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Abstract Hubness is an aspect of the curse of dimensionality related to the distance con-
centration effect. Hubs occur in high-dimensional data spaces as objects that are particularly
often among the nearest neighbors of other objects. Conversely, other data objects become
antihubs, which are rarely or never nearest neighbors to other objects. Many machine learn-
ing algorithms rely on nearest neighbor search and some form of measuring distances, which
are both impaired by high hubness. Degraded performance due to hubness has been reported
for various tasks such as classification, clustering, regression, visualization, recommenda-
tion, retrieval and outlier detection. Several hubness reduction methods based on different
paradigms have previously been developed. Local and global scaling as well as shared neigh-
bors approaches aim at repairing asymmetric neighborhood relations. Global and localized
centering try to eliminate spatial centrality, while the related global and local dissimilar-
ity measures are based on density gradient flattening. Additional methods and alternative
dissimilarity measures that were argued to mitigate detrimental effects of distance concen-
tration also influence the related hubness phenomenon. In this paper, we present a large-scale
empirical evaluation of all available unsupervised hubness reduction methods and dissimi-
larity measures. We investigate several aspects of hubness reduction as well as its influence
on data semantics which we measure via nearest neighbor classification. Scaling and density
gradient flattening methods improve evaluation measures such as hubness and classification
accuracy consistently for data sets from a wide range of domains, while centering approaches
achieve the same only under specific settings.
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1 Introduction

Learning in high-dimensional spaces is often challenging due to various phenomena that
are commonly referred to as curse of dimensionality [4]. One well-known aspect of the
curse is concentration of distances (or measure). With dimensionality approaching infinity,
all distances between pairs of objects become indistinguishable [23], undermining the very
concept of neighborhood-based approaches.

Hubness is a related phenomenon of the dimensionality curse: in high-dimensional spaces,
some objects are closer to the global centroid (unimodal data) or local centroid (multimodal
data) [44]. These objects often emerge as hubs with high k-occurrence, that is, they are among
the k-nearest neighbors of many objects. Simultaneously, other objects are extruded from
nearest neighbor lists, which makes some of these objects appear in no or few of these lists
(antihubs). Due to these effects, nearest neighbor relations between any two objects become
asymmetric more often in high dimensions than in low dimensions. That is, there are more
unidirectional relations in high dimensions (object x is among the nearest neighbors of y,
but not vice versa). Nearest neighbor relations in high hubness regimes are prone to semantic
incorrectness: Hubs propagate their encoded information too widely in corresponding dis-
tance spaces, while information carried by antihubs is essentially lost [57]. Consequently,
these distance spaces do not reflect class information well, that is, semantic meaning of the
data. Since intraclass distances should generally be smaller than interclass distances, nearest
neighbor classification accuracy can be used as a proxy to measure semantic correctness [21].

Hubness has been identified as a detrimental factor in similarity-based machine learning,
impairing several classification [44], clustering [47,60], regression [7], graph analysis [22],
visualization [17], and outlier detection [18,19,45] methods. Reports on affected tasks include
multimedia retrieval [51], recommendation [48], collaborative filtering [25,34], speaker ver-
ification [50], speech recognition [62], and image data classification [58].

Various strategies to mitigate detrimental effects of hubness have previously been inves-
tigated. In the course of these studies, several techniques for hubness reduction have been
developed. An overview is given in Sect. 2.1. With the high number of hubness reduction
methods now at hand, a comprehensive overview of their methodology and an empirical
comparison of their performance is still lacking. This study aims at providing this overview
and comparison. We present a comprehensive empirical evaluation of unsupervised hubness
reduction methods, which showed promising results in previous studies, examining their
ability to reduce hubness and whether they respect semantics of the data spaces at the same
time.

This article is structured as follows: Sect. 2 reviews properties of hubness and how they
may be used for hubness reduction. It also provides an overview of previous empirical com-
parisons. Section 3 describes the hubness reduction methods. Section 4 details the evaluation
framework, data sets, evaluation measures and statistical analyses. The results of this eval-
uation are presented in Sect. 5 and discussed in Sect. 6. Section 7 concludes the paper and
gives an outlook for future research.

This article is a substantially expanded version of a conference contribution [16]. The main
extensions are the evaluation of more methods (twelve instead of four), on more data sets
(50 instead of 28), an enhanced hyperparameter tuning scheme, and a more comprehensive
analysis of results, including rigorous statistics.
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2 Related work

Hubness was first noted as a problem in automatic music recommendation [3], more
specifically that certain songs were being recommended conspicuously often in nearest
neighbor-based playlists. The phenomenon of hubness has then been characterized exten-
sively in both theoretical and empirical aspects by Radovanovi¢ et al. [44]. Their publication
already provided some starting points for the development of methods mitigating negative
effects of hubness. Subsequently, such hubness reduction methods were designed by a num-
ber of other authors [2,21,26,27,49,56,59]. We summarize these concepts and methods into
four categories, as outlined in the paragraphs of Sect. 2.1.

2.1 Hubness and its reduction

Hubness is known to arise in high-dimensional data spaces. This was shown to be caused by
inherent properties of data distributions, not by other effects such as finite sample sizes [44].
Data sets are often embedded in spaces of higher dimensionality than is needed to capture all
their information. The minimum number of features necessary to encode this information is
called intrinsic dimension (ID). More formally, ID refers to a lower-dimensional submani-
fold of the embedding space containing all data objects without information loss [8]. Several
methods for intrinsic dimension estimation have been proposed (see, for example, Ref. [8]
for a recent review). Empirical results suggest that hubness depends on a data set’s intrinsic
dimension rather than the embedding dimension [44]. A later study challenges this view and
argues that hubness arises due to density gradients in data sets [39], that is, spatial variations in
the density of empirical data distributions. Density gradients may originate from data gener-
ating processes. Data sets consisting of points sampled from a continuous probability density
function f(-) exhibit density gradients. Consider, for example, the bell curve-shaped PDF
of a normal distribution. Additionally, density gradients emerge necessarily, when sampling
regions are bounded (that is, 3x : f(x) = 0), which even holds for uniform distributions
otherwise not showing density gradients. Consequently, data sets sampled from uniform dis-
tributions with bounds still show density gradients [39]. With increasing dimensionality, the
ratio of the size of a boundary and its encapsulated volume increases exponentially. From
the viewpoint of density gradient, this explains the emergence of hubs in high-dimensional
bounded data [39]. Common dimensionality reduction (DR) methods have been investi-
gated in regard to hubness. Empirical results indicate principal component analysis (PCA),
independent component analysis (ICA), and stochastic neighborhood embedding (SNE) to
not significantly change hubness, unless the number of features falls below the intrinsic
dimension of a data set [44]. In the latter case, information loss regarding pairwise dis-
tances and nearest neighbor relations may occur. Since this is an undesired effect for any
neighborhood-based analysis, these DR methods are not suitable for hubness reduction. On
the other hand, DR methods changing underlying pairwise distances, such as isomap or dif-
fusion maps, do reduce hubness when retaining a number of features greater than the intrinsic
dimension [44]. This finding directly motivates the adaption and development of secondary
distance measures specialized on hubness reduction, as discussed under the next categories.

Objects in proximity of the sample mean of some data distribution are prone to become
hubs in high-dimensional spaces, which is known as the spatial centrality of hubs [44]. For
unimodal data, hubs are often close to the global data centroid. Real-world data sets are often
better described as a mixture of distributions, for which hubs tend to be close to the mean of
individual distributions [44]. Since the exact mixture of distributions in real-world data is often
unknown, k-means clusters [44] and local neighborhoods [27] have previously been used to
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describe spatial centrality in multimodal data. On the other hand, antihubs are typically far
from centers and can be considered distance-based outliers [44]. Spatial centrality can thus be
described by correlation between k-occurrence and distance to the centroid. Reducing spatial
centrality is another approach to reduce hubness. Centering (subtraction of the centroid) was
proposed to eliminate hubness from text data using inner product similarities [56]. Based on
this, localized centering was developed for hubness that may arise due to large data set size
rather than high dimensionality [27]. The same authors present DisSim©1°% and DisSimoca!
as variants of the above, applicable to Euclidean distance spaces, and argue that hubness
reduction is achieved by flattening the data density gradient [26].

