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Abstract The original version of the article was published in [1]. Unfortunately, the original version

of this article contains a mistake: in Theorem 6.2 appears that β(n,Δ) = (n−Δ+5)/4 but the correct

statement is β(n,Δ) = (n − Δ + 4)/4. In this erratum we correct the theorem and give the correct

proof.
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6 Computation of β(n,Δ)

Lemma 6.1 For all Δ ≥ 6 and n ≥ Δ + 1, we have β(n, Δ) ≤ (n − Δ + 4)/4.

Proof Seeking for a contradiction assume that β(n, Δ) > (n − Δ + 4)/4. Thus, there exists
G ∈ J (n, Δ) such that δ(G) > (n − Δ + 4)/4. By Theorem 3.5, δ(G) ≥ (n − Δ + 5)/4. By
Theorem 3.6 there exist a geodesic triangle T = {x, y, z} with x, y, z ∈ J(G) and p ∈ [xy] such
that δ(G) = d(p, [xz] ∪ [yz]). Since L(T ) ≥ 4δ(G), we have L(T ) = n − Δ + t with t ≥ 5, and
|V (G) \ T | = Δ − t.

Fix v ∈ V (G) with deg(v) = Δ. We consider now several cases:

Case (A) Assume first that v /∈ T . Since |V (G) \ T | = Δ − t and v ∈ V (G) \ T , we have
|N(v)∩T | ≥ t+1. Define t1 = |N(v)∩[xy]| and t2 = |N(v)∩(T \[xy])|. Thus, t1+t2 ≥ t+1. Since
[xy] is a geodesic, we have 0 ≤ t1 ≤ 3 and, therefore, t2 ≥ t − 2 ≥ 3 and N(v) ∩ (T \ [xy]) �= ∅.
Case (A.1) If t1 ≥ 2, then let us choose αx, αy ∈ V (G)∩ [xy] and βx, βy ∈ V (G)∩ (T \ [xy]),
with

dG(x, αx) = min{dG(x, w) | w ∈ N(v) ∩ [xy]},
dG(y, αy) = min{dG(y, w) | w ∈ N(v) ∩ [xy]},
d[xz]∪[zy](x, βx) = min{d[xz]∪[zy](x, w) | w ∈ N(v) ∩ (T \ [xy])},
d[xz]∪[zy](y, βy) = min{d[xz]∪[zy](y, w) | w ∈ N(v) ∩ (T \ [xy])}.
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We have L([xy]) ≥ dG(x, αx)+ t1−1+dG(αy, y) and L([xz]∪ [zy]) ≥ d[xz]∪[zy](x, βx)+ t2−
1 + d[xz]∪[zy](βy, y). We can assume that p ∈ [αyy], since otherwise the argument is similar (if
p ∈ [xαx] the argument is symmetric, if p ∈ [αxαy] the argument is similar and simpler). Since
there exists v′ ∈ N(v)∩ (T \ [xy]), we have L([αyy]∪ [αy, v]∪ [v, v′]) ≥ 2δ(G) and, consequently,
dG(αy, y) ≥ 2δ(G) − 2. Thus, L([xy]) ≥ dG(x, αx) + t1 − 1 + 2δ(G) − 2. We also have

2δ(G) ≤ dG(x, y) ≤ dG(x, βx) + dG(βx, v) + dG(v, βy) + dG(βy, y) = dG(x, βx) + dG(βy, y) + 2,

L([xz] ∪ [zy]) ≥ 2δ(G) − 2 + t2 − 1,

n − Δ + t = L(T ) ≥ dG(x, αx) + t1 + t2 − 6 + 4δ(G) ≥ dG(x, αx) + t − 5 + n − Δ + 5,

which is a contradiction if dG(x, αx) > 0, i.e., x /∈ N(v).
If x ∈ N(v), then L([xz] ∪ [zy]) ≥ t2 + d[xz]∪[zy](βy, y), and the previous argument gives

n − Δ + t = L(T ) ≥ t1 + t2 − 5 + 4δ(G) ≥ t − 4 + n − Δ + 5,

which is a contradiction.

