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Abstract
Wild edible plants (WEPs) can provide diverse and nutrient-rich food sources that contribute to the health and well-being 
of communities worldwide. In northwestern Kenya, WEPs are vital dietary components for nomadic pastoral communities 
with limited access to diverse cultivated food crops. However, the increasing impact of climate change poses a threat to 
these valuable food resources, and their sustainable utilization remains precarious. Here, we assessed the potentially suitable 
habitats and richness of 23 selected WEPs in the region using a species distribution modeling (SDM) approach. We used 
species occurrence points from global databases, a national herbarium, and field surveys and made predictions spanning two 
future time intervals, 2041–2070 and 2071–2100, across three shared socioeconomic pathways (126, 370, and 585) using 
bioclimatic variables from five global circulation models. We also included soil and topographic variables in our models. 
We calibrated maximum entropy models using individually tuned parameters. Our future predictions showed a predominant 
decline in habitat suitability for half the studied WEPs. The richness of the selected WEPs are predicted to remain rather 
stable under projected future climates concentrating in southern parts of Turkana County. Conservation and management 
measures need to consider the changing availability of these valuable resources in order to underpin the dietary diversifica-
tion of local communities.
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Introduction

Northwestern Kenya is characterized by vast arid and semi-
arid lands inhabited by nomadic pastoralist communities, 
many of whom are from the Turkana ethnic group (Ejore 
et al. 2020; Ratemo et al. 2020). The Turkana people depend 

on animal products for their protein requirements and wild 
edible plants (WEPs), especially their fruits, for macro and 
micro-nutrients (Twine et al. 2003; Agol et al. 2020; Oduor 
et al. 2023). The majority of Turkana communities do not 
have immediate access to cultivated crops and hence rely on 
WEPs (Ngoye et al. 2021; Shanguhyia 2021); the few strips 
of irrigated crop farming astride streams in the region are 
insufficient (Akuja and Kandagor 2019; Mbugua et al. 2020; 
Akall 2021). Intermittent rains within Turkana, accompa-
nied by low flows of the Turkwel River, undermine the pro-
ductivity of the irrigated riverbank strips (Korobe 2022). 
Occasional flash floods also devastate riparian crop farms 
(Chilambe et al. 2022), further increasing the nutritional 
insecurity problems.

Turkana is the most food-insecure county in Kenya, 
Kenya Economic Report (2020). The county has high lev-
els of malnutrition among children and adults (Kuper et al. 
2015; Bhavnani et al. 2023) attributable to the high food 
poverty rate of 66%, which is higher than the national 
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average of 32% (Mbogori and Murimi 2017). Turkana 
has a low infrastructural development (Kihu et al. 2015) 
with low accessibility to remote areas hindering trade and 
markets. Turkana residents rely on WEPs as “safety nets,” 
including herbs, vegetables, and fruit trees (Oduor et al. 
2023). The nutritional value of regional WEPs is similar 
to or superior to cultivated crops (Sarfo 2018). WEPs can 
support local communities to alleviate hunger and malnu-
trition challenges. For these resources to be used sustain-
ably to meet the future food demands in Turkana, it is 
important to quantify their present and potential future 
spatial coverage and richness in the face of anthropogenic 
climate change.

We trained correlative species distribution models 
(SDMs) to predict the potentially suitable habitats and spe-
cies richness of selected woody WEPs. Such models have 
been used to assess the potential distribution of socioeco-
nomically important non-timber plants and tree species 
across Africa (Amoussou et al. 2022), priority multipurpose 
tree species in Central Africa (Ceccarelli et al. 2022) and 
Burkina Faso (Gaisberger et al. 2017), wild food crops in 
southern Africa (Wessels et al. 2021), and medicinal plants 
like Aloe species in East Africa (Mkala et al. 2022), among 
others.

Impacts of climate change on the Turkana pastoral 
communities have been reported, particularly in terms of 
livestock losses (Otieno 2020; Anno and Ameripus 2022; 
Imana and Zenda 2023). However, little is known about 
the climate change impact on the distribution and richness 
of nutritionally valuable WEPs. To address this gap, we 
adopted an SDM approach and analyzed both present and 
projected future climate scenarios for the years 2041–2070 
and 2071–2100 under three shared socioeconomic path-
ways (SSPs)—SSP126, SSP370, and SSP585 (O’Neill 
et al. 2017). The aim of our study was to shed light on the 
dynamics of valuable WEPs in the face of climate change 
and to provide insights for policymakers and stakehold-
ers committed to sustainable use of WEPs in northwestern 
Kenya. We focused on answering the following research 
questions:

 i. What is the current extent of suitable habitats for 
selected woody WEPs in Turkana County, Kenya?

 ii. How will future (2041–2070 and 2071–2100) climatic 
conditions under the three shared socioeconomic path-
ways (SSP126, SSP370, and SSP585) affect the dis-
tribution and extent of potentially suitable habitats of 
selected woody WEPs in Turkana County, Kenya?

 iii. How will the species richness of selected woody 
WEPs respond to projected climate change scenarios 
in Turkana County, Kenya?