Nearest neighbor relations between two objects x and y are considered symmetric, if x is
among the nearest neighbors of y and vice versa. Hubness directly affects rates of symmetry
with more asymmetric relations arising under high hubness conditions [49], because hubs
are by definition nearest neighbors to very many data points but only one data point can
be the nearest neighbor to a hub. In addition, asymmetric nearest neighbor relations offend
against the pairwise stability of clusters [49], leading to wrong information propagation. For
this reason, the third category of hubness reduction methods aims at repairing asymmetric
relations. Several methods have been proposed that symmetrize these relations by transfor-
mation to secondary distance spaces, that is, they are computed from other primary distance
spaces (e.g., Euclidean distances). Among these methods are shared nearest neighbors [32],
local scaling [64], the (non-iterative) contextual dissimilarity measure [33], mutual proxim-
ity [49], and simhub [59]. Only the latter two methods were developed explicitly for hubness
reduction.

Finally, the related concentration effect may be mitigated by using alternative distance
measures, for example, fractional norms [23]. Analogously, alternative distance measures
might be less prone to hubness than commonly used measures like Euclidean or cosine dis-
tances. Consequently, £ norms were investigated in regard to their influence on hubness [21].
The data-dependent m ,,-dissimilarity measure was recently presented as an alternative to geo-
metric distances [2].

2.2 Previous comparisons of hubness reduction

Several empirical comparisons of hubness reduction methods have been conducted previ-
ously, typically in the context of presenting new methods.

Five dimensionality reduction methods were tested for their capability to reduce hub-
ness on three real-world data sets [44]. PCA, ICA, and SNE fail to reduce hubness, unless
dimensionality is reduced below ID. Isomap and diffusion maps show some hubness reduc-
tion capability. No tests to examine whether data semantics are respected by dimensionality
reduction were performed.

The local and global scaling methods mutual proximity (MP) and non-iterative contextual
dissimilarity measure (NICDM) were investigated with respect to both hubness reduction
and improved data semantics on thirty real-world data sets from various domains [49]. Both
scaling methods showed improved performance measures on high-dimensional data sets,
and no degradation on low-dimensional data sets. This is true for both hubness reduction and
nearest neighbor classification. Approximate MP variants were found to perform nearly as
well as full MP.

Shared nearest neighbors (SNN) was compared to local scaling and mutual proximity on
six real-world data sets [20]. SNN was able to reduce hubness, though not as strongly as the
other methods. Classification accuracy was improved by SNN only in three data sets, and
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the method thus deemed inferior to LS and MP, both of which improved accuracy in all six
cases.

Simhub is a hybrid method composed of supervised (simhubPUR) and unsupervised
(simhub™) parts. Its evaluation was primarily performed for full simhub [59]. The individual
component simhub™ was compared to SNN on one image data set, for which it surpassed
its competitor in terms of two classification measures.

Centering was compared to MP on three data sets from the text domain [56]. Both hubness
and classification measures were improved for both methods to a similar extent and on par with
a state-of-the-art technique. A follow-up study [27] compared localized centering (LCENT),
centering, mutual proximity, local scaling, and a commute-time kernel (CTL) on four text
data sets. The strongest hubness reduction was achieved by MP. LCENT and LS performed
slightly better than MP in terms of classification accuracy. CTL appears to be non-effective
in hubness reduction.

DisSim™*°! was shown to outperform MP on four real-world data sets [26]. Both methods
improve hubness and accuracy measures compared to DisSim®°" and to the Euclidean
baseline.

Finding an optimal £” norm was shown to improve classification on seven data sets [21].
On four data sets, LS and MP were able to further increase accuracy. SNN yielded non-
competitive results over all seven data sets in that comparison.

The m ,-dissimilarity reduces hubness in synthetic data [2]. It was reported to do so as
well in real-world data sets, but results were not provided.

A comprehensive empirical comparison overcoming several shortcomings of the above-
mentioned ones is still lacking. Such a comparison must (i) evaluate all available hubness
reduction methods (ii) on a large number of data sets (iii) from various domains and (iv)
present appropriate statistical treatment of the results. We strive to address all of these issues
in this study. Please note that we did not include commute-time kernels and dimensionality
reduction in our study, since these methods performed very poorly in previous studies. We
also restricted our comparison with unsupervised methods, which do not use class label
information for hubness reduction. Supervised methods like simhub [59] should rather be
compared to related supervised approaches like, e.g., metric learning [35], which is beyond
the scope of this paper.

3 Hubness reduction methods

This section reviews all unsupervised hubness reduction methods used in this paper. Some
methods operate on vector data directly, others on distances between pairs of objects. Usually,
Euclidean or cosine distances are used as input for the latter methods. Some methods also
operate on non-metric dissimilarities or similarities. We use Euclidean distances as primary
distances, unless kKNN-classification with cosine distances yields significantly better results
(McNemar test, not shown for brevity). Let B € R™ be a non-empty data set with n data
objects in m-dimensional space, thatis, b; = (b;,1,...,bim) € Bfori € {1,...,n}. Letx,
¥, and z be short-hands for three m-dimensional numeric vectors by, by, and b, respectively.
Letd : Bx B — Rbe ameasure of dissimilarity. The dissimilarity between two objects x and
y is then denoted as dy, y. Most hubness reduction methods have tunable hyperparameters.
We try to follow the notation of the original publications, and thus reuse some symbols in
multiple methods. We do so only, if their meaning is closely related. For example, k always
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refers to neighborhood size, though individual methods may use nearest neighbor information
differently. Descriptions of all parameters follow in the next sections.

3.1 Measuring hubness

Before we introduce hubness reduction methods, we briefly introduce measures commonly
used for describing the degree of hubness in a data set.

3.1.1 k-occurrence

The k-occurrence O% (x) of an object x is defined as the number of times x resides among
the k nearest neighbors of all other objects in the data set. In the notion of network analysis,
O (x) is the indegree of x in a directed kNN graph. It is also known as reverse neighbor
count.

3.1.2 Hubness
Hubness is typically measured as the skewness of the k-occurrence distribution [44]:

Kk 3
gk — E[(O 3M0k) ]’ (1

O'Ok

where o« and o« denote the mean and standard deviation of the k-occurrence distribution,
respectively. Typical values of k used in the literature include 1, 5, 10, and 20. Previous
research indicates the choice of k to be non-critical. For the real-world data sets used in this
paper, we observe very high correlation of k-occurrence among various k values (Fig. 1),
except for k = 1, which is less correlated. We therefore deem any values of 5 < k < n
suitable for analysis of hubness reduction and use k = 10 for all hubness measurements in
this paper.
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3.2 Methods based on repairing asymmetric relations
The following methods aim at repairing asymmetric neighbor relations. All these methods

compute secondary distances by transforming the original primary distance (for example,
Euclidean or cosine) in a data set.

3.2.1 Local scaling and the non-iterative contextual dissimilarity measure

Local scaling (LS) was proposed to improve spectral clustering performance on data of
multiple scales [64]. Pairwise secondary distances are calculated as:

d2
LS(dy,y) =1 —exp (— =2 ) : 2

0,0y

The scaling parameter oy (oy) is set to the distance between object x(y) to its k-th nearest
neighbor. LS induces increased symmetry in nearest neighbor relations by incorporating local
distance information and was proposed for hubness reduction for that reason [49].

