explore further into the problem of counteracting active attacks
on social graphs via edge set transformations with low structural perturbation. Taking (k, �)-
anonymity as our starting point, we focus on two main issues. First, it is computationally
expensive to evaluate (k, �)-anonymity and to use it as the basis for anonymisation meth-
ods. Second, (k, �)-anonymity seems to overestimate the capabilities of active attackers. It
assumes that the adversary is able to determine the exact distances between attacker nodes
and arbitrary nodes in the network, which is infeasible in practice. This is evidenced by cur-
rent active attacks [1,23,24], which are based on the neighbour relation between the victims
and the attacker nodes.

Summary of contributions:

– We first identify an important limitation of (k, �)-anonymity that has been overlooked
so far and makes it computationally expensive to use (k, �)-anonymity as the privacy
goal for perturbation-based anonymisation techniques, as we illustrate in Sect. 3 and
validate in Sect. 6. As a fix for this limitation, we propose a new privacy property called
(k, �G,�)-anonymity (Sect. 3).

– Secondly, we introduce the notion of (k, �)-adjacency anonymity, a well-motivated relax-
ation of the adversary capabilities assumed by (k, �)-anonymity (Sect. 4). Adjacency
anonymity considers that the adversary only has prior knowledge about the vicinity of
the sybil nodes, rather than about the whole graph as assumed by Trujillo-Rasua and Yero
[30] and Mauw et al. [18]. Conceptually, (k, �)-adjacency anonymity relates to (k, �)-
anonymity as k-neighbourhood relates to k-automorphism.By combining the two notions
introduced in Sects. 3 and 4, we obtain the new privacy property (k, �G,�)-adjacency
anonymity.

– We show that there exist efficient graph transformations towards (k, �G,1)-adjacency
anonymity for large values of k (Sect. 5), while previous anonymisation techniques [18]
can only guarantee (k, �)-anonymity for some k > 1 or some � > 1.

– Finally, we perform experiments on real-life and randomly generated graphs (Sect. 6) to
show that (k, �G,1)-adjacency anonymous graphs can be obtainedwith low impact on the
structure of the original graph. Our experiments also confirm that (k, �G,1)-adjacency
anonymous graphs are as resistant to some known active attacks as (k, �)-anonymous
graphs obtained by existing methods.
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2 Related work

Several graph-oriented notions of k-anonymity have been proposed. As wementioned above,
Liu and Terzi [14] considered an adversary who knows the degree of the victim node.
They defined the notion of k-degree anonymity, which is satisfied if for every vertex of
the graph there exist k − 1 other vertices with the same degree. Liu and Terzi devised a
simple and efficient algorithm to transform a graph into a k-degree anonymous graph. The
authors also show that the utility of the graph is at least partly kept, because the average path
length and the exponent of the power-law distribution of the original graph are preserved.
Further improvements of this type of methods, aiming for increased utility levels, have been
proposed [2,3,7,15,16,25,26,32].

A privacy notion that is strictly stronger than k-degree anonymity is k-neighbourhood
anonymity [35]. This property requires that for every vertex v in the graph, there exist at
least k − 1 other vertices v1, ..., vk−1 such that the subgraph induced by v’s neighbours is
isomorphic to the subgraph induced by vi ’s neighbours, for every i ∈ {1, . . . , k − 1}. It
is simple to see that every k-neighbourhood anonymous graph is k′-degree anonymous for
some k′ ≥ k. The notion of k-neighbourhood anonymity was later extended to account for l-
diversity [36], imposing the additional constraint that, in every k-neighbourhood anonymous
equivalence class of the vertex set, at most 1/l members were originally associated with a
particular sensitive label. Finally, a privacy notion strictly stronger than k-neighbourhood
anonymity is that of k-automorphism anonymity [37]. A graph G is said to be k-automorphic
if there exist k − 1 different automorphisms ϕ1, . . . , ϕk−1 of G such that ϕi (v) �= ϕ j (v) for
every v ∈ V (G) and every pair ϕi , ϕ j , 1 ≤ i < j ≤ k − 1. Alternative formulations of this
privacy notion were presented independently as k-symmetry [33] and k-isomorphism [6]. A
particularity of the latter is that it forces the creation of a disconnected graphwith k connected
components, which are pairwise isomorphic. A natural trade-off between the strength of the
privacy notions and the amount of structural disruption caused by the anonymisationmethods
based on them has been empirically demonstrated by Zou et al. [37].

As we mentioned above, Backstrom et al. [1] were the first to show the impact of active
attacks in social networks. They introduced the attack methodology, of which the walk-
based attack used in Sect. 6 is an instance, consisting in planting a uniquely identifiable
and efficiently retrievable attacker subgraph and creating unique fingerprints for the victims
determined by their links to the attacker subgraph. A combination of active and passive
strategieswas introduced in Peng et al. [23,24]. Their attack relies on a small set of sybil nodes
to re-identify an initial set of victims, and then uses the information from an auxiliary, non-
anonymised graph, to iteratively re-identify neighbours of previously re-identified victims.

To the best of our knowledge, (k, �)-anonymity [30] has been until now the only privacy
property tailored to measure the resistance of social graphs to active attacks. Likewise, a
single algorithm, that of Mauw et al. [18], has been proposed specifically for protecting
graphs from active attacks. This method uses the notion of (k, �)-anonymity, but does not
guarantee anonymity for k larger than 2, and in doing so it may add a proportionally large
number of edges to the original graph. We remedy both issues in this article.

The work presented in this paper, along with those mentioned above, falls into one of
the two main approaches of privacy-preserving social graph publication, namely that of
publishing a new, anonymised version of the original graph. The other approach consists in
generating a randomised model of the graph and using it to answer queries about the graph
structure.
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For example, Hay et al. [10] create a new, generalised graph where every vertex represents
at least k vertices of the original graph. This graph is complete, and every generalised edge
is weighted with the probability of an edge existing (in the original graph) between a pair of
vertices randomly taken from each generalised vertex. Every time a query is posed, they use
the generalised graph as a generative model, fromwhich a random graph is sampled, and then
answer the query on this random graph. The main problemwith this approach, pointed out by
Zou et al. [37], is that different generated graphs can dramatically differ from each other, even
when repeatedly answering the same query. A related idea is applied by Sun et al. [28], who
create a new graph where every original vertex can be represented by several new vertices.
Another somewhat-related approach is presented by Mittal et al. [20] and Liu and Mittal
[13]. Instead of creating a generalised graph, they create a new graph with the same vertex
set and a randomly generated edge set. This graph is then used for answering neighbourhood
queries. A fundamental difference between the work by Mittal et al. [20] and Liu and Mittal
[13] and the ones previously discussed in this paper is that the former addresses a setting
where vertex ids are public and only the existence of edges between vertices has to be kept
private. In randomisation-based approaches, privacy is generally measured in terms of the
increase in the adversary’s inference power after releasing each chunk of data. For example,
Mittal et al. [20] and Liu and Mittal [13] measure the difference between the probabilities of
the adversary correctly determining the existence of a set of edges before and after a (noisy)
neighbourhood query is answered.

3 Revisiting (k, �)-anonymity

In this section,we review the notion of (k, �)-anonymity and observe a fundamental limitation
of this privacy property that makes it difficult to be used in perturbation-based privacy-
preserving techniques. We define a revised privacy notion, called (k, �G,�)-anonymity, to
alleviate this limitation.

3.1 Active attacks

An active adversary relies on the ability to register several (fake) accounts to the network.
Such accounts are called sybil accounts or sybil nodes, depending on whether one refers to
the social network account or the social graph vertex. Prior to the publication of the social
graph, the active attacker adds a set of sybil accounts to the network (e.g. nodes 1, 2, 3 and 4
in Fig. 1b). The sybil accounts establish links between themselves and also with the victims
(e.g. users F andG in Fig. 1b). At this stage, the attacker only knows about the edges incident
to the sybil nodes. Thus, she is unaware of the edge linking F and G.