Materials and methods

Study area

We conducted the study in Turkana County, northwestern 
Kenya (Fig. 1). It covers an area of about 68,253  km2. The 
human population in the county is 926,976 (KNBS 2019), 
hence a density of about 13 people per  km2. Literacy level is 
low (< 20%) according to Opiyo et al. (2015) and the county 
has the highest poverty rate in Kenya, about 66% (KER 
2020). We used a wider geographical area spanning eastern 
Africa and parts of central and southern Africa (see the light 
green highlighted region in the inset Africa map in Fig. 1), 
to calibrate the models. This ensured that we obtained an 
adequate number of occurrence points for the studied species 
and captured most of the environmental conditions under 
which the modeled species could thrive.

During the period in which the species distribution mod-
els were calibrated, 1950 to 2022, the minimum temperature 
ranged from 20.0 °C (1968) to 22.5 °C (2022) and maxi-
mum temperature ranged from 32.6 °C (1968) to 35.3 °C 
(2022) within Turkana County according to Abatzoglou 
et al. (2018), as shown in Online Resource 1. Total annual 
precipitation ranged from 244 mm (1984) to 886 mm (1961).

Selection of wild edible plants

We obtained a list of 23 woody WEPs from two recent studies 
focusing on the availability of WEPs (Oluoch et al. 2022), and 
threats facing the WEPs and management options (Oluoch et al. 
2023) in Turkana County. The inventory consisted of woody 
plant species with two key attributes: well known by the local 
communities and producing edible fruits consumed by the local 
communities. We performed taxonomic validation for these 
WEPs by cross-referencing their names with the Plants of the 
World Online database (POWO 2022) (https:// powo. scien ce. 
kew. org/) (accessed in October 2022), checking for alternative 
spelling and reconciling synonyms with accepted names.

Occurrence points of the wild edible plants

We obtained occurrence points of the WEPs from five 
sources: Global Biodiversity Information Facility (GBIF; 
https:// www. gbif. org (GBIF.org 2020), accessed October 
2022), Botanical Information and Ecology Network (BIEN; 
https:// bien. nceas. ucsb. edu/ bien/ (Enquist et  al. 2016), 
accessed October 2022), Response And Impacts of Natural 
and anthropogenic factors on BIOdiversity in tropical for-
ests (RAINBIO; https:// gdauby. github. io/ rainb io/ index. html 
(Dauby et al. 2016), accessed October 2022), East African 

https://powo.science.kew.org/
https://powo.science.kew.org/
https://www.gbif.org
https://bien.nceas.ucsb.edu/bien/
https://gdauby.github.io/rainbio/index.html
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Herbarium at the National Museums of Kenya (EAH; visited 
in January 2023), and from field surveys within Turkana 
County (between April and May 2021). The field surveys 
were carried out in 240 plots, each 1 ha in size, for three 
species; Balanites rotundifolia, Ziziphus mauritiana, and 
Salvadora persica, within a 5 km radius of three commu-
nities in Turkana, Nasiger (dry lowlands, 35.437877°E 
3.361547°N), Atala Kamusio (relatively less arid high alti-
tude, 34.878133°E 2.756355°N), and Lopur (irrigated riv-
erbanks, 35.433488°E 2.239970°N) (Oluoch et al. 2023). 
These three species were considered priority by the local 
communities for their nutrition values.

We retained occurrence points collected after 1950 to 
ensure congruence with the temporal resolution of our pre-
dictor variables. Further, we removed duplicated occurrence 
points and kept those that fell within our predetermined cali-
bration area, see Fig. 1. This helped us minimize potential 
problems in our models related to the potential local genetic 
adaptation to environmental conditions (Kadu et al. 2013; 
Vinceti et al. 2013).

Finally, we spatially thinned the occurrence points using 
a radius of 10 km to minimize potential spatial bias. The 
retained occurrence points ranged from Vatovaea pseudolab-
lab and Sterculia stenocarpa (n = 26 each) to Vachellia tor-
tilis (n = 337) (Table 1), which we considered to be a suf-
ficient number of occurrence points for our models (Wisz 
et al. 2008). The 23 WEPs comprised woody species from 
11 families, mainly producing edible fruits. Fabaceae fam-
ily had the highest representation (n = 5), followed by Mal-
vaceae (n = 4) and Zygophyllaceae (n = 3) (Table 1). These 
species are primarily distributed from southern Arabia to 
northern South Africa and across the west to east of Africa.

Background points generation

We generated background points within a convex hull around 
occurrence points for each species. We extended the hull by 
10% of the length of the longest axis from its centroid to 
the vertices to allow for the extraction of background points 
slightly beyond the presence points. We used the default 

Fig. 1  The study area (Turkana County). The model calibration area is shown in light green with a gray border spanning countries in eastern 
Africa and parts of and parts of southern and central Africa countries in the inset map (bottom right)
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number of 10,000 background points for each WEP within 
our extended convex hull.

Environmental predictors

We used 13 bioclimatic predictor variables from the 
CHELSA database (Karger et al. 2019) (Table 2) for pre-
sent and future (2041–2070 and 2071–2100) climate condi-
tions from all the five global circulation models (GCMs) 
of CHELSA database. For each of the five GCMs, we used 
three shared socioeconomic pathways (SSPs): SSP126 (opti-
mistic), SSP370 (regional rivalry), and SSP585 (pessimistic) 
(O’Neill et al. 2014; Riahi et al. 2017). The spatial resolution 
of the predictor variables was 30 arc seconds (ca. 0.9 km at 
the equator).

We also obtained eight soil variables (Table 2) from the 
International Soil Reference and Information Center (ISRIC) 
(Hengl et al. 2017) at a spatial resolution of 250 m. We 
resampled them to match the extent and resolution of the 
bioclimatic variables. Finally, we obtained six topographic 
predictor variables (Table 2), topographic variables, from 
the Shuttle Radar Topography Mission (SRTM 2013) and 
the Multi-Error-Removed Improved Terrain Digital Eleva-
tion Model (MERIT DEM) (Yamazaki et al. 2017).

Species distribution modeling

We used MaxEnt (Phillips et al. 2006) algorithm version 
3.4.3 to build the models since it is appropriate for presence-
only data and robust against potential geo-referencing errors 
(Graham et al. 2008). We tuned the MaxEnt algorithm across 
four feature classes (linear, quadratic, hinge, and product); 
we tested four combinations (linear-quadratic, hinge, linear-
quadratic-hinge, and linear-quadratic-hinge-product), three 
regularization multipliers (1, 3, and 5), and their combina-
tions in the ENMeval package version 2.0.4 (Kass et al. 2021) 
in R version 4.3.1 (R Core Team 2023) for ease of reproduc-
ibility of the workflow. We used a spatial block cross-valida-
tion method with four folds to calibrate the models. To obtain 
the best model among the tuned models, we first picked the 
four models with the highest Area Under the receiver-oper-
ating characteristic Curve (AUC) (using testing data), and 
then chose the model with the smallest difference between 
training and testing AUC (AUC diff), which is a measure for 
overfitting. We then used this model to make predictions over 
geographic space for current and future times. For transpar-
ency and reproducibility, we adhered to the Overview, Data, 
Model fitting, Assessment, and Predictions (ODMAP) pro-
tocol by Zurell et al. (2020), Fitzpatrick et al. (2021), and the 
checklist by Feng et al. (2019) during the modeling process.

Table 1  Comprehensive 
Taxonomic and Modeling 
Metrics of Wild Edible Plants 
in Turkana County, Kenya: 
Insights into Plant Species, 
Family, Occurrence Points 
(n), Sensitivity, and Mean 
Area Under the Curve (AUC), 
True Skill Statistic (TSS), and 
Deviance, each with Standard 
Deviation

Wild edible plant Family n Sensitivity Mean 
AUC ± SD

TSS ± SD Deviance ± SD

Balanites aegyptiaca Zygophyllaceae 321 0.503 0.78 ± 0.03 0.45 ± 0.06 1.04 ± 0.05
Balanites pedicellaris Zygophyllaceae 35 0.906 0.62 ± 0.19 0.38 ± 0.22 0.80 ± 0.05
Balanites rotundifolia Zygophyllaceae 127 0.944 0.83 ± 0.06 0.62 ± 0.09 0.48 ± 0.04
Berchemia discolor Rhamnaceae 83 0.684 0.66 ± 0.05 0.35 ± 0.07 1.14 ± 0.05
Boscia coriacea Capparaceae 131 0.701 0.72 ± 0.04 0.39 ± 0.07 1.19 ± 0.09
Cordia sinensis Boraginaceae 259 0.754 0.80 ± 0.03 0.50 ± 0.05 0.83 ± 0.06
Dobera glabra Salvadoraceae 95 0.663 0.77 ± 0.06 0.49 ± 0.13 0.88 ± 0.03
Ficus sycomorus Moraceae 273 0.717 0.76 ± 0.03 0.44 ± 0.05 0.28 ± 0.03
Grewia mollis Malvaceae 210 0.492 0.77 ± 0.05 0.46 ± 0.09 0.95 ± 0.07
Grewia tenax Malvaceae 122 0.583 0.75 ± 0.05 0.43 ± 0.08 1.16 ± 0.06
Grewia villosa Malvaceae 194 0.763 0.79 ± 0.04 0.50 ± 0.06 1.10 ± 0.16
Hyphaene compressa Arecaceae 116 0.741 0.81 ± 0.07 0.57 ± 0.08 0.68 ± 0.02
Lannea triphylla Anacardiaceae 63 0.694 0.71 ± 0.08 0.45 ± 0.10 1.02 ± 0.10
Maerua subcordata Capparaceae 48 0.708 0.67 ± 0.08 0.37 ± 0.11 0.36 ± 0.03
Salvadora persica Salvadoraceae 559 0.794 0.84 ± 0.02 0.53 ± 0.04 1.20 ± 0.02
Senegalia senegal Fabaceae 567 0.709 0.77 ± 0.02 0.45 ± 0.04 0.93 ± 0.05
Sterculia stenocarpa Malvaceae 35 0.657 0.68 ± 0.08 0.43 ± 0.10 0.93 ± 0.07
Tamarindus indica Fabaceae 329 0.719 0.81 ± 0.02 0.52 ± 0.04 1.08 ± 0.09
Vachellia oerfota Fabaceae 212 0.588 0.72 ± 0.04 0.40 ± 0.06 1.12 ± 0.05
Vachellia tortilis Fabaceae 518 0.516 0.77 ± 0.02 0.43 ± 0.03 0.88 ± 0.07
Vatovaea pseudolablab Fabaceae 44 0.705 0.65 ± 0.07 0.36 ± 0.09 1.02 ± 0.03
Ximenia americana Olacaceae 162 0.682 0.76 ± 0.04 0.42 ± 0.06 0.56 ± 0.10
Ziziphus mauritiana Rhamnaceae 163 0.876 0.87 ± 0.04 0.64 ± 0.08 0.88 ± 0.05
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Table 2  Environmental predictor variables used in modeling potentially suitable habitats of wild edible plants in Turkana County, Kenya