The non-iterative contextual dissimilarity measure (NICDM, [33]) is closely related to
local scaling: The scaling factor of an object x is set to the mean distance to its k nearest
neighbors (compared to using only the k-th neighbor in LS). We use NICDM transformations
adapted for hubness reduction [49]:

dy.y
N Hx Ky '

where 1, denotes the mean distance from object x to its k-nearest neighbors (analogous for
iy and object y). Parameter k in both LS and NICDM should reflect the embedding space
around each object and can be tuned in order to minimize hubness.

NICDM (dy,y) = 3

3.2.2 Global scaling: mutual proximity

While LS and NICDM use local distance statistics to enforce symmetric neighborhoods,
mutual proximity (MP, [49]) incorporates information of all pairwise distances in the data set
to achieve the same. Let X be a random variable of distances between x and all other objects
in the data set (analogously for Y and y), and P the joint probability density function, then

MP(dy.,) = P(X > dey NY > dy ). 4)

Secondary distances are calculated as the complement of the joint probability of two objects
being nearest neighbors to each other (i.e., I — MP). To allow for this probabilistic view,
MP models the distances dy je(1,....n}\x between an object x and all other objects with some
distribution. When using the empirical distance distribution, mutual proximity between two
objects x and y is calculated by counting objects whose distances to both x and y are greater
than d(x, y):

{j:dvj>dey}N{j:dy ;> dyyll
n—2 .

MP(d,,y) = (&)

Compared to the formula in the Ref. [49], we added a subtrahend to the denominator to

account for identity distances. This influences the normalization to the [0, 1] range but does
not change neighborhood order, hubness, or nearest neighbor classification.
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In the framework of MP, distances can also be modeled with any (continuous) distribution.
This is especially useful, when the user has prior knowledge of the given data domain.
Additionally, if X and Y are assumed to be independent, Formula 4 simplifies to

MP'(dy ) = P(X > dy.y) - P(Y > dy ). 6)

These approximations simplify calculations and decrease the computational complexity of

MP. The Gaussian-based mutual proximity variant (MPS2ss) models the distances of each

object x to all other objects with a normal distribution (X ~ A (u, 02)). Parameters Uy and
2 2

o can be estimated with the sample mean /i, and variance 6

. R . 1 ¢ .
New =g D0 deis Gl= 0 D (dei— )’ )
i=l,i#x i=li#x
Compared to Ref. [49], we exclude self-distances d, , from parameter estimation. This should
presumably improve the approximation, since self-distances are not informative. Secondary
distances based on MPYUSST are calculated as

MPOU(d, ) = SF(d,y, fix. 67) - SF(dy x, fiy. 67), ®)

where SF(d, i, 02) =1-CDF(, u, 02), that is, the survival function (complement to the
cumulative density function) at value d given the indicated distribution.

3.2.3 Shared nearest neighbors and simhub

A shared neighborhood is the intersection of the nearest neighbor sets of two objects [32].
Secondary distances based on shared nearest neighbors (SNN) increase pairwise stability
and relation symmetry, which is considered beneficial for hubness reduction [20]. SNN
similarities are calculated as:

SNN(x, y) = | KNN(x) 2 kNN (y)| ,

(€))

where KNN(+) is the set of the k-nearest neighbors of some object.

Simhub [59] is a shared neighbors approach that weights shared neighbors z by infor-
mativeness (increasing weights of rare neighbors) and purity (penalizes neighborhoods with
inconsistent class labels). Both weights may be used simultaneously (simhub) or separately
(simhub™ and simhubPYR for informativeness and purity, respectively). Simhub is a super-
vised method when using purity weights. We thus restrict our evaluation to the unsupervised
simhub™:

22 (NN(x)NKNN(y) 1 (2)
k - max I,

simhub™

(x,y) =

’

I,(z) = log , max/, =logn (10)

_n
oK) +1

where [, (z) is the occurrence informativeness of a shared neighbor z in a data set of size
n. The neighborhood radius & can be tuned in both SNN-based methods to minimize hubness.
Computing 1 — SNN, or 1 — simhub turns the similarities into distances.

@ Springer



A comprehensive empirical comparison of hubness reduction... 145

3.3 Methods based on spatial centrality reduction and density gradient flattening

Centering approaches aim at reducing spatial centrality, and use modified inner product
similarities to span distance spaces. Global and local DisSim try to flatten density gradients,
and construct dissimilarities from squared Euclidean distances.

3.3.1 Centering and localized centering

Centering is a widely used preprocessing step that shifts vectors (x) so that the space origin
coincides with the global centroid (¢). Centering dissimilarities can be calculated as

CENT(x,y) = —{(x — ¢,y —¢), (11)

where (-, ) is the inner product of two vectors. The method was proposed for hubness reduc-
tion in the context of natural language processing [56]. Centering moves the centroid to the
origin. Inner product dissimilarities between any object and the origin (zero vector) are uni-
formly zero. Centering effectively eliminates spatial centrality in inner product spaces, which
should reduce hub emergence. Following this idea, localized centering was developed [27]:
Instead of shifting the whole vector space, LCENT is a dissimilarity measure based on global
affinity (mean similarity between an object x and all other objects) and local affinity (mean
similarity between x and its k nearest neighbors):

LCENT(x, y) = —(x, y) + (x, cx (x))7, (12)

where ¢y (x) denotes the local centroid among the k nearest neighbors of x, y is a parameter
controlling the penalty introduced by the second term, and the leading negative sign indicates
dissimilarities. LCENT dissimilarities are not guaranteed to be positive. Parameters y and k
can be tuned to minimize hubness.

3.3.2 Global and local dissimilarity measures

The above-described centering approaches have no effect on Euclidean distances. As an alter-
native, two dissimilarity measures were introduced [26]: They reduce hubness by flattening
the density gradient and thus eliminate spatial centrality in commonly used Euclidean spaces.
The global variant DisSim%1°P2 (DSG) removes sample-wise centrality of two objects x and
y:

DSG(x., y) = [lx = yl3 = llx = ¢ll3 = lly = e, (13)

where c is the global centroid and || - II% indicates the squared Euclidean norm.

The local variant DisSim™¢@ (DSL) is free from the assumption that all instances in the
data set come from the same distribution: Instead of subtracting the global centroid, local
centroids are estimated as ¢ (x) = % > x’ekNN(x) X » Where KNN(x) is the set of k-nearest
neighbors of x, and substitution in Formula 13 yields:

DSL(x, y) = [lx — ylI3 — Ilx — k()3 — Iy — cx W13 (14)

Parameter k can be tuned to minimize hubness.

3.4 Hubness-resistant dissimilarity measures

The methods described in this section try to avoid hubness by using alternative distance
measures between data objects.
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3.4.1 Choosing £? norms and the m p-dissimilarity measure

Euclidean distances correspond to a special case of the family of £7 norms (also known
as Minkowski norms) with p = 2. The effect of using norms with p # 2 in the context
of hubness has been investigated previously [21]. An ¢ norm of a vector (x — y) can be
interpreted as a dissimilarity between x and y and is calculated as follows:

m 1/p
P (x,y) = (Z i — m!’) (15)
i=1

For 0 < p < 1 the resulting Minkowski norms (also called fractional norms) do not guar-
antee the triangle inequality. Consequently, they do not constitute full distance metrics. The
parameter p can be tuned to minimize hubness. In this work, we evaluate ¢ norms with
p =0.25,0.5, ..., 5 (as in Ref. [21]) and ten values randomly selected from ]O, 5][.

A data-dependent dissimilarity measure was recently derived from ¢7 norms [2]. The
m p-dissimilarity takes into account data distributions by estimating the probability mass
|R;i(x,y)|in aregion R around x and y in each dimension i:

m 1/p u
1 R; (x, P
mp<x,y)=<mz('(z”')) IR Gy =Y Ihig] (16)
q=l

i=1

That is, all objects are binned in each dimension. Let &;; and h;, be the bins that contain
min(x;, y;) and max(x;, y;), respectively. The probability data mass | R;| is then estimated by
counting the objects in all bins from /;; to h;,,. R; replaces the geometric distance used in £7
norms. Dissimilarities are thus increased in dense regions and decreased in sparse regions.