After the publication of the pseudonymised social graph, the attacker first searches for
the subgraph induced by the sybil nodes. Victims connected to the sybil subgraph can be
re-identified by using the neighbour relation between sybil nodes and victims. For example,
the non-sybil nodes connected to 1 and 4 in Fig. 1d must be F and G, respectively. This
allows the adversary to acquire knowledge that was supposed to remain private, such as the
existence of a link between F and G.

From a practical point of view, active attacks require the ability to create new accounts
in the social network, which is trivial, and remain unnoticed by sybil detection techniques
such as those described by Yu [34]. From a theoretical point of view, an active attack relies
on creating a uniquely identifiable attacker subgraph, which requires the subgraph induced
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Fig. 1 The four stages of an active attack

by the sybil nodes to be isomorphic to no other subgraph in the network. Backstrom et al.
[1] described the properties of the attacker subgraph that guarantee uniqueness (with high
probability) and showed that in most networks, log n sybil nodes, where n is the number of
vertices, are sufficient for creating an attacker subgraph that compromises any vertex and
goes unnoticed to sybil detection methods.

Effectively determining whether a social graph is vulnerable to an active attack is a nec-
essary step towards developing a mitigation strategy against it. For example, the complete
graph Kn satisfies that for every proper subgraph S, there exists another subgraph S′ that is
isomorphic to S. This property obviously makes an active attack unfeasible in a complete
graph. However, determining the actual resistance of an arbitrary graph to active attacks is
not trivial. A first step in this direction was given by Trujillo-Rasua and Yero [30], who
introduced the privacy measure (k, �)-anonymity, which we describe in detail next.

3.2 (k, �)-anonymity

Let G = (V , E) be an arbitrary pseudonymised graph. Throughout this paper, we will treat
V as a set of randomly generated labels bearing no relation with the original identities of the
network users. We will also assume that the elements of V can be traversed in some fixed
(but arbitrary) total order � and will denote an ordered subset of vertices (S,�), S ⊆ V ,
simply as S = {v1, v2, . . . , vt }, where vi ∈ S for i ∈ {1, . . . , t} and v1 � v2 � · · · � vt .
Whether the notation refers to sets or ordered sets will be clear from the context.

123



Conditional adjacency anonymity in social graphs under… 491

Given an ordered set of sybil nodes S = {s1, . . . , st } in G, Trujillo-Rasua and Yero [30]
proposed to model the adversary knowledge about a vertex u ∈ V using her distances to the
sybil nodes. To that end, they use the vector

rG(u | S) = (dG(u, s1), . . . , dG(u, st )),

where the distance dG(u, v) is computed as the number of edges in a shortest path joining u
and v. This vector is referred to as the metric representation of u with respect to S.

An active attacker is assumed to be able to re-identify those vertices having unique metric
representations with respect to the set of sybil nodes under her control. In consequence, the
data owner must ensure that every vertex in the published graph is undistinguishable from
at least a minimum number of other vertices. This property is captured in the proposal of
Trujillo-Rasua and Yero [30] by the notion of k-antiresolving set, which is enunciated as
follows.

Definition 3.1 (k-antiresolving set) Let G = (V , E) be a non-trivial graph. A set S ⊆ V is a
k-antiresolving set of G if k is the largest positive integer such that, for every v ∈ V (G) \ S,
there exist verticesw1, w2, . . . , wk−1 ∈ V (G)\S such that v,w1, w2, . . . , wk−1 are pairwise
different and

rG(v | S) = rG(w1 | S) = · · · = rG(wk−1 | S).

Note that if the set S of sybil nodes is forced to be k-antiresolving, then for every victim
node v, there are at least k − 1 other nodes that cannot be distinguished from v by only
inspecting their metric representations with respect to S. The notion of (k, �)-anonymity was
introduced by Trujillo-Rasua and Yero [30] to quantify the privacy of a social graph in the
presence of active attackers by considering that every set of vertices up to a given cardinality
may potentially be a set of sybil nodes. The formal definition of (k, �)-anonymity relies on the
parameter k-metric antidimension. The k-metric antidimension of a graph G is the minimum
cardinality of any k-antiresolving set of G.

Definition 3.2 ((k, �)-anonymity) A graph G is said to satisfy (k, �)-anonymity if k is the
smallest positive integer such that the k-metric antidimension of G is smaller than or equal
to �.

From a privacy perspective, if a graph satisfies (k, �)-anonymity, an attacker with the
capacity to enrol, and successfully retrieve, up to � sybil nodes in the graph would still be
incapable of distinguishing any vertex from at least k − 1 other vertices. Certainly, a graph
satisfying (k, �)-anonymity for k > 1 effectively resists active attacks when performed by
at most � sybil nodes. However, even the simplest of the privacy goals, namely transforming
a (1, 1)-anonymous graph into a (k, �)-anonymous graph for some k > 1 or some � > 1,
has not been accomplished without significantly disrupting the graph structure [18]. Our
observation is that (k, �)-anonymity, although suitable to quantify resistance against active
attacks, cannot be applied straightforwardly to privacy-preserving transformation of social
graphs.

3.3 A limitation of (k, �)-anonymity

Privacy measures based on k-anonymity all rely on the same basic principle: every user
should belong to one or more anonymity sets of size at least k, where an anonymity set is a
collection of indistinguishable objects with respect to a given adversary. In (k, �)-anonymity,
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Fig. 2 An example of a
counterintuitively unsuccessful
anonymisation according to
(k, �)-anonymity

v3 v1

v2

v3 v1

v2

v4 v4

G G

given a graph G = (V , E) and a subset S ⊆ V with |S| ≤ �, the set of anonymity sets
defined by S is the set of equivalence classes in V \ S with respect to the equivalence relation

RG,S = {(u, v) ∈ (V \ S) × (V \ S) : rG(u | S) = rG(v | S)}.
We use [u]S to denote the equivalence class, i.e. the anonymity set, of a vertex u with respect
to RG,S . Next, we formalise the relation between anonymity sets and (k, �)-anonymity,
making it explicit that a necessary condition for a graph to satisfy (k, �)-anonymity is that
the cardinality of all anonymity sets of each user must be at least k.

Observation 3.1 A graphG = (V , E) satisfies (k, �)-anonymity if and only if k is the largest
positive integer such that for every subset of vertices S ⊆ V with |S| ≤ � and every vertex
u ∈ V \ S, it holds that |[u]S | ≥ k.

Most privacy properties define a single anonymity set for each user. For example, k-degree
anonymity considers an adversary that knows the number of links of the victims. Thus, the
anonymity set of a vertex u in k-degree anonymity is the (unique) set containing all vertices
with the same degree as u. In (k, �)-anonymity, however, every user may belong to a number
of anonymity sets that exponentially grows with �.

The drawback of considering many anonymity sets for each user in a privacy property is
twofold. First, the computational complexity of determining whether the property is satisfied
increases with the number of anonymity sets. This problem has already been investigated
by Chatterjee et al. [4], who showed that the k-metric antidimension problem used in (k, �)-
anonymity is NP-Hard. Second, a graph transformation approach should take into account
that increasing the size of the anonymity set of a user u with respect to a subset of vertices S
may decrease the size of the anonymity set of the same user with respect to a different subset
S′. We illustrate this second drawback through the example in Fig. 2.

The graphG in Fig. 2 is (1, 1)-anonymous, as the anonymity set of v1 with respect to {v3} is
{v1}. Likewise, the anonymity set of v3 with respect to {v1} is {v3}. Thus, any transformation
of G aiming to achieve (2, 1)-anonymity should necessarily increase the cardinality of those
two anonymity sets. That goal is achieved in the graph G ′ shown in the figure. However,
in this graph the cardinality of the anonymity set of v2 with respect to {v4}, and vice versa,
has dropped from 3 in G to 1 in G ′. Therefore, according to (k, �)-anonymity, G ′ is an
unsuccessful anonymisation of G. We argue that in the example above, G ′ should actually
be considered as a successful anonymisation of G, as it transforms all 1-antiresolving sets of
G, i.e. the ones that originally posed a privacy threat, into 3-antiresolving sets. We elaborate
on this idea in what follows.

