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Abstract
Many approaches have been proposed for publishing useful informationwhile preserving data
privacy. Among them, the privacy models of identity-reserved (k, l)-anonymity and identity-
reserved (α, β)-anonymity have been proposed to handle the situation where an individual
could have multiple records. However, the two models fail to prevent attribute disclosure.
To this end, we propose two new privacy models: enhanced identity-reserved l-diversity
and enhanced identity-reserved (α, β)-anonymity. Moreover, to implement the two privacy
models we design a general anonymization algorithm, called DAnonyIR, with clustering
technique by calling different decision functions, which can decrease the information loss
caused by generalization. Further, we compareDAnonyIR concerning our two privacymodels
with existing generalization method GeneIR concerning identity-reserved (k, l)-anonymity
and identity-reserved (α, β)-anonymity, respectively. The experimental results show that our
two approaches provide stronger privacy preservation, and their information loss and relative
error ratio of query answering are less than those of GeneIR.

Keywords Privacy preservation · Data publishing · Identity reservation · Hitting set ·
Information loss · Anonymity

1 Introduction

Hospitals and other organizations often need to publishmicrodata (e.g.medical data or census
data) for the purposes of scientific research and knowledge-based decision-making [1], for
example, disease analysis and prediction. These data are often stored in a table in the form of
D(explicit identifier, quasi-identifier, sensitive attributes, other attributes) [2], where explicit
identifier (ID) can clearly identify individuals (e.g. name and social security number); quasi-
identifier (QI) is a set of attributes that can potentially identify an individual, such as zip
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code, date of birth, and gender (in general, we assume that QI is the background knowledge
possessed by attackers); sensitive attributes consist of sensitive person-specific information
(e.g. disease and salary); and other attributes are those attributes that are not contained in the
previous three categories (e.g. visit date, if it is not contained in QI ). To avoid the leakage
of individual privacy, explicit identifying information has to be removed when microdata are
released. However, individual privacy still could be leaked by linking other public data with
QI [2,3]. Thus, the methods and tools for privacy-preserving data publishing are required.
Recently, the problem has received wide attention, so many approaches have been proposed
catering for different data publishing scenarios [2–9]. In particular, for relational data, main
approaches are k-anonymity [3], l-diversity [10], (α, k)-anonymity [11], and t-closeness [12],
all of which assume that an individual has only a record in a data table.

However, in real life often an individual could have multiple records in a data table.
For example, if a patient suffers from several diseases, there are several records related
to the patient in the table. In this case, privacy models above may be underprotected and
are inadequate, because an equivalence class may contain less individuals. Particularly, it
is possible that an equivalence class contains only an individual. An equivalence class or
a group of an anonymized table is a set of records with the same values for the quasi-
identifier attributes [3]. Moreover, removing the explicit identifying information will damage
the relation among the values of sensitive attribute, which belong to the same individual,
because it is very important in medical research (e.g. complications of a disease).

In order to solve the problem with respect to an individual with multiple records, Tong
et al. [13] proposed identity-reserved (IR) k-anonymity, IR (k, l)-anonymity, and IR (α, β)-
anonymity. IR k-anonymity enables to prevent identity disclosure, which occurs when an
individual is linked to a particular record in the published table [2], because it requires that
each equivalence class in the anonymous table contains at least k different individuals. Never-
theless, IR k-anonymity does not prevent attribute disclosure, which occurs when an attacker
can infer individual’s sensitive values from the released data [2]. Thus, IR (k, l)-anonymity
and IR (α, β)-anonymity are proposed. IR (k, l)-anonymity needs that each equivalence class
in the anonymous table satisfies IR k-anonymity and contains at least l different sensitive
values. IR (α, β)-anonymity requires that the percentage of records of any individual in each
equivalence class is not larger than α and the percentage of any sensitive value in each equiv-
alence class is not larger than β. Nonetheless, they do not consider that some records in an
equivalence class belong to the same individual regarding the restrictions with respect to l
and β and still lead to attribute disclosurewhen a sensitive value appears in major individuals
of an equivalence class, especially in every individual of an equivalence class.

Thus, in order to prevent the privacy leakage caused by IR (k, l)-anonymity and (α, β)-
anonymity, in this paper we will propose enhanced identity-reserved (EIR) l-diversity and
EIR (α, β)-anonymity. EIR l-diversity considers that for each equivalence class, any set of
records from different individuals has at least l different sensitive values, which can ensure
that there are at least l different individuals.EIR (α, β)-anonymity requires that the percentage
of records of any individual in each equivalence class is not larger than α and especially the
percentage of any sensitive value in any set of records from different individuals is not more
than β. They can prevent identity disclosure and attribute disclosure. Also, to anonymize
a data table and make it satisfy EIR l-diversity or EIR (α, β)-anonymity, we will design a
general anonymization algorithm, called DAnonyIR, by using clustering technique without
predefined taxonomy trees.

The main contributions of this paper are as follows. (1) We introduce the notions of
reasoning set and reasoning space of an equivalence class and present two privacy models:
EIR l-diversity and EIR (α, β)-anonymity. For an equivalence class, the problems whether
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it satisfies the EIR l-diversity and EIR (α, β)-anonymity are changed to the problems of
minimum hitting set and the highest frequency of sensitive values, respectively. (2) We
define the distances between two individuals, between individual and equivalence class,
and between two equivalence classes. (3) We design a general anonymization algorithm
DAnonyIR with clustering techniques to make a dataset satisfy different identity-reserved
privacy models by calling different decision functions. (4) We do lots of experiments to
show the vulnerability of IR (k, l)-anonymity and IR (α, β)-anonymity, and our algorithm
ofDAnonyIR concerning EIR l-diversity and EIR (α, β)-anonymity outperforms the existing
one of GeneIR [13] concerning IR (k, l)-anonymity and IR (α, β)-anonymity with respect to
information loss and relative error ratio of query answering, respectively. At present,GeneIR
is the only an algorithm for achieving IR (k, l)-anonymity and IR (α, β)-anonymity. Also,
we show that DAnonyIR can achieve the two privacy models, and compare them with our
enhanced approaches.

The rest of this paper is organized as follows. Section 2 recaps basic concepts and notations
we will use in this paper. Section 3 introduces the concepts of reasoning set of an equivalence
class and its reasoning space and proposes two privacy models for identity reservation. Sec-
tion 4 defines some distance concepts about individuals and equivalence classes and designs a
general anonymization algorithm based on clustering techniques for different privacymodels
with identity reservation. Section 5 analyses our methods experimentally. Section 6 discusses
the related work. Finally, Sect. 7 concludes this paper and points out directions for further
study.

2 Preliminaries

This section recaps some fundamental privacy models, generalization operations, and infor-
mation metrics, which are necessary for developing our work.

2.1 Privacy models with identity reservation

Consider an original data table D = {I D, A1, . . . , Ad , As} in which there are no duplicate
records, where A1, . . . , Ad are QI attributes.1 For the convenience of reference, Table 1
summarizes the meanings of symbols used in the paper.

In privacy-preserving data publishing, for every privacy model π , there is a corresponding
anonymization approach to transforming the original data table to an anonymous table which
satisfies π . And privacy models k-anonymity, distinct l-diversity, and (α, k)-anonymity all
assume that an individual has only one record. For these privacy models, their anonymous
tables are in the form of D∗(QI ′, As), where QI ′ is an anonymous version of the original
QI obtained by applying anonymization approach to QI in original table D. For the problem
of identity-reserved anonymity, we need to keep the information in which multiple records
belong to the same individual, so the explicit identifier should not be directly deleted and
we use numbers to identify different individuals. The published anonymous table of D is in
the form of D∗(I d_num, QI ′, As), where the values of I d_num are numbers, which denote

1 For the methods of privacy-preserving data publishing, the privacy model and anonymizaiton algorithm
operate on QI and sensitive attribute and do not operate on the other attributes. That is, if some attributes in
other attributes are published, they are the same in an original data and its anonymous version. For convenience,
we omit the other attributes. At present, most approaches assume that the original database has a sensitive
attribute. Also, it is important to solve privacy-preserving data publishing in relational data with multiple
sensitive attributes. However, it is beyond the scope of this paper and so will be addressed in future.
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Table 1 Summary of notations

Symbol Description

D Original table

D∗ The anonymous table obtained by generalizing on D

I D Explicit identifier

QI Quasi-identifier, consisted of Ai (1 ≤ i ≤ d) attributes

As Sensitive attribute

r j A record in D

r j [A] The value of record r j in attribute A

P = {p1, . . . , pn} The set of individuals

S = {s1, . . . , sm } The set of sensitive values

R(pk ) The set of records of individual pk
S(pk ) The set of sensitive values of individual pk
R(st ) The set of records in which sensitive value is st
P(st ) The set of individuals whose sensitive values contain st

Q An equivalence class

mQ The number of sensitive values in Q

nQ The number of individuals in Q

Psin
Q The set of single-record individuals in Q

Pmul
Q The set of multi-record individuals in Q

Qrea The reasoning space of Q

Qi
rea A reasoning set in Qrea

different individuals. Some notions directly related to our approaches are presented in the
following.

The first one is equivalence class [3], which is the elementary unit of anonymous table.
Formally, we have:

Definition 2.1 (Equivalence class) Let Q be a set of records in a data table. Q is called an
equivalence class if ∀ri , r j ∈ Q, ri [QI ] = r j [QI ].

The second is the definitions of k-anonymity [3], distinct l-diversity [10], and (α, k)-
anonymity [11], which are suitable for the situation where an individual has a record only.

Definition 2.2 (k-anonymity, distinct l-diversity, (α, k)-anonymity) Given an original data
table D, the published anonymous table D∗ of D satisfies

(1) k-anonymity if any equivalence class in D∗ contains at least k records;
(2) distinct l-diversity if any equivalence class in D∗ contains at least l different sensitive

values; and
(3) (α, k)-anonymity if for any equivalence class Q in D∗, Q satisfies k-anonymity and the

percentage of any sensitive value in Q is less than or equal to α.

Distinct l-diversity and (α, k)-anonymity can prevent identity disclosure and attribute
disclosure, and k-anonymity can only prevent identity disclosure [2].

The following is the definitions of IR k-anonymity, IR (k, l)-anonymity, and IR (α, β)-
anonymity [13],which are obtained by extending k-anonymity, distinct l-diversity, and (α, k)-
anonymity to the scenario where an individual could have multiple records, respectively.
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Definition 2.3 (IR k-anonymity, IR (k, l)-anonymity, IR (α, β)-anonymity) Given an original
data table D, for an equivalence class Q in the published anonymous table D∗, let |Q| be
the number of records, mQ be the number of sensitive values, and nQ be the number of
individuals, i.e.

mQ =
∣
∣
∣
∣
∣
∣

⋃

pi∈Q.I d_num

S(pi )

∣
∣
∣
∣
∣
∣

, (1)

nQ =
∣
∣
∣
∣
∣
∣

⋃

s j∈Q.As

P(s j )

∣
∣
∣
∣
∣
∣

. (2)

Then D∗ satisfies

(1) identity-reserved (IR) k-anonymity if any equivalence class Q contains at least k different
individuals, i.e. nQ ≥ k;

(2) identity-reserved (IR) (k, l)-anonymity if any equivalence class Q contains at least k
different individuals and l different sensitive values, i.e. mQ ≥ l and nQ ≥ k; and

(3) identity-reserved (IR) (α, β)-anonymity if for any equivalence class Q, |R(pi )|/|Q| ≤ α,
∀pi ∈ Q.I d_num and |R(s j )|/|Q| ≤ β, ∀s j ∈ Q.As , where α, β ∈ (0, 1).

Obviously, |R(s j )|/|Q| ≤ β, the condition for IR (α, β)-anonymity, is equal to
|P(s j )|/|Q| ≤ β because s j appears in any individual at most once.

2.2 Data generalization

In order to satisfy the requirement of given privacy model π , the original table usually
needs to be generalized in the values of quasi-identifier. The idea is to replace a specific
value by a general value. Although the generalization operation reduces the data quality
of an original table, it still can retain its semantic information to some extent. Therefore,
the method attracts increasing attention in the field of privacy-preserving data publishing.
For an anonymization algorithm, it first needs to satisfy the given privacy model and then
considers to keep data quality (when an equivalence class satisfies the given privacy model, it
is unnecessary to generalize its attributes’ values to higher levels) and spend time as little as
possible. In general, the stronger the privacy preservation of a privacy model is, the worse its
data quality is and the more runtime it needs. Many existing approaches generalize the values
of attributes in quasi-identifier according to predefined taxonomy trees [10–23], which are
given by the domain experts. For example, Fig. 1 shows the taxonomy trees for categorical
attribute Postcode and numeric attribute age.2

Wang et al. [24] pointed out that the taxonomy tree restricts the choice of data gener-
alization and causes some unnecessary information loss. If the values of Postcode in two
records are 10076 and 10085, respectively, we can generalize them to {10076, 10085} in
order to make the two records into an equivalence class. However, they are generalized to
100∗ according to the taxonomy tree. If the values of Age in two records are 34 and 35,
respectively, we can generalize them to [34, 35] for forming an equivalence class. However,
they are generalized to [30, 39] according to the taxonomy tree. Thus, Wang et al. [24] sup-
plied a different scheme of data generalization, focusing on both numeric and categorical
attributes.