3.5 Time and space complexity

Hubness reduction is expensive due to calculation of distances between all pairs of objects.
Table 1 lists time complexity of all methods. All methods applied on data vectors require
O(n*m) time'. Since their prefactors differ considerably, timings for two synthetic data sets
of increasing size and dimensionality are also provided. Methods applied on data distances
require O(n?) or O(n>) time in addition to O (n”m) time for preprocessing primary distances.
All methods require O(n?) space for returning the distance matrix. For primary distances
in data sets with m > n this is dominated by the memory requirement of the input vectors
O(nm). Intermediate steps typically require O(n) space, except for m ,-dissimilarity, which
requires O(h*m) for distances between all pairs of bins in each dimension, where b is the
number of bins, and b < n.

3.6 OFAI Hub-Toolbox

The availability of machine learning algorithms not only as formulas, but also as working
code in reference implementations allows easy reproducibility and applicability of methods.
Consequently, all methods described in this publication are available as part of a free open
source software package for the Python programming environment. The Hub-Toolbox is
easily installable from the PyPI package repository” and licensed under GNU GPLv3. Please

I Note that centering requires only O (nm) time, if no subsequent distance calculations are performed.
2 https://pypi.python.org/pypi/hub-toolbox/.
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Table 1 Time complexity for computing distances between all pairs of objects and timings for two synthetic
data sets (B goo with n = m = 1000 and B1gooo With n = m = 10000). Timings were performed with the
Hub-Toolbox for Python (see Sect. 3.6) on a single core of an Intel Core i5-6500 CPU 3.20GHz with 15.6
GiB main memory

Input data ~ Time complexity Time (s) B1ooo Time (s) B1000o Parameters

Eucl Vectors On?m) 0.1 26 -

cos Vectors On?m) 0.3 48 -

MP Distances ~ O(n3) 1.6 1382 -

MpGaussl Distances ~ O(n?) 0.2 8 -

LS Distances ~ O(n?) < 0.1 4 k=10

NICDM Distances ~ O(n?) <01 3 k=10

SNN Distances O(n3) 0.7 754 k=10

simhub™ Distances ~ O(n3) 25 2510 s=10

CENT Vectors (’)(nzm) 0.1 33 -

LCENT Vectors Om?m) 0.5 71 k=10,y =15

DSG Vectors On?m) 0.2 46 -

DSL Vectors On?m) 0.3 51 k=10

£P norm Vectors On?m) 29.8 30018 p=15

m p-dissim Vectors O(nzm) 75.8 63143 p=1.5,
Npins = 200

visit the GitHub page? for source code, development versions, issue tracking, and contribution
possibilities. A MATLAB version of the Hub-Toolbox providing core functionality is also
available on GitHub.*

4 Evaluation

The evaluation strategy focuses on two indicators: (i) hubness is measured as the skewness of
k-occurrence distribution (see Sect. 3.1); (ii) k-nearest neighbor classification accuracy C kNN
is used to measure the degree of correct data semantics in primary and secondary distance
spaces. The neighborhood size parameter k and the weighting mode for k-nearest neighbor
classification are selected in a nested cross-validation scheme (see Fig. 2). Weighting can
be distance-based, that is, neighbors are weighted by their inverse distance during predic-
tion, giving more influence to closer neighbors. Otherwise, nearest neighbors have uniform
weights, and prediction is a majority vote among them. Ties are resolved by the nearest
neighbor.

Baseline accuracy (column in Table 3) is obtained in a cross-validation procedure as
described in Sect. 4.1. Parameter k is selected by maximizing CXNN. This is performed using
both Euclidean and cosine distances. For each data set, CKNN g reported for the distance
measure that yielded higher accuracy as indicated in column ‘d’ in Table 3.

CkNN

3 https://github.com/OFAI/hub-toolbox-python3.
4 https://github.com/OFAI/hub-toolbox-matlab.
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Nested cross-validation

’ Data set ‘
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k
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pEYY = argmaxCyyN

Evaluation scores: Sk, CkNN

Fig. 2 Nested cross-validation scheme. Twofold inner and twofold outer loops are depicted for better
presentability. The actual evaluation is performed as tenfold/tenfold nested CV. Abbreviations: CV...cross-

validation, TR...training set, VA...validation set, TE...test set, Sk ...mean hubness, CKNN _ mean accuracy.
Text superscripts indicate outer/inner CV, subscript indices display number of outer fold and inner fold

4.1 Evaluation scheme

In this section, we evaluate the hubness reduction methods described in Sect. 3 with regard
to improved hubness and data semantics. We follow a standard procedure for comparing
classifiers, preprocessing, or postprocessing steps over multiple data sets [14]. The procedure
requires ‘reliable’ scores, that is, they must come from an evaluation scheme with sufficiently
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many experiments on each data set, which should ideally be performed on the same random
samples for each evaluated method.

We evaluate twelve hubness reduction methods on fifty data sets in a nested cross-
validation (CV) scheme [9] as depicted schematically in Fig. 2 (for twofold CV for reasons
of better presentability). Each data set is first split into outer training set (TR®"°") and test
set (TE) in a tenfold outer cross-validation. TR®"! is then split into an inner training set
(TR™er) and a validation set (VA) in a tenfold inner cross-validation. On both levels, the
data is split randomly and stratified based on the class labels. The splits are identical for all
methods to meet the requirements of the comparison procedure. In the inner CV we first
find optimal hyperparameter values for hubness reduction, then an optimal k and weighting
mode for kNN classification. We perform randomized hyperparameter search [5], that is, we
draw hyperparameter values uniformly and randomly from a predefined range, until a certain
budget of samples is consumed.

Specifically, randomized hyperparameter search is performed to minimize hubness
(min S¥) on the validation set VA in each inner loop i of each outer loop o for each hubness
reduction method. Table 2 lists the parameter ranges used in the optimization steps. A bud-
get of 30 hyperparameter values is used (or 30 pairs of values in case two hyperparameters
are being optimized), and the best value (pair) is denoted as pf){’]f. This step is omitted for
MP, CENT, and DSG, for which there are no hyperparameters to tune. Secondary distances
between objects in VA and TRI™™" are then calculated using hubness reduction with optimal
hyperparameters pgg{. Subsequently, classification accuracy is maximized (max CXNN) on
VA in the inner loop using a kNN classifier. The best pair of hyperparameter values (k and
weighting mode) from a budget of ten is denoted as pl(f\i]N. For each outer fold o, the best
hyperparameters p!R and plleN are selected from the inner fold showing lowest hubness
among all inner folds i = 1...10.

The hubness reduction methods are scored on TE using these optimized hyperparameters,
that is, p(},IR for a given hubness reduction method, and p(leN for kNN classification. We

Table 2 Hyperparameters and selection ranges for hubness reduction methods (first twelve rows) and kNN
classification (last row). The methods have one or two parameters, or are parameter-free. Ranges of numerical
parameters are subsets of Nt, or RT as indicated by decimal points

Parameter 1 Range Parameter 2 Range
MP - - - -
MpGaussl _ _ _ _
LS k [1,50] - -
NICDM k [1,50] - _
SNN k [1,50] - -
simhub™ s [1,n] - -
CENT - - - -
LCENT K [5, 100] y 10.,5.]
DSG - - - -
DSL K [1,n] - -
£P norm P 10.,5.] - -
m p-dissim P 10.,5.] Npins [10, min(%, 200)]
kNN k [1, 10], 15, 20, 25, 30, 40, 50, 100 Weights {Uniform, distance}
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calculate mean hubness S¥ and mean kNN classification accuracy C¥NN over ten outer
folds 0 = 1...10. Given the evaluation strategy, these scores are assumed to be robust and
unbiased performance estimates. The hubness reduction methods are then compared using the
nonparametric Friedman test on both measures, independently. If significant differences are
found among the methods, the post hoc Nemenyi test is used to determine the best performing
method.