3.4 (k,0G,�)-anonymity

We introduce the rationale that the probability of success of an adversary does not increase
after perturbation. In fact, the first stage of an active attack (see Fig. 1b for reference) can
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only be considered successful if the attacker managed to make her set of sybil nodes a 1-
antiresolving set of the original graph. Otherwise, the attacker will havemore than one victim
associated with the same fingerprint. In this circumstance, metric representations alone do
not allow her to unambiguously assign the identity of any of those victims to any vertex of
the graph after publication. For example, in Fig. 2, even though {v2} is a 1-antiresolving set
of G ′, the re-identification probability of an adversary leveraging this set of sybil nodes in G
is at most 1/3 after the publication of G ′, because {v2} is a 3-antiresolving set of G.

According to this rationale, we will consider that those vertex subsets that are k′-
antiresolving, with k′ ≥ k, in the original graph, are not the result of a successful first
stage of an active attack. In consequence, we will focus on protecting the published graph
from the remaining vertex subsets. With this idea in mind, the goal of the remainder of this
section is to establish a theoretical framework that allows to disregard subsets of vertices with
low re-identification power in the original graph. Because (k, �)-anonymity does not allow
to model such a conditional protection, we first introduce a parametrisable privacy notion
and then derive from it an instance that will allow us to model the desired conditional privacy
protection.

Definition 3.3 ((k, �)-anonymity) Let G be a non-trivial graph and let � ⊆ P(V (G)) be
a family of subsets of V (G). The graph G satisfies (k, �)-anonymity if every S ∈ � is a
k′-antiresolving set of G, with k′ ≥ k.

Clearly, (k, �)-anonymity is an instance of (k, �)-anonymity, where� = {S : S ⊆ V (G),

|S| ≤ �}. More importantly, (k, �)-anonymity allows us to determine whether a graph G ′,
obtained by a series of perturbations on an initial graph G, reduces the threat potential
of those attacker subgraphs in G with high probability of re-identification. We do so by
instantiating (k, �)-anonymity with a concrete interpretation of �, denoted �G,�, which
contains all subgraphs in G of cardinality up to � that are k′-antiresolving sets in G with
k′ < k. That is to say, given the privacy parameter k, the set �G,� accounts for all potential
attacker subgraphs whose probability of re-identification is not guaranteed to be at most 1

k .
This instantiation is formally defined as follows.

Definition 3.4 ((k, �G,�)-anonymity) Let G = (V , E) be a non-trivial graph and let G ′ =
(V , E ′) be the result of a series of perturbations on G. The graph G ′ is said to satisfy
(k, �G,�)-anonymity if it satisfies (k, �)-anonymity for

� = {S : S ⊆ V , |S| ≤ �, S is a k′-antiresolving set of G with k′ < k}.
According to this definition, it is sufficient to reduce the re-identification power of those

vertex sets that originally are k′-antiresolving sets with k′ < k, by enforcing the condition
that these sets are k′′-antiresolving, with k′′ ≥ k, in the final graph. In particular, if a perturbed
graph G ′ satisfies (k, �)-anonymity, then it satisfies (k, �G,�)-anonymity regardless of the
original graph G. The converse is not true, as exemplified in Fig. 3. In the figure, the sets {v2}
and {v3} are 1-antiresolving sets of G1. Since both sets are 2-antiresolving sets of G2 and
G3, we have that G2 and G3 satisfy (2, �G1,1)-anonymity. Moreover, the sets {v1} and {v4}
are 2-antiresolving sets of G2, so this graph also satisfies (2, 1)-anonymity. On the contrary,
G3 is not (2, 1)-anonymous, as {v1} and {v4} are 1-antiresolving sets of this graph.

As we will show in Sect. 6, the notion of (k, �G,�)-anonymity can be used to create
variations of existing graph perturbation methods based on (k, �)-anonymity that introduce
a smaller number of modifications in the original graph, while providing the same level of
protection against active attacks. As a final remark, note that we refer to (k, �G,�)-anonymity
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v4
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v3 v4

v1 v2

v3 v4

v1 v2

v3

v5 v5 v5

G1 G2 G3

Fig. 3 The (1, 1)-anonymous graph G1 and two graphs G2 and G3 satisfying (2, �G1,1)-anonymity. The
graph G2 also satisfies (2, 1)-anonymity, whereas G3 does not

as a conditional privacy property. We do so because the privacy level of the perturbed graph
is measured in terms of the initial threats present in the original graph. This is consistent with
previous uses of the terminology conditional privacy in microdata anonymisation [5,9], to
reflect the fact that the privacy of a dataset is measured in terms of the a priori adversary
knowledge.

4 Adjacency anonymity

In this section, we continue analysing (k, �)-anonymity in terms of the structural properties
it requires on a graph. We observe that (k, �)-anonymity assumes that the adversary knows
every distance from the sybil nodes to other vertices of the graph. This makes it difficult for
a graph to satisfy (k, �)-anonymity even for small values of k or �. For example, even-order
cycles are regular and one may expect the users to be hidden behind the symmetry of the
graph. However, as shown by Mauw et al. [18], we have that no even-order cycle satisfies
(k, 1)-anonymity for any value of k greater than 1, because for any vertex u and its antipodal
vertex v, we have |[v]{u}| = 1, so {u} is a 1-antiresolving set.

By examining current active attacks [1,23,24], we observe that none is able to handle
arbitrary distances from the attacker nodes to the victims. In fact, they all rely on the neighbour
relation rather than on shortest paths.We argue that this is not only a characteristic of existing
attacks, but rather a fundamental limitation of active adversaries. It seems unrealistic to expect
that the adversary can keep control of arbitrary distance values. Accordingly, we propose
(k, �)-adjacency anonymity, which is based on aweaker, yetmore realistic, adversarialmodel.

In a manner analogous to the definition of antiresolving sets, we use standard concepts
from graph theory to represent an adversary whose knowledge about the victims consists of
whether they are neighbours, or not, of each of the sybil nodes. The concept is known as
adjacency representation, introduced by Jannesari and Omoomi [11], and defined as follows.

Definition 4.1 (Adjacency representation) Given a graph G = (V , E), an ordered set S =
{s1, . . . , st } ⊆ V and a vertex u ∈ V , the adjacency representation of u with respect to S is
the vector aG(u | S) = (aG(s1, u), . . . , aG(st , u)) where the function aG : V × V → N is
defined by:

aG(u, v) =
⎧
⎨

⎩

0 if u = v

1 if (u, v) ∈ E
2 otherwise

(1)

Note that aG(u, v) = min{2, dG(u, v)} for every u, v ∈ V (G). Now, we will adapt the
notion of a k-antiresolving set in order to account for the new type of adversary.

Definition 4.2 (k-adjacency antiresolving set) Let G = (V , E) be a non-trivial graph. A set
S ⊆ V is a k-adjacency antiresolving set of G if k is the largest positive integer such that,
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for every v ∈ V \ S, there exist vertices w1, w2, . . . , wk−1 such that v,w1, w2, . . . , wk−1

are pairwise different and

aG(v | S) = aG(w1 | S) = · · · = aG(wk−1 | S).

To illustrate the difference between k-adjacency antiresolving sets and k-antiresolving sets,
consider again the case of even-order cycles discussed above. As we saw, every vertex u in an
even-order cycle satisfies that {u} is a 1-antiresolving set. However, if the order of the cycle
is n ≥ 6, then {u} is a 2-adjacency antiresolving set, since it has exactly 2 neighbours and
n − 3 > 2 non-neighbours. In order to measure a graph’s increased resistance to an adver-
sary that leverages adjacency representations, we enunciate the notions of (k, �)-adjacency
anonymity and (k, �G,�)-adjacency anonymity, which relax the notions of (k, �)-anonymity
and (k, �G,�)-anonymity, respectively. As above, we enunciate both properties as instances
of a parametrisable notion called (k, �)-adjacency anonymity.

