Skip to main content

Advertisement

Log in

The rise and demise of Iran’s Urmia Lake during the Holocene and the Anthropocene: “what’s past is prologue”

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Urmia Lake in NW Iran was the world’s second largest hypersaline lake until three decades ago, when it began to lose ~ 90% of its surface area due to dwindling water input and enhanced evaporation. To help discern the role of natural vs anthropogenic factors in the rapid demise of Urmia Lake, we present a high-resolution, multi-proxy reconstruction of climate, and hydrological variability from the lake’s sediments. We identify several episodes of wet and dry conditions over the past 11,300 years, and an atmospheric teleconnection between the climate of the interior of West Asia and the North Atlantic region. Estimates of mean annual precipitation based on chemical weathering indices range between 174 and 401 mm year−1 during the Holocene. A combination of geochemical proxies, pollen reconstruction, and the absence of any evaporite horizons throughout the Holocene period point to the prevailing role of human impact on the current vanishing of Urmia Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. These data are additionally available online: https://zenodo.org/record/7240650#.Y1SvIuTMI5k.

References

  • AghaKouchak A, Norouzi H, Madani K, Mirchi A, Azarderakhsh M et al (2015) Aral Sea Syndrome Desiccates Lake Urmia: Call for Action. J Great Lakes Research 41:307–311. https://doi.org/10.1016/j.jglr.2014.12.007

  • Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318. https://doi.org/10.1016/j.chemgeo.2003.12.009

  • Alizadeh-Choobari O, Ahmadi-Givi F, Mirzaei N, Owlad E (2016) Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. Int J Climatol 36:4276–4286. https://doi.org/10.1002/joc.4630

    Article  Google Scholar 

  • Altabet MA, Higginson MJ, Murray DW (2002) The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415:159–162. https://doi.org/10.1038/415159a

    Article  CAS  Google Scholar 

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr Friedrich Pfeil, München

    Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P et al  (1997) A pervasive millennial-scale cycle in north Atlantic holocene and glacial climates. Science (80- ) 278(5341):1257–1266. https://doi.org/10.1126/science.278.5341.1257

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN et al (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136. https://doi.org/10.1126/science.1065680

  • Bottema S (1986) A late quaternary pollen diagram from Lake Urmia (Northwestern Iran). Rev Palaeobot Palynol 47:241–261. https://doi.org/10.1016/0034-6667(86)90039-4

    Article  Google Scholar 

  • Bottema S, Woldring W (1990) Anthropogenic indicators in the pollen diagrams of the Eastern Mediterranean. In: Bottema S, Entjes- Nieborg G, van Zeist W (eds) Man’s role in the shaping of the Eastern Mediterranean landscape. Balkema, Rotterdam, pp 231–264

    Google Scholar 

  • Brown ET (2011) Lake Malawi’s response to “megadrought” terminations: sedimentary records of fl ooding, weathering and erosion. Palaeogeogr Palaeoclimatol Palaeoecol 303:120–125. https://doi.org/10.1016/j.palaeo.2010.01.038

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (2007) Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel C, Vernal AD (eds) Proxies in Late Cenozoic Paleoceanography. Elsevie, Amsterdam, pp 567–644

    Chapter  Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar Geol 113:67–88. https://doi.org/10.1016/0025-3227(93)90150-T

  • Daryaee T (2011) The Oxford handbook of Iranian history, 1st edn. Oxford University Press Inc., New York

    Google Scholar 

  • Degens ET, Wong HK, Kempe S, Kurtman F (1984) A geological study of lake van, Eastern Turkey. Geol Rundschau 73:701–734. https://doi.org/10.1007/BF01824978

    Article  CAS  Google Scholar 

  • Djamali M, de Beaulieu J-L, Shah-hosseini M, Andrieu-Ponel V, Ponel P et al (2008) A late Pleistocene long pollen record from Lake Urmia, NW Iran. Quat Res 69(3):413–420. https://doi.org/10.1016/j.yqres.2008.03.004

  • Djamali M, Kürschner H, Akhani H, de Beaulieu JL, Amini A et al (2008b) Palaeoecological significance of the spores of the liverwort Riella (Riellaceae) in a late Pleistocene long pollen record from the hypersaline Lake Urmia, NW Iran. Rev Palaeobot Palynol 152(1–2):66–73. https://doi.org/10.1016/j.revpalbo.2008.04.004

  • Djamali M, Akhani H, Andrieu-Ponel V, Braconnot P, Brewer S et al (2010) Indian summer monsoon variations could have affected the early-holocene woodland expansion in the Near East. The Holocene 20(5):813–820. https://doi.org/10.1177/0959683610362813

  • Djamali M, Ponel P, Delille T, Thiery A, Asem A et al (2010b) A 200,000-year record of the brine shrimp Artemia (Crustacea: Anostraca) remains in Lake Urmia, NW Iran. Int J Aquat Sci 1:14–18

  • Djamali M, Jones MD, Migliore J, Balatti S, Fader M et al (2016) Olive cultivation in the heart of the Persian Achaemenid Empire: new insights into agricultural practices and environmental changes reflected in a late Holocene pollen record from Lake Parishan, SW Iran. Veg Hist Archaeobot 25(3):255–269. https://doi.org/10.1007/s00334-015-0545-8

  • Djamali M, Saeidi Ghavi Andam S, Poschlod P (2021) An update on the history of arboriculture in Ancient Iran. In: Balatti S, Klinkottand H, Wiesehöfer J (eds) Paleopersepolis environment, landscape and society in ancient Fars. Franz Steiner Verlag, Stuttgart, pp 121–132

    Google Scholar 

  • Eimanifar A, Mohebbi F (2007) Urmia Lake (Northwest Iran): a brief review. Saline Syst 3:5. https://doi.org/10.1186/1746-1448-3-5

    Article  Google Scholar 

  • Fahimi H (2019) The Bronze Age and the Iron Age on the Central Iranian Plateau. Two successive cultures or the appearance of a new culture? In: Meyer J-W, Vila E, Mashkour M, et al. (eds) The Iranian Plateau during the Bronze Age. Development of Urbanisation, Production and Trade. MAISON DE L’ORIENT ET DE LA MÉDITERRANÉE – JEAN POUILLOUX, pp 201–216

  • Farsnews (2011) Ahmadinejad: “current condition at Urmia Lake appears every 500 years”. In: Fars News Agence. https://www.farsnews.com/news/13900625000278. Accessed 5 Sep 2016

  • Fritz S (1996) Paleolimnological records of climatic change in North America. Limnol Oceanogr 41:882–889. https://doi.org/10.4319/lo.1996.41.5.0882

    Article  CAS  Google Scholar 

  • Govin A, Holzwarth U, Heslop D, Ford Keeling L, Zabel M et al (2012) Distribution of major elements in Atlantic surface sediments (36°N-49°S): Imprint of terrigenous input and continental weathering. Geochemistry, Geophys Geosystems 13(1):1–23. https://doi.org/10.1029/2011GC003785

  • Grimm EC (1992) Tilia 2.0 and Tilia × graph 1.18. Illinois State Museum, Research and Collection Center, Springfield

  • Guibal F, Lak R, de Beaulieu J-L, Andrieu-Ponel V, Berberian M et al (2014) Notes on arboricultural and agricultural practices in ancient Iran based on new pollen evidence. Paléorient 36(2):175–188. https://doi.org/10.3406/paleo.2010.5394

  • Harmon RS, Wörner G, Goldsmith ST, Harmon BA, Gardner CB et al (2016) Linking silicate weathering to riverine geochemistry — A case study from a mountainous tropical setting in west-central Panama. Geol Soc Am Bull 128(11–12):1780–1812. https://doi.org/10.1130/B31388.1

  • Harrison SP, Kohfeld KE, Roelandt C, Claquin T (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci Rev 54:43–80. https://doi.org/10.1016/S0012-8252(01)00041-1

    Article  CAS  Google Scholar 

  • Haslett J, Parnell A (2008) A simple monotone process with application to radiocarbon-dated depth chronologies. J R Stat Soc Ser C Applied Stat 57:399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x

  • Hassanzadeh E, Zarghami M, Hassanzadeh Y (2012) Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resour Manag 26:129–145. https://doi.org/10.1007/s11269-011-9909-8

    Article  Google Scholar 

  • Jalili S, Morid S, Banakar A, Namdar Qanbari R (2011) Assessing the effect of SOI and NAO indices on Lake Urmia water level variations, application of spectral analysis. J Water Soil 25:140–149 (in Persian with English abstract)

    Google Scholar 

  • Jiménez-Espejo FJ, García-Alix A, Jiménez-Moreno G, Rodrigo-Gámiz M, Anderson RS et al (2014) Saharan aeolian input and effective humidity variations over western Europe during the Holocene from a high altitude record. Chem Geol 374–375:1–12. https://doi.org/10.1016/j.chemgeo.2014.03.001

  • Kaniewski D, Paulissen E, Van Campo E, Weiss H, Otto T et al (2010) Late second–early first millennium BC abrupt climate changes in coastal Syria and their possible significance for the history of the Eastern Mediterranean. Quat Res 74(2):207–215. https://doi.org/10.1016/j.yqres.2010.07.010

  • Kaniewski D, Marriner N, Cheddadi R, Morhange C, Bretschneider J et al (2019) Cold and dry outbreaks in the eastern Mediterranean 3200years ago. Geology 47(10):933–937. https://doi.org/10.1130/G46491.1

  • Kelts K, Shahrabi M (1986) Holocene sedimentology of, Hypersaline Lake Urmia, Northwestern Iran. Palaeogeogr Palaeoclimatol Palaeoecol 54:105–130. https://doi.org/10.1016/0031-0182(86)90120-3

  • Khabaronline News Agencey (2011) President Ahmadinejad: “Urmia Lake has experienced the same condition 500 years ago”. In: Khabaronline News Agence. khabaronline.ir/news/173553. Accessed 16 Jan 2019

  • Khazaei B, Khatami S, Alemohammad SH, Rashidi L, Wu C et al (2019) Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J Hydrol 569:203–217. https://doi.org/10.1016/j.jhydrol.2018.12.004

  • Kuzucuoglu C, Dorfler W, Kunesch S, Goupille F (2011) Mid- to Late-Holocene climate change in central Turkey: the Tecer Lake record. Holocene 21:173–188. https://doi.org/10.1177/0959683610384163

    Article  Google Scholar 

  • Lourens LJ, Wehausen R, Brumsack HJ (2001) Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Lett to Nat 409:1029–1033

    Article  CAS  Google Scholar 

  • Manaffar R, Zare S, Agh N, Siyabgodsi A, Soltanian S et al (2011) Sediment cores from Lake Urmia (Iran) suggest the inhabitation by parthenogenetic Artemia around 5,000 years ago. Hydrobiologia 671:65–74. https://doi.org/10.1007/s10750-011-0704-6

  • Martinez-Ruiz F, Kastner M, Gallego-Torres D, Rodrigo-Gámiz M, Nieto-Moreno V, et al (2015) Paleoclimate and paleoceanography over the past 20,000yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat Sci Rev 107:25–46. https://doi.org/10.1016/j.quascirev.2014.09.018

  • Mayewski PA, Rohling EE, Stager JC, Maasch KA, Meeker LD et al (2004) Holocene climate variability. Quat Res 62:243–255. https://doi.org/10.1016/j.yqres.2004.07.001

  • Maziar S (2019) Iran and the Kura-Araxes cultural tradition, so near and yet so far. In: Meyer J-W, Vila E, Mashkour M, Casanova M, Vallet R (eds) The Iranian Plateau during the Bronze Age. Development of Urbanisation, Production and Trade. MAISON DE L’ORIENT ET DE LA MÉDITERRANÉE – JEAN POUILLOUX, pp 51–74

  • McKenzie D (1972) Active tectonics of the Mediterranean region. GeophysJRAstronSoc 30:109–185. https://doi.org/10.1111/j.1365-246x.1972.tb02351.x

    Article  Google Scholar 

  • McKenzie D (1976) The East Anatolian Fault: a major structure in Eastern Turkey. Earth Planet Sci Lett 29:189–193. https://doi.org/10.1136/bmj.2.3908.1076

    Article  Google Scholar 

  • Mehterian S, Pourmand A, Sharifi A, Lahijani HAK, Naderi M et al (2017) Speleothem records of glacial/interglacial climate from Iran forewarn of future Water Availability in the interior of the Middle East. Quat Sci Rev 164:187–198. https://doi.org/10.1016/j.quascirev.2017.03.028

  • Meunier A, Caner L, Hubert F, El Albani A, Pret D (2013) The weathering intensity scale (WIS): An alternative approach of the chemical index of alteration (CIA). Am J Sci 313(2):113–143. https://doi.org/10.2475/02.2013.03

  • Middleton NJ (1986) A geography of dust storms in South-West Asia. Int J Climatol 6:183–196. https://doi.org/10.1002/joc.3370060207

    Article  Google Scholar 

  • Migowski C, Stein M, Prasad S, Negendank JFW, Agnon A (2006) Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quat Res 66(3):421–431. https://doi.org/10.1016/j.yqres.2006.06.010

  • Miot J, Jézéquel D, Benzerara K, Cordier L, Rivas-Lamelo S, Skouri-Panet F et al (2016) Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes. Minerals 6(2):24. https://doi.org/10.3390/min6020024

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell Scientific Publications, Oxford, Second Edi

    Google Scholar 

  • Muhs DR, Bettis EA, Been J, McGeehin JP (2001) Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River Valley. Soil Sci Soc Am J 65:1761. https://doi.org/10.2136/sssaj2001.1761

    Article  CAS  Google Scholar 

  • Myers TS, Tabor NJ, Rosenau NA (2014) Multiproxy approach reveals evidence of highly variable paleoprecipitation in the Upper Jurassic Morrison Formation (western United States). Bull Geol Soc Am 126:1105–1116. https://doi.org/10.1130/B30941.1

    Article  CAS  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  CAS  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–146

    Article  CAS  Google Scholar 

  • Nieto-Moreno V, Martínez-Ruiz F, Giralt S, Jiménez-Espejo F, Gallego-Torres D et al (2011) Tracking climate variability in the western Mediterranean during the Late Holocene: a multiproxy approach. Clim Past 7(4):1395–1414. https://doi.org/10.5194/cp-7-1395-2011

  • Nordt LC, Driese SD (2010) New weathering index improves paleorainfall estimates from Vertisols. Geology 38:407–410. https://doi.org/10.1130/G30689.1

    Article  CAS  Google Scholar 

  • Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1872–1885. https://doi.org/10.1016/j.quascirev.2008.07.009

  • Pourmand A, Marcantonio F, Bianchi TS, Canuel E a., Waterson EJ (2005) Radionuclide and biomarker proxies of past ocean circulation and productivity in the Arabian Sea. Geophys Res Lett 32(10):1–4. https://doi.org/10.1029/2005GL022612

  • Pourmand A, Marcantonio F, Bianchi TS, Canuel E a., Waterson EJ (2007) A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea. Paleoceanography 22(4):PA4208 1–14. https://doi.org/10.1029/2007PA001502

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1–31. https://doi.org/10.1029/2000RG000095

  • Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie. Laboratoire de Botanique historique et Palynologie, Marseille

  • Reille M (1995) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie-Supplément 1. Laboratoire de Botanique historique et Palynologie, Marseille

  • Reille M (1998) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie-Supplément 2. Laboratoire de Botanique historique et Palynologie, Marseille

  • Reimer PJ, Austin WEN, Bard E, Bayliss A, Blackwell PG, et al (2020) The IntCal20 Northern hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62(4):725–757. https://doi.org/10.1017/RDC.2020.41

  • Rezvantalab S, Amrollahi MH (2011) Investigation of recent changes in Urmia Salt Lake. Int J Chem Environ Eng 2:168–171

    CAS  Google Scholar 

  • Rivas-Martinez S, Sánchez-Mata D, Costa M (1999) North American boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America II). Itinera Geobot 12:5–316

    Google Scholar 

  • Rodrigo-Gámiz M, Martínez-Ruiz F, Rodríguez-Tovar FJ, Jiménez-Espejo FJ, Pardo-Igúzquiza E (2014) Millennialto centennial-scale climate periodicities and forcing mechanisms in the westernmost Mediterranean for the past 20,000 yr. Quat Res (United States) 81(1):78–93. https://doi.org/10.1016/j.yqres.2013.10.009

  • Schilman B, Bar-Matthews M, Almogi-labin A, Luz B (2001) Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 176:157–176. https://doi.org/10.1016/S0031-0182(01)00336-4

  • Schulz H, von Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years: Nature. Nature 393:54–62. https://doi.org/10.1038/31750

  • Shah-Hosseini M (2003) Sedimentology of hypersaline Lake Urmia in central part of Shahid Kalantari highway with special reference to their origin. M Sc Thesis, Geology Department University of Tehran, p 88

  • Shahrabi M (1994) Seas and Lakes of Iran. Geological Survey of Iran, Treatise on Geology of Iran, Book No. 10, Tehran

  • Sharifi A, Pourmand A, Canuel EA, Ferer-Tyler E, Peterson LC et al (2015) Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran: The hand that rocked the Cradle of Civilization? Quat Sci Rev 123:215–230. https://doi.org/10.1016/j.quascirev.2015.07.006

  • Sharifi A, