Acta Mathematica Sinica, English Series Dec., 2018, Vol. 34, No. 12, pp. 1907–1910 Published online: August 30, 2018 https://doi.org/10.1007/s10114-018-8028-3 http://www.ActaMath.com

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2018

Erratum to "On a Classical Theorem on the Diameter and Minimum Degree of a Graph"

Verónica HERNÁNDEZ Domingo PESTANA José M. RODRÍGUEZ

Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

 $E\text{-}mail:\ vehernan@math.uc3m.es \qquad dompes@math.uc3m.es \qquad jomaro@math.uc3m.es$

Abstract The original version of the article was published in [1]. Unfortunately, the original version of this article contains a mistake: in Theorem 6.2 appears that $\beta(n, \Delta) = (n - \Delta + 5)/4$ but the correct statement is $\beta(n, \Delta) = (n - \Delta + 4)/4$. In this erratum we correct the theorem and give the correct proof.

Keywords Extremal problems on graphs, diameter, minimum degree, maximum degree, Gromov hyperbolicity, hyperbolicity constant, finite graphs

MR(2010) Subject Classification 05C75, 05C12, 05A20, 05C80

6 Computation of $\beta(n, \Delta)$

Lemma 6.1 For all $\Delta \ge 6$ and $n \ge \Delta + 1$, we have $\beta(n, \Delta) \le (n - \Delta + 4)/4$.

Proof Seeking for a contradiction assume that $\beta(n, \Delta) > (n - \Delta + 4)/4$. Thus, there exists $G \in \mathcal{J}(n, \Delta)$ such that $\delta(G) > (n - \Delta + 4)/4$. By Theorem 3.5, $\delta(G) \ge (n - \Delta + 5)/4$. By Theorem 3.6 there exist a geodesic triangle $T = \{x, y, z\}$ with $x, y, z \in J(G)$ and $p \in [xy]$ such that $\delta(G) = d(p, [xz] \cup [yz])$. Since $L(T) \ge 4\delta(G)$, we have $L(T) = n - \Delta + t$ with $t \ge 5$, and $|V(G) \setminus T| = \Delta - t$.

Fix $v \in V(G)$ with $\deg(v) = \Delta$. We consider now several cases:

Case (A) Assume first that $v \notin T$. Since $|V(G) \setminus T| = \Delta - t$ and $v \in V(G) \setminus T$, we have $|N(v) \cap T| \ge t+1$. Define $t_1 = |N(v) \cap [xy]|$ and $t_2 = |N(v) \cap (T \setminus [xy])|$. Thus, $t_1+t_2 \ge t+1$. Since [xy] is a geodesic, we have $0 \le t_1 \le 3$ and, therefore, $t_2 \ge t-2 \ge 3$ and $N(v) \cap (T \setminus [xy]) \ne \emptyset$.

Case (A.1) If $t_1 \ge 2$, then let us choose $\alpha_x, \alpha_y \in V(G) \cap [xy]$ and $\beta_x, \beta_y \in V(G) \cap (T \setminus [xy])$, with

$$\begin{aligned} d_G(x, \alpha_x) &= \min\{d_G(x, w) \mid w \in N(v) \cap [xy]\}, \\ d_G(y, \alpha_y) &= \min\{d_G(y, w) \mid w \in N(v) \cap [xy]\}, \\ d_{[xz] \cup [zy]}(x, \beta_x) &= \min\{d_{[xz] \cup [zy]}(x, w) \mid w \in N(v) \cap (T \setminus [xy])\} \\ d_{[xz] \cup [zy]}(y, \beta_y) &= \min\{d_{[xz] \cup [zy]}(y, w) \mid w \in N(v) \cap (T \setminus [xy])\}. \end{aligned}$$

Received January 31, 2018, accepted May 16, 2018

Supported by two grants from Ministerio de Economía y Competitividad, Spain (Grant Nos. MTM2013-46374-P and MTM2015-69323-REDT)

We have $L([xy]) \ge d_G(x, \alpha_x) + t_1 - 1 + d_G(\alpha_y, y)$ and $L([xz] \cup [zy]) \ge d_{[xz] \cup [zy]}(x, \beta_x) + t_2 - 1 + d_{[xz] \cup [zy]}(\beta_y, y)$. We can assume that $p \in [\alpha_y y]$, since otherwise the argument is similar (if $p \in [x\alpha_x]$ the argument is symmetric, if $p \in [\alpha_x \alpha_y]$ the argument is similar and simpler). Since there exists $v' \in N(v) \cap (T \setminus [xy])$, we have $L([\alpha_y y] \cup [\alpha_y, v] \cup [v, v']) \ge 2\delta(G)$ and, consequently, $d_G(\alpha_y, y) \ge 2\delta(G) - 2$. Thus, $L([xy]) \ge d_G(x, \alpha_x) + t_1 - 1 + 2\delta(G) - 2$. We also have

 $2\delta(G) \le d_G(x,y) \le d_G(x,\beta_x) + d_G(\beta_x,v) + d_G(v,\beta_y) + d_G(\beta_y,y) = d_G(x,\beta_x) + d_G(\beta_y,y) + 2,$ $L([xz] \cup [zy]) \ge 2\delta(G) - 2 + t_2 - 1,$

$$n - \Delta + t = L(T) \ge d_G(x, \alpha_x) + t_1 + t_2 - 6 + 4\delta(G) \ge d_G(x, \alpha_x) + t - 5 + n - \Delta + 5,$$

which is a contradiction if $d_G(x, \alpha_x) > 0$, i.e., $x \notin N(v)$.

If
$$x \in N(v)$$
, then $L([xz] \cup [zy]) \ge t_2 + d_{[xz] \cup [zy]}(\beta_y, y)$, and the previous argument gives
 $n - \Delta + t = L(T) \ge t_1 + t_2 - 5 + 4\delta(G) \ge t - 4 + n - \Delta + 5$,

which is a contradiction.

Case (A.2) If $t_1 < 2$, then $t_2 \ge t$. The argument in (A.1) also gives $L([xz] \cup [zy]) \ge 2\delta(G) + t_2 - 3$ in this case. Since $L([xy]) \ge 2\delta(G)$, we have

$$n-\Delta+t=L(T)\geq 4\delta(G)-3+t\geq n-\Delta+5-3+t,$$

a contradiction.

Case (B) Now, assume that $v \in T$. Since $|V(G) \setminus T| = \Delta - t$, we have $|N(v) \cap T| \ge t$.

Case (B.1) Assume that $v \in [xy]$. Since [xy] is a geodesic and $v \in [xy]$, we have $|N(v) \cap [xy]| \le 2$ and, therefore, $|N(v) \cap (T \setminus [xy])| \ge t - 2$ and $N(v) \cap (T \setminus [xy]) \ne \emptyset$. Let us choose $\beta_x, \beta_y \in V(G) \cap (T \setminus [xy])$ as in case (A.1).

We can assume that $p \in [vy]$, since otherwise the argument is similar. We have

$$\begin{split} &2\delta(G) \leq d_G(x,y) \leq d_G(x,v) + d_G(v,\beta_y) + d_G(\beta_y,y) = d_G(x,v) + d_G(\beta_y,y) + 1, \\ &L([xz] \cup [zy]) \geq d_G(x,\beta_x) + d_G(\beta_x,\beta_y) + d_G(\beta_y,y) \geq 1/2 + d_G(\beta_y,y) + t - 3, \\ &L([xy]) \geq d_G(x,v) + d_G(v,y) \geq d_G(x,v) + 2\delta(G) - 1, \\ &n - \Delta + t = L(T) \geq d_G(x,v) + 2\delta(G) - 1 + 1/2 + d_G(\beta_y,y) + t - 3 \\ &\geq 4\delta(G) + 1/2 + t - 5 \geq n - \Delta + t + 1/2, \end{split}$$

which is a contradiction.

Case (B.2) Assume that $v \in T \setminus [xy]$. Define $t_1 = |N(v) \cap [xy]|$ and $t_2 = |N(v) \cap (T \setminus [xy])|$. Thus, $t_1 + t_2 \ge t$. Since [xy] is a geodesic, we have $0 \le t_1 \le 3$ and, therefore, $t_2 \ge t - 3 \ge 2$ and $N(v) \cap (T \setminus [xy]) \ne \emptyset$.

Case (B.2.1) If $t_1 \ge 2$, then let us choose $\alpha_x, \alpha_y \in V(G) \cap [xy]$ and $\beta_x, \beta_y \in V(G) \cap (T \setminus [xy])$ as in case (A.1).

We have $L([xy]) \geq d_G(x, \alpha_x) + t_1 - 1 + d_G(\alpha_y, y)$ and $L([xz] \cup [zy]) \geq d_{[xz] \cup [zy]}(x, \beta_x) + t_2 - 1 + d_{[xz] \cup [zy]}(\beta_y, y)$. We can assume that $p \in [\alpha_y y]$, since otherwise the argument is similar. Since $L([\alpha_y y] \cup [\alpha_y, v]) \geq 2\delta(G)$, we have $d_G(\alpha_y, y) \geq 2\delta(G) - 1$. Thus, $L([xy]) \geq d_G(x, \alpha_x) + t_1 - 1 + 2\delta(G) - 1$. We also have

$$2\delta(G) \le d_G(x, y) \le d_G(x, \beta_x) + d_G(\beta_x, v) + d_G(v, \beta_y) + d_G(\beta_y, y) = d_G(x, \beta_x) + d_G(\beta_y, y) + 2,$$

Erratum

$$L([xz] \cup [zy]) \ge 2\delta(G) - 2 + t_2 - 1,$$

$$n - \Delta + t = L(T) \ge d_G(x, \alpha_x) + t_1 + t_2 - 5 + 4\delta(G) \ge d_G(x, \alpha_x) + t - 5 + n - \Delta + 5,$$

which is a contradiction if $d_G(x, \alpha_x) > 0$, i.e., $x \notin N(v)$.

If $x \in N(v)$, then $L([xz] \cup [zy]) \ge t_2 + d_{[xz] \cup [zy]}(\beta_y, y)$, and the previous argument gives

$$n - \Delta + t = L(T) \ge t_1 + t_2 - 4 + 4\delta(G) \ge t - 4 + n - \Delta + 5,$$

a contradiction.

Case (B.2.2) If $t_1 < 2$, then $t_2 \ge t - 1$. The argument in (B.2.1) also gives $L([xz] \cup [zy]) \ge 2\delta(G) + t_2 - 3$ in this case. Since $L([xy]) \ge 2\delta(G)$, we have

$$n - \Delta + t = L(T) \ge 4\delta(G) + t - 4 \ge n - \Delta + 5 + t - 4,$$

which is a contradiction.

Hence, $\beta(n, \Delta) \leq (n - \Delta + 4)/4$.

Theorem 6.2 Consider any $1 \le \Delta \le n-1$.

- If $\Delta = 1$, then n = 2 and $\beta(2, 1) = 0$.
- If $2 \leq \Delta \leq 4$, then $\beta(n, \Delta) = n/4$.
- If $\Delta \ge 5$, then $\beta(n, \Delta) = (n \Delta + 4)/4$.

Proof For every n and Δ , Theorem 4.7 gives $\beta(n, \Delta) \leq n/4$.

If $\Delta = 1$ and $G \in \mathcal{J}(n, 1)$, then G is isomorphic to the path graph P_2 . Thus, n = 2 and $\beta(2, 1) = 0$.

If $\Delta = 2$, then every graph $G \in \mathcal{J}(n, 2)$ is isomorphic to either the path graph P_n (if $\delta = 1$) or the cycle graph C_n (if $\delta = 2$). Since $\delta(C_n) = n/4$, we conclude $\beta(n, \Delta) = n/4$.

If $\Delta = 3$ or $\Delta = 4$, then [43, Proposition 29 and Theorem 30] provide graphs $G_{n,\Delta} \in \mathcal{J}(n,\Delta)$ with $\delta(G_{n,\Delta}) = n/4$, which implies $\beta(n,\Delta) = n/4$.

Assume $\Delta = 5$ (thus $n \ge 6$). Note that [43, Proposition 29 and Theorem 30] give $\beta(n,5) < n/4$, and Theorem 3.5 gives $\beta(n,5) \le (n-1)/4$. Since $\beta(n,4) = n/4$ for every $n \ge 5$, there exists a graph $F_n \in \mathcal{J}(n-1,4)$ with $\delta(F_n) = (n-1)/4$ and $w \in V(F_n)$ such that deg w = 4 for each $n \ge 6$. Consider a graph Γ isomorphic to P_2 and fix a vertex $v \in V(\Gamma)$. Identify v and w in a single vertex v^* . We obtain in this way a graph $G_n \in \mathcal{J}(n,5)$ from F_n and Γ , since $\Delta = \deg v^* = 4 + 1$. Furthermore, $\{F_n, \Gamma\}$ is the biconnected decomposition of G_n and Theorem 3.1 gives $\delta(G_n) = \delta(F_n) = (n-1)/4$. Therefore, $\beta(n,5) \ge \delta(G_n) = (n-1)/4$, and we conclude $\beta(n,5) = (n-1)/4$.

Assume now $\Delta \geq 6$. Since $n - \Delta \geq 1$ we can consider a graph G_1 isomorphic to the cycle graph $C_{n-\Delta+5}$. Consider two points $x, y \in G_1$, with $x \in V(G_1)$ and $d_{G_1}(x, y) = (n - \Delta + 4)/2$. Denote by Γ_1, Γ_2 the geodesics in G_1 joining x and y with $G_1 = \Gamma_1 \cup \Gamma_2$. Denote by v_i^j the vertex in Γ_i with $d_{G_1}(v_i^j, x) = j$, for i = 1, 2 and $1 \leq j \leq (n - \Delta + 5)/2$. Note that $(n - \Delta + 5)/2 \geq 3$.

Consider a graph G_2 isomorphic to the star graph with $\Delta + 1$ vertices $S_{\Delta} \in \mathcal{J}(\Delta + 1, \Delta)$. Denote by $v^* \in V(G_2)$ the vertex of maximum degree in G_2 , that is, deg $v^* = \Delta$. Since $\Delta \geq 6$, we can choose vertices $w_j \in V(G_2) \setminus \{v^*\}$ $(j = 1, \ldots, 6)$.

Identify x and w_6 in a single vertex w^* . For each $1 \leq j \leq 2$, identify $v_1^j \in V(\Gamma_1)$ and $w_j \in V(G_2)$ in a single vertex v_i^* , and for each $1 \leq j \leq 3$, identify $v_2^j \in V(\Gamma_2)$ and $w_{j+2} \in V(G_2)$

in a single vertex v_{j+2}^* . We obtain in this way a graph $G \in \mathcal{J}(n, \Delta)$ from G_1 and G_2 , since $|V(G)| = n - \Delta + 5 + \Delta + 1 - 6 = n$ and $\Delta = \deg v^*$.

Consider the geodesic triangle $T = \{x, y, z\}$ in G with $z = v_4^*$, $\Gamma_1 = [xy]$ and $\Gamma_2 = [xz] \cup [zy]$. If we consider the midpoint p of Γ_1 , then

$$\beta(n, \Delta) \ge \delta(G) \ge d_G(p, \Gamma_2) = d_G(p, \{x, y\}) = \frac{1}{2}L(\Gamma_1) = \frac{n - \Delta + 4}{4}.$$

Since Lemma 6.1 implies $\beta(n, \Delta) \leq (n - \Delta + 4)/4$, we conclude $\beta(n, \Delta) = (n - \Delta + 4)/4$. \Box

References

 Hernández, V., Pestana, D., Rodríguez, J.: On a classical theorem on the diameter and minimum degree of a graph. Acta Mathematica Sinica, English Series, 33(11), 1477–1503 (2017)