Definition 4.3 ((k, �)-adjacency anonymity) Let G be a non-trivial graph and let � ⊆
P(V (G)) be a family of subsets of V (G). The graph G satisfies (k, �)-adjacency anonymity
if every S ∈ � is a k′-adjacency antiresolving set of G, with k′ ≥ k.

Definition 4.4 ((k, �)-adjacency anonymity) A graph G is said to satisfy (k, �)-adjacency
anonymity if it satisfies (k, �)-adjacency anonymity for � = {S : S ⊆ V (G), |S| ≤ �}.

At a conceptual level, (k, �)-adjacency anonymity has some aspects in common with
k-neighbourhood anonymity [35], as both consider an adversary provided with a neighbour-
hood relation. Adjacency anonymity, however, requires indistinguishability with respect to
several specific subsets of vertices, while such constraint is not imposed by k-neighbourhood
anonymity.

Definition 4.5 ((k, �G,�)-adjacency anonymity) Let G = (V , E) be a non-trivial graph and
let G ′ = (V , E ′) be the result of a series of perturbations on G. The graph G ′ is said to
satisfy (k, �G,�)-adjacency anonymity if it satisfies (k, �)-adjacency anonymity for

� = {S : S ⊆ V , |S| ≤ �, S is a k′-adjacency antiresolving set of G with k′ < k}.
The notion of (k, �G,�)-adjacency anonymity will be the basis for the anonymisation

algorithm that we will introduce in the next section.

5 An anonymisationmethod based on (k,0G,1)-adjacency anonymity

In order to showcase the usefulness of the new privacy properties, in this section we present a
method for enforcing (k, �G,1)-adjacency anonymity, which is based on edge additions and
removals.We highlight two features of this method. Firstly, it allows to increase the privacy of
a graph G of order n up to satisfying (k, �G,1)-adjacency anonymity for any k ∈ [

2,
⌊ n−1

2

⌋]
.

Secondly, this privacy level is achieved with a minimum number of graph edits.

5.1 General notation

Before proceeding, we introduce some notation that will be used throughout this section. In
a graph G, the open neighbourhood of a vertex u ∈ V (G), denoted by NG(u), is the set
NG(u) = {v ∈ V (G) | (u, v) ∈ E(G)},whereas the closedneighbourhood ofu inG is the set
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NG [u] = {u} ∪ NG(u). Similarly, for a set S ⊆ V (G), we define NG(S) = ∪v∈SNG(v) \ S
and NG [S] = ∪v∈SNG [v]. The degree of a vertex u, denoted by δG(u), is its number of
neighbours, i.e. δG(u) = |NG(u)|. In a graph G of order n, we will refer to vertices of degree
0 and n − 1 as isolated and dominant vertices, respectively. For a graph G = (V , E) and a
subset S of vertices of G, we will denote by 〈S〉G the subgraph of G induced by S, that is
〈S〉G = (S, E ∩ (S× S)). If there is no ambiguity, we will drop the graph-specific subindices
and simply write N (u), δ(u), etc. Also recall that for a graph G = (V , E) and a set S ⊆ V ,
RG,S is the equivalence relation such that two vertices u and v satisfy (u, v) ∈ RG,S if and
only if u, v ∈ V \ S and aG(u | S) = aG(v | S). Moreover, we will use the notation AG,S

for the set of equivalence classes induced in V \ S by the relation RG,S . It is simple to see
that S is a (minA∈AG,S |A|)-adjacency antiresolving set of G.

5.2 The anonymisationmethod

Consider a (k0, 1)-adjacency anonymous graph G of order n. We will analyse the modifi-
cations necessary to turn G into a (k, �G,1)-adjacency anonymous graph G ′, with k > k0.
First, the following result characterises the values of k for which such a transformation may
be of interest.

Proposition 5.1 Let G be a non-complete, non-empty graph of order n satisfying (k, 1)-
adjacency anonymity. Then, k ≤ ⌊ n−1

2

⌋
.

Proof Let G = (V , E) be a non-complete, non-empty graph of order n satisfying (k, 1)-
adjacency anonymity. Suppose, for the purpose of contradiction, that k >

⌊ n−1
2

⌋
. Let v ∈ V

be avertexofG satisfying δ(v) /∈ {0, n−1}. The existence of such avertex is guaranteedby the
fact that the graph is neither complete nor empty.We have thatAG,{v} = {NG(v), V \NG [v]}.
If δ(v) ≤ ⌊ n−1

2

⌋
, then {v} is a k′-adjacency antiresolving set of G with k′ < k, which is

a contradiction. On the other hand, if δ(v) >
⌊ n−1

2

⌋
, then |V \ NG [v]| ≤ ⌊ n−1

2

⌋
, which

again means that {v} is a k′-adjacency antiresolving set of G with k′ < k, a contradiction.
Therefore, we have that k ≤ ⌊ n−1

2

⌋
. ��

In the light of Proposition 5.1, aiming for values of k above
⌊ n−1

2

⌋
is of little practical

interest, since complete and empty graphs are not useful for analysis. Thus, inwhat followswe
will focus on the values of k in the interval

[
2,

⌊ n−1
2

⌋]
. Now, the following result enunciates

the conditions that must be enforced in order to transform a graph G = (V , E) into a graph
G ′ = (V , E ′) satisfying (k, �G,1)-adjacency anonymity for some lower-bounded value of k.

Theorem 5.1 Let G = (V , E) be a non-trivial graph and let G ′ = (V , E ′) be a graph
obtained from G by edge additions and removals. Let k be a positive integer satisfying
1 ≤ k ≤ |V | − 1. Then, the graph G ′ satisfies (k′, �G,1)-adjacency anonymity with k′ ≥ k if
and only if every vertex v ∈ V such that 1 ≤ δG(v) < k or |V | − k − 1 < δG(v) ≤ |V | − 2
satisfies one of the following conditions:

(i) δG ′(v) = 0
(ii) δG ′(v) = |V | − 1
(iii) k ≤ δG ′(v) ≤ |V | − k − 1

Proof Let v ∈ V be a vertex such that {v} is a k′-adjacency antiresolving set of G with
k′ < k. If δG ′(v) = 0 or δG ′(v) = |V | − 1, we have that AG ′,{v} = {V \ {v}}, so the set {v}
is a (|V | − 1)-adjacency antiresolving set of G ′. Recall that according to the premises of the
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theorem, |V | − 1 ≥ k. Now we address the case where k ≤ δG ′(v) ≤ |V | − k − 1. Here, we
have thatAG ′,{v} = {NG ′(v), V \NG ′ [v]}, so the set {v} is a (min{δG ′(v), |V |−δG ′(v)−1})-
adjacency antiresolving set ofG ′. Since δG ′(v) ≥ k and |V |−δG ′(v)−1 ≥ k, we have that {v}
is a k′′-antiresolving set of G ′ with k′′ ≥ k. In conclusion, G ′ satisfies (k′, �G,1)-adjacency
anonymity with k′ ≥ k.

To conclude our proof, let us now assume that there exists a vertex v ∈ V such that
{v} is a k′-adjacency antiresolving set of G with k′ < k and either 1 ≤ δG ′(v) < k or
|V |−k−1 < δG ′(v) ≤ |V |−2. In both cases, we have thatAG ′,{v} = {NG ′(v), V \NG ′ [v]}.
Since either |NG ′(v)| < k or |V \ NG ′ [v]| < k, we have that G ′ does not satisfy (k′′, �G,1)-
adjacency anonymity for any k′′ ≥ k. ��

Our anonymisation method is based on Theorem 5.1. It receives as input a (k0, 1)-

adjacency anonymous graph G = (V , E) and an integer k such that k0 < k ≤
⌊ |V |−1

2

⌋

and efficiently obtains a (k, �G,1)-adjacency anonymous graph G ′ = (V , E ′). As we men-
tioned above, the method works by performing a series of edge additions and removals upon
G, as outlined in Algorithm 5.1 (Edit- Graph).