Data Code Description Units Source

Climatic variables used in modeling bio_2 Mean diurnal range (mean of monthly 
[max temp—min temp])

°C CHELSA V2.1 (Karger et al. 2019)

bio_3 Isothermality (BIO2/BIO7) (× 100) °C
bio_4 Temperature seasonality (standard 

deviation × 100)
°C/100

bio_5 Maximum temperature of warmest 
month

°C

bio_7 Temperature annual range (BIO5-
BIO6)

°C

bio_8 Mean temperature of wettest quarter °C
bio_9 Mean temperature of driest quarter °C
bio_12 Annual precipitation kg  m−2  year−1

bio_13 Precipitation of wettest month kg  m−2  month−1

bio_14 Precipitation of driest month kg  m−2  month−1

bio_15 Precipitation seasonality (coefficient 
of variation)

kg  m−2

bio_18 Precipitation of warmest quarter kg  m−2  month−1

bio_19 Precipitation of coldest quarter kg  m−2  month−1

Climatic variables removed bio_1 Mean annual air temperature °C
bio_6 Mean daily minimum daily air tem-

perature of the coldest month
°C

bio_10 Mean daily mean air temperatures of 
the warmest quarter

°C

bio_11 Mean daily mean air temperatures of 
the coldest quarter

°C

bio_16 Mean monthly precipitation amount 
of the wettest quarter

kg  m−2  month−1

bio_17 Mean monthly precipitation amount 
of the driest quarter

kg  m−2  month−1

Soil variables bdod Bulk density of the fine earth fraction cg/cm3 ISRIC SoilGrids250m version 2.0 
(Hengl et al. 2017)cec Cation exchange capacity of the soil mmol(c)/kg

cfvo Volumetric fraction of coarse frag-
ments (> 2 mm)

cm3/dm3 (vol‰)

clay Proportion of clay particles 
(< 0.002 mm) in the fine earth 
fraction

g/kg

phh2o Soil pH pHx10
sand Proportion of sand particles 

(> 0.05 mm) in the fine earth frac-
tion

g/kg

silt Proportion of silt particles 
(≥ 0.002 mm and ≤ 0.05 mm) in the 
fine earth fraction

g/kg

soc Soil organic carbon content dg/kg
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Model outputs analysis

To assess the performance of our models, we used two suit-
able widely used metrics for presence-only models, AUC 
and Continuous Boyce Index (CBI) (Manzoor et al. 2018). 
AUC is a measurement of discriminatory capacity of clas-
sification models (Jiménez-Valverde 2012; Shabani et al. 
2018) with values close to 0.5 being close to random clas-
sification while those approaching 1 are better classification 
capacity (Hao et al. 2020; Lissovsky and Dudov 2021). Posi-
tive values of CBI indicate that the predicted distribution 
by the model is congruent with the occurrence points data. 
Values approaching 0 indicate random model prediction, 
while negative values imply counter-predictions (Manzoor 
et al. 2018; Maruthadurai et al. 2023). We converted the 
predicted suitability values to binary presence-absence maps 
using the suitability threshold that maximized the sum of 
sensitivity (true positive rate) and specificity (true negative 
rate) (Table 1).

From the five GCM binary outputs for each time interval 
and SSP, we used a majority vote rule (that is, conditions 
were deemed suitable when three out of the five GCMs pre-
dicted suitable conditions) to generate a single output for 
the future projections. We used these maps to determine the 
potentially suitable habitats for future climate scenarios by 
calculating the areas of pixels with value 1 (present) and 
those with value 0 (absence). We also compared the pixel 
values of the present binary with the future binaries for each 
species to obtain change maps. This enabled us to estimate 
potential suitable habitats’ persistence, loss, absence, and 
gain.

To estimate changes in species richness, we summed the 
presence-absence maps for all WEPs to obtain a layer that 
expresses species richness for the present and future sce-
narios separately. We then calculated the change in species 

richness by subtracting the present richness layer from the 
future richness layer and expressed it as a percentage change.

Results

Present and future climate of Turkana County

The climate conditions of CHELSA dataset used in this 
study fell within the conditions previously experienced by 
the WEPs in Turkana County (Online Resource 1) (Table 3; 
see Online Resource 2 for means of the climatic variables 
and Online Resource 3 for their standard deviations across 
all the five GCMs of CHELSA). Hence, we considered the 
models appropriate for predicting into the future climate 
change scenarios.

Model performance

The predictive power of the MaxEnt models was 
very good (0.8 < AUC <  = 0.9) for four WEPs, 
good (0.7 < AUC <  = 0.8) for 13 WEPs, moderate 
(0.6 < AUC <  = 0.7) for four WEP species, and low for 
two species (AUC = 0.57) (Table 1). The six WEPs with 
AUC < 0.7, primarily due to their small number of occur-
rence records, included in descending order of their AUC 
values S. stenocarpa, Berchemia discolor, Maerua sub-
cordata, Lannea triphylla, Boscia coriacea, and V. pseu-
dolablab, and hence their predictions should be interpreted 
cautiously (Table 1). Values of CBI were also positive and 
ranged between 0.05 (± 0.59 sd) for B. coriacea and 0.83 
(± 0.08 sd) for Cordia sinensis (Table 1). Given these met-
rics, we considered the models appropriate for making pre-
dictions on the potential suitable habitats of WEPs under 
current and projected future climates. The threshold values 

Table 2  (continued)

Data Code Description Units Source

Topographic variables HLI Heat load index W Derived from Shuttle Radar Topog-
raphy Mission (SRTM) elevation 
data (available at http:// srtm. csi. 
cgiar. org/) and calculated with the 
‘raster’ package version 3.6.20 
(Hijmans 2023) in R version 4.3.1 
(R Core Team 2023)

NO Negative openness ° Derived from MERIT DEM 
(Yamazaki et al. 2017)

PO Positive openness °

SLO Slope °

TPI Topographic position index m

TWI Topographic wetness index NA

http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
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that maximized sensitivity and specificity ranged from 0.274 
for Vachellia oerfota to 0.719 for V. pseudolablab (Table 1).

Current potentially suitable habitats of priority wild 
edible plants

Under the present climatic conditions, the proportions of 
potential suitable habitats for the studied WEPs within Tur-
kana County ranged from 2.8% for Grewia mollis to 99.9% 
for B. rotundifolia with an average potentially suitable habitat 
for the species being 64.5% of Turkana County land area (see 
Online Resource 4 for areal values of presence and absence 
for the WEPs). About 74% (n = 17) of the studied WEPs had a 
current potentially suitable habitat of at least 50% of the area 
of Turkana County (Fig. 2).

The southern part of the county was potentially suitable for 
most of the WEPs during current climate conditions (Online 
Resource 5). Generally, the high elevation areas in the South, 
Southeast, and Northwest of the county (Fig. 1) showed higher 
suitability for the selected WEPs, while the central part, with 
low altitude areas up to Lake Turkana, was less suitable, 
though this varied among the WEPs.

Change in potentially suitable habitat of selected 
wild edible plants in Turkana County, Kenya

The period 2041–2070

Under SSP126, our models predicted that by 2041–2070, 
up to 39% (n = 9) of the WEPs will experience a reduction 
in their current potentially suitable habitats (Fig. 3a). About 
61% (n = 14) of the WEPs maintained or expanded their cur-
rent potentially suitable habitats. During the same period but 

under SSP370, we predicted a decrease in potentially suitable 
habitats of up to 43% (n = 10) of the WEPs (Fig. 3b). Simi-
larly, under SSP585 for the same period, 43% (n = 10) of the 
studied WEPs are predicted to experience a decrease in their 
potentially suitable habitat (Fig. 3c). This indicated a progres-
sive decline in the size of potentially suitable habitat for about 
50% of the studied WEPs with about three WEPs losing their 
potential suitable habitats by over 40% of the current suitable 
habitat under the SSP585 for the period of 2041–2070. Spa-
tial distributions, corroborating the predicted changes (per-
sistence, suitability loss, suitability gain, and absence) for the 
period, are shown in Online Resource 6 a—c.

The period 2071–2100

For SSP126 of this period, 39% (n = 9) of the WEPs were 
predicted to experience a decline in their potentially suit-
able habitats, similar to 2041–2070 under the same SSP. 
For SSP370, however, 48% (n = 11) of the WEPs were 
predicted to shrink their potentially suitable habitats 
(Fig. 3e) which was one more species as compared to the 
same SSP under the 2041–2070 period. Under SSP585, a 
similar number of the studied WEPs as SSP370 showed 
a decline in their potentially suitable habitats by the end 
of the century (Fig. 3f). Among the species that expanded 
their potentially suitable habitats, most of the expansions 
did not exceed 40% of their present suitable habitat. This 
was comparable to the decline, where we observed a local-
ized complete loss of potentially suitable habitat for one 
WEP while most WEPs did not lose more than 40% of 
their suitable habitats (Fig. 3a–f). The observed spatial 
changes in habitat suitability of the WEPs are shown in 
Online Resource 6 d—f.