2 For the taxonomy tree for age, 30, 31, 32, 33, 34 are the leaves of [30, 34] and 35, 36, 37, 38, 39 are the
leaves of [35, 39]. For the sake of simplicity, we omit it.
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Fig. 1 Taxonomy trees for Postcode and Age. a Postcode. b Age

An interval number [a, b] (a ≤ b) is used to denote a numeric attribute’s value between
a and b. For a point value, we have a = b. Given ω records, the values in a numeric attribute
A ∈ QI are ri [A] = [ai , bi ], i ∈ {1, 2, . . . , ω}, respectively. We can generalize them to
the interval number [min{ai },max{bi }]. A set V is considered as the value of a categorical
attribute. If it is point-valued, V is a set that contains only an element. Given ω records, the
values in a categorical attribute A′ ∈ QI are ri [A′] = Vi , i ∈ {1, 2, . . . , ω}, respectively,
which are generalized to

⋃

1≤i≤ω Vi . And r1, r2, . . . , rω are generalized and have the same
values of attributes in QI , which constitute an equivalence class. The identity element of the
equivalence class is denoted as r = δ(r1, r2, . . . , rω), where r [A] = [min{ai },max{bi }] for
each numeric attribute A ∈ QI , r [A′] = ⋃

1≤i≤ω Vi for each categorical attribute A′ ∈ QI ,
and r [As] = null.

2.3 Informationmetrics

There exists information loss due to data generalization. So various metrics have been pro-
posed for calculating how much information is lost. For the generalization with taxonomy
tree, normalized certainty penalty (NCP) [21,25] and generalized loss metric (GLM) [26,27]
are the two main metrics proposed. They are the same for numerical attributes but different
for categorical ones. That is, for a numerical attribute A, and an interval I = [l, u] from the
domain [L,U ] of A, used to generalize A’s value, the information loss associated with I is
defined as follows:

Loss(I ) = u − l

U − L
. (3)

For a categorical attribute A′, where T is its taxonomy tree and a node p in T is used to
generalize A′’s value, the information loss associated with p is defined as follows (for NCP
and GLM, respectively):

LossNCP (p) =
{

0 |u p| = 1,
|u p |
|u| otherwise; (4)

LossGLM (p) = |u p| − 1

|u| − 1
, (5)

where u p is the set of leaf nodes of the subtree rooted at p in T and u is the set of all the leaf
nodes in T .

For example, a record has values 32 and 10073 for Age and Postcode attributes, respec-
tively, whose taxonomy trees are shown in Fig. 1. Assume that 32 and 10073 are generalized
to [30, 34] and 1007*. The information loss for Age by using NCP and GLM is the same:
34−30
39−30 = 4

9 . We can see that [30, 34] actually contains 30, 31, 32, 33, and 34, and there are
five different numbers, while 34− 30 = 4. Similarly, [30, 39] actually contains ten different

123
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numbers, while 39 − 30 = 9. The information loss for categorical attribute Postcode by
using NCP is 4

7 , while it is
4−1
7−1 = 1

2 by usingGLM. 1007∗ is equal to {10070, 10073, 10076,
10077} and there are four different numbers. The set of all the leaf nodes in the taxonomy
tree of Postcode is {10070, 10073, 10076, 10077, 10085, 10086, 10087} and there are seven
different numbers. We can see that the definitions of GLM are consistent with respect to
numeric and categorical attributes, while NCP is not. So GLM is more suitable.

For NCP and GLM, they consider only the information loss between an original value
and a generalized value of an attribute. When we create an equivalence class by continually
adding the records of individuals until it satisfies given privacy model, it is necessary to
compute the information loss from current equivalence class to the later equivalence class
obtained by adding the records of an individual to current equivalence class. As a result, we
need to consider the information loss caused by one generalization value to another. The
definition of information loss between a generalized value (or original value) and another
needs to be given.

For the generalization method without predefined taxonomy trees, Wang et al. [24] pre-
sented the information metrics for categorical and numerical attributes, as given by Eqs. (6)
and (7), respectively. However, the results of Eqs. (6) and (7) are not normalized, i.e. the
results (except 0) all are greater than 1. Also, it is unreasonable to denote the information
loss by using the times (the number related to the later generalized value is divided by the
number related to the original value or before generalized value), because the denominator is
varied and so the standard is not uniform. In this paper, based on GLM we will improve the
information metrics for numeric and categorical attributes, which are described in Sect. 4.1.

For a record r , the value is r [A] = [a, b] on a numeric attribute A, which is the original
value or a generalized value, and the (later) generalized value is r∗[A] = [a∗, b∗]. Then the
information loss of r on attribute A is given by

Loss(r [A], r∗[A]) =
{

(b∗−a∗+1)
b−a+1 if r [A] �= r∗[A],

0 if r [A] = r∗[A]. (6)

For a record r , the value is the set r [A′] on a categorical attribute A′, which is the original
value or a generalized value, and the (later) generalized value is the set r∗[A′]. Then the
information loss of r on attribute A′ is

Loss(r [A′], r∗[A′]) =
{ |r∗[A′]|

|r [A′]| if r [A′] �= r∗[A′],
0 if r [A′] = r∗[A′]. (7)

3 Enhanced privacymodels with identity reservation

In this section, we first give an example to show that although IR (k, l)-anonymity and IR
(α, β)-anonymity can prevent identity disclosure, they fail to prevent attribute disclosure.
Thus, in this section we will propose two privacy models, the EIR l-diversity and EIR (α, β)-
anonymity, to prevent not only identity disclosure but also attribute disclosure.

Table 2 is a patient table, in which an individual has one or several records, where {Gen-
der, Age, Postcode} is the quasi-identifier set QI. And Table 3 is a published table which
satisfies IR (3, 3)-anonymity or IR (0.4, 0.6)-anonymity, obtained by the anonymization
approach GeneIR [13] according to predefined taxonomy trees. If an attacker knows the
Mike’sQI information (i.e. {M, 36, 10085}), obtained by some public information (i.e. voter
list), and knows that Mike is in the published table, then the attacker can infer that Mike is
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Table 2 An patient table in
which an individual could have
multiple records

Name Gender Age Postcode Disease

r1 Mike M 36 10085 Hypertension

r2 Mike M 36 10085 Heart

r3 Lily F 37 10076 Cancer

r4 Tim M 36 10086 Hypertension

r5 Jane F 33 10087 Hypertension

r6 Jane F 33 10087 Diabetes

r7 Tina F 38 10077 HIV

r8 Ella F 34 10070 Leukaemia

r9 Ella F 34 10070 Heart

r10 Lucy F 33 10073 Syphilis

Table 3 IR (3, 3)-anonymous or IR (0.4, 0.6)-anonymous table

EC-ID Id_num Gender Age Postcode Disease

r3 Q1 2 F [30, 39] 1007* Cancer

r7 Q1 5 F [30, 39] 1007* HIV

r8 Q1 6 F [30, 39] 1007* Leukaemia

r9 Q1 6 F [30, 39] 1007* Heart

r10 Q1 7 F [30, 39] 1007* Syphilis

r1 Q2 1 * [30, 39] 1008* Hypertension

r2 Q2 1 * [30, 39] 1008* Heart

r4 Q2 3 * [30, 39] 1008* Hypertension

r5 Q2 4 * [30, 39] 1008* Hypertension

r6 Q2 4 * [30, 39] 1008* Diabetes

in equivalence class Q2 (see Table 3). Because Q2 contains three different individuals, the
attacker cannot know which one is corresponding to Mike, and thus, the identity disclosure
is prevented. However, the attacker knows that Mike has hypertension disease because any
individual in Q2 has hypertension disease. Obviously, the privacy leakage is 100% in this
case, so attribute disclosure happens.

Why does this attribute disclosure happen? This is because IR (k, l)-anonymity and IR
(α, β)-anonymity do not consider that some records in an equivalence class belong to the same
individual regarding the restrictions with respect to l and β, so they cannot prevent attribute
disclosure. To address this issue, in the following we will give two enhanced privacy models,
called EIR l-diversity and EIR (α, β)-anonymity, which consider that for each equivalence
class, any set of records from different individuals satisfies l-diversity, and the percentage
of any sensitive value in any set of records from different individuals is not more than β,
respectively.

Definition 3.1 (Single-record/multi-record individual) Given an original data table D, for
∀pi ∈ P , if pi has one record, then pi is called an single-record individual; if pi has several
records, then pi is called an multi-record individual and these records are called related
records.
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For example in Table 2, r1 and r2 belong to the same individual, so they are related. From
the example discussed in the beginning of this section, we know that the attacker cannot
differentiate which individual in Q2 is corresponding to Mike. However, the attacker can
infer that Mike has a disease with certain probability. If the probability is very big, it means
that Mike’s privacy is leaked. The probability of a disease is the maximum percentage of
the disease in any set of records from different individuals. The attacker reasons in the four
sets consisting of these records from different individuals in Q2, i.e. {r1, r4, r5}, {r1, r4, r6},
{r2, r4, r5}, and {r2, r4, r6}. The related records are not in the same set, andwe need to prevent
privacy leakage in any set.

Definition 3.2 (Reasoning set) For an equivalence class Q, let PQ = {p1, p2, . . ., pnQ }
be the set of individuals. A reasoning set of Q is a set of records which maps to different
individuals from p1 to pnQ .

All reasoning sets of Q constitute the reasoning space. The size of the reasoning space is
determined by multi-record individuals, i.e.

|R(pm1)| × |R(pm2)| × · · · × |R(pmnmQ
)|, (8)

where Psin
Q = {pi | |R(pi )| = 1, pi ∈ PQ} = {ps1 , ps2 , . . . , psnsQ } is the set of single-record

individuals in Q, Pmul
Q = PQ \ Psin

Q = {pm1 , pm2 , . . . , pmnmQ
} is the set of multi-record

individuals, and nQ = nsQ + nmQ .

For the equivalence class Q2 in Table 2, PQ2 = {1, 3, 4}, where Psin
Q2

= {3} and

Pmul
Q2

= {1, 4}. We have that R(3) = {r4}, R(1) = {r1, r2}, and R(4) = {r5, r6}. Then
{{r1, r4, r5}, {r1, r4, r6}, {r2, r4, r5}, {r2, r4, r6}

}

is the reasoning space, in which each ele-
ment is a reasoning set, and the size is |R(1)| × |R(4)| = 2 × 2 = 4.

Definition 3.3 (EIR l-diversity) Given an original data table D, for an equivalence class Q in
D∗, let Qrea = {Q1

rea, Q
2
rea, . . . , Q

q
rea} be the reasoning space of Q, where Qi

rea(1 ≤ i ≤ q)

is a reasoning set. Then we say Q satisfies the enhanced identity-reserved (EIR) l-diversity
if for ∀Qi

rea ∈ Qrea , Qi
rea contains at least l different sensitive values (i.e. |Qi

rea .As | ≥ l),
and D∗ satisfies EIR l-diversity if all equivalence classes in published anonymous table D∗
satisfy EIR l-diversity.

We do not restrict the number of individuals in an equivalence class with parameter
k, because EIR l-diversity can ensure that there are at least l different individuals in an
equivalence class.

Definition 3.4 (EIR (α, β)-anonymity) Given an original data table D, for an equivalence
class Q in D∗, let Qrea = {Q1

rea, Q
2
rea, . . . , Q

q
rea} be the reasoning space of Q. Then Q

satisfies the enhanced identity-reserved (EIR) (α, β)-anonymity if the following conditions
are satisfied:

(1) ∀pi ∈ Q.I d_num, the percentage of pi ’s records in Q is not more than α, i.e.
|R(pi )|/|Q| ≤ α; and

(2) ∀Qi
rea ∈ Qrea , ∀s ji ∈ Qi

rea .As , the percentage of individuals whose sensitive value is

s ji in Qi
rea is not more than β, i.e. |P(s ji )|/nQ ≤ β.

If all equivalence classes in published anonymous table D∗ satisfy EIR (α, β)-anonymity,
we say that D∗ satisfies EIR (α, β)-anonymity.
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Definition 3.5 (Hitting set) [28] Let Ψ = {X1, X2, . . . , Xt } be a collection of subsets of a
finite set X . If H ⊆ X , and H ∩ Xi �= ∅, ∀Xi ∈ Ψ , H is called a hitting set of Ψ . If there is
no H ′ ⊂ H such that H ′ is a hitting set of Ψ , then H is called a minimal hitting set of Ψ . If
cardinality of H is smallest, then H is called a minimum hitting set of Ψ .

For example, given X = {x1, x2, x3, x4}, Ψ = {{x2, x3}, {x2, x4}, {x1, x2}}, then
{x1, x3, x4} and {x2} are minimal hitting sets of Ψ , where {x2} is minimum hitting set of
Ψ .

For an equivalence class Q, if the average number of records of an individual in Pmul
Q is

r , then the size of reasoning space is r |Pmul
Q |. So we need to check whether r |Pmul

Q | reasoning
sets satisfy the enhanced identity-reserved privacy model. In fact, we do not check all the
reasoning sets. The problems of whether Q satisfies the EIR l-diversity and EIR (α, β)-
anonymity are changed to the problems of minimum hitting set and the highest frequency of
sensitive values, respectively.

Theorem 3.1 Given an equivalence class Q, PQ = {p1, p2, . . . , pnQ } is the set of individuals
in Q. Let Ψ = {S(p1), S(p2), . . . , S(pnQ )} and H is a minimum hitting set of Ψ . If |H | ≥ l,
then Q satisfies the EIR l-diversity.

Proof For each Qi
rea ∈ Qrea , we know that Qi

rea contains a set of records which maps
to different individuals from p1 to pnQ by Definition 3.2. Qi

rea .As is the set of sensitive
values of these records in Qi

rea . We have that Qi
rea .As ∩ S(p j ) �= ∅, ∀ j ∈ {1, . . . , nQ}. So

Qi
rea .As is a hitting set of Ψ . Since H is a minimum hitting set of Ψ and |H | ≥ l, we have

|Qi
rea .As | ≥ l. By Definition 3.3, we know that Q satisfies the EIR l-diversity. 
�

In this case, if |S(Psin
Q )| ≥ l, where S(Psin

Q ) is the set of the values of sensitive attribute

of all individuals in Psin
Q , then we can obtain that |H | ≥ l because S(Psin

Q ) is included in any
a hitting set of Ψ according to the definition of hitting set (i.e. Definition 3.5). So Q satisfies
the EIR l-diversity.