Algorithm 5.1 Given a (k0, 1)-adjacency anonymous graph G = (V , E) and an integer k ∈[
k0 + 1,

⌊ |V |−1
2

⌋]
, Edit- Graph provides a (k, �G,1)-adjacency anonymous graph G ′ =

(V , E ′).
1: procedure Edit- Graph(G = (V , E), k)
2: Sort the elements of V by degree
3: E ′ ← E � G ′ = (V , E ′)
4: L0 ← {v ∈ V : 1 ≤ δG(v) < k}
5: H0 ← {v ∈ V : |V | − k − 1 < δG(v) ≤ |V | − 2}
6: L ← L0 � The original value will be used later
7: while L �= ∅ do
8: Pick a pair u, v ∈ L s.t. (u, v) /∈ E ′
9: if no such pair exists then
10: Pick u ∈ L, v ∈ V \ L s.t. (u, v) /∈ E ′

11: E ′ ← E ′ ∪ {(u, v)}
12: L ← {v ∈ L : 1 ≤ δG ′(v) < k} � Update L

13: H ← {v ∈ H0 : |V | − k − 1 < δG ′(v) ≤ |V | − 2}
14: while H �= ∅ do
15: Pick a pair u, v ∈ H s.t. (u, v) ∈ E ′
16: if no such pair exists then
17: Pick u ∈ H , v ∈ V \ (H ∪ L0) s.t. (u, v) ∈ E ′

18: E ′ ← E ′ \ {(u, v)}
19: H ← {v ∈ H : |V | − k − 1 < δG ′(v) ≤ |V | − 2} � Update H

20: return G ′

InAlgorithmEdit- Graph, the sets L and H are initialisedwith the verticeswhose degrees
in G are, respectively, smaller and greater than required for the privacy requirement to be
satisfied (without being isolated nor dominant vertices). Then, by adding or removing edges,
these vertices are forced to satisfy condition (iii) of Theorem 5.1. Note that, at step 12, when
updating L , if the degree of an originally isolated vertex x has increased as a result of some
edge addition, it is not included in L . This is so even if 1 ≤ δG ′(x) < k, because {x} /∈ �G,1.
An analogous criterion is applied at step 19 to any originally dominant vertex if its degree
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(a) (b)

Fig. 4 Two examples where the number of edges added by steps 7 to 12 of Algorithm Edit- Graph (for k = 2)
reaches the a lower and b upper bounds of the inequalities in Eq. 2. In both cases, dashed lines indicate the
edges added by the algorithm

decreases after an edge removal. The rationale behind the loop in steps 7 to 12 is to first
add as many edges as possible between pairs of vertices from L , since every addition of this
type contributes to both vertices getting closer to satisfy the required condition. When such
additions are no longer possible, we then add edges linking a vertex u ∈ L and a vertex v /∈ L
whose degree is as small as possible, so the degree of vertices from H is only increased if
there is no vertex in V \ H to which u can be linked. An analogous idea is applied in steps 14
to 19 to first remove edges joining pairs of vertices from H , then edges joining a vertex from
H to another vertex, with the particularity that step 17 takes care of not making the degree
of a vertex in L0 decrease again. For the values of k that we are considering, at least the edge
addition and removal described in steps 10 and 17, respectively, are always possible. These
operations are efficiently performed by maintaining the elements of V sorted by their degree
and updating the ordering when necessary.

5.2.1 Complexity and optimality analysis

We first analyse the number of modifications performed by the algorithm. The best scenario
occurs when all edge additions are done according to step 8, and all edge removals are done
according to step 15, as shown in the following results.

Theorem 5.2 Let G = (V , E) be a (k0, 1)-adjacency anonymous social graph and let k ∈[
k0 + 1,

⌊ |V |−1
2

⌋]
. The number t of edges added by steps 7 to 12 of Algorithm Edit- Graph

satisfies ⎡

⎢
⎢
⎢
⎢
⎢

1

2
×

∑

u∈V ,

1≤δG (u)<k

k − δG(u)

⎤

⎥
⎥
⎥
⎥
⎥

≤ t ≤
∑

u∈V ,

1≤δG (u)<k

k − δG(u) (2)

Proof Due to its length, we develop this proof in Appendix A. ��

The lower and upper bounds provided in Theorem 5.2 are tight, as exemplified in Fig. 4a,
b, respectively.

The next result describes the number t ′ of edges removed by steps 14 to 19 of Algo-
rithm Edit- Graph.

Theorem 5.3 Let G = (V , E) be a (k0, 1)-adjacency anonymous social graph and let k ∈[
k0 + 1,

⌊ |V |−1
2

⌋]
. Let Gt be the graph obtained from G after executing steps 7 to 12 of

Algorithm Edit- Graph. The number t ′ of edges removed by steps 14 to 19 of Algorithm
Edit- Graph satisfies
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t ′ ≥

⎡

⎢
⎢
⎢
⎢
⎢

1

2
×

∑

u∈V ,

|V |−k−1<δG (u)≤|V |−2

[
k − (|V | − δGt (u) − 1

)]

⎤

⎥
⎥
⎥
⎥
⎥

(3)

and
t ′ ≤

∑

u∈V
|V |−k−1<δG (u)≤|V |−2

[
k − (|V | − δGt (u) − 1

)]
(4)

Proof As in the previous case, we develop this proof in Appendix B. ��
The worst-case computational complexity of Algorithm Edit- Graph on a graph G of

order n isO(n2), because every pair of vertices u, v ∈ V (G)×V (G), u �= v, is susceptible of
being evaluated once, either as a possible edge addition in steps 7 to 12, or as a possible edge
removal in steps 14 to 19. However, in practice, especially for low-density graphs, steps 7
to 19 are performed in quasi-linear time, so the entire process is dominated by theO(n log n)

complexity of step 2. This observation is relevant in view of the fact that real-life social
graphs are characterised by having very low density. Additionally, in this scenario, and for
the values of k that we are considering, steps 14 to 19 are very unlikely to be executed at all,
because only a few vertices with very large degree exist.

Summarising. We have introduced in this section an anonymisation technique (Algo-
rithm Edit- Graph) to transform social graphs into (k, �G,1)-adjacency anonymous graphs
for values of k up to

⌊ n−1
2

⌋
, where n is the order of the graph. The proposed method is

efficient and has theoretical tight bounds on the number of graph modifications it performs.
Evaluating the actual perturbation of Algorithm Edit- Graph and the privacy offered by the
resulting perturbed graphs is the aim of the next section.

6 Experiments

The purpose of the experiments reported in this section is to assess several aspects of our new
proposals. First, we compare the effect of enforcing (k, �G,�)-anonymity to that of enforcing
(k, �)-anonymity, in terms of privacy preservation and the number of graph edits performed.
Additionally, we compare themethods based on these privacy notions to ourAlgorithm Edit-
Graph, which is based on the notion of (k, �G,�)-adjacency anonymity, and assess the effect
of the value of k on the number of graph edits performed by Algorithm Edit- Graph. In
these experiments, we consider an active attacker as the one evaluated by Mauw et al. [18],
who has the ability to insert one sybil node into the graph. Then, to conclude our study,
we assess the extent to which Algorithm Edit- Graph is able to provide protection from
active attackers leveraging sets of sybil nodes larger than those covered by the theoretical
privacy guarantee. The experiments were performed on the HPC platform of the University
of Luxembourg [31].2

6.1 Experimental setup

The core of our experiments are conducted on a large collection of randomly generated
graphs. This collection is composed of 9.7 million graphs: 100,000 for each density value

2 The code and resources used in these experiments can be accessed at https://github.com/rolandotr/graph.
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in the set {0.03, 0.04, . . . , 1}.3 Each graph has 200 vertices, and its edge set is randomly
generated in such a manner that the desired density value is met. The main reason for using
such a collection is to obtain statistical information on the behaviour of the method for a large
number of graphs.Moreover, considering a wide range of density values is interesting in view
of the well-established fact that social networks show a tendency to undergo a densification
process over time [12].