Table 3  Average climatic variables values and deviations about the 
averages for the present and projected future climate scenarios for 
Turkana County, Kenya. The future  values are averaged from five 

global circulation models (GFDL, IPSL, MPI, MRI, and UKESM1) 
of the CHELSA database. The description of the abbreviated columns 
is provided in Table 2 

Metric SSPs and times bio_12 bio_13 bio_14 bio_15 bio_18 bio_19 bio_2 bio_3 bio_4 bio_5 bio_7 bio_8 bio_9

Mean Present 369.82 66.06 08.97 55.40 63.63 95.55 9.57 75.76 82.92 34.99 12.54 28.79 29.07
SSP126_2041–2070 412.48 80.72 10.12 60.36 75.99 100.51 9.00 74.25 87.98 31.91 12.04 30.27 30.32
SSP126_2071–2100 414.83 75.39 10.96 57.71 90.59 101.99 9.11 74.98 83.45 30.91 12.07 30.33 30.35
SSP370_2041–2070 428.87 78.83 10.46 57.54 80.75 109.56 8.63 70.95 95.68 32.18 12.10 30.45 30.53
SSP370_2071–2100 458.27 84.17 11.56 57.61 102.6 118.93 8.32 70.24 94.37 31.09 11.77 30.53 30.55
SSP585_2041–2070 450.73 84.02 10.32 58.80 85.16 116.01 8.59 71.51 91.58 32.13 11.93 30.51 30.54
SSP585_2071–2100 486.08 92.97 12.95 58.89 108.74 122.36 8.85 71.92 94.11 31.15 12.18 30.59 30.60

 ± Standard 
devia-
tions

Present 113.50 15.58 3.26 10.02 20.90 49.88 1.41 3.89 11.16 1.72 1.43 2.07 1.76
SSP126_2041–2070 123.92 18.83 3.94 10.37 23.35 51.50 1.41 4.62 10.24 0.49 1.40 0.55 0.48
SSP126_2071–2100 127.50 17.52 4.43 10.57 26.85 51.80 1.40 4.35 9.75 0.17 1.41 0.19 0.17
SSP370_2041–2070 131.32 18.79 4.19 10.62 25.68 55.40 1.38 5.13 10.30 0.49 1.35 0.60 0.51
SSP370_2071–2100 140.88 20.00 4.77 10.35 30.05 55.15 1.35 5.61 8.92 0.18 1.33 0.20 0.17
SSP585_2041–2070 137.37 19.38 3.90 10.59 26.85 55.20 1.36 4.86 9.38 0.50 1.37 0.59 0.49
SSP585_2071–2100 150.74 21.86 5.46 10.89 33.45 53.78 1.39 5.08 7.45 0.18 1.37 0.19 0.17
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Current richness of woody wild edible plants 
in Turkana County, Kenya, and future changes

The period 2041–2070

Under SSP126, about 27,900  km2 of Turkana County was 
predicted to undergo a decline in the richness of the stud-
ied WEPs by 2041–2070. The average slight decline in the 
studied WEPs’ richness over Turkana County was predicted 
to be 0.2% of the current number of species per pixel (spa-
tial resolution is ~ 0.9 km). For SSP370 and the same time 

period, the decline was predicted to be an average 1.13%. 
Under SSP585 for the same period, our models predicted 
an average slight gain in species richness by up to 0.16% of 
the current number of species per pixel (Online Resource 
7 a—c).

During this time period and irrespective of the SSPs, the 
species richness was predicted to concentrate in the south-
ern part of the county that is relatively elevated as well as 
the western border with Uganda and parts of the Northeast 
(Fig. 4a–d). Despite the small average changes in potentially 
suitable habitats reported in previous sections, individual 

Fig. 2  Predicted potentially suitable habitat  (km2) of the studied 
23 wild edible plants in Turkana County, Kenya. Bars represent-
ing plants with larger area cover are darker green, while those smaller 

area cover are orange. The blue and red dashed horizontal lines depict 
50% and 25% the study area extent, respectively
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pixels still showed large changes in species richness such as 
increase in southern parts of the county (Fig. 4b–d).

The period 2071–2100

During this period and under SSP126, our models predicted an 
average gain in WEPs’ richness by about 0.79% of the current 
number of species per pixel though 41% (28,000  km2) of the 
area was predicted to record a decline in richness. Recoveries 
were predicted to continue for SSP370 with an average rise in 
richness by 0.64% of the current number of species per pixel 
(Online Resource 7 d—f). The recovery in richness continued 
under SSP585 by 3.47% of the current number of species per 
pixel, for the period. Over 2071–2100, the 23 WEPs’ richness 
showed a similar trend as 2041–2070 and can be generally 
termed stable with respect to current richness values (Fig. 4e–g).

Discussion

Variability in climatic parameters in northwestern 
Kenya

Total annual precipitation (bio_12) in Turkana County 
is projected to increase over the two time intervals 
(2041–2070 and 2071–2100) and across the three SSPs 
(SSP126, SSP370, and SSP585). A similar pattern was 
reported by Omolo (2010) and Gebrechorkos et al. (2019) 
for parts of Ethiopia and Kenya especially during the short 
rainy seasons. There is also a projected corresponding 
increase in variability in the annual rainfall as indicated 
by the rising rainfall seasonality values (bio_15) (Online 
Resource 2). However, increasing variability of the rainfall 
could imply prolonged drought periods and shorter but 

Fig. 3  (a)–(f) Change in potentially suitable habitat of 23 wild edible 
plants species during two time intervals (2041–2070 and 2071–2100) 
for three shared socioeconomic  pathways (SSP126, SSP370, and 
SSP585). (a) is 2041-2070 for SSP126, (b) is 2041-2070 for SSP370, 
(c) is 2041-2070 for SSP585, (d) is 2071-2100 for SSP126, (e) is 

2071-2100 for SSP370, and (f) is 2071-2100 for SSP585. Brighter 
shades of orange indicate more decline while darker shades of green 
colors represent more gain in potentially suitable habitat. Mean 
changes for all the species under each time and SSP are indicated on 
the respective plots
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more intense rainy episodes (Gebrechorkos et al. 2019; 
Palmer et al. 2023). Projecting the future climate of east-
ern Africa as a whole is faced with a lot of challenges 
including limited rainfall stations for calibrations, the El 
Niño–Southern Oscillation and the Indian Ocean Dipole 
(Gebrechorkos et al. 2019; Palmer et al. 2023). The future 
maximum precipitation of the wettest (bio_13) and the 
driest (bio_14) months are within their present ranges, 
but the combined CHELSA models shows a general rise 
in their means. This should be interpreted cautiously as 
previous findings acknowledge the difficulties inherent in 
predicting future rainfall variabilities in eastern Africa 

(Nicholson 2017; Palmer et al. 2023). As with other pre-
cipitation related variables we used, precipitation of the 
warmest (bio_18) and the coldest (bio_19) quarters of the 
year showed an increasing pattern. While we could not 
determine the trend since the time intervals were not lin-
ear, visual appraisal of the plots indicated a stronger rise 
in precipitation of the warmest than that of the coldest 
quarter.

Regarding temperature variables, we observed future dis-
tributions of ranges overlap with those of the present, hence 
suited their use in building our models. However, under 
future times and SSPs, we observed varied distribution 

Fig. 4  (a)–(g) Species richness of the 23 wild edible plants in Tur-
kana County (area size: 68,253 km2), Kenya, under present and 
projected future climates. (a) represents the  current climate, (b) the 
period 2041-2070 under SSP126, (c) 2041-2070 under SSP370, (d) 

2041-2070 under SSP585, (e) 2071-2100 under SSP126, (f) 2071-
2100 under SSP370, and (g) 2071-2100 under SSP585. Gray margin 
plots show distribution of the richness values along both latitudinal 
and longitudinal gradients
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trends as reported in other studies (Gebrechorkos et al. 
2019). Diurnal range in temperature first declined then 
plateaued over time and SSPs. Similar trends emerged for 
isothermality (bio_3), which corresponds to the increasing 
trend for temperature seasonality (bio_4). This indicated a 
rise in variability among the observed temperature values, 
implying intermittent heat stress imposed on the WEPs 
regardless of the increasing seasonal or annual precipita-
tion. We observed declining maximum temperature values 
for the warmest month (bio_5). In contrast, annual tem-
perature ranges for the area remained rather stable over the 
study period and SSPs (Online Resource 2). Both mean 
temperature of the wettest (bio_8) and driest (bio_9) quar-
ters showed an increasing trend relative to the current cli-
matic conditions. These warming quarters, coupled with 
the increasing rainfall seasonality, could negatively impact 
habitat suitability and richness of the studied WEPs.

We observed varied trends of the major climate variables 
guiding the distribution of the WEPs over space. The dif-
ficulties in explaining the variability of the climate condi-
tions in East Africa is well documented (Nicholson 2017). 
This is even more challenging when making future projec-
tions (Cook et al. 2020; Palmer et al. 2023). This is because 
most of the observed seasonal variabilities cannot be fully 
explained by the known drivers of climate in the region. This 
calls for enhanced monitoring of the patterns to enable more 
accurate future predictions (Palmer et al. 2023). We visually 
appraised that the ranges of the variables under future sce-
narios fell within those of the calibration sets.

Current potentially suitable habitats for selected 
wild edible plants in Turkana County, Kenya

Up to 17 WEPs currently have potentially suitable habitat 
areas that cover more than half of Turkana County (Online 
Resource 5). However, we are aware that our predictions 
only reflect Turkana County rather than the full distribution 
range of the species which stretches well beyond the county. 
For suitability maps for the whole model calibration area, 
see Online Resource 8. All of the 23 studied WEPs have 
potentially suitable habitats beyond the borders of Turkana 
County.

For five species, the potentially suitable habitat covered 
less than 25% of the study area. Out of those, B. aegyptiaca 
showed a complete loss of its local suitable habitat within 
Turkana County for future climate scenarios. The species 
has been reported to thrive in rain-fed conditions with 
400–800 mm per annum and mean temperature of 20 °C 
(Hall 1992) that could be rare under current and future cli-
mate conditions. About 50% of the WEPs showed a decline 
in potentially suitable habitat, with their distribution concen-
trated in the South end of the county, the western edge bor-
dering Uganda, and in some parts of the Northeast (Online 

Resource 5). These areas are at relatively higher elevation 
(about 900 m in altitude) areas and have been characterized 
by conflicts with neighboring communities over pasture and 
livestock in the past (Shanguhyia 2021; Anno and Ameri-
pus 2022). Hence, for communities to better utilize WEP 
resources at present and in the future, fostering peace in the 
area could be essential (Omolo 2010) as the plants are more 
distributed adjacent to the shared borderlands.

Future changes in potentially suitable habitats 
of selected wild edible plants in Turkana County, 
Kenya

Our models show that the size of potentially suitable habitat for 
half of the studied WEPs could experience considerable decline 
in the future and across SSPs, with Balanites aegyptiaca losing 
local (within the county) suitable habitat even under SSP126 of 
2041–2070 period. Some species that will expand their current 
ranges within the county include Dobera glabra, G. mollis, and 
V. pseudolablab. These species are largely native to arid and 
semi-arid conditions, and could possess a high degree of heat 
stress tolerance as reports from South Africa suggest (Midgley 
and Thuiller 2007; Wessels et al. 2021).

Several studies on the impact of climate change on the 
distribution of plants in East Africa pointed out that most 
species will likely narrow the area of their current suitable 
habitat (Kalisa et al. 2019; Kidane et al. 2019). However, 
some localized studies, for example, within a 50 by 50 m 
plot in Tigray region of Ethiopia, showed likely expansion 
of the range of Tamarindus indica under future climate sce-
narios (Gufi et al. 2022), while the species showed steady 
decline in potentially suitable habitat in this study. Further, 
decline in potentially suitable habitats of some species in 
this study could be exacerbated by impacts of land cover and 
land use changes (Powers and Jetz 2019). For example, an 
earlier study showed that human activities such as overgraz-
ing and crop irrigation in riparian areas are threatening the 
survival of WEPs in Turkana County (Oluoch et al. 2023) 
and neighboring countries (Bahru et al. 2013; Kidane and 
Kejela 2021). These additional threats were not assessed in 
this study but could worsen the negative effects of climatic 
changes on WEPs.

Changes in wild edible plants' species richness 
under the future climate conditions in Turkana 
County, Kenya

In scarcely sampled areas, species richness can be derived 
from stacking binary outputs of species distribution models 
as shown for instance in studying endemic flora for conser-
vation (Hoveka et al. 2020) and wild food plants in southern 
Africa (Wessels et al. 2021). Our aggregated model outputs 
suggest stability or gain in the richness of about half of the 
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studied WEPs within our study area. The WEPs could be 
already existing in conditions comparable to projected future 
climates in the region. Although other studies have reported 
climate change in East Africa as serious threat to WEPs 
(Kidane et al. 2019; Schipper et al. 2020), such studies did 
not consider wider environmental conditions under which 
the species existed as achieved in this study. Nonetheless, 
we are aware that this study did not include other factors 
that could further limit the potential suitable habitats of the 
WEPs such as anthropogenic activities on land and dispersal 
ability of the WEPs to reach new suitable areas under future 
climates.

Beyond the abiotic

While we have only considered abiotic factors in the present 
analysis, there are also biotic and mobility/dispersal factors 
that influence distribution of species over space and time, as 
described in the biotic, abiotic, and mobility Venn diagram 
by Peterson et al. (2011). Interactions among the studied 
WEPs and competition between the WEPs and other plants 
over land could also influence the size of potentially suitable 
habitat and species richness. Additionally, the dispersal rates 
of different WEPs differ and their efficiency in following the 
shifting area size of potentially suitable habitats might also 
vary; hence, we cannot claim occupancy of the predicted 
potentially suitable pixels in future. Seeds of some WEPs 
are dispersed by birds such as Z. mauritiana (Grice 1996) 
while others by water like Hyphaene compressa (Sullivan 
et al. 1995; Stave et al. 2006). Dynamics among and within 
these agents could drive the success of a WEP in colonizing 
new potentially suitable regions beyond the current habitats. 
Land use activities, such as overstocking and expansion of 
agriculture, could also influence the ranges of the WEPs in 
the future and their richness. Overstocking and overgrazing, 
for instance, reduce regeneration of WEPs (Oluoch et al. 
2023), hence could limit range expansion as well as per-
sistence of the WEPs within their current ranges. It is thus 
crucial to consider these factors when designing any man-
agement and conservation efforts and strategies for WEPs.

Conclusions

Our results reveal a decline in potentially suitable habi-
tat for half the selected woody WEPs in Turkana County, 
Kenya, from the current climatic conditions to 2041–2070 
and 2071–2100 periods across all three SSPs. Importantly, 
our models may overestimate the potentially suitable habitat 
for the WEPs because we did not consider anthropogenic 
factors that could further negatively influence the habitats 
and richness of the WEPs. Nonetheless, our findings con-
tribute to improving the understanding of the influence of 

climate variability on the potential distribution and richness 
of WEPs in northwestern Kenya. The use of SDMs is criti-
cized for their assumption of state of equilibrium between 
species and environment which is not always the case as 
complete sampling of species records is hardly achievable. 
Further, the models assume that we have included all major 
predictor variables governing the distribution of a species. 
Our use of SDMs in predicting potentially suitable habitat of 
WEPs, however, provides valuable insights for conservation 
and sustainable management of WEPs for use in improv-
ing dietary diversity of local communities. Both mitigation 
of climate change on a global scale and local management 
strategies such as controlled livestock farming and improv-
ing education and awareness for WEPs could help to better 
manage and sustainably conserve these valuable resources.
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