4.2 Data sets

We evaluate the previously described methods on 50 different public machine learning data
sets. The selection of data sets was motivated primarily by the observed degree of hubness:
Data sets with high hubness were selected in order to exploit the full potential of hubness
reduction methods. Several low hubness data sets were also added to the collection. We did
not expect substantial performance boosts in these cases. However, we use these data sets
to investigate possible adverse effects of hubness reduction when there is hardly anything
to reduce. Please note that some low-dimensional data sets were added for the very same
reason. Table 3 contains details about the data sets, 28 of which have already been used in
a previous study. Additional 22 data sets were obtained from four public machine learning
repositories.

— Already used in a previous study [49]: arcene, amlall, gisette, mfeat-factors, mfeat-
karhunen, mfeat-pixels, heart, sonar, dexter, mini-newsgroups, dorothea, lungcancer,
reuters-transcribed, ovarian 61902, australian, diabetes, german numbers, liver-
disorders, breast-cancer, duke (train), colon-cancer, fourclass, ionosphere, splice,
clka-twitter, c224a-web, corell1000, movie-reviews.

Please note that ballroom and ismir2004 were omitted, because they use symmetrized
Kullback-Leibler divergence, which is non-trivial to combine with some of the methods
evaluated here.

— UCI Machine Learning Repository [38]: Parkinson Speech Dataset with Multiple Types
of Sound Recordings [46], Amazon Commerce reviews [55], p53 Mutants [13], CNAE-
9[12], Student Alcohol Consumption [42], Arrhythmia [24], Farm Ads [41], Mice Protein
Expression [28], Opportunity Activity Recognition [11], Chronic Kidney Disease [53]

— LibSVM [10]: dna [30], protein [63], sector [40], revl.multiclass [37]

— OpenML [61]: Semeion Handwritten Digit [52], AP Breast Ovary and OVA Uterus [54],
wap.wc, hepatitisC, Lymphoma and Spectrometer

— MLdata [29]: DMOZ [15]

All data sets were downloaded from the sources indicated above and split into feature
and label vectors according to their individual descriptions. Euclidean and cosine distances
were calculated with the SciPy package for Python. Missing values were imputed with the
median strategy over all instances in the following six data sets: Mice Protein Expression,
Opportunity Activity Recognition, p53 Mutants, Chronic Kidney Disease, Arrhythmia, Lym-
phoma. For exceptionally large data sets (n > 10000), a stratified random sample of 2000
instances was drawn, preserving the percentage of instances for each class. This applies
to the following four data sets marked with asterisks in column n of Table 3: Opportunity
Activity Recognition, rcvl.multiclass, protein, sector. The data set p53 Mutants has highly
skewed class distribution (< 1% negatives). To reduce this skewness, all negative instances
were kept, but positive instances were sampled at random until they made up 90% of the
new subset. The preexisting train-test-splits of Parkinson Multiple Sound Recordings were
ignored and merged into a single data set. Categorical features of the Student Alcohol Con-
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Table 3 Overview of 50 data sets from public machine learning repositories (Source) ordered by ascending
hubness (Sk:w) of the indicated distance space (d)

# Source Name Cls. n m Mpyle  d CKNN sk=10
1 UcCI Opportunity 5 *2000 238 2 2 0.8995 —0.1156
activity
recognition
2 LibSVM Fourclass (sc) 862 22 1.0000  0.1528
3 LibSVM  Liver-disorders 2 345 ¢ 0.6260  0.1795
(s0)
4 OpenML  Spectrometer 531 101 5 2 0.9661  0.1903
5 UCI Mice protein 1080 77 2 cos 09787  0.1961
expression
6 LibSVM  Australian 2 690 14 2 2 0.6928  0.2011
7 UCI Chronic kidney 2 400 24 2 cos 0.7400  0.2745
disease
8 ucCl Parkinson speech 2 1208 26 3 2 0.6755  0.3932
9 UCI Arcene 2 100 10000 8 ¢ 0.7500  0.4428
10  LibSVM Breast-cancer (sc) 2 683 10 1 2 0.9693  0.5686
11 LibSVM  Heart (sc) 2 270 13 3 2 0.8222  0.5734
12 LibSVM  Colon-cancer 2 62 2000 10 2 0.7742  0.5950
13 LibSVM  Diabetes (sc) 2 768 8 5 cos  0.7656  0.5950
14 UCI mfeat-karhunen 10 2000 64 7 22 0.9755  0.6898
15 KR Ovarian-61902 2 253 15154 8 2 0.9447  0.7603
16  OpenML  semeion 10 1593 256 12 2 09165  0.8012
17  UCI mfeat-factors 10 2000 216 [§ 22 0.9570  0.8193
18 LibSVM  Duke (train) 2 38 7129 11 2 0.7105  0.8275
19 CP c224a web 14 224 1244 21 cos  0.9286  0.8345
20 LibSVM  German numbers 2 1000 24 5 2 0.7320  0.8835
(s0)
21 UCI mfeat-pixels 10 2000 240 9 02 0.9785  0.9642
22 KR amlall 72 7129 11 Iz 09167  1.1655
23 LibSVM Sonar (sc) 208 60 5 2 0.8462  1.1798
24 UCI Student alcohol 5 1044 56 4 2 04157  1.2105
consumption
25 LibSVM  Splice (sc) 1000 60 7 cos 0.7720  1.2288
26 KR Lungcancer 181 12533 10 2 1.0000  1.2483
27  UCI P53 mutants 1430 5408 6 cos 09294 1.2574
28  Corel corel1000 10 1000 192 7 22 0.6820  1.4179
29 UCl Arrhythmia 13 452 279 10 2 0.5951  1.4994
30 LibSVM rcvl.multiclass 42 *2000 47236 10 cos 0.7550  1.5359
31 UCI Reuters- 10 201 2730 23 2 0.5672  1.6147
transcribed
32  LibSVM Tonosphere (sc) 351 34 5 22 0.8917 1.6763
33 OpenML  OVA uterus 1545 10936 13 2 0.9346  1.7759
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Table 3 continued

# Source Name Cls. n m Mple d CKNN sk=10
34 OpenML Lymphoma 11 96 4026 9 2 0.8646  1.8785
35  UCI Farm ads 2 4143 54877 1 cos  0.8938  1.9327
36  UCI Gisette 2 6000 5000 51 cos  0.9783  1.9667
37  OpenML AP breast ovary 2 542 10936 14 22 0.9004  1.9812
38  OpenML Hepatitis C 3 283 54621 25 2 0.8975  2.1221
39  UCI Dorothea 2 800 100000 253 cos 09375 23578
40 UCI CNAE-9 9 1080 856 5 cos  0.8713  2.5492
41 UCI Dexter 2 300 20000 34 2 0.8667  3.3307
42  MLDATA DMOZ 5 1329 10630 5 cos  0.4981  3.6351
43 UCI Amazon 50 1500 10000 11 cos 03573 4.1013
commerce
reviews
44 LibSVM Protein 3 *2000 357 34 cos  0.5845  4.2757
45  PaBo Movie-reviews 2 2000 10382 44 2 0.7935  4.3452
46 UCI Mini-newsgroups 20 2000 8811 16 £ 0.8330  4.3705
47  LibSVM Sector 104 *2000 55197 11 cos 0.7015  5.5795
48  OpenML Wap.wc 20 1560 8460 12 cos  0.5045 9.3380
49 CP clka-twitter 17 969 49820 44 cos 0.3633  10.7119
50  LibSVM dna 3 2000 180 5 2 0.8790  15.5188

The data sets are characterized by their Name, number of classes (Cls.), instances (n), features (m), and their
estimated intrinsic dimension (m,,;.) [36]. Column C kNN reports baseline nearest neighbor classification
performance (see Sect. 4). Asterisks indicate random samples as discussed in Sect. 4.2

sumption data set were transformed with a One-Hot-Encoder, i.e., to multiple binarized
features. The Chronic Kidney Disease ARFF file contains several formatting errors (like,
e.g., tabs after comma or at EOL, double commas) that hinder import into the evaluation
framework. These errors were corrected manually. The SVMlight-styled file of the protein
data set was missing leading zeros for floating point values in [0.0, 1.0). These were added
manually.

5 Results

We found significant overall differences between the evaluated methods, both in terms of
hubness reduction (Friedman p < .000) and nearest neighbor classification performance
(Friedman p < .000). To analyze differences in more detail, we use critical difference plots
([14], see Fig. 3a, b) and post hoc Nemenyi tests. A critical difference (CD) plot shows the
average ranks achieved by the competing methods across all data sets. When comparing
all methods against each other, groups of methods not showing significant differences are
connected with a black bar. In addition, this critical difference (CD bar length) is shown
above the graph. It depends on the number of compared models (methods), the number of
measurements (data sets), and the confidence level.
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5.1 Performance ranking

The CD plot for hubness reduction comparing twelve methods plus two baseline distances
(Euclidean, cosine) is shown in Fig. 3a. Well-performing methods have a low average rank,
that is they reduce hubness more strongly than other methods on many data sets. Any two
methods with a rank difference of at least 2.81 (CD bar length) perform significantly different
according to the Nemenyi test (K = 14 models, N = 50 measurements, « = .05). That is,
methods connected by a black bar do not differ significantly. To give one concrete example,
CENT yielded significantly lower hubness than Eucl, but it does not compared to cos. There-
fore, CENT is connected to cos with a CD bar, but not to Eucl. On a more general note, the
post hoc Nemenyi tests show that nearly all methods reduce hubness compared to baseline
distances Eucl and cos, except for using £” norms, DSG, and LCENT. Method LCENT even
shows increased hubness on average. Strongest hubness reduction was achieved by DSL,
followed without significant rank differences by MP, simhub™, LS, NICDM, and SNN.

———
MpGauss! Critical Difference = 2.81 mp-dissim
SNN CENT
NICDM cos
LS LP norms
simhub™ DSG
MP Eucl
DSL LCENT
e R
® LK) [ ) [ ® ® ) ) ® ®

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Average rank in hubness reduction
(a)
m,-dissim ‘Chcal Difterence = 281 cos
LCENT CENT
DSL Eucl
MPpGauss! L® norms
MP DSG
NICDM SNN
LS simhub™
[ XX, L) e ® [}

S oy

5 6 7 8 9 10 11 12 13 14 15

Average rank in kNN classification accuracy

(b)
Fig. 3 Critical difference plots of average ranks in a hubness reduction and b nearest neighbor classification

accuracy CKNN for twelve hubness reduction methods plus two baseline distances (Eucl, cos). Low ranks
indicate good performance. See Sect. 5 for details
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The CD plot for nearest neighbor classification performance again comparing twelve
methods plus two baseline distances (Euclidean, cosine) is shown in Fig. 3b. Regarding
classification performance, the Nemenyi test reveals two coarse groups of methods: eight of
them perform better or at least as well as the baselines, while four methods perform worse.
Among the low rank (that is, ‘good’) methods, LS, NICDM, and MP yield significantly better
results than the Euclidean baseline. Compared to both baselines, this is solely achieved by
LS. The CD plot reveals, however, that the best six methods (aforementioned plus MpGaussl
DSL, LCENT) are ranked within the critical distance, that is, no significant difference in
their performance given the evaluation setup was found. Both centering variants as well as
m p-dissimilarity yield results very similar to the baselines. The high rank (that is, ‘bad’)
methods are significantly worse than using cosine distances, and only simhub™ is also worse
than using Euclidean distances.

Overall, local (LS, NICDM) and global scaling (MP) methods and DSL perform well both
in regard to hubness reduction and classification performance, and appear to be the most
promising hubness reduction methods. Shared neighbors methods (SNN, simhub™) yield
distances with reduced hubness, but also impaired classification performance, indicating that
their secondary distance space does not respect the semantic meaning of the primary distance
space. Localized centering (LCENT) on the other hand showed reasonable classification
performance, though it increased hubness on average, instead of reducing it. DSG and ¢”
norms have hardly any influence on both evaluation measures.

5.2 Details of hubness reduction and classification performance

Figure 4 depicts the evaluation results in greater detail for six methods representing the
different families of hubness reduction methods described in Sect. 3. Data sets in this plots
are again ordered by ascending hubness (S¥=10) as measured before any hubness reduction,
with low hubness data sets in the upper rows and high hubness data sets in the lower rows.
Measures are absolute differences after and before hubness reduction.

We selected three methods achieving low ranks in both hubness reduction and classifi-
cation performance (Fig. 4a). LS, MP, and DSL represent local scaling, global scaling, and
density gradient flattening, respectively. Looking at the hubness reduction results, depicted as
absolute changes in hubness in the left part of Fig. 4a, we can see that all three methods show
only very small improvements for low hubness hubness data sets, but do show substantial hub-
ness reduction for higher hubness data sets, starting around data set 26 (lungcancer), which
exhibited hubness of 1.2483 before reduction. Previous studies [49] on hubness reduction
have shown a similar picture with reduction methods being effective above 10-occurrence
skewness of 1.4. All three methods show highly comparable hubness reduction in general,
with MP (dark gray bars) achieving negligibly stronger hubness reduction than LS (light gray
bars) in many data sets, explaining the nonsignificant rank differences in Fig. 3a. DisSim"¢d!
(DSL, black bars) performs equally well as LS and MP on many data sets. Hubness reduction
is nearly always on par with both scaling methods. Though DSL actually increases hubness
for data sets 35 and 39 (farm ads, dorothea), coinciding with degraded accuracy, it achieves
lowest hubness values for many others, resulting in the best rank in terms of hubness reduction
in Fig. 3a.

Looking at absolute changes in classification performance in the right part of Fig. 4a,
most significant changes are observed in high hubness data sets, starting around data set 25
(splice). Exceptions are two data sets of low to medium hubness (chronic kidney disease, no.
7, duke, no. 18), where DSL considerably degrades classification performance. On the other
hand, LS increases classification performance for many of the high hubness data sets, with
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Fig. 4 Absolute change of hubness and kNN classification accuracy per data set for each hubness reduction
method compared to baseline (cf. Sect. 4). Improvements are indicated by negative values of hubness change,
and by positive values of accuracy change. Accuracy differences can range from -1 to 1, where, e.g., 0.1 refers
to a performance increase of ten percent points over the baseline. Data sets are ordered by ascending hubness
(Sk:m) as measured before any hubness reduction. a Successful methods. b Methods with mixed results
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MP showing highly similar results. While LS often shows slightly improved classification
accuracy compared to MP, these differences are nevertheless nonsignificant as already shown
in Fig. 3b. DSL shows competitive classification performance compared to scaling methods
for some high hubness data sets but is more often detrimental (e.g., farm ads, no. 35, dorothea,
no. 39, CNAE-9, no. 40, sector, no. 47). While the degradation in classification for DSL
coincides with an increase in hubness for data sets 35 and 39, there is no such connection for
all other cases.

Overall, both scaling methods MP and LS consistently reduce hubness and often improve
classification performance. They may safely be applied on data sets from low to high hubness,
without any noticeable risk of performance degradation. DSL is sometimes competitive with
LS and MP, but also shows a higher risk of decreased performance measures, hinting at
density gradient flattening being less generally applicable than scaling.