In order to complement the results obtained on randomly generated graphs,we additionally
use for our evaluation three real-life social graphs. The first one was obtained in 2012 from 10
so-called ego-networks in Facebook [19]. An ego-network is the subgraph induced by the set
of nodes representing all friends of a given user. The second social graph, which is commonly
referred to as the Panzarasa graph, after one of its creators [22], was collected in 2004 from
an online community of students at theUniversity of California. In the Panzarasa graph, edges
representmessages sent between students. A pair of users is considered to be connected if they
exchanged at least one message in either direction. The original Panzarasa graph is directed
and contains loops (users were allowed to send messages to themselves) and six isolated
vertices. Before applying our methods to this graph, we removed edge orientation, loops
and isolated vertices. Finally, the third social graph was obtained in 2012 from a collection
of e-mail messages between members of Universitat Rovira i Virgili (URV), Spain [8]. As
described by the authors, for the construction of the graph, group messages with more than
50 recipients were ignored, and edges were only added for pairs of users that sent messages
to each other. Additionally, isolated vertices and connected components of order 2 were also
eliminated from the final graph.

The Facebook graph has 4039 vertices, whereas the Panzarasa graph has 1893 and the
URV graph has 1133. For every experiment using these graphs, we made 1000 runs, in each
of which a different set of victims was randomly chosen, and the final results were averaged
over these runs.

The chosen attack is the walk-based attack proposed by Backstrom et al. [1]. Let S =
{x1, . . . , xn} be the set of sybil nodes enrolled by the adversary, and let T = {y1, . . . , ym}
be the set of victims. The walk-based attack creates a unique fingerprint for each victim
yi ∈ T by randomly selecting a subset Ni ⊆ S such that Ni �= N j for every pair of different
i, j ∈ {1, . . . ,m}, and connecting yi to every x ∈ Ni . In order to make the subgraph induced
by the set of sybil nodes uniquely retrievable with high probability, the attack first adds all
edges (xi , xi+1), 1 ≤ i ≤ n−1, and then every other pair of sybil nodes is linked by an edge
with probability 1

2 .
Let G = (V , E) be an original graph; G ′ = (V ∪ S, E ∪ E ′), with E ′ ⊆ S × (V ∪ S), the

graphobtained after simulating the action of the attacker; andG ′′ = (V (G ′), (E(G ′)∪A)\B),
with A ⊆ (V (G ′) × V (G ′) \ E(G ′)) and B ⊆ E(G ′), the result of applying a perturbation
method on G ′. The probability of success for the walk-based attack is computed by the
following formula [18]:

Pr =
{ ∑

X∈X
∏

1≤i≤m pi,X
|X | if X �= ∅

0 otherwise
(5)

where X contains all ordered subsets X of V (G ′) such that 〈X〉G ′′ ∼= 〈S〉G ′ , Vi,X contains
all vertices v ∈ V (G ′) that satisfy aG ′′(v | X) = aG ′(yi | S), and

3 Although it is not a requirement of Algorithm Edit- Graph, the other two methods that we evaluate in these
experiments require the original graph to be connected. We start with the density value 0.03 because there
exist no connected graphs of order 200 and density 0.02 or 0.01.

123



Conditional adjacency anonymity in social graphs under… 501

pi,X =
{

1
|Vi,X | if yi ∈ Vi,X
0 otherwise.

6.2 Comparison of the privacy properties

We compare three perturbation-based social graph anonymisation methods, one of which is
based on the original notion of (k, �)-anonymity and the other two on the new privacy notions
introduced in this paper: (k, �G,�)-anonymity and (k, �G,�)-adjacency anonymity.

The first method was introduced by Mauw et al. [18]. It transforms a (1, 1)-anonymous
graph into a graph that satisfies (k, �)-anonymity for some k > 1 or some � > 1. This method
works by iteratively adding edges to the original graph. At each step, the method finds a 1-
antiresolving set {v} and modifies the graph by adding an edge that induces an odd-order
cycle in an eccentricity path of v. The method ends when no unitary 1-antiresolving sets are
found. As discussed by Mauw et al. [18], a problem faced by this method is that an edge
addition may cause other unitary vertex sets to become 1-antiresolving, which in turn causes
the algorithm to add more edges to ensure that the privacy guarantee is satisfied.

The second method is a variation on the previous one, aiming to transform a (1, 1)-
anonymous graph G into a graph G ′ satisfying (k, �G,1)-anonymity for some k > 1. The
modified method differs from the original method given by Mauw et al. [18] in two aspects:

1. At each iteration step, a set {v} is selected such that it is 1-antiresolving in both the current
and the original graph. In the original method, {v} is required to be a 1-antiresolving set
of the current graph, even if it was k-antiresolving, with k > 1, in the original graph.

2. The iteration stops when every 1-antiresolving set {v} of the original graph is k-
antiresolving in the current graph with k > 1. In the original method, the iteration
stops when the current graph has no unitary 1-antiresolving sets, including those that
were originally k-antiresolving with k > 1.

Finally, the third method in consideration is our algorithm Edit- Graph, with k = 2,
which guarantees the perturbed graph to be (2, �G,1)-adjacency anonymous. We ran the
three methods on the randomly generated graph collection described above. A walk-based
attack leveraging one sybil node is simulated on each graph, and for each combination of a
perturbation method and a density value, we computed the average of the values obtained
for the success probability of the attack and the number of modifications performed, over
the corresponding 100,000 graphs. For the first two methods, the number of modifications is
the number of added edges, whereas for algorithm Edit- Graph it is the sum of the number
of added edges (steps 7–12) and the number of removed edges (steps 14–19). An analogous
experiment was run on the Facebook, Panzarasa and URV graphs.

The first relevant result from this experiment is that after perturbing the graphs with each
of the three methods, the success probability of the walk-based attack with one sybil node is
zero in all cases. This fact had already been reported for the first method in the work ofMauw
et al. [18]. Here, we highlight the fact that the other two methods display the same behaviour,
which shows that the notions of conditional privacy introduced by (k, �G,�)-anonymity and
(k, �G,�)-adjacency anonymity are able to provide a level of protection against the walk-
based attack (or similar neighbourhood-based attacks) that is at least as good as the one
provided by (k, �)-anonymity.

The advantages of using the new privacy properties become clear when we compare
the average number of modifications introduced on the original graphs by each method, as
depicted in Fig. 5 and Table 1. As can be observed in Fig. 5, the number of modifications
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Fig. 5 Average number of modifications done in randomly generated graphs by the methods enforcing (k, �)-
anonymity for some k > 1 or some � > 1 [18], (k, �G,1)-anonymity with k > 1 (our variation on the method
from [18]) and (2, �G,1)-adjacency anonymity. (Alg. Edit- Graph with k = 2)

Table 1 Average number of modifications done in real-life social graphs by the methods enforcing (k, �)-
anonymity for some k > 1 or some � > 1 [18], (k, �G,1)-anonymity with k > 1 (our variation on Mauw et
al’s method) and (2, �G,1)-adjacency anonymity (Alg. Edit- Graph with k = 2)

Method Average number of modifications

Facebook Panzarasa URV

Method by Mauw et al. [18] 75 417 233

Our variation on Mauw et al’s method 76 392 168

Our algorithm Edit- Graph 38 195 76

performed by the method based on (k, �G,�)-anonymity is at most the same as those per-
formed by the method based on (k, �)-anonymity. Moreover, for several density values, it is
up to five times smaller. It is worth noting that the largest differences occur for small density
values, which are typically observed in real-world social graphs. In our opinion, the most
important conclusion that can be extracted from Fig. 5 is that adjusting the adversary model
to a more realistic view of the capabilities of active adversaries allows for a considerable
reduction of the number of necessary perturbations. This is due to the fact that the privacy
notions based on the metric representation tend to “over-protect” vertices that appear as re-
identifiable, but really are not. Methods based on (k, �G,�)-adjacency anonymity do not take
these unnecessary measures, thus altering the graph structure considerably less, as seen in
the figure. From the analysis of Table 1, we can conclude that an analogous behaviour occurs
in real-life graphs.