Theorem 3.2 Given an equivalence class Q, let

p = argmax{|R(pi )| | pi ∈ Q.I d_num}, (9)

s = argmax{|P(si )| | si ∈ Q.As}. (10)

If |R(p)|/|Q| ≤ α and |P(s)|/nQ ≤ β, then Q satisfies the E I R (α, β)-anonymity.

Proof Weknow that |R(pi )|/|Q| ≤ |R(p)|/|Q| ≤ α,∀pi ∈ Q.I d_num. For∀Qi
rea ∈ Qrea ,

we have max{|P(s ji )| | s ji ∈ Qi
rea .As}/nQ ≤ |P(s)|/nQ ≤ β. By Definition 3.4, Q satisfies

the EIR (α, β)-anonymity. 
�

4 Anonymization

In this section, first we will discuss how to calculate the information loss for numeric and
categorical attributes, a record, and a data table, then define various concepts of distances,
and finally propose an anonymization algorithm and analyse its correctness and time and
space complexity.
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4.1 Informationmetric used in our approach

We extend GLM to the definition of information metrics between a generalized value (or
original value) and another generalized value for numeric and categorical attributes.

Definition 4.1 (Informationmetric for a numeric attribute) Let the value domain of a numeric
attribute A be [L,U ]. Let the value of a record r be r [A] = [a, b] on the attribute A, which is
the original value or a generalized value, and its (later) generalized value be r∗[A] = [a∗, b∗]
on the attribute A. Then the information loss of r on numeric attribute A from r [A] to r∗[A]
is

Loss(r [A], r∗[A]) = (b∗ − a∗) − (b − a)

U − L
. (11)

When r [A] is the original value, we have b − a = 0, which is consistent with GLM/NCP
as a result for numeric attribute. When [a, b] is a generalized value, Loss(r [A], r∗[A]) =
b∗−a∗
U−L − b−a

U−L denotes the increment of information loss from [a, b] to [a∗, b∗].

Definition 4.2 (Information metric for a categorical attribute) Let the value domain of a
categorical attribute A′ be the set X . And let the value of a record r be r [A′] on the attribute
A′, which is the original value or a generalized value, and its (later) generalized value be
r∗[A′] on the attribute A′. Then the information loss of r on categorical attribute A′ from
r [A′] to r∗[A′] is

Loss(r [A′], r∗[A′]) = |r∗[A′]| − |r [A′]|
|X | − 1

. (12)

When r [A′] is the original value, |r [A′]| = 1; it is consistent with GLM as a result for
categorical attribute. When r [A′] is a generalized value, Loss(r [A′], r∗[A′]) = |r∗[A′]|−1

|X |−1 −
|r [A′]|−1

|X |−1 denotes increment of information loss from r [A′] to r∗[A′].
For our anonymization approach, if there exists an individual pi , which is added to any

an equivalence class and the equivalence class does not satisfy given privacy requirement, or
is added to the equivalence class, whose distance to pi is minimum, and data quality of the
equivalence class is decreased seriously, we need to suppress the records of the individual.
The suppression of a value of an attribute is to replace it by a special mark (i.e. ∗, a special
generalization), indicating that the replaced values are not disclosed, and its information loss
is 1.

Definition 4.3 (Information loss for a record) The information loss of a record r generalized
to r∗ is

Loss(r , r∗) =
|QI |
∑

i=1

Loss(r [Ai ], r∗[Ai ]), (13)

where Loss(r [Ai ], r∗[Ai ]) is calculated by Eq. (11), if Ai is numeric attribute; otherwise, it
is calculated by Eq. (12).

Definition 4.4 (Information loss for a data table) Given an original data table D, the infor-
mation loss of D generalized to its published anonymous table D∗ is

Loss(D, D∗) =
|D|
∑

i=1

Loss(ri , r
∗
i ). (14)
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The normalized information loss of D generalized to D∗ is

NLoss(D, D∗) = Loss(D, D∗)
|D| · |QI | . (15)

In worst case, we suppress all records.

4.2 Definition of distances

Some approaches consider the problem of data anonymization as a clustering problem sat-
isfying k-anonymity or l-diversity [18,19,24]. They gave some definitions about distance
between two records, distance between a record and an equivalence class, and distance
between two equivalence classes. In this subsection, we will also give some definitions about
distances from information loss perspective, including distance between two individuals, dis-
tance between an individual and an equivalence class, and distance between two equivalence
classes. Different from the concepts of distances in [18,19,24], we consider that an individual
could have multiple records, and use Eqs. (11) and (12) to calculate the information loss for
numeric attributes and categorical attributes, respectively.

Definition 4.5 (Distance between two individuals) Given the individuals p1 and p2, r p1 and
r p2 are the original identity elements of p1 and p2, respectively. The information loss caused
by generalizing the records in R(p1) and R(p2) to r p1 p2 is called the distance between p1
and p2, defined as follows:

Dist(p1, p2) = |R(p1)| × Loss(r p1 , r p1 p2) + |R(p2)| × Loss(r p2 , r p1 p2), (16)

where r p1 p2 = δ(r p1 , r p2) is the identity element of equivalence class Qp1 p2 , which is
formed by generalizing the records in R(p1) and R(p2).

To make R(p1)∪R(p2) become an equivalence class, we need to generalize these records
to r p1 p2 . In Eq. (16), the first product termdenotes the information loss caused by generalizing
the records in R(p1) to r p1 p2 and the second is the information loss caused by generalizing
the records in R(p2) to r p1 p2 .

For example, in Table 2, r5 and r6 both belong to individual 4, whose original identity ele-
ment is {F, 33, 10087, null}, and r8 and r9 both belong to individual 6, whose original identity
element is {F, 34, 10070, null}. If we put the records of individuals 4 and 6 into an equivalence
class, the identity element of the equivalence class is {F, [33, 34], {10070, 10087}, null}, i.e.
the records of individuals 4 and 6 are all generalized to {F, [33, 34], {10070, 10087}, null}.
Then the information loss caused by the generalization is the distance between individuals 4
and 6.

Definition 4.6 (Distance between individual and equivalence class) Let rq be the identity
element of equivalence class Q. If individual p /∈ Q.I d_num, then the information loss
caused by generalizing the records in R(p) and Q to r pq is the distance between p and Q,
given by:

Dist(p, Q) = |R(p)| × Loss(r p, r pq) + |Q| × Loss(rq , r pq), (17)

where r p is the identity element of p and r pq = δ(r p, rq) is the identity element of the
equivalence class Qpq , which is formed by generalizing the records in R(p) and Q.

To make R(p) ∪ Q become an equivalence class, we need to generalize these records to
r pq . In Eq. (17), the first product term denotes the information loss caused by generalizing
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the records in R(p1) to r pq and the second is the information loss caused by generalizing
the records in Q to r pq .

Definition 4.7 (Distance between two equivalence classes) Let rq1 and rq2 be the identity
elements of equivalence classes Q1 and Q2, respectively. The information loss caused by
generalizing the records in Q1 and Q2 to rq12 is the distance between Q1 and Q2, given by:

Dist(Q1, Q2) = |Q1| × Loss(rq1 , rq12) + |Q2| × Loss(rq2 , rq12), (18)

where rq12 is the identity element of the equivalence class Q1,2, which is formed by gener-
alizing the records in Q1 and Q2.

To make Q1 ∪ Q2 become an equivalence class, we need to generalize these records to
rq12 . In Eq. (18), the first product term denotes the information loss caused by generalizing
the records in Q1 to rq12 and the second is the information loss caused by generalizing the
records in Q2 to rq12 .

4.3 Algorithm

Wang et al. [24] presented a clustering algorithm for data anonymization achieving l-diversity.
In this subsection, by improving their method, wewill propose the heuristic greedy clustering
algorithm DAnonyIR, as shown in Algorithm 1. It generalizes the original data table to an
anonymous tablewhich satisfies givenprivacy requirement for identity reservation. To explain
our algorithm, first we need the following concept:

Definition 4.8 (Optimal clustering) Given an original data table D and a privacy model with
identity reservation π , an optimal clustering of D is a partition P = {Q1, . . . , Qe} such that
⋂e

i=1 Qi = ∅, ⋃e
i=1 Qi ⊆ D, and Qi (i = 1, . . . , e) satisfies π after Qi is generalized.

The published anonymous table D∗ consists of these generalized Qi , and Loss(D, D∗) is
minimal.

DAnonyIR The whole clustering algorithm DAnonyIR is shown in Algorithm 1. Its input
is the original data table, QI attributes, and some parameters about privacy requirement π .
The output is an anonymous table. The basic idea of the algorithm is as follows: when D �= ∅,
we try to create an equivalence class Q from D; if Q satisfies π , we add it to D∗; if D = ∅
and Q still does not satisfy π , the individuals in Q are residual and we use Handle function
to deal with them. Firstly, on line 1, we preprocess the original data. That is, recode the
explicit identifier of D with numbers. As the information where several records belong to the
same individual needs to be kept, the explicit identifier is replaced with a different number
to denote a different individual. On lines 2–19, we try to create continually equivalence
classes until D = ∅. The process of creating an equivalence class is shown on lines 3–15,
First, select randomly individual p from D and initialize equivalence class Q with these
records of p. rq is the identity element of Q. Now Q only contains an individual and it
does not satisfy π , so we set Sat Flag = False, where variable Sat Flag denotes whether
Q satisfies π . When Q does not satisfy π and D �= ∅, we perform repeatedly lines 7–14.
On lines 7 and 8, we get the individual p′ and the equivalence class Q′ from D and D∗,
whose distances to Q are minimum, respectively. Because the current Q does not satisfy
π , we need to add more individuals. We can add p′ to Q, or combine Q with Q′. In order
to reduce the information loss, we select the way in which less information loss is caused.
If Dist(p′, Q) ≤ Dist(Q′, Q), we add R(p′) to Q and update the identity element of Q;
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Algorithm 1 DAnonyIR
Input: original data table D; quasi − identi f ier QI ; some parameters about privacy requirement π ;
Output: An anonymous table D∗;
1: recode the explicit identifier of D with numbers;
2: while D �= ∅ do
3: select randomly individual p from D; D = D − R(p);
4: form the equivalence class Q = R(p), where rq is the identity element of Q, rq [QI ] are the values of

p on QI attributes, and rq [As ] = null;
5: Sat Flag = False;
6: while !Sat Flag&&D �= ∅ do
7: p′ = argmin pi∈D.I d_num {Dist(pi , Q)};
8: Q′ = argminQk∈D∗ {Dist(Qk , Q)};
9: if Dist(p′, Q) ≤ Dist(Q′, Q) then
10: D = D − R(p′); Q = Q ∪ R(p′); rq = δ(rq , r p′ );
11: else
12: D∗ = D∗ − {Q′}; Q = Q ∪ {Q′}; rq = δ(rq , rq ′ );
13: end if
14: Sat Flag = Sat Pri I R(Q, parameters);
15: end while
16: if Sat Flag == True then
17: D∗ = D∗ ∪ {Q};
18: end if
19: end while
20: if Sat Flag == False then
21: while Q �= ∅ do
22: select randomly individual p′′ from Q;
23: Q = Q − R(p′′);
24: Handle(p′′);
25: end while
26: end if
27: for ∀Qi ∈ D∗ do
28: for ∀r ∈ Qi do
29: substitute its values on QI attributes with Qi ’s identity element;
30: end for
31: end for
32: return D∗;

otherwise, we merge Q with Q′ and update the identity element of Q. On line 14, we call
function SaPriIR to judge whether Q satisfiesπ . On lines 16 and 18, if Sat Flag = True, i.e.
Q satisfies π , we add Q to D∗. On lines 20–26, when the lines 2–19 are executed and D = ∅,
if the last equivalence class Q does not satisfy π , for every individual in Q, we call function
Handle to decide to add its records to an equivalence class or suppress it. Because these
individuals are directly put in D∗, it will lead to privacy leakage. After that, we obtain the set
D∗ of equivalence classes which are not generalized. Then for Qi ∈ D∗ and every record
in Qi , we substitute its values on QI attributes with its identity element, so the anonymous
table satisfying π is obtained.

SatPriIR For function SatPriIR, the procedure is different for a different privacy model
with identity reservation. For IR (k, l)-anonymity, IR (α, β)-anonymity, EIR l-diversity, and
EIR (α, β)-anonymity, it is substituted with SatPriIR_kl, SatPriIR_αβ, SatPriIR_El, and
SatPriIR_Eαβ, respectively. The privacy models EIR l-diversity and EIR (α, β)-anonymity
are proposed in the paper, so we describe the functions SatPriIR_El and SatPriIR_Eαβ in
detail, as shown in Algorithms 2 and 4, respectively. For SatPriIR_kl, we scan Q once to
obtain the number nQ of individuals and the number mQ of sensitive values appearing in Q.
If nQ ≥ k andmQ ≥ l, then Q satisfies the IR (k, l)-anonymity, and return True; otherwise,
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return False. For SatPriIR_αβ, the algorithm is similar to SatPriIR_Eαβ, and the difference
is on line 12 in Algorithm 4. According to Definition 2.3 (3), if MaxRecNum/|Q| ≤ α and
MaxSenNum/|Q| ≤ β, then Q satisfies IR (α, β)-anonymity, and return True; otherwise,
return False.

Algorithm 2 SatPriIR_El(Q, l)
Input: the set of records Q; parameter l;
Output: True or False;
1: get Ψ = {S(p1), S(p2), . . . , S(pnQ )};
2: ξ = ∅;
3: for ∀S(pi ) ∈ Ψ do
4: if |S(pi )| == 1 then
5: Ψ = Ψ \S(pi );
6: ξ = ξ ∪ S(pi );
7: end if
8: end for
9: if |ξ | = ∅ then
10: H = BHS(Ψ );
11: find a minimum hitting set h fromH;
12: if |h| ≥ l then
13: return True;
14: else
15: return False;
16: end if
17: else if |ξ | ≥ l then
18: return True;
19: else
20: for ∀S(pi ) ∈ Ψ do
21: if S(pi ) ∩ ξ �= ∅ then
22: Ψ = Ψ \S(pi );
23: end if
24: end for
25: H′ = BHS(Ψ );
26: find a minimum hitting set h′ fromH′;
27: if |h′| + |ξ | ≥ l then
28: return True;
29: else
30: return False;
31: end if
32: end if

SatPriIR_El In Algorithm 2, on line 1, we get the collection of subsetsΨ , in which S(pi )
is the set of sensitive values of the individual pi . On line 2, we set a variable ξ to store single
element sets in Ψ . From lines 3 to 8, we find all single element sets, delete them from Ψ

and add them to set ξ . On lines 9–16, if |ξ | = ∅, we directly call function BHS [28] to get
all minimal hitting sets of Ψ , and find a minimum hitting set h. Function BHS is described
in Algorithm 3. According to Theorem 3.1, if |h| ≥ l, then Q satisfies EIR l-diversity, and
return True; otherwise, return False. On lines 17 and 18, if |ξ | �= ∅ and |ξ | ≥ l, then the
cardinality of anyminimumhitting set is not less than l, because ξ is contained in anyminimal
hitting set, also any minimum hitting set. So return True. From lines 19 to 31, we consider
another case, 0 < |ξ | < l. On lines 20 to 24, we use ξ to further simplify Ψ according to the
definition of a hitting set. ∀S(pi ) ∈ Ψ , if S(pi ) ∩ ξ �= ∅, then Ψ = Ψ \S(pi ). On lines 25
and 26, we call BHS to get all minimal hitting sets of current Ψ , and then find a minimum
hitting set h′. If |h′| + |ξ | ≥ l, return True; otherwise, return False. In fact, we divide Ψ
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Algorithm 3 BHS(Ψ )
Input: the collection of sets Ψ ;
Output: all minimal hitting sets of Ψ ;
1: transform Ψ to Boolean formula Π with disjunctive normal form;
2: if Π only contains a conjunctive item, i.e. Π = s1 s2 · · · sθ then
3: return s1 + s2 + · · · + sθ ;
4: end if
5: simplify Π with absorption law;
6: if every conjunctive item in Π contain literal s then
7: return s;
8: end if
9: if there are single literal items in Π , i.e.s′1, s′2, · · · , s′ϑ then
10: sig = s′1s′2 · · · s′θ ;
11: delete s′1, s′2, · · · , s′ϑ from Π ;
12: end if
13: get the literal s′ whose frequency appearing in Π is highest;
14: sig · (s′ · BHS(Π1) + BHS(Π2)), where Π1 and Π2 are the results by deleting these conjunctive items

which contains s′, and s′ from Π , respectively;

to two parts: One contains the sets whose intersection with ξ is not ∅ and the other contains
the sets whose intersection with ξ is ∅. ξ is the only minimum hitting set of the first part. We
need to find a minimum hitting set h′ of the second part. h′ ∪ ξ is a minimum hitting set of
the whole Ψ .

BHS We combine an example to explain Algorithm 3. Let

Ψ = {{x1, x3}, {x1, x3, x5}, {x1, x6}, {x3, x5}, {x5, x7}, {x4}, {x4, x5}, {x4, x6}}.
On line 1, we transform Ψ to

Π = x1 x3 + x1 x3 x5 + x1 x6 + x3 x5 + x5 x7 + x4 + x4 x5 + x4 x6,

where xy (or x · y) and x + y denote the AND and OR results of x and y, respectively. For
any hitting set of Ψ , e.g. {x1, x4, x5}, we have Π · x1x4x5 = 0. On lines 2 and 3, when Π

only contains a conjunctive item, and assume that Π = x1 x3, return x1 + x3, i.e. {x1} and
{x3} are minimal hitting sets, because Π · x1 = 0 and Π · x3 = 0. In this example, Π has 8
conjunctive items, the algorithm executes the fifth line. We simplify Π with the absorption
law A + AB = A and obtain

Π = x1 x3 + x1 x6 + x3 x5 + x5 x7 + x4.

On lines 6 and 7, if every conjunctive item inΠ contains literal s, then s is the only a minimal
hitting sets, becauseΠ ·s = 0. In this example, x4 is a single literal item, and line 9 is executed.
We have sig = x4, which is contained in all hitting sets. We delete x4 from Π , and

Π = x1 x3 + x1 x6 + x3 x5 + x5 x7.

Select literal x1 whose frequency appearing in Π is highest for accelerating convergence.
We have

x4BHS(Π) = x4(x1BHS(x3 x5 + x5 x7) + BHS(x3 + x6 + x3 x5 + x5 x7)).

The first part is these minimal hitting sets containing x1 and the second part is the ones which
do not contain x1. For BHS(x3 x5 + x5 x7), because the two conjunctive items both contain
x5, so return x5.
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BHS(x3 + x6 + x3 x5 + x5 x7)

= BHS(x3 + x6 + x5 x7)

= x3x6BHS(x5 x7)

= x3x6(x5 + x7)

= x3x5x6 + x3x6x7.

So the final return result is

x4(x1x5 + x3x5x6 + x3x6x7)

= x1x4x5 + x3x4x5x6 + x3x4x6x7,

and {x1, x4, x5}, {x3, x4, x5, x6}, and {x3, x4, x6, x7} are minimal hitting sets.
SatPriIR_Eαβ For Algorithm 4, from lines 2 to 10, we obtain the MaxRecNum which

denotes the maximum number of records of individuals in Q and count the number of
occurrences of any sensitive value appearing in Q. On line 11, we find MaxSenNum
which is the maximum value in {Nums1 , . . . , NumsmQ

}, where s1, . . . , smQ are sensitive
values appearing in Q and Nums j is the number of occurrences of s j . By Theorem 3.2, if
MaxRecNum/|Q| ≤ α and MaxSenNum/nQ ≤ β, Q satisfies EIR (α, β)-anonymity, so
return True; otherwise, return False.

Algorithm 4 SatPriIR_Eαβ(Q, α, β)

Input: the set of records Q; parameters α and β;
Output: True or False;
1: MaxRecNum = 0;
2: for every pi in Q do
3: RecNum = |R(pi )|;
4: if RecNum > MaxRecNum then
5: MaxRecNum = RecNum;
6: end if
7: for every s j ∈ S(pi ) do
8: Nums j + +;
9: end for
10: end for
11: MaxSenNum = max{Nums1 , . . . , NumsmQ

};
12: if MaxRecNum/|Q| ≤ α and MaxSenNum/nQ ≤ β then
13: return True;
14: else
15: return False;
16: end if

In fact, when some records of an individual are added to Q, in order to check whether
the current Q satisfies privacy requirement π , we do not call SatPriIR_kl, SatPriIR_El,
SatPriIR_αβ, or SatPriIR_Eαβ. Because these individuals are added to Q one by one (when
we combine an equivalence class Q′ to Q, wemay consider as the individuals of Q′ are added
to Q one by one), we can use incremental methods to check whether Q satisfies π , denoted
by SatPriIRInc_kl, SatPriIRInc_El, SatPriIRInc_αβ, and SatPriIRInc_Eαβ, respectively.
SatPriIRInc_El and SatPriIRInc_Eαβ are shown in Algorithms 5 and 6, respectively. For
SatPriIRInc_kl, when an individual p is added to Q, we only need to update the number nQ
of individuals and the number mQ of sensitive values appearing in Q according to p. For
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SatPriIRInc_αβ, the updated process to MaxRecNum and MaxRecNum is the same as
SatPriIRInc_Eαβ.

Algorithm 5 SatPriIRInc_El(Q,HQ, p, l)
Input: the set of records Q; all minimal hitting setsHQ = x1x2 . . . xh1 + y1y2 . . . yh2 + · · · + z1z2 . . . zht

of Ψ = {S(p1), S(p2), . . . , S(pnQ )}; individual p added to Q with S(p) = {s1, s2, .., sr }; parameter l;
Output: True or False;
1: if Q = ∅ then
2: HQp = s1 + s2 + · · · + sr ;
3: else
4: HQp = (x1x2 . . . xh1 + y1y2 . . . yh2 + · · · + z1z2 . . . zht )(s1 + s2 + · · · + sr );
5: simplify HQp with Boolean algebra;
6: find a minimum hitting set h fromHQp ;
7: if h ≥ l then
8: return True;
9: else
10: return False;
11: end if
12: end if

SatPriIRInc_El The idea of Sat Pri I RInc_El is introduced by [28]. For the set of
records Q,

HQ = x1x2 . . . xh1 + y1y2 . . . yh2 + · · · + z1z2 . . . zht

contains all minimal hitting sets of Ψ = {S(p1), S(p2), . . . , S(pnQ )}. In fact,

HQ = {{x1, x2, . . . , xh1}, {y1, y2, . . . , yh2}, . . . , {z1, z2, . . . , zht }}.
For convenience, we represent HQ with Boolean formula. When an individual p is added
to Q, we use Algorithm 5 to get all minimal hitting sets HQp of Ψ ∪ S(p). If Q = ∅, then
HQp = s1 + s2 + · · · + sr , i.e.HQp = {s1, s2, . . . , sr }; otherwise, we use the method shown
on line 4 to get HQp and simplify it with Boolean algebra. Then find a minimum hitting set
h from HQp . If h ≥ l, return True; otherwise, return False.

SatPriIRInc_Eαβ When an individual p is added to Q, Algorithm 6 is used to check
whether at the moment Q satisfies EIR (α, β)-anonymity. We only need to check whether
|R(pi )| is greater than MaxRecNum and the numbers of occurrences of s1, s2, .., sr in Q at
the moment are greater than MaxSenNum to decide whether to update MaxRecNum and
MaxSenNum.

Handle Function Handle is shown in Algorithm 7. For every residual individual p′′ in D,
we need to decide to add its records to an equivalence class or suppress it. On lines 1 and 2,
we set two variables MinDis and Min. The initial value of MinDis is a greater value. From
lines 3 to 10, we find the equivalence class Qmin which still satisfies privacy requirement
π after merging p′′ (this step is ignored for IR (k, l)-anonymity, and EIR l-diversity, as
the equivalence class after adding the records of an individual satisfies still them, if an
equivalence class satisfies the two privacy models) and the distance to p′′ is minimum. If
distance MinDis is less than the information loss caused by suppressing R(p′′), we merge
p′′ to Qmin ; otherwise, we suppress R(p′′).

When D = ∅ and the equivalence class Q still does not satisfy privacy requirement
π , we call function Handle to deal with these individuals in Q. In Algorithm 7, for every
residual individual p′′ we find Qmin . If p′′ is added to Qmin , we need to generalize the
records of p′′ and Qmin to r p′′qmin , which is the identity element of the equivalence class
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Algorithm 6 SatPriIRInc_Eαβ(Q, SenNumQ, MaxRecNum, MaxSenNum, p, α, β)

Input: the set of records Q; the array SenNumQ contains the number of occurrences of every sensitive value in
Q; MaxRecNum is the maximum number of records of individuals in Q; MaxSenNum is the maximum
number of occurrences of sensitive values in Q; individual p added to Q with S(p) = {s1, s2, .., sr };
parameters α and β;

Output: True or False;
1: if |R(pi )| > MaxRecNum then
2: MaxRecNum = |R(pi )|;
3: end if
4: for every s j ∈ S(p) do
5: find s j ’s corresponding position k in SenNum;
6: SenNum[k] + +;
7: if SenNum[k] > MaxSenNum then
8: MaxSenNum = SenNum[k];
9: end if
10: end for
11: if MaxRecNum/|Q| ≤ α and MaxSenNum/nQ ≤ β then
12: return True;
13: else
14: return False;
15: end if

Algorithm 7 Handle(p′′)
Input: an individual (p′′);
Output: the set D∗ of equivalence classes without generalization;
1: MinDis = MaxValue;
2: Min = 0;
3: for ∀Qi ∈ D∗ do
4: if Sat Pri I R(Qi ∪ R(p′′), parameters) then
5: if Dist(p′′, Qi ) < MinDis then
6: MinDis = Dist(p′′, Qi );
7: Min = i;
8: end if
9: end if
10: end for
11: if MinDis ≤ |R(p′′)| × |QI | then
12: Qmin = Qmin ∪ R(p′′);
13: rqmin = δ(rqmin , r p′′ );
14: else
15: suppress R(p′′);
16: end if

Qp′′qmin , formed by generalizing the records in p′′ and Qmin , and MinDis is the information
loss caused by generalization. Should we generalize or suppress p′′? We select the way that
causes less information loss. That is, if suppression is selected, the information loss caused
by suppression is less than that caused by generalization.

Running ExampleWe utilize ourDAnonyIR by calling SatPriIRInc_kl, SatPriIRInc_El,
SatPriIRInc_αβ and SatPriIRInc_Eαβ to generalize original data table to anonymous tables,
which satisfy IR (k, l)-anonymity, EIR l-diversity, IR (α, β)-anonymity, and EIR (α, β)-
anonymity, denoted by DAnonyIR_kl, DAnonyIR_El, DAnonyIR_αβ, and DAnonyIR_Eαβ,
respectively. Assume that we apply DAnonyIR _El (l = 3) to anonymize data D in Table 2,
in which the domains of gender , Age, and Postcode are {M, F}, [30, 39], {10085, 10076,
10086, 10087, 10077, 10070, 10073}, respectively. First, recode the Name of D with num-
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bers. That is, the attribute Name is substituted with Id_num, and the values of Name {Mike,
Lily,…, Lucy} are substituted with {1, 2,…, 7}. So we have that D �= ∅.

We try to create an equivalence class Q from D. Select randomly an individual p from
D, and assume that individual 6 is selected. D = D − R(6) and Q = R(6). The identity
element rq of Q is {F, 34, 10070, null}. Because Q only contains individual 6 and it does not
satisfy EIR 3-diversity, we set Sat Flag = False. !Sat Flag = True and D �= ∅, so we add
continually an individual to Q. The individualwhose distance to Q isminimum is the onewith
Id_num=7 for our example. The computation of distance between individual 7 and Q is as
follows: r7q is the identity element of Q∪R(7), which is {F, [33, 34], {10070, 10073}, null}.
Thus

Loss(7, Q)

= |R(7)| × Loss(r7, r7q) + |Q| × Loss(rq , r7q)

= 1 ×
( |{F}| − |{F}|

2 − 1
+ (34 − 33) − (33 − 33)

39 − 30
+ |{10070, 10073}| − |{10073}|

7 − 1

)

+ 2 ×
( |{F}| − |{F}|

2 − 1
+ (34 − 33) − (34 − 34)

39 − 30
+ |{10070, 10073}| − |{10070}|

7 − 1

)

= 1 ×
(

0 + 1

9
+ 1

6

)

+ 2 ×
(

0 + 1

9
+ 1

6

)

= 0.833,

where r7 is the identity element of individual 7, which is {F, 33, 10073, null}. The distances
between individuals 1, 2, 3, 4, 5 and Q are 5.556, 1.500, 4.167, 1.111, and 1.833, respectively.

We execute line 10 in Algorithm 1. D = D − R(7), Q = Q ∪ R(7), and rq is
{F, [33, 34], {10070, 10073}, null}. When we check whether Q satisfies EIR 3-diversity,
we do not call SatPriIR_El and use the incremental method SatPriIRInc_El. That is, we do
not call SatPriIR_El to find a minimum hitting set of

Ψ = Ψ ∪ {{Syphilis}} = {{Leukaemia, Heart}, {Syphilis}}.
By using SatPriIRInc_El,

(Leukaemia + Heart)Syphilis = Leukaemia · Syphilis + Heart · Syphilis.
The collection of all minimal hitting sets of previous Ψ is {{Leukaemia}, {Heart}}, and
the collection of all minimal hitting sets of current Ψ is {{Leukaemia, Syphilis}, {Heart,
Syphilis}}, whose cardinalities both are less than 3. Q does not satisfy EIR 3-diversity and
D �= ∅, so we add continually an individual to Q. The distance of individual 4 to Q are is
minimum, which can be calculated as follows: r4q is the identity element of Q∪ R(4), which
is {F, [33, 34], {10070, 10073, 10087}, null}, and r4 is the identity element of individual 4,
which is {F, 33, 10087, null}, and thus

Loss(4, Q)

= |R(4)| × Loss(r4, r4q ) + |Q| × Loss(rq , r4q )

= 2 ×
( |{F}| − |{F}|

2 − 1
+ (34 − 33) − (33 − 33)

39 − 30
+ |{10070, 10073, 10087}| − |{10087}|

7 − 1

)

+ 3 ×
( |{F}| − |{F}|

2 − 1
+ (34 − 33) − (34 − 33)

39 − 30
+ |{10070, 10073, 10087}| − |{10070, 10073}|

7 − 1

)
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= 2 ×
(

0 + 2

9
+ 2

6

)

+ 3 ×
(

0 + 0

9
+ 1

6

)

= 1.389.

The distances between individuals 1, 2, 3, 5 and Q are 7.501, 2.278, 5.834, and 2.722,
respectively.

Then D = D − R(4), Q = Q ∪ R(4), and rq is {F, [33∼ 34], {10070, 10073, 10087},
null}. And

Ψ = Ψ ∪ {{Hypertension, Diabetes}}
= {{Leukaemia, Heart}, {Syphilis}, {Hypertension, Diabetes}}.

By using Sat Pri I RInc_El, the collection of all minimal hitting sets ofΨ is {{Leukaemia,

Syphilis, Hypertension}, {Leukaemia, Syphilis, Diabetes}, {Leukaemia, Syphilis,
Diabetes}, {Heart, Syphilis, Diabetes}} by

(Leukaemia · Syphilis + Heart · Syphilis)(Hypertension + Diabetes)

= Leukaemia · Syphilis · Hypertension + Heart · Syphilis · Hypertension

+Leukaemia · Syphilis · Diabetes + Heart · Syphilis · Diabetes,

in which every set is a minimum hitting set, and the cardinality is equal to 3. Q satisfies
EIR 3-diversity. Algorithm 1 executes line 17; the first equivalence class is added to D∗, i.e.
D∗ = {{r8, r9, r10, r5, r6}}.

D = {r1, r2, r3, r4, r7} and D �= ∅. We try to create another equivalence class from
D. Select randomly individual p from D. Assume that individual 3 is selected, then D =
D−R(3) and Q = R(3). We have rq = {M, 36, 10086, null}. Q only contains an individual
and it does not satisfy 3-diversity. Also D �= ∅. Thus we add continually an individual
to Q. The individual is 1, whose distance to Q is 0.500 and is minimum. The distance
between Q and the first equivalence class in D∗ is 8.778. Therefore, Q = Q ∪ R(1), and
rq = {M, 36, {10085, 10086}, null}. Then R(2) and R(5) are added consecutively to Q, and
Q satisfies EIR 3-diversity.

D∗ = D∗ ∪ {Q}
= {{r5, r6, r8, r9, r10}, {r1, r2, r3, r4, r7}}.

Now D �= ∅ and Sat Flag = True, i.e. there are no residual individuals. Algorithm 1
executes line 27. For every equivalence class Q in Q∗, we substitute its values on QI
attributes with Q’s identity element.

Published anonymous table D∗, as shown in Table 4, satisfies EIR 3-diversity, and it
can prevent identity disclosure and attribute disclosure. We also take Mike as an example.
Assume that an attacker knows Mike’s QI information (i.e. {M, 36, 10085}) and knows
that Mike is in published table D∗, then the attacker can infer that Mike is in equivalence
class Q2. There are three different individuals in Q2, and the attacker cannot know which
one is corresponding to Mike. Thus, the identity disclosure is prevented. In Q2, there are
two reasoning sets, i.e. {r1, r3, r4, r7} and {r2, r3, r4, r7}. Every reasoning set contains at
least three different sensitive values, so the attacker cannot know which sensitive disease is
corresponding to Mike, and so attribute disclosure is prevented.

Similarly, we use DAnonyIR_Eαβ with α = 0.4 and β = 0.6 to anonymize data D in
Table 2. Assume the first selected individuals are 6 and 3 in creating equivalence classes
Q1 and Q2, respectively. The anonymous table is also shown in Table 4, which satisfies
EIR (0.4, 0.6)-diversity. We also take Mike as an example. According to the background
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Table 4 EIR 3-diverse or EIR (0.4, 0.6)-anonymous table

EC_ID Id_num Gender Age Postcode Disease

r5 Q1 4 F [33, 34] {10070, 10073, 10087} Hypertension

r6 Q1 4 F [33, 34] {10070, 10073, 10087} Diabetes

r8 Q1 6 F [33, 34] {10070, 10073, 10087} Leukaemia

r9 Q1 6 F [33, 34] {10070, 10073, 10087} Heart

r10 Q1 7 F [33, 34] {10070, 10073, 10087} Syphilis

r1 Q2 1 {M, F} [36, 38] {10076, 10077, 10085, 10086} Hypertension

r2 Q2 1 {M, F} [36, 38] {10076, 10077, 10085, 10086} Heart

r3 Q2 2 {M, F} [36, 38] {10076, 10077, 10085, 10086} Cancer

r4 Q2 3 {M, F} [36, 38] {10076, 10077, 10085, 10086} Hypertension

r7 Q2 5 {M, F} [36, 38] {10076, 10077, 10085, 10086} HIV

knowledge of an attacker, Mike is inferred in equivalence class Q2. Because the percentage
of any individual’s records in Q2 is not more than 0.4, there are multiple individuals. The
attacker cannot know which one is corresponding to Mike, and the identity disclosure is
prevented. As shown above, there are two reasoning sets in Q2. In every reasoning set of Q2,
the percentage of any sensitive value is not more than 0.6. So the attacker cannot knowwhich
sensitive disease is corresponding to Mike with certain probability (> 0.6) and attribute
disclosure is prevented.

4.4 Analysis of algorithm

In this section, we first analyse the correctness of algorithmDAnonyIR and then give its time
and space complexity analysis.

4.4.1 Analysis of correctness

If given original table D satisfies privacy model π , algorithm DAnonyIR can transform D
to D∗ which satisfies π . When D �= ∅, we try to create an equivalence class Q. Firstly, we
randomly select an individual and add its records to Q. If Q does not satisfy π and D �= ∅,
we add continually individuals to Q until Q satisfies π or D = ∅. If Q satisfies π , we add it
to published anonymous table D∗. If Q does not satisfy π and D = ∅, then these individuals
in Q are residual. We add every individual in Q to an equivalence class, which distance to
the individual is smallest and still satisfies π after being combined with the individual, or we
suppress the individual.

If given original table D does not satisfy π , we remove all individuals to the equivalence
class Q and Q still does not satisfy π . Then these individuals in Q are residual, algorithm
DAnonyIR calls Handle function to deal with them. Finally, all individuals in D are sup-
pressed.

4.4.2 Analysis of time complexity

For our algorithm DAnonyIR, given an original data table D, let |D.I d_num| = n (the I D
attribute of D has been substituted with I d_num), |QI | = d , the numbers of equivalence
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classes |D∗| = e, |Q.I d_num| = q , m be the size of domain of sensitive attribute, r be
the average number of sensitive values or the average records of an individual, and h be the
number of all minimal hitting sets of an equivalence class.

We check whether Q satisfies privacy requirement π , and the time is O(nr) for Sat-
PriIR_kl, SatPriIR_αβ, and SatPriIR_Eαβ, which scan once the data with some simple
comparison. For SatPriIR_El, we first scan the data to obtain Ψ and obtain the number of
single-record individuals shown on lines 1–8 of Algorithm 2, and the time is O(nr + n). In
worst case, we need to call BHS to compute all minimal hitting sets and then find aminimum
hitting set. The time of BHS is O(2m), because we may select every sensitive value to divide
Boolean formula Π to two parts in worst case, as shown on line 14 of Algorithm 3. So the
time of SatPriIR_El is O(nr + n + 2m), i.e. O(nr + 2m). Q contains some single-record
individuals and we assume that the number is s. If s ≥ l, algorithm SatPriIR_El returns
True and ends. When it is not true, we call BHS to calculate all minimal hitting sets.

In fact, we use incremental method SatPriIRInc_kl, SatPriIRInc_El, SatPriIRInc_αβ,
or SatPriIRInc_Eαβ to check whether Q satisfies π . When an individual is added
to Q, we only consider how the added individual influences the privacy. The time is
O(r) for SatPriIRInc_kl, SatPriIRInc_αβ, and SatPriIRInc_Eαβ. For SatPriIRInc_El, we
need to consider hr hitting sets when an individual is added to Q, and so the time is
O(hr).

For Handle, it scans D∗ to check whether each equivalence class satisfies π after adding
an individual, and computes corresponding distances inQI. For IR (k, l)-anonymity and EIR
l-diversity, an equivalence class still satisfies the privacy model after adding an individual
to it. So we need not to check. For IR (α, β)-anonymity and EIR (α, β)-anonymity, we call
SatPriIRInc_αβ and SatPriIRInc_Eαβ to check it. The time is O(r). The main time is spent
in finding the equivalence class whose distance to the individual is minimum and the time
is O(ed). So the time of Handle is O(ed) for IR (k, l)-anonymity and EIR l-diversity, and
O(ed + r) for IR (α, β)-anonymity and EIR (α, β)-anonymity.

The time complexity analysis of our algorithmDAnonyIR is shown as follows. (1) On line
1, we recode explicit identifier of D with numbers, and the executed time is O(n). (2) From
lines 2–19, the while loop needs to be run e+1 times (the last obtained equivalence class may
not satisfy π). Each loop creates an equivalence class and needs time is described as follows:
we need to scan q−1 times D and D∗ and compute corresponding distances inQI in order to
create an equivalence class, because the first individual in the equivalence class is randomly
selected; due to |D.I d_num| + |D∗.I d_num| ≤ n, the time is dn for once scanning D and
D∗ and computing distances to obtain the individual and equivalence class, whose distances
to Q are minimum (lines 7 and 8 in Algorithm 1); when an individual is added to Q or an
equivalence class Q′ is combined to Q, we call incremental method checkwhether Q satisfies
privacy requirement π ; in first case, the time is O(r) for SatPriIRInc_kl, SatPriIRInc_αβ,
and SatPriIRInc_Eαβ; for the latter case, we can add the individuals of Q′ to Q one by one,
and the time is O(qr). For SatPriIRInc_El, the time is O(hr) and O(qhr) for these two
cases, respectively. So the time of this step is O((e+ 1)(q − 1)(dn+qr)) forDAnonyIR_kl,
DAnonyIR_αβ and DAnonyIR_Eαβ, and O((e + 1)(q − 1)(dn + qhr)) DAnonyIR_El. (3)
When Q does not satisfy π and D = ∅, we need to run the while loop on lines 21-25.
The number of residual individuals is less than q , because the residual individuals are not
created to an equivalence class that satisfies π , so the loop is executed at most q times. Every
loop calls function handle. The time of the while loop is O(edq) for IR (k, l)-anonymity
and EIR l-diversity, and O(q(ed + r)) for IR (α, β)-anonymity and EIR (α, β)-anonymity.
(4) We scan every Q and substitute the values in QI with Q’s identity element. The time is
O(eqd).
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The total time is O(n) + O((e + 1)(q − 1)(dn + qr)) + O(edq) for DAnonyIR_kl and
O(n)+O((e+1)(q−1)(dn+qr))+O(q(ed+r)) forDAnonyIR_αβ andDAnonyIR_Eαβ,
i.e. O(dn2 + qnr − end) for these three algorithms, because eq ≤ n. The total time is
O(n)+O((e+1)(q−1)(dn+qhr))+O(edq), i.e. O(dn2+qnhr−end) forDAnonyIR_El.

When d increases, the time ofDAnonyIR is increased linearly. If the parameter l increases,
an equivalence class needs more individuals to make it satisfy IR (k, l)-anonymity or EIR
l-diversity, and so e decreases but q increases. From the time complexity analysis, we know
that the runtime is increased. As parameter α (or β) increases, q decreases and e increases,
and so the runtime is decreased.

4.4.3 Analysis of space complexity

We can store the records of an individual in a node of a linked list for saving storage memory,
because the QI attributes of the records of an individual are the same. A node is denoted by
a struct of C++, and the struct contains |QI | + 1 variables and an array, which is used to
store the sensitive values of an individual. We need O((1 + d + r)n) units to store the data,
where an individual needs 1+ d + r units to denote 1 explicit identifier, d values in QI, and
r sensitive values. When published anonymous table D∗ is outputted, we transform it in the
form of relational data.

When we check whether Q satisfies privacy requirement π , O(m) units are used to store
the frequency of each sensitive value appearing in Q for SatPriIR_kl, SatPriIR_αβ, and
SatPriIR_Eαβ. For SatPriIR_El, we first scan Q to obtain Ψ , and need O(qr) units to store
it. In worst case, we call BHS to compute all minimal hitting sets, and need O(2mqr) units
to store, because every sensitive value may be selected to divide the Boolean formula Π to
two parts in worst case as shown on line 14 of Algorithm 3.

In fact, we use incremental method SatPriIRInc_kl, SatPriIRInc_El, SatPriIRInc_αβ, or
SatPriIRInc_Eαβ to check whether Q satisfies π . We still need O(m) units used to store
the frequency of each sensitive value appearing in Q for SatPriIRInc_kl, SatPriIRInc_αβ,
and SatPriIRInc_Eαβ. For SatPriIRInc_El, we need O(hm) units to store all the minimal
hitting sets related to Q.

The space complexity analysis of our algorithm DAnonyIR is shown as follows. (1) We
need O((1+d+r)n)memory units to store the data original dataset D. (2) For lines 2–19, the
while loop needs to be run at most e+1 times, and e equivalence classes are generated.When
an equivalence class is generated, we need O(q(1 + d + r)) units to store it. So in this loop
we need O(m+eq(1+d+r)) units forDAnonyIR_kl,DAnonyIR_αβ, andDAnonyIR_Eαβ,
and O(hm + eq(1 + d + r)) units for DAnonyIR_El. (3) For other steps, we do not need
extra space.

The total space is O((1 + d + r)n) + O(m + eq(1 + d + r)), i.e. O(m + nd + nr) for
DAnonyIR_kl,DAnonyIR_αβ, andDAnonyIR_Eαβ, and O((1+d+r)n)+O(hm+eq(1+
d + r)), i.e. O(hm + nd + nr) for DAnonyIR_El, because eq ≤ n.

When d increases, the space thatDAnonyIR required is increased linearly. If the parameter l
increases, an equivalence class needs more individuals to make it satisfy IR (k, l)-anonymity
or EIR l-diversity, and so e decreases but q increases. Because eq is invariable, it is no
influence on DAnonyIR_kl. For DAnonyIR_El, when the size of an equivalence class is
increased, h is increased. So does the space DAnonyIR_El required. As parameter α (or β)
increases, q decreases and e increases. Because eq is invariable, the space is no influence on
DAnonyIR_αβ or DAnonyIR_Eαβ.
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5 Experimental analysis

IR (k, l)-anonymity and IR (α, β)-anonymity are proposed for solving the anonymous prob-
lem with multiple records with identity reservation. To the best of our knowledge, there
is no further research on IR (k, l)-anonymity and IR (α, β)-anonymity, and generalization
algorithm GeneIR [13] is only an algorithm for achieving the two privacy models. So we
can only use GeneIR to benchmark our approaches DAnonyIR_El and DAnonyIR_Eαβ.
We implement GeneIR for IR (k, l)-anonymity and IR (α, β)-anonymity in [13], denoted
by GeneIR_kl, and GeneIR_αβ, respectively. For avoiding the influence caused by different
algorithms, we also compare DAnonyIR_kl and DAnonyIR_αβ with our DAnonyIR_El and
DAnonyIR_Eαβ, respectively.

In anonymous table, these equivalence classes, which satisfy IR (k, l)-anonymity (IR
(α, β)-anonymity) but do not satisfy EIR l-diversity (EIR (α, β)-anonymity), are called vul-
nerable equivalence classes. These vulnerable equivalence classesmay cause privacy leakage,
because the IR (k, l)-anonymity does not ensure that an attacker knows the sensitive value
of an individual is one of l sensitive values, and maybe it is one of less l sensitive values,
but EIR l-diversity can ensure that. Likewise, IR (α, β)-anonymity does not ensure that an
attacker knows the sensitive value of an individual with probability of at most β, and maybe
it is with probability more than β, but EIR (α, β)-anonymity can ensure that.

Besides information loss, we also study the utility of the anonymized data based on
the accuracy of query answering, because it is the basis of statistical analysis and many data
mining applications (e.g. association rule mining and decision trees). The type of aggregation
queries is defined as follows [23,29]:

SELECT COUNT(*) FROM Anonymized data D∗
WHERE pred(A1) AND …AND pred(Aλ) AND pred(As)

where A j is a QI attribute. The query has predicates on the λ randomly selected QI attributes
and sensitive attribute As . Given a query, the precise result prec is computed from the original
table, and the estimated result est is obtained from the anonymized table, defined as follows:

est =
∑

Qi∈D∗
pA1
Qi

× . . . × pAλ

Qi
× numAs

Qi
, (19)

where p
A j
Qi

= |pred(A j ) ∩ rq .A j |/|rq .A j | ( j = 1, . . . , λ) is the percentage of the

intersection of pred(A j ) and generalized value on attribute A j in Qi , and numAs
Qi

is the
number of individuals in Qi which satisfy pred(As). The relative error ratio is defined as
|est − prec|/prec.

The purposes of our experiments are as follows. (1) We use the percentage, v, of vulnera-
ble equivalence classes in anonymous table to show the vulnerability of IR (k, l)-anonymity
or IR (α, β)-anonymity, i.e. v = Numvec/Numec, where Numvec and Numec are the
numbers of vulnerable equivalence classes and all equivalence classes in an anonymized
table, respectively. (2) From data quality, including information loss and accuracy of query
answering, and runtime, we analyse the performance of DAnonyIR_El, compared with
DAnonyIR_kl and GeneIR_kl; also, we analyse the performance of DAnonyIR_Eαβ, com-
pared with DAnonyIR_αβ and GeneIR_αβ.

For conveniently comparing IR (k, l)-anonymity with EIR l-diversity, we set parameter
k = l, because EIR l-diversity can ensure that there are at least l different individuals in
an equivalence class according to Definition 3.3. The algorithms are implemented in C++
and ran on a computer with a four-core 3.2GHz CPU and 8GB RAM running Windows
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Table 5 Detailed description of
the dataset used in our experiment

Attribute Distinct values

Month of birth 12

Year of birth 82

Gender 2

Race 6

EducYear 9

Marry 6

Poverty 5

HISPANX 2

Diagnosis 619

7. All experiment results are the mean values of those from 50 experiments. To compare
our DAnonyIR_El with DAnonyIR_kl and GeneIR_kl, parameters l and |QI | are varied to
show variation trends with respect to the percentage of vulnerable equivalence classes, data
quality, and runtime of these algorithms. To analyse the performance of DAnonyIR_Eαβ,
DAnonyIR_αβ, and GeneIR_αβ, parameters α, β, and |QI | are varied.

We use a real-world dataset, appeared in INFORMS data mining contest 2008, in which
each patient has one or multiple diagnosis records.3 This dataset includes 456,767 records of
49,384 different patients.We have used the following attributes of the dataset:Month of Birth,
Year of Birth, Gender, Race, EducYear, Marry, Poverty, HISPANX, and Diagnosis, where
EducYear denotes the years of education,Marry denotes the marital status, Poverty denotes
the economic condition, and HISPANX denotes whether an individual is Hispanic. In our
experiments, Diagnosis is a sensitive attribute. Because our approach considers a sensitive
attribute, if there are multiple sensitive attributes, we handle them as follows: (1) if A′

s is in
other attributes (we have explained how to handle other attributes in footnote 1), we may
do not publish it, and (2) if the sensitive attribute A′

s has to be published, we consider it as
the sensitive attribute which we protect, and residual attributes are considered as QI or other
attributes. The detailed description of the dataset is shown in Table 5. In order to show the
results with the change of |QI |, we set |QI | from 3 to 8. When |QI | = d (d ∈ {3, . . . , 8}),
it means that QI contains the front d attributes.

5.1 The vulnerability of IR anonymity

In this subsection, we discuss the vulnerability of IR (k, l)-anonymity and IR (α, β)-
anonymity. The experimental results for IR (k, l)-anonymity and IR (α, β)-anonymity are
as shown in Figs. 2 and 3, respectively. We can see that GeneIR_kl and DAnonyIR_kl
(GeneIR_αβ andDAnonyIR_αβ) both generate many vulnerable equivalence classes, and the
percentage of vulnerable equivalence classes forDAnonyIR_kl (DAnonyIR_αβ) is more than
that for GeneIR_kl (GeneIR_αβ). GeneIR continually repeats the process: randomly selects
an attribute in QI to generalize according to the predefined taxonomy tree, then checks D
to gain equivalence classes, which satisfy IR (k, l)-anonymity or IR (α, β)-anonymity, and
moves them to D∗. While DAnonyIR uses the set generalization and considers the distance
among individuals in an equivalence class. If an equivalence class satisfies IR (k, l)-anonymity
or IR (α, β)-anonymity,we remove the equivalence class toD∗.An equivalence class obtained

3 https://sites.google.com/site/informsdataminingcontest.
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Fig. 2 The percentage of vulnerable equivalence classes inGeneIR_kl andDAnonyIR_kl. a |QI | = 6. b l = 6

Fig. 3 The percentage of vulnerable equivalence classes in GeneIR_αβ and DAnonyIR_αβ. a |QI | = 6 and
β = 0.4. b |QI | = 6 and α = 0.6. c α = 0.6 and β = 0.4

by GeneIR contains more individuals, so the possibility that satisfies EIR l-diversity or EIR
(α, β)-anonymity is higher.

When l increases but QI is fixed (i.e. |QI | = 6), for an equivalence class satisfying IR
(k, l)-anonymity, it ismore difficult to satisfyEIR l-diversity, becauseEIR l-diversity requires
that the number of different sensitive values of every reasoning set in the equivalence class is
larger than or equal to l, so v increases, as shown in Fig. 2a. When α increases but parameters
QI and β are fixed (i.e. |QI | = 6 and β = 0.4), for an equivalence class satisfying IR
(α, β)-anonymity, the number of individuals decreases in the equivalence class. Therefore, it
is more difficult to satisfy EIR (α, β)-anonymity, and v increases, as shown in Fig. 3a. When
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Fig. 4 The information loss in GeneIR_kl, DAnonyIR_kl, and DAnonyIR_El. a |QI | = 6. b l = 6

β increases but parameters QI and α are fixed (i.e. |QI | = 6 and α = 0.6), the constraint
is looser, for an equivalence class satisfying IR (α, β)-anonymity, it is easier to satisfy EIR
(α, β)-anonymity. Consequently, v decreases, as shown in Fig. 3b.

From Figs. 2b and 3c, we observe that the change of QI size almost does not affect v

for GeneIR_kl, DAnonyIR_kl, GeneIR_αβ and DAnonyIR_αβ. When |QI | increases, and
parameters l, α and β are fixed (i.e. l = 6, α = 0.6, and β = 0.4), the number of equivalence
classes is almost not changed. That is, the size of an equivalence class is almost not affected,
so does the ratio of vulnerable equivalence classes.

5.2 The analysis of data quality

In this subsection, we analyse the data quality from information loss and accuracy of query
answering.

5.2.1 Information loss

Figures 4 and 5 show the information loss exhibited by DAnonyIR and GeneIR algorithms
based on the setting of different values of parameters l, α, β, and |QI |. We can see that
GeneIR is worse than our approach of DAnonyIR, because GeneIR makes the size of an
equivalence class become very great, and causes much unnecessary information loss. In
order to satisfy different privacy models with identity reservation, in DAnonyIR only the
SatPriIR functions are different. If an equivalence class Q satisfies given privacy model,
we do not add any individual to Q. Although an equivalence class needs more individuals
for satisfying EIR l-diversity (EIR (α, β)-anonymity) than IR (k, l)-anonymity (IR (α, β)-
anonymity), the increase is very small. So our DAnonyIR algorithms have a much closer
difference than GeneIR.

When l or |QI | increases, the information loss is increased inGeneIR_kl,DAnony- IR_kl,
and DAnonyIR_El, as shown in Fig. 4a, b, respectively. When QI is fixed (i.e. |QI | = 6),
as l increases, the number of individuals is increased and the number of records is also
increased in each equivalence class for GeneIR_kl, DAnonyIR_kl, and DAnonyIR_El, and
the possibility of providing more general values for the attributes per record increases.
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Fig. 5 The information loss in GeneIR_αβ, DAnonyIR_αβ, and DAnonyIR_Eαβ. a |QI | = 6 and β = 0.4. b
|QI | = 6 and α = 0.6. c α = 0.6 and β = 0.4

Therefore, the information loss is increased. When |QI | increases and l is fixed (i.e. l = 6),
the number of attributes which we need to generalize is increased. That is, there are more
generalized attributes for creating equivalence classes. So the information loss is increased.
From Fig. 4, we can see that the increase when |QI | is increased is more sharp for the
algorithms with respect to the increase of l, because the increase of l only makes records
do further generalization, while the increase of |QI | makes records increase the generalized
attributes.

When α or β increases, the information loss is decreased in GeneIR_αβ, DAnony- IR_αβ

and DAnonyIR_Eαβ, as shown in Fig. 5a, b, respectively. When QI and β (α) are fixed
(i.e. |QI | = 6 and β = 0.4 (α = 0.6)) and α (β) increases, then the number of records is
decreased in each equivalence class, so the information loss is decreased. From Fig. 5(c),
when |QI | increases and α and β are fixed (i .e.α = 0.6 and β = 0.4), we can see that
the information loss is increased, because the number of attributes that need to generalize is
increased.

From Fig. 4 (Fig. 5), we can see that the information loss for GeneIR_kl (GeneIR _αβ) is
much more than the information loss for DAnonyIR_kl (DAnonyIR_αβ) and DAnonyIR_El
(DAnonyIR_Eαβ), and it is 1.923∼2.683 (2.018∼3.039) times, and 1.863∼2.626 (1.976∼
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Fig. 6 The accuracy of query answering in GeneIR_kl, DAnonyIR_kl, and DAnonyIR_El. a |QI | = 6 and
λ = 1. b l = 6

2.915) times, respectively. Compared with DAnonyIR_kl (DAnonyIR_αβ), the information
loss for DAnonyIR_El (DAnonyIR_αβ) is higher, but the increment is very small and it just
is 1.0148∼1.0347 (1.0127∼1.0519) times as shown in Fig. 4 (Fig. 5).

5.2.2 Aggregate query answering

The accuracy of query answering for GeneIR_kl, DAnonyIR_kl and DAnonyIR_El is as
shown in Fig. 6. When QI and λ are fixed (i.e. |QI | = 6 and λ = 1), as l increases, the
size of an equivalence class will increase. Thus, a more general value is needed for every
attribute. So the relative error ratio is increased in these algorithms, as shown in Fig. 6a.

The accuracy of query answering for GeneIR_αβ, DAnonyIR_β and DAnonyIR _Eαβ is
shown in Fig. 7. When QI and λ are fixed (i.e. |QI | = 6 and λ = 1), as α (i.e. β = 0.4) or
β (i.e. α = 0.6) increases, the size of an equivalence class will decrease. Thus a less general
value is needed for every attribute. So the relative error ratio is decreased with respect to
these algorithms, as shown in Fig. 7a, b.

In order to show the influence of query dimension to relative error ratio, we set λ = |QI |.
From Figs. 6b and 7c, we can see that the relative error ratio is decreased, as the query
dimension increases. Therefore, the anonymized data are performed better for queries with
a larger query dimension. When l is fixed (i.e. l = 6) or α and β are fixed (i.e. α = 0.6
and β = 0.4), as query dimension λ increases, the precise result prec is decreased, and the
estimated result est obtained from the anonymized table is closer to prec. Therefore, the
relative error ratio is decreased.

From Fig. 6 (Fig. 7), we can see that the relative error ratio of DAnonyIR_kl and
DAnonyIR_El (DAnonyIR_αβ and DAnonyIR_Eαβ) are less than that of Gene- IR_kl
(GeneIR_αβ), and the relative error ratio of DAnonyIR_El (DAnonyIR_Eαβ) is close to
that of DAnonyIR_kl (DAnonyIR_αβ). Because DAnonyIR and GeneIR do not generalize on
sensitive attribute,

∑

Qi∈D∗ num
As
Qi

is invariable according to Eq. (19).When the size of every
equivalence class become larger, the est is further away from prec. Although an equivalence
class needs more individuals for satisfying EIR l-diversity (EIR (α, β)-anonymity) than IR
(k, l)-anonymity (IR (α, β)-anonymity), the increase is very small.
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Fig. 7 The accuracy of query answering in GeneIR_αβ, DAnonyIR_αβ, and DAnonyIR_Eαβ. a |QI | =
6, β = 0.4, and λ = 1. b |QI | = 6, α = 0.6, and λ = 1. c α = 0.6 and β = 0.4

5.3 The analysis of efficiency

The runtimes exhibited by these algorithms based on the setting of values of different param-
eters l, α, β, and |QI | are shown in Figs. 8 and 9. GeneIR can find quickly equivalence
classes and check whether they satisfy IR (k, l)-anonymity or IR (α, β)-anonymity for each
generalization operation. Apparently, its runtime is less than that of DAnonyIR. For GeneIR
algorithm, it is possible that multiple equivalence classes are generated by scanning the
dataset once or several times, while for DAnonyIR algorithm, an equivalence class is gener-
ated by scanning the dataset q times, where q is the number of individuals in the equivalence
class. Therefore, the runtime of GeneIR is far less than that of DAnonyIR.

As shown in Fig. 8, the time of DAnonyIR_kl and DAnonyIR_El is close, because they
both use the DAnonyIR algorithm, in which function SatPriIR is different, and they are
SatPriIRInc_kl and SatPriIRInc_El. They both incremental methods and consider only an
individual how to influence privacy, so the time ofDAnonyIR_kl andDAnonyIR_El is close.
It is similar to show that the time of DAnonyIR_αβ and DAnonyIR_Eαβ is close.

ForDAnonyIR_kl andDAnonyIR_El, when l or |QI | increases, the runtime is increased, as
shown in Fig. 8, which is consistent with the time complexity analysis ofDAnonyIR. For each
equivalence class Q, the first individual is randomly selected, and we do not need to compute,
so little time is spent. For every other individual in the equivalence class, we need scan D
and D∗ to get the individual or equivalence class with minimum distance to Q, respectively.
In Fig. 8a, when l increases with fixed QI (i.e. |QI | = 6), the number of equivalence classes
is decreased. That is, the number of individuals is increased in each equivalence class, so
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Fig. 8 The runtime of GeneIR_kl, DAnonyIR_kl, and DAnonyIR_El. a |QI | = 6. b l = 6

Fig. 9 The runtime of Gene_αβ, DAnonyIR_αβ, and DAnonyIR_Eαβ. a |QI | = 6 and β = 0.4. b |QI | =
6, α = 0.6. c α = 0.6 and β = 0.4

the algorithm needs more calculations, and thus the runtime increases. When |QI | increases
and l is fixed (i.e. l = 6), more attributes are considered for distance calculation, and thus
the algorithm needs more time, as shown in Fig. 8b. When l or |QI | increases, the runtime
of GeneIR_kl is increased, because GeneIR_kl need more generalization operations.
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ForDAnonyIR_αβ andDAnonyIR_Eαβ, when α or β increases, the runtime is decreased,
as shown in Fig. 9a, b, which is consistent with the time complexity analysis of DAnonyIR.
When QI and β (α) are fixed (i.e. |QI | = 6 and β = 0.4 (α = 0.6)), as α (β)
increases, the number of records is decreased in each equivalence class. That is, the num-
ber of equivalence class is increased. So the algorithm needs less calculations, and thus
the runtime is decreased. From Fig. 9c, we can see that the runtime increases with |QI |,
which is consistent with the time complexity analysis of DAnonyIR. When |QI | increases
but α and β are fixed (i.e. α = 0.6 and β = 0.4), more attributes are considered
in calculating distance, thus the algorithm needs more time. When α (β) increases, the
runtime of GeneIR_αβ is decreased, because the constraint condition is loosed and thus
GeneIR_αβ needs less generalization operations. As |QI | increases, GeneIR_αβ needs
to generalize more attributes in order to obtain equivalence classes, so its runtime is
increased.

Compared with DAnonyIR_kl (DAnonyIR_αβ), DAnonyIR_El (DAnonyIR_Eαβ) needs
more time to judge whether an equivalence class satisfies the EIR l-anonymity (EIR (α, β)-
diversity). For Fig. 8 (Fig. 9), the maximum increment is only 28.5s (25.9s).

5.4 Comprehensive analysis

From these experimental results, we can see that the percentage of vulnerable equivalence
classes is fairly high. That is, if we use IR (k, l)-anonymity and IR (α, β)-diversity, there
are many equivalence classes that could cause privacy leakage. Although GeneIR_kl and
GeneIR_αβ can achieve quickly anonymization, in terms of the data quality and ability of
privacy preservation, they are worse than our DAnonyIR. Comparing with DAnonyIR_kl
and DAnonyIR_αβ, our DAnonyIR_El and DAnonyIR _Eαβ have higher information loss
and relative error ratio for query answering, and spend more time, but the increments
in these aspects are small and acceptable, because DAnonyIR_El and DAnonyIR_Eαβ

supply stronger privacy preservation and the anonymized process is offline. Therefore,
our enhanced privacy models and DAnonyIR algorithm are suitable for anonymizing just
once over static datasets in an offline manner. However, when anonymization needs to
take place quite frequently for data streams and execution time plays a major role, these
approaches can be considered as inappropriate. The two previous privacy models do not
reach a right privacy level while they suffer from great information loss by using GeneIR.
On the other hand, the time exhibited by our DAnonyIR approach is not acceptable. There-
fore, an appropriate approach for anonymizing data streams will be proposed in our further
work.

6 Related work

In this section, we first discuss the privacy models and their anonymous approaches for
static relational datasets with one-time anonymization. Then we discuss the development
on privacy preservation for publishing dynamic relational datasets and data streams. Also,
we discuss some privacy-preserving approaches for other data types except relational data.
Finally, we show the main characteristics of our proposed approaches. An overall compari-
son of various anonymous approaches is shown in Table 6, where IDis=identity disclosure,
ADis=attribute disclosure, AOpe=anonymous operation,MSen=multiple sensitive attributes,
MRec=multiple records, DUpd=data update, DType=data type, Gen(T)=generalization with
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Table 6 An summary of differences among various anonymous approaches

Privacy model IDis ADis AOpe MSen MRec DUpd DType

k-Anonymity
√

Gen(T) No No Sta Rel

l-Diversity
√ √

Gen(T/S) No No Sta Rel

(QI → s, h)
√

Gen(T) No No Sta Rel

(α, k)-Anonymity
√ √

Gen(T) No No Sta Rel

t-Closeness
√

Gen(T) No No Sta Rel

m-Privacy
√ √

Gen(T) No No Sta Rel

MSA l-diversity
√ √

Gen(T) Yes No Sta Rel

(ε+, δ)-Dissimilarity
√ √

Gen(T) Yes No Sta Rel

MSA-diversity
√ √

Gen(T) Yes No Sta Rel

(X , Y )-Anonymity
√ √

Gen(T) No Yes Sta Rel

IR k-anonymity
√

Gen(T) No Yes(IR) Sta Rel

IR (k, l)-anonymity
√

Gen(T) No Yes(IR) Sta Rel

IR (α, β)-anonymity
√

Gen(T) No Yes(IR) Sta Rel

EIR (k, l)-anonymity
√ √

Gen(S) No Yes(IR) Sta Rel

EIR (α, β)-anonymity
√ √

Gen(S) No Yes(IR) Sta Rel

Dynamic l-diversity
√ √

Gen(T) No No Dyn Rel

m-Invariance
√ √

Gen(T) No No Dyn Rel

m-Distinct
√ √

Gen(T) No No Dyn Rel

ks -Anonymity
√

Gen(T) No Yes Str Rel

km -Anonymity
√

Gen(T) No No Sta SVa

(h, k, p)-Coherence
√ √

Gen(T) No No Sta SVa

ρ-Uncertainty
√

Gen(T) No No Sta SVa

(K ,C)L -Anonymity
√ √

Supp No No Sta Tra

k-Degree anonymity
√

Modify No No Sta Net

predefined taxonomy tree (generalization is generally with suppression), Gen(S)=set gener-
alization, Supp=suppression, IR=identity reservation, Sta=static data, Dyn= dynamic data,
Str=data stream, Rel=relational data, SVa=set-valued data, Tra= trajectory data, Net=social
network.

6.1 Anonymization for static datasets

Privacy preservation approaches for publishing static datasets contain these scenarios: single
record and single sensitive attribute, single record and multiple sensitive attributes, and mul-
tiple records and single sensitive attribute, where single record and multiple records mean
that an individual has only a record and multiple records in a data table, respectively.

6.1.1 Single record and single sensitive attribute

In recent years, the problem of privacy-preserving data publishing has been studied exten-
sively [1–9]. Traditional privacy-preserving approaches deal with static datasets with single
record and single sensitive attribute. K -anonymity is the first privacy model, proposed by
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Samarati and Sweeney [3,14] in 1998. There exist many anonymization methods to imple-
ment k-anonymity, such as bottom-up generalization [15,16], top-down specialization [17]
and anonymity by clustering technique [18–20]. The bottom-up generalization starts from
the original data which violates k-anonymity and greedily selects a generalization operation
according to a search metric, until all equivalence classes satisfy k-anonymity. In contrast
to the bottom-up approach, the top-down specialization starts from the most general state
in which all values are generalized to the most general values of their taxonomy trees.
The specialization process terminates if no specialization can be performed without vio-
lating k-anonymity. In order to decrease the information loss caused by generalization, the
anonymization approaches by clustering technique were proposed to achieve k-anonymity,
which transform the problem to a clustering problem (i.e. to find a set of clusters (equivalence
class), each of which contains at least k records). These records in a cluster are as similar as
possible, which can ensure that less distortion is required when the records in a cluster are
modified to have the same QI value.

Due to its simplicity, k-anonymity remains one of the most widely used models in the
literature. It can protect against identity disclosure, but cannot prevent attribute disclosure. As
a result, l-diversity has been proposed in [10]. It requires that every equivalence class contains
at least l “well-represented” sensitive values,which can be defined in diverseways, i.e. distinct
l-diversity, and entropy l-diversity (the entropy of sensitive values in each equivalence class
should be at least log l). The IR (k, l)-anonymity refers to distinct l-diversity, sowe also extent
it to EIR l-diversity. There are numerous methods for achieving l-diversity [21,24]. Ghinita et
al [21] proposed a fast data anonymizationwith low information loss for achieving l-diversity,
which first maps the multi-dimensional QI attributes to 1-dimensional space, then partitions
the space with considering to cover a variety of sensitive values and finally generalizes the
QI attributes in each group.Wang et al. [24] argued that traditional data generalization based
on the predefined taxonomy trees often causes some unnecessary information loss, so they
proposed more flexible strategies for data generalization by set generalization and presented
a clustering algorithm to implement l-diversity. Wang et al. [22] gave a privacy template in
the form of (QI →s, h) (meaning that the confidence of inferring the sensitive value s from
any group on QI is no more than h) and proposed an algorithm to minimally suppress a table
to satisfy a set of privacy templates.

Furthermore, Wong et al. [11] extended k-anonymity to (α, k)-anonymity to limit the
confidence of the implications from the QI to a sensitive value to within α in order to pro-
tect the sensitive information from being inferred by strong implications and proposed a
bottom-up generalization algorithm to achieve (α, k)-anonymity. In order to prevent skew-
ness attack and similarity attack, which belong to attribute disclosure, Li et al. [12] proposed
t-closeness model. Skewness attack and similarity attack will happen when the percentages
of sensitive values are skewness (some values appear with high frequency, while others
appear with low frequency), and these sensitive values are similar semantically in an equiva-
lence class, respectively. And t-closeness requires that the distribution of a sensitive attribute
in any equivalence class is close to the distribution of the attribute in the overall table.
They also revised the Incognito algorithm [16], which is a top-down generalization method
proposed for k-anonymity, to achieve t-closeness. Cao et al. [23] pointed out there is no
anonymization algorithm tailored for t-closeness, and they proposed the SABRE approach
for distribution-aware microdata anonymization based on the t-closeness principle. The
approach first greedily partitions a table into buckets of similar sensitive values and then
redistributes the tuples of each bucket into dynamically determined equivalence classes.
Furthermore, Goryczka et al. [30] consider the collaborative data publishing problem for
anonymizing horizontally partitioned data frommultiple data providers. They introduced the
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concept of m-privacy, which guarantees that the anonymized data satisfy a given privacy
constraint (e.g. k-anonymity and l-diversity) against any group of up to m colluding data
providers. Also, they presented a data provider-aware anonymization algorithm with adap-
tive m-privacy checking strategies to ensure high utility and m-privacy of anonymized data
with efficiency.

6.1.2 Single record andmultiple sensitive attributes

The above approaches consider a data table with only a sensitive attribute. However, they
cannot be applied directly to the case of multiple sensitive attributes. Yang and Wang [31]
proved that if theminimumclass coverageϕmin in an equivalence class satisfiesϕmin ≥ l, then
the equivalence class satisfiesmultiple sensitive attributes l-diversity (MSAl-diversity),which
requires that the values of every sensitive attribute satisfy l-diversity in any equivalence class.
Also, a anonymization approach with generalization is given based on minimum selected
degree first. To preserve privacy against proximity attack (similarity attack), Zhang et al.
[32] defined (ε+, δ)k-dissimilarity privacymodel for scalable big data withmultiple sensitive
attributes,which requires that the size of any equivalence class Q is at least k, and any sensitive
vector in Q must be dissimilar to at least δ × (|Q| − 1) (0 ≤ δ ≤ 1) other sensitive vectors.
Parameter k controls Q to prevent identity disclosure and δ specifies constraints on the number
of ε+ neighbours that each sensitive vector can own to combat proximity attack. Also, they
proposed a clustering anonymization approach. Abdalaal et al. [33] assumed that adversaries
can launch attacks by joining the quasi-identifiers with some non-membership knowledge
to link individuals with the sensitive values. They proposed MSA-diversity, which ensures
that the probability of mapping an individual to a sensitive value is bounded by 1

l−i under i
bits of non-membership knowledge, but its strict grouping condition will result in excessive
information loss.

6.1.3 Multiple records and single sensitive attribute

However, all the above approaches assume that each record in a data table represents a distinct
owner. In fact, the case that an individual could have multiple records appears frequently in
real life, if there exists 1 : N relationship between an individual and the sensitive attribute. For
example, a student has grades in different courses, a patient suffers from different diseases,
and a person has multiple hobbies. The relation among different sensitive values, which
belong to the same individual, is very important for researchers and decision-makers. So we
need to keep it by identifying the IDwith numbers instead of removing the explicit identifying
information. In this case, these anonymity models, in which an individual has only a record
in a data table, may be underprotected, and are inadequate, and could cause privacy leakage.

At present, there exist some approaches to handle the situation that an individual could
have multiple records. (X , Y )-anonymity introduced by Wang and Fung [34] specifies that
each value in X is linked to at least k distinct values in Y . It provides a flexible way to specify
different types of privacy requirements. If we specify k-anonymity with respect to patients by
letting X be QI attributes andY be explicit identifier of individual, in this case, several records
may represent the same record owner (individual). In order to maintain such a correlation,
Tong et al. [13] proposed three privacy models with identity reservation (i.e. IR k-anonymity,
IR (k, l)-anonymity, and IR (α, β)-anonymity) and presented an anonymization method,
GeneIR, with bottom-up generalization by predefined taxonomy trees for implementing these
privacy models. They first recode the ID of database D with numbers and group the records
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with the same QI values. If an equivalence class satisfies the given privacy model π , the
group is removed from D to D∗. Then repeatedly execute the step: select an attribute in QI to
generalize up a level in its taxonomy tree and check D to obtain the equivalence classes which
satisfy π , until D does not satisfy π or no further generalization could to be made. If there
are residual individuals in D, every residual individual is added to the closest equivalence
class.

6.2 Anonymization for dynamic datasets and data streams

In this subsection, we discuss the anonymization approaches for dynamic datasets and data
streams, which almost all consider the scenario with single record and single sensitive
attribute.

6.2.1 Anonymization for dynamic datasets

Whendata are dynamically updatedwith record insertions and/or deletions, the re-publication
is needed. Anonymizing datasets statically (i.e. each release is individually anonymous)
may cause privacy leakage by comparing different releases and eliminating some possi-
ble sensitive values for a victim [2]. Byun et al. [35] were the pioneers who proposed
an anonymization technique with generalization that enables privacy-preserving continu-
ous data publishing after new records have been inserted. It guarantees that every release
satisfies distinct l-diversity, and makes sure that a new anonymized table to be released
does not create any inference channel with respect to the previously released tables (called
dynamic l-diversity). Nevertheless, this approach supports only insertions. Xiao and Tao [36]
proposed m-invariance privacy model and an anonymization method with generalization to
address both record insertions and deletions. A sequence of releases D∗

1 ,…,D∗
p satisfies m-

invariance if every equivalence class Q in D∗
i (1 ≤ i ≤ p) is m-unique (i.e. Q contains

at least m records and all records in Q have different sensitive values) and all equivalence
classes in D∗

1 ,…,D∗
p containing record r must have the same set of sensitive vales. Li and

Zhou [37] extended m-invariance to m-distinct to address external updates (the dataset is
updated with record insertions and/or deletions) and internal updates (the attribute values of
each record are dynamically updated).

6.2.2 Anonymization for data streams

Data streams are continuous, transient, and usually unbounded. Cao et al. [27] discussed
that anonymizing data streams and anonymizing dynamic datasets are different because the
inferences that may arise when anonymizing dynamic datasets and those that might happen
during anonymizing of data streams are different. Anonymizing a dynamic dataset requires
multiple releases of a table. The inference is happened because multiple anonymized tables
contain some same records, while this inference cannot be carried out in anonymizing data
stream because a record in the stream is anonymized only once. The possible inferences in
anonymizing data stream are due to the fact that the attacker is able to inspect the sequence of
anonymized tuples given in output. Because of the characteristics of data streams, the algo-
rithm for data streaming can only scan the data in one pass and executes in a pipeline manner,
and there is a need to offer strong guarantees on the maximum allowed delay between incom-
ing data and the corresponding anonymized output. So the efficiency plays an important role
in anonymizing data streams. Cao et al. [27] presented ks-anonymity for privacy-preserving
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data streams publishing in the case of an individual with multiple records and gave a cluster
algorithm to anonymize data streams and ensure the freshness of the anonymized data by
satisfying specified delay constraints. However, they put the different records of the same
individual in different equivalence classes. Hence, they lose the relation among the values of
sensitive attribute, which belong to the same individual. Furthermore, Guo and Zhang [38]
improved algorithm of Cao et al. for data streams based on clustering by considering the time
constraints on tuple publication and cluster reuse, to accelerate the anonymization process
and reduce the information loss.

6.3 Anonymization for other data types except relational data

There are some studies on anonymizing set-valued data, trajectory data, and social network.
Terrovitis et al. [39] presented km-anonymity for the set-valued or transaction data, which
guarantees that an adversary with maximum knowledge of m items cannot distinguish each
transaction from k transactions. They proposed two heuristic anonymization algorithms,
which greedily identify itemsets that violate the anonymity requirement and choose general-
ization rules that fix the corresponding problems. (h, k, p)-coherence introduced by Xu et al.
[40] confines an attacker with maximum knowledge of p items to identify each transaction
from k transactions in which no more than h% share a common private item. They gave
an algorithm for achieving (h, k, p)-coherence by suppression while preserving as much
information as possible. Cao et al. [41] proposed ρ-uncertainty privacy model, which does
not allow an attacker knowing any subset of a transaction t to infer a sensitive item α ∈ t
with confidence higher than ρ, and presented an algorithm by combining generalization and
suppression to transform a data table and make it satisfy ρ-uncertainty. Chen et al. [42] stud-
ied the privacy problem of trajectory data. They proposed (K ,C)L -privacy model, which
requires any subsequence q of any adversary’s L-knowledge to be shared by either 0 or at
least K records in a trajectory database and the confidence of inferring any sensitive value
from q to be at most C , and showed that the proposed suppression method can significantly
improve the data utility in anonymous trajectory data. Liu and Terzi [43] proposed k-degree
anonymity for anonymizing social network, which requires that all vertices have at least
k−1 other vertices sharing the same degree, and gave an algorithm to ensure that all vertices
satisfy k-degree anonymity by modifying the graph structure. Moreover, Casas-Roma et al.
[8] devised an efficient algorithm for k-degree anonymity in large networks.

6.4 Characteristics of our approaches

In this paper, we deal with static relational data with multiple records and single sensitive
attribute. It is significant to study identity reservation for multiple records. Two privacy
models EIR l-diversity and EIR (α, β)-anonymity are proposed to solve the disadvantage of
IR (k, l)-anonymity and IR (α, β)-anonymity for identity reservation (i.e. they fail to prevent
attribute disclosure). At present, many anonymization approaches use the generalization by
predefined taxonomy tree, which restricts the generalized range and causes some unnecessary
information loss. Therefore, Wang et al. [24] presented the set generalization and gave a
clustering algorithm l-clustering to implement l-diversity. Inspired by themethod, we present
the heuristic greedy clustering algorithm DAnonyIR for achieving EIR l-diversity and EIR
(α, β)-anonymity. Also, we can use DAnonyIR to anonymize database in order to make it
satisfy IR (k, l)-anonymity and IR (α, β)-anonymity by calling different decision functions.
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Our approach is different from l-clustering in the following two aspects. (1) Our approach
considers the case of an individual with multiple records, so the definitions of some distances
are different. We introduce our own concepts of the distance between two individuals, the
distance between individual and equivalence class, and the distance between two equivalence
classes by using different information metrics for numeric and categorical attributes. (2) Our
approach is used to achieve EIR l-diversity, EIR (α, β)-anonymity, IR (k, l)-anonymity, and
IR (α, β)-anonymity, while l-clustering is used for l-diversity. We need to set different deci-
sion functions for different privacy models. Experimental results have shown our DAnonyIR
is superior to the existing GeneIR for multiple records with generalization by predefined
taxonomy tree in terms of the data quality. Our approaches are only used to anonymize static
relational datasets with multiple records and single sensitive attribute. In the next work, it
will be interesting to extend our approaches to anonymize datasets with multiple sensitive
attributes, dynamic datasets, data streams, and other data types.

7 Conclusions

In this paper, we have argued that IR (k, l)-anonymity and IR (α, β)-anonymity are insuffi-
cient to prevent privacy leakage. Thus, we proposed enhanced versions of these two privacy
models, called EIR l-diversity and EIR (α, β)-anonymity. Moreover, we have designed a
general anonymization algorithm, called DAnonyIR, with clustering technique to transform
the dataset to satisfy different identity-reserved privacy models by calling different decision
functions. Compared with the existing approaches, i.e. GeneIR_kl and GeneIR_αβ [15],
respectively, our DAnonyIR_El and DAnonyIR_Eαβ provide stronger privacy preservation,
and the information loss and relative error ratio of query answering are less than those of
the GeneIR_kl and GeneIR_αβ, although our approaches need more runtime. To avoid the
influence caused by different algorithms, we also compared our enhanced approaches with
DAnonyIR_kl andDAnonyIR_αβ, respectively, and found that our approaches are very close
to DAnonyIR_kl and DAnonyIR_αβ in the aspects of information loss, relative error ratio of
query answering, and runtime.

Our EIR l-diversity and EIR (α, β)-anonymity are suitable for the anonymization of rela-
tional data in which an individual could have multiple records, our DAnonyIR algorithm is
performed just once over static datasets in an offline manner, and the clustering result is
not optimal. So in future, it is worthy extending our approaches to find an optimal cluster-
ing result by analysing its average time complexity, and solve these problems considering
privacy leakages caused by relation among attributes, attackers’ stronger background knowl-
edge, multiple sensitive attributes, and data publishing of dynamic datasets and data streams.
Also, we will consider privacy preservation of distributed data [30] and other sorts of data,
contained set-valued data [38], trajectory data [42], and social network [43].
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