Case (A.2) If t1 < 2, then t2 ≥ t. The argument in (A.1) also gives L([xz] ∪ [zy]) ≥
2δ(G) + t2 − 3 in this case. Since L([xy]) ≥ 2δ(G), we have

n − Δ + t = L(T ) ≥ 4δ(G) − 3 + t ≥ n − Δ + 5 − 3 + t,

a contradiction.

Case (B) Now, assume that v ∈ T . Since |V (G) \ T | = Δ − t, we have |N(v) ∩ T | ≥ t.

Case (B.1) Assume that v ∈ [xy]. Since [xy] is a geodesic and v ∈ [xy], we have |N(v) ∩
[xy]| ≤ 2 and, therefore, |N(v) ∩ (T \ [xy])| ≥ t − 2 and N(v) ∩ (T \ [xy]) �= ∅. Let us choose
βx, βy ∈ V (G) ∩ (T \ [xy]) as in case (A.1).

We can assume that p ∈ [vy], since otherwise the argument is similar. We have

2δ(G) ≤ dG(x, y) ≤ dG(x, v) + dG(v, βy) + dG(βy, y) = dG(x, v) + dG(βy, y) + 1,

L([xz] ∪ [zy]) ≥ dG(x, βx) + dG(βx, βy) + dG(βy, y) ≥ 1/2 + dG(βy, y) + t − 3,

L([xy]) ≥ dG(x, v) + dG(v, y) ≥ dG(x, v) + 2δ(G) − 1,

n − Δ + t = L(T ) ≥ dG(x, v) + 2δ(G) − 1 + 1/2 + dG(βy, y) + t − 3

≥ 4δ(G) + 1/2 + t − 5 ≥ n − Δ + t + 1/2,

which is a contradiction.

Case (B.2) Assume that v ∈ T \ [xy]. Define t1 = |N(v)∩ [xy]| and t2 = |N(v)∩ (T \ [xy])|.
Thus, t1 + t2 ≥ t. Since [xy] is a geodesic, we have 0 ≤ t1 ≤ 3 and, therefore, t2 ≥ t − 3 ≥ 2
and N(v) ∩ (T \ [xy]) �= ∅.
Case (B.2.1) If t1 ≥ 2, then let us choose αx, αy ∈ V (G)∩ [xy] and βx, βy ∈ V (G)∩(T \ [xy])
as in case (A.1).

We have L([xy]) ≥ dG(x, αx) + t1 − 1 + dG(αy, y) and L([xz] ∪ [zy]) ≥ d[xz]∪[zy](x, βx) +
t2 − 1 + d[xz]∪[zy](βy, y). We can assume that p ∈ [αyy], since otherwise the argument is
similar. Since L([αyy] ∪ [αy, v]) ≥ 2δ(G), we have dG(αy, y) ≥ 2δ(G) − 1. Thus, L([xy]) ≥
dG(x, αx) + t1 − 1 + 2δ(G) − 1. We also have

2δ(G) ≤ dG(x, y) ≤ dG(x, βx) + dG(βx, v) + dG(v, βy) + dG(βy, y) = dG(x, βx) + dG(βy, y) + 2,
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L([xz] ∪ [zy]) ≥ 2δ(G) − 2 + t2 − 1,

n − Δ + t = L(T ) ≥ dG(x, αx) + t1 + t2 − 5 + 4δ(G) ≥ dG(x, αx) + t − 5 + n − Δ + 5,

which is a contradiction if dG(x, αx) > 0, i.e., x /∈ N(v).
If x ∈ N(v), then L([xz] ∪ [zy]) ≥ t2 + d[xz]∪[zy](βy, y), and the previous argument gives

n − Δ + t = L(T ) ≥ t1 + t2 − 4 + 4δ(G) ≥ t − 4 + n − Δ + 5,

a contradiction.

Case (B.2.2) If t1 < 2, then t2 ≥ t − 1. The argument in (B.2.1) also gives L([xz] ∪ [zy])
≥ 2δ(G) + t2 − 3 in this case. Since L([xy]) ≥ 2δ(G), we have

n − Δ + t = L(T ) ≥ 4δ(G) + t − 4 ≥ n − Δ + 5 + t − 4,

which is a contradiction.
Hence, β(n, Δ) ≤ (n − Δ + 4)/4. �

Theorem 6.2 Consider any 1 ≤ Δ ≤ n − 1.
• If Δ = 1, then n = 2 and β(2, 1) = 0.
• If 2 ≤ Δ ≤ 4, then β(n, Δ) = n/4.
• If Δ ≥ 5, then β(n, Δ) = (n − Δ + 4)/4.

Proof For every n and Δ, Theorem 4.7 gives β(n, Δ) ≤ n/4.
If Δ = 1 and G ∈ J (n, 1), then G is isomorphic to the path graph P2. Thus, n = 2 and

β(2, 1) = 0.
If Δ = 2, then every graph G ∈ J (n, 2) is isomorphic to either the path graph Pn (if δ = 1)

or the cycle graph Cn (if δ = 2). Since δ(Cn) = n/4, we conclude β(n, Δ) = n/4.
If Δ = 3 or Δ = 4, then [43, Proposition 29 and Theorem 30] provide graphs Gn,Δ ∈ J (n, Δ)

with δ(Gn,Δ) = n/4, which implies β(n, Δ) = n/4.
Assume Δ = 5 (thus n ≥ 6). Note that [43, Proposition 29 and Theorem 30] give β(n, 5) <

n/4, and Theorem 3.5 gives β(n, 5) ≤ (n − 1)/4. Since β(n, 4) = n/4 for every n ≥ 5, there
exists a graph Fn ∈ J (n − 1, 4) with δ(Fn) = (n − 1)/4 and w ∈ V (Fn) such that deg w = 4
for each n ≥ 6. Consider a graph Γ isomorphic to P2 and fix a vertex v ∈ V (Γ). Identify
v and w in a single vertex v∗. We obtain in this way a graph Gn ∈ J (n, 5) from Fn and Γ,
since Δ = deg v∗ = 4 + 1. Furthermore, {Fn, Γ} is the biconnected decomposition of Gn and
Theorem 3.1 gives δ(Gn) = δ(Fn) = (n− 1)/4. Therefore, β(n, 5) ≥ δ(Gn) = (n− 1)/4, and we
conclude β(n, 5) = (n − 1)/4.

Assume now Δ ≥ 6. Since n − Δ ≥ 1 we can consider a graph G1 isomorphic to the cycle
graph Cn−Δ+5. Consider two points x, y ∈ G1, with x ∈ V (G1) and dG1(x, y) = (n−Δ + 4)/2.
Denote by Γ1, Γ2 the geodesics in G1 joining x and y with G1 = Γ1∪Γ2. Denote by vj

i the vertex
in Γi with dG1(v

j
i , x) = j, for i = 1, 2 and 1 ≤ j ≤ (n−Δ + 5)/2. Note that (n−Δ + 5)/2 ≥ 3.

Consider a graph G2 isomorphic to the star graph with Δ + 1 vertices SΔ ∈ J (Δ + 1, Δ).
Denote by v∗ ∈ V (G2) the vertex of maximum degree in G2, that is, deg v∗ = Δ. Since Δ ≥ 6,
we can choose vertices wj ∈ V (G2) � {v∗} (j = 1, . . . , 6).

Identify x and w6 in a single vertex w∗. For each 1 ≤ j ≤ 2, identify vj
1 ∈ V (Γ1) and

wj ∈ V (G2) in a single vertex v∗j , and for each 1 ≤ j ≤ 3, identify vj
2 ∈ V (Γ2) and wj+2 ∈ V (G2)
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in a single vertex v∗j+2. We obtain in this way a graph G ∈ J (n, Δ) from G1 and G2, since
|V (G)| = n − Δ + 5 + Δ + 1 − 6 = n and Δ = deg v∗.

Consider the geodesic triangle T = {x, y, z} in G with z = v∗4 , Γ1 = [xy] and Γ2 = [xz]∪[zy].
If we consider the midpoint p of Γ1, then

β(n, Δ) ≥ δ(G) ≥ dG(p, Γ2) = dG(p, {x, y}) =
1
2
L(Γ1) =

n − Δ + 4
4

.

Since Lemma 6.1 implies β(n, Δ) ≤ (n−Δ+4)/4, we conclude β(n, Δ) = (n−Δ+4)/4. �
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