6.3 The effect of k in Algorithm EDIT-GRAPH

In the previous section, we saw the number of modifications introduced by our Algo-
rithm Edit- Graph for k = 2, as this is sufficient for comparing this algorithm with its
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Fig. 6 Average number of modifications done in randomly generated graphs by Algorithm Edit- Graph for
several values of k

Table 2 Average number
of modifications done
in real-life graphs by
Algorithm Edit- Graph for
several values of k

Value of k Average number of modifications

Facebook Panzarasa URV

2 38 195 76

3 126 502 211

4 259 874 391

5 443 1305 606

6 674 1781 855

7 953 2292 1138

8 1282 2833 1442

two counterparts. Here, we go into more detail regarding the effect of rising the value of k on
the number of modifications performed by the algorithm. To that end, Fig. 6 shows the aver-
age number of modifications performed on randomly generated graphs for k ∈ {2, . . . , 8},
whereas Table 2 shows the analogous values on real-life graphs.

The fact that larger values of k require the algorithm to performmore graphmodifications is
a direct consequence of the considered privacy property, so we will focus on other interesting
facts that can be observed in Fig. 6. The smallest number of modifications is performed for
intermediate density values. The reason for this behaviour is the fact that in these cases,
almost no vertex corresponding to a legitimate user (that is, a non-sybil node) has a degree
value in the intervals specified in Theorem 5.1, so the only modifications necessary tend to be
the k − 1 edge additions necessary for rising the degree of the inserted sybil node to k. This
is not the case for the smallest density values, where more edge additions may be necessary,
and the largest density values, where edge removals are necessary to lower the degree of
some vertices, whereas edge additions are necessary to rise the degree of the inserted sybil
node.

To conclude, it is worth remarking that, in all the scenarios depicted in Fig. 6 and Table 2,
the success probability of the walk-based attack with one sybil node continues to be zero.
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6.4 Protection against attackers leveraging larger amounts of sybil nodes

It was pointed out by Mauw et al. [18] that graph perturbation methods aiming to enforce
(k, �)-anonymity for some k > 1 and � = 1 are to some extent able to thwart active attacks
leveraging more than one sybil node. This was due to the fact that by altering the subgraph
induced by the sybil nodes and/or the fingerprints of a subset of victims, the adversary is
prevented from retrieving the set of sybil nodes, or correctly re-identifying the victims.

Here, we analyse to what extent Algorithm Edit- Graph shows an analogous behaviour.
To that end, we simulated active attacks leveraging up to eight sybil nodes on the three real-
life graphs and the random graphs of the collection with density values {0.1, 0.2, . . . , 1}.
Recall that according to Backstrom et al. [1], eight sybil nodes are sufficient for building a
uniquely retrievable subgraph and re-identifying all vertices of a graph of order 200, as the
ones in our collection. Then, we obtained nine anonymous versions of each resulting graph:
seven of them by applying Algorithm Edit- Graphwith k ∈ {2, . . . , 8}, and the other two by
applying the method introduced by Mauw et al. [18], as well as the variation on this method
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Fig. 7 Success probabilities of thewalk-based attack, inserting one to eight sybil nodes, on randomly generated
graphs for densities 0.1, 0.2, . . . , 1. The seven rows in the bottom represent the results of the attack on graphs
anonymised with Algorithm Edit- Graph, taking k ∈ {2, . . . , 8}. The two rows in the top represent the results
of the attack on graphs anonymised with the method from Mauw et al. [18], and our variation on this method
described in Sect. 6.2. For each cell’s RGB colour value, R = 255 · Pr, G = 0 and B = 255 · (1− Pr), where
Pr stands for the success probability of the attacks
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Fig. 8 Success probabilities of the walk-based attack, inserting one to eight sybil nodes, on the a Facebook,
b Panzarasa and c URV graphs. The seven rows in the bottom represent the results of the attack on graphs
anonymised with Algorithm Edit- Graph, taking k ∈ {2, . . . , 8}. The two rows in the top represent the results
of the attack on graphs anonymised with the method from Mauw et al. [18], and our variation on this method
described in Sect. 6.2. For each cell’s RGB colour value, R = 255 · Pr, G = 0 and B = 255 · (1 − Pr), where
Pr stands for the success probability of the attacks

described in Sect. 6.2. Figures 7 and 8 show the results of these experiments using colour
matrices. The colour of each cell represents the averaged success probabilities of the attacks
on the perturbed graphs. For each cell’s RGB colour value, R = 255 · Pr, G = 0 and B =
255 · (1− Pr), where Pr stands for the success probability of the attacks; that is, red cells (or
cells with a prevailing red component) represent highly successful attacks, and prevailingly
blue cells represent thwarted attacks.

From the analysis of both figures, the most important observation is that starting at values
of k close to the number of sybil nodes, the success probability of the walk-based attack on
(k, �G,1)-adjacency anonymous graphs rapidly falls from values close to 1 to values close
to 0. In other words, by increasing the value of k, a point is reached where attacks start to
be successfully thwarted. This is a consequence of the manner in which edges between sybil
nodes are generated in the attack, which makes all sybil nodes have very similar degrees.
Thus, depending on the value of k, Algorithm Edit- Graph either modifies almost no sybil
node’s degree, or it modifies almost all, in which case the attacker fails to retrieve the sybil
subgraph. For small values of k, Algorithm Edit- Graph is less effective against attackers
leveraging larger numbers of sybil nodes than the method by Mauw et al. [18], as well as its
variant based on (k, �G,�)-anonymity. This is a result of the smaller number of modifications
introduced in the graph for satisfying (2, �G,1)-adjacency anonymity for small values of k.
For the same reason, as the value of k increases, Algorithm Edit- Graph becomes able to
thwart attacks where the other methods are less effective, as illustrated by Fig. 7 (a, i, j) and
Fig. 8.

Analysing Fig. 7 in more detail, we can observe that the behaviour of Algorithm Edit-
Graph is negligibly affected by the original graph’s density, as illustrated by the considerably
large similarity among the bottom seven rows of the colour matrices (a) to (j). The reason for
this consistent behaviour lies in the fact that the algorithm’s ability to thwart the attack is a
consequence of the density of the attacker subgraph being always slightly above 0.5, which
in turn is a consequence of the specification of the attack, not of the density of the original
graph.

Finally, comparing the colour matrices in Fig. 7 to those in Fig. 8, we can see that,
for smaller numbers of sybils (up to three), our method is slightly more effective on the
studied real-life graphs than on the randomly generated ones. While this observation is
indeed positive, it is difficult to elucidate a clear reason for this behaviour. Also, as Fig. 8
shows, our method is slightly more effective on the Panzarasa and URV graphs than on the
Facebook graph.
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6.5 Summary of experimental results

The experiments described in this section show that when compared to (k, �)-anonymity,
the new notions of (k, �G,�)-anonymity and (k, �G,�)-adjacency anonymity allow to provide
protection from equally capable active attackers while introducing a much smaller number of
changes in the graph structure. Moreover, although the theoretical privacy guarantee offered
by Algorithm Edit- Graph ((k, �G,1)-adjacency anonymity) only concerns attackers with
the ability to insert one sybil node in the network, the algorithm is also capable of thwarting
attacks frommore capable adversaries. Finally, we highlight that in terms of time complexity,
the notion of (k, �G,�)-adjacency anonymity allows to introduce more efficient algorithms.
Recall that as we discussed in Sect. 5.2.1, theworst-case time complexity of Algorithm Edit-
Graph on graphs of degree n is O(n2), whereas the complexity of the method proposed
by Mauw et al. [18], as well as its variants proposed by Mauw et al. [17] and the one
introduced in Sect. 6.2, is O(n4).

7 Concluding remarks

We have reassessed the notion of (k, �)-anonymity, which quantifies the privacy level of a
social graph in the presence of active adversaries. Firstly, we have introduced the notion
of (k, �G,�)-anonymity, which alleviates the computational cost of using (k, �)-anonymity
as the basis of anonymisation methods based on edge set perturbations. The new privacy
property also allows us to reduce the amount of perturbation needed to protect a social
graph from an active attack. Secondly, we have critically assessed one of the assumptions
posed by (k, �)-anonymity on the adversary capabilities. Judging that it is unrealistic to
assume that an adversary will be able to know all distances between a set of sybil nodes and
every other vertex of the social graph, we introduced the notion of adjacency anonymity,
which accounts for adversaries who control the connection patterns with the neighbours
of the sybil nodes. Finally, combining the two previous ideas, we have introduced a new
privacy property: (k, �G,�)-adjacency anonymity. Based on this new property, we proposed
an efficient algorithm for transforming a graph G into a (k, �G,1)-adjacency anonymous
graph, for values of k up to

⌊ n−1
2

⌋
, where n is the number of vertices of the graph. We

have additionally determined tight bounds on the number of edits performed by this method.
We conducted a series of experiments on three real-life social graphs and a collection of
randomly generated graphs, which show that when compared to (k, �)-anonymity, the new
privacy notions continue to provide protection from equally capable active attackers while
requiring a much smaller number of graph perturbations.
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Appendix A: Proof of Theorem 5.2 (see page 14)

Theorem 5.2 Let G = (V , E) be a (k0, 1)-adjacency anonymous social graph and let k ∈[
k0 + 1,

⌊ |V |−1
2

⌋]
. The number t of edges added by steps 7 to 12 of Algorithm Edit- Graph

satisfies ⎡

⎢
⎢
⎢
⎢
⎢

1

2
×

∑

u∈V ,

1≤δG (u)<k

k − δG(u)

⎤

⎥
⎥
⎥
⎥
⎥

≤ t ≤
∑

u∈V ,

1≤δG (u)<k

k − δG(u) (2)

Proof Let ((u1, v1), (u2, v2), . . . , (ut , vt )), with (ui , vi ) ∈ (V ×V )\E for i ∈ {1, . . . , t}, be
the sequence of edges added to G by steps 7 to 12 of Algorithm Edit- Graph. Let E0 = E
and Ei = Ei−1 ∪ {(ui , vi )}, for i ∈ {1, . . . , t}. Moreover, for every i ∈ {0, . . . , t}, let
Gi = (V , Ei ) and Li = {v ∈ L : 1 ≤ δGi (v) < k}.

After adding the edge (ui , vi ), we have that δGi (ui ) = δGi−1(ui ) + 1 and δGi (vi ) =
δGi−1(vi ) + 1, whereas δGi (x) = δGi−1(x) for every x ∈ V − {ui , vi }.

We define the function

missing(Gi ) =
∑

x∈Li

(k − δGi (x))

which specifies by howmuch the sum of the degrees of vertices from L needs to be increased
forGi to satisfy (k, �G,1)-adjacency anonymity. Note that, by the definition of t , we have that
missing(Gt ) = 0. Moreover, missing(G0) = ∑

u∈V , 1≤δG (u)<k k − δG(u). After adding
the edge (ui , vi ), the following situations are possible:

1. ui , vi ∈ Li−1. In this case, since two vertices from Li−1 have their degree increased by
1, we have that missing(Gi ) = missing(Gi−1) − 2.

2. ui ∈ Li−1 and vi /∈ Li−1, or vice versa. Here, missing(Gi ) = missing(Gi−1) − 1.

With the previous definitions in mind, we will address the proof of the left-hand inequality
in Eq. 2. To that end, we will assume, for the purpose of contradiction, that

t <

⌈∑
u∈V , 1≤δG (u)<k k − δG(u)

2

⌉

=
⌈
missing(G0)

2

⌉

.

Ifmissing(G0) is even, we have that t <
missing(G0)

2 . Given that, in the best-case scenario,
situation 1 above occurs at every iteration of the algorithm, we have

missing(Gt ) ≥ missing(G0) − 2t
> missing(G0) − 2 · missing(G0)

2= 0

which is a contradiction.
In a similar manner, if missing(G0) is odd, we have that t <

missing(G0)+1
2 . Here, in the

best-case scenario, situation 1 above occurs in every iteration, except one, so

missing(Gt ) ≥ missing(G0) − 2(t − 1) − 1
> missing(G0)

−2
(
missing(G0)+1

2 − 1
)

− 1

= 0
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which is also a contradiction. Thus, we can conclude that

t ≥
⌈∑

u∈V , 1≤δG (u)<k k − δG(u)

2

⌉

.

The right-hand inequality in Eq. 2 is trivial, given that at least one vertex has its degree
increased by 1 at every iteration. The proof is thus complete. ��

Appendix B: Proof of Theorem 5.3 (see page 14)

Theorem 5.3 Let G = (V , E) be a (k0, 1)-adjacency anonymous social graph and let k ∈[
k0 + 1,

⌊ |V |−1
2

⌋]
. Let Gt be the graph obtained from G after executing steps 7 to 12 of

AlgorithmEdit- Graph. The number t ′ of edges removedby steps 14 to 19ofAlgorithmEdit-
Graph satisfies

t ′ ≥

⎡

⎢
⎢
⎢
⎢
⎢

1

2
×

∑

u∈V ,

|V |−k−1<δG (u)≤|V |−2

[
k − (|V | − δGt (u) − 1

)]

⎤

⎥
⎥
⎥
⎥
⎥

(3)

and
t ′ ≤

∑

u∈V
|V |−k−1<δG (u)≤|V |−2

[
k − (|V | − δGt (u) − 1

)]
(4)

Proof We will follow a reasoning analogous to the one applied in the proof of Theorem 5.2.
Let ((u1, v1), (u2, v2), . . . , (ut ′ , vt ′)), with (ui , vi ) ∈ Et = E(Gt ) for i ∈ {1, . . . , t ′}, be
the sequence of edges removed from Gt by steps 14 to 19 of Algorithm Edit- Graph. Let
Et+i = Et+i−1 \ {(ui , vi )}, for i ∈ {1, . . . , t ′}. Moreover, for every i ∈ {1, . . . , t ′}, let
Gt+i = (V , Et+i ) and Hi = {v ∈ H : |V | − k − 1 < δGt+i (v) ≤ |V | − 2}.

After removing the edge (ui , vi ), we obtain that δGt+i (ui ) = δGt+i−1(ui ) − 1 and
δGt+i (vi ) = δGt+i−1(vi ) − 1, whereas δGt+i (x) = δGt−i−1(x) for every x ∈ V − {ui , vi }.

Now we introduce the function

excess(Gt+i ) =
∑

x∈Hi

[
k − (|V | − δGt+i (x) − 1)

]
.

In a manner analogous to the proof of Theorem 5.2, we have that by definition
excess(Gt+t ′) = 0 and

excess(Gt ) =
∑

u∈V , |V |−k−1<δG (u)<|V |−2

[k − (|V | − δG(u) − 1)] .

Additionally, after removing the edge (ui , vi ), the following situations are possible:

1. ui , vi ∈ Hi−1. In this case, since two vertices from Hi−1 have their degree decreased by
1, we have that excess(Gt+i ) = excess(Gt+i−1) − 2.

2. ui ∈ Hi−1 and vi /∈ Hi−1, or vice versa. Here, excess(Gt+i ) = excess(Gt+i−1) − 1.
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Now, to address the proof of the inequality in Eq. 3, we assume, for the purpose of
contradiction, that

t ′ <

⌈∑
u∈V , |V |−k−1<δG (u)≤|V |−2

[
k − (|V | − δGt (u) − 1

)]

2

⌉

=
⌈
excess(Gt )

2

⌉

.

In consequence, if excess(Gt ) is even, we have

excess(Gt+t ′) ≥ excess(Gt ) − 2t ′
> excess(Gt ) − 2 · excess(Gt )

2= 0

which is a contradiction, whereas in the case that excess(Gt ) is odd we have

excess(Gt+t ′) ≥ excess(Gt ) − 2(t ′ − 1) − 1
> excess(Gt )

−2
(
excess(Gt )+1

2 − 1
)

− 1

= 0

which is also a contradiction, so we can conclude that Eq. 3 holds. As in Theorem 5.2, the
upper bound (Eq. 4) is trivial. ��
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