Figure 4b shows three methods with mixed evaluation results. LCENT, £” norms, and SNN
represent centering techniques, choosing alternative distance measures, and shared neighbors
approaches. Looking at the hubness reduction results, depicted as absolute changes in hubness
in the left part of Fig. 4b, LCENT (light gray bars) shows increased hubness for almost all
data sets, except the highest hubness data sets 49 (c1ka-twitter) and 50 (dna). Shared nearest
neighbors (SNN, black bars) on the other hand is able to reduce hubness in all medium to high
hubness data sets. Application of £ norms (LP, dark gray bars) has mixed effects on high
hubness data, with reduction of hubness for data sets 42 (DMOZ), 43 (Amazon commerce
reviews) and 49 (clka-twitter), and considerable increase in hubness for data sets 35 (farm
ads), 36 (gisette), 39 (dorothea) and 40 (CNAE-9).

Looking at absolute changes in classification performance in the right part of Fig. 4b, it can
be seen that almost only LCENT (light gray bars) is able to improve accuracy on selected data
sets, typically for those from the text domain, for example data sets 43 (Amazon commerce
reviews) and 49 (twitter). Looking at the respective hubness performance, hubness is reduced
in data set 49, but, strikingly, it is actually strongly increased in data set 43. LCENT can be a
suitable choice for data sets from the text domain, with scaling methods LS and MP (see right
side in Fig. 4a) still performing better. Choosing alternative £ norms (LP, dark gray bars)
or shared nearest neighbors (SNN, black bars) shows virtually only degraded classification
performance, especially for high hubness data. Hubness reduction with these methods does
not seem to be sensible.

5.3 Neighborhood symmetry

Hubness negatively affects neighborhood symmetry as outlined in Sect. 2.1. Hubness reduc-
tion should therefore increase the proportion of symmetric k-nearest neighbor relations.
Figure 5 depicts changes in neighborhood symmetry after hubness reduction compared to
baseline in twelve subplots for the twelve hubness reduction methods. To explain what is
shown in these twelve subplots, we first turn to the results for mutual proximity (MP), in the
left subplot of the top row in Fig. 5. We show the percentage of symmetric nearest neighbor
relations (k = 10) on the y-axis for all 50 data sets on the x-axis. To be more precise, we
show the change in percentage of symmetric nearest neighbor relations when MP is applied
relative to a baseline when no hubness reduction is done. These changes are shown as solid
violet lines in case the percentage of symmetric nearest neighbor relations increases due to
hubness reduction, and as a dashed orange line in case it decreases. Please note that the dot
at one end of every line signifies the result achieved by MP, whereas the other end of a line
signifies the baseline result. These ends show a clear trend of decreasing values from left to
right: Since the data sets on the x-axis are ordered by their hubness values (refer to Table 3),
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this indicates that the baseline measures create fewer symmetric nearest neighbor relations
in data sets with higher hubness, as expected from theory. These baseline values are identical
in all subplots. The subplot for MP clearly shows that the percentage of symmetric nearest
neighbor relations is improved for all data sets. This improvement is stronger for high hub-
ness data sets. On average, the proportion of symmetric relations D S increased from baseline
0.50 to 0.73 when using MP.

As a matter of fact, all local and global scaling methods consistently increase the number
of symmetric neighborhood relations in nearly all cases (MP: DS=0.73, MPC2ussl: D §=0.65,
LS: DS=0.74, NICDM: DS=0.75). They show comparable results among each other with the
effect being weaker in case of MPY2UsS! for some data sets. Modeling distance distributions
with independent Gaussians may not approximate the real distributions in these cases. LCENT
and DSL also improve neighborhood symmetry to a similar extent as scaling methods (both
'DS=0.76). DSL achieves the highest symmetries for several data sets, but reduces symmetry
in five cases, for example, data sets 35 (farm ads) and 39 (dorothea), which in addition also
show increased hubness after application of DSL (cf. Fig. 4a). The global variants of centering
(CENT) and DisSim (DSG) are on average much less successful in increasing symmetry
(both DS = 0.59). This is not surprising, as they were argued to reduce hubness in unimodal
distributions, but real-world data sets are usually better described as mixtures of distributions.
It is noteworthy that most cases of improved symmetry due to centering correspond to data
sets from the text domain. Usage of alternative ¢ norms changes symmetry compared to
baseline only for a few data sets (LP: DS=0.49). Indeed, in some cases parameter selection
yielded p = 2, reducing the metric to the Euclidean baseline. Small positive effects were
found for the m ,-dissimilarity (DS=0.60). SNN severely reduces symmetry for many data
sets, predominantly among those with low to medium hubness, resulting in a reduced DS
of 0.43. The SNN-variant simhub™ also reduces neighborhood symmetry in several cases.
However, it does increase symmetry in data sets with high hubness strongly, and on average
to 0.63.

The results in this section are based on neighborhood sizes k = 10. Similar effects on
neighborhood symmetry were observed with neighborhood ranges adaptive to data set sizes
using k = {5 (not shown).

5.4 Similarity to centroids

Objects highly similar to their (local) centroids may emerge as hubs (cf. Sect. 2.1). Reducing
these similarities should therefore improve hubness. Centroids can be trivially computed
from vector data or may be derived from distances based on metrics like the Euclidean norm.
It is, however, not generally possible to calculate them from arbitrary dissimilarity matrices.
We therefore use (local) medoids as proxies for their corresponding centroids, and measure
correlation between k-occurrence and distance to the medoid. Reduced correlation should
hint at reduced emergence of hubs.

Figure 6 depicts changes in correlation after hubness reduction compared to baseline
analogously to Fig. 5 displaying neighborhood symmetry changes. To describe the plot in
more detail, let us consider the left subplot in the fourth row, showing the results for CENT.
Dot markers indicate the correlation between 10-occurrence and distance to local medoids
on the y-axis for each data set on the x-axis. As expected, there is a trend of stronger negative
correlations in data sets of higher hubness before hubness reduction. The average absolute
value of correlation is denoted as |r| and given for all hubness reduction methods in their
corresponding subplot. The horizontal line indicates the targeted correlation value of r = 0.
CENT uses the inner product as similarity measure. After centering, the data centroid is a
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absolute values of correlation after hubness reduction. Baseline 7| = 0.38
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zero vector and, thus, all inner product similarities to the centroid are uniform zero [56].
Consequently, there is no correlation between these similarities and k-occurrence. Given the
results of CENT with most correlations being very close to zero and the average correlation
m = 0.07, we assume that medoids are indeed suitable proxies for centroids.

Vertical lines reveal the change in correlation due to hubness reduction compared to
baseline. That is, baseline correlations reside at the end of the lines opposite to the dot
markers. Solid violet lines indicate improved correlations, which are closer to zero after
hubness reduction. Dashed orange lines signalize degraded correlations with higher absolute
values after hubness reduction. Consider for example the right subplot of the fourth row:
In five cases, LCENT ‘overshoots‘ and yields positive correlations of higher absolute value
than the negative correlations before hubness reduction.

We find an average Spearman |r| = 0.38 for the baseline not using any hubness reduction.
All reduction methods are able to reduce this correlation. Weakest average correlations (|r| <
0.2) are observed for LCENT, DSL, LS, NICDM and simhub™. All other methods, except
for £7 norms (m = 0.38), create weak correlations as well. In case of SNN, this may be
partly due to the fact, that its secondary distances can only take a low number of different
discrete values (precisely the neighborhood size k + 1). Consequently, SNN often yields
many equal distances, and random rankings among those distances reduce correlation.

Interestingly, the correlations are reduced not only when using spatial centrality-based
methods, but also for those based on neighborhood symmetry, like for example MP or LS.

5.5 Association of evaluation criteria

We rank all methods and baseline measures by their success in hubness reduction (Fig. 3a),
classification performance (Fig. 3b), degree of symmetric neighborhood relations (Fig. 5),
and spatial centrality reduction (Fig. 6). Across all hubness reduction methods and baseline
measures, symmetry ranks are highly correlated with accuracy ranks (Spearman r = 0.72,
Fig. 7). That is, effectiveness in terms of increased symmetry corresponds well to the results
in nearest neighbor classification. Ranks in reducing spatial centrality are more in line with

Centrality

Symmetry

Hubness

Accuracy  -0.051

Centrality Symmetry Hubness Accuracy

Fig.7 Spearman correlation between evaluation criteria. Correlations are calculated from the ranks of twelve
hubness reduction methods and two baseline measures given each criterion (see Sect. 5.5). ‘Centrality’ refers
to the association between k-occurrence and distance to local medoids (Sect. 5.4), ‘Symmetry’ refers to
the proportion of symmetric relations in nearest neighbor lists (Sect. 5.3), ‘Hubness’ is the skewness of the
10-occurrence distribution, and ‘Accuracy’ denotes the classification performance
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the ranks in hubness reduction (Spearman r = 0.42, Fig. 7), than with classification accuracy,
for which we observe no rank correlation with spatial centrality (r = —0.05). The associ-
ation between reduced spatial centrality and hubness reduction is, however, less clear than
the association between strengthened neighborhood symmetry and increased classification
performance. To give one concrete example, correlation between 10-occurrence and distance
to local medoids is strongly decreased using CENT, but hubness is reduced only slightly, and
in case of MP, vice versa (Fig. 6).

6 Discussion

We find that global and local scaling methods (MP, LS, NICDM) consistently improve per-
formance for all evaluation measures over a wide range of data sets from various domains.
This result is in line with the findings of a previous study [49]. Scaling methods achieve high-
est classification accuracy among the competing hubness reduction methods, and perform
competitively to the best methods given the other evaluation measures. LS and NICDM are
conceptually similar. While LS only considers the distance to one fixed neighbor, NICDM
uses statistics over several neighbors. For this reason, we had expected higher stability of
NICDM results over LS. Instead, both methods perform equally well. Carefully tuning their
hyperparameters might have compensated for any instability. Density gradient flattening
with DSL yields the best results in hubness reduction and neighborhood symmetry. Differ-
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ences in classification performance between DSL and scaling methods are nonsignificant.
We recommend using any of the four methods MP, LS, NICDM, and DSL for general hub-
ness reduction. For large data sets, the cubic time complexity of MP is prohibitive, whereas
LS, NICDM, and DSL scale only quadratically with the data set size. In the framework of
mutual proximity, quadratic complexity can be achieved by approximating the empiric dis-
tance distribution with normal or Gamma distributions [49]. The approximation with normal
distributions (MPC2uss!y yielded good results. Overall performance degradation compared to
MP using empiric distributions is not significant, and might be caused by some data sets, for
which independent Gaussians do not fit the true distance distributions well. MPG2USS may
thus be used, when MP is too expensive in large data sets. Furthermore, distance distributions
can be modeled using any continuous distribution. Given specific domain knowledge, other
distributions may yield better MP approximations.

For very large data sets, algorithms with quadratic complexities are not applicable. Hub-
ness reduction heuristics with subquadratic time and space requirements can be devised: LS,
NICDM, and DSL require local neighborhood information. Their transformations could be
accelerated using approximate nearest neighbor techniques. Locality-sensitive hashing [31]
is commonly used for approximate search in high-dimensional spaces [1]. Since LSH requires
vector data, different approaches are necessary for data sets only providing distances between
objects. Sampling strategies could serve as an alternative for these cases, and may also be
employed to reduce the complexity of mutual proximity. Heuristics based on these or other
strategies would allow for hubness reduction in very large data sets. Evaluation of effective-
ness and efficiency is yet to be performed, however.

Centering approaches show mixed results. They improve performance measures in several
data sets from the text domain. Several other data sets are hardly influenced by centering,
possibly due to its global nature: Hubs emerge close to the global mean only in case of
unimodal data distributions [44]. Subtracting the mean does not eliminate spatial centrality
in data sets with underlying multimodal distributions. The mechanism of hubness reduction
behind centering does fail in such cases. LCENT similarities are calculated by subtracting
affinity to local centroids. However, significant improvements over CENT were not observed
in the evaluation. Centering seems to be applicable primarily to text data sets, but it does not
outperform scaling methods or DSL in these cases. Due to its low cost, CENT can be applied
to large data sets, and may thus be used for hubness reduction, when other methods are too
expensive.

We do not recommend the other evaluated methods for hubness reduction. Using alterna-
tive £” norms or DSG does not yield improved performance measures. The formulation of
DSG assumes all data to be generated from a unimodal probability distribution, an assump-
tion presumably violated by many real-world data sets used in this study. This could explain
the marked performance difference between the global and local DisSim variants, since DSL
can handle mixtures of distributions by considering local neighborhoods. The shared neigh-
bors approaches SNN and simhub'™ reduce hubness, but fail to preserve, let alone improve
data semantics. It has been argued previously that shared neighbor transformations cause
information loss, because they only use rank information, and their codomain contains only
k + 1 different values [20]. The data-dependent m ,-dissimilarity measure improves perfor-
mance indicators compared to baseline, but does not yield results competitive with the best
methods.

Given the results in Figs. 5, 6, 7, we observe that symmetric nearest neighbor relations
have a stronger influence on classification performance than distances to medoids, which
weakly corresponds to hubness. A possible explanation for these observations is that spatial
centrality might not be the actual (or at least not the only) driving force in hub emergence. For

@ Springer



A comprehensive empirical comparison of hubness reduction... 163

example, Low et al. describe hubness as an effect of density gradients due to non-uniform data
distributions or boundary effects [39]. Spatial centrality-based methods may fail to reduce
hubness and improve data semantics in such cases, unless they also flatten the density gradient.
As opposed to this, asymmetric nearest neighbor relations are not a source of hubness, but a
necessary consequence of skewed k-occurrences. Fixing detrimental effects of hubness one
step later in the chain of causation might give methods based on neighborhood symmetry
the advantage of independence of the primary cause of hubness. Verifying this hypothesis
remains a task for future research.

Figure 8 serves as a reference for the interested reader. Based on some simple criteria, it
guides through the hubness analysis workflow: Dimensionality and hubness measurements
help decide, whether hubness reduction is indicated for given data. Data set size and applica-
tion domain help decide which method to choose. Finally, alternatives are recommended if
the selected hubness reduction method does not yield sufficient performance improvements.

On a side note, the difference between LCENT and LS has previously been described
in terms of their theoretical motivation [27]: LCENT tries to reduce correlation between k-
occurrence and local affinity, which is related to the distance to the local centroid/medoid. On
the other hand, LS tries to make nearest neighbor relations more symmetric. Our empirical
results do not support this distinction, since both methods achieve similar improvements both
in terms of neighborhood symmetry and k-occurrence/medoid correlation.

7 Conclusion

In this paper, we presented a large-scale empirical evaluation of unsupervised hubness reduc-
tion methods. We analyzed hubness in terms of k-occurrence skewness, spatial centrality, and
neighborhood symmetry before and after hubness reduction. Global and local scaling (MP,
LS, NICDM) as well as density gradient flattening (DSL) improve these measures as well as
data semantics (classification accuracy) over a wide range of data sets from various domains
and may be considered state-of-the-art in hubness reduction. Global and localized centering
are not as generally applicable, but can be successful for data from the text domain, with
CENT being especially simple and inexpensive.

Future work will continue to investigate the impact of hubness on supervised and unsu-
pervised learning methods beyond nearest neighbor classification. The development and
evaluation of hubness reduction heuristics with subquadratic time and space complexity will
allow to tackle large data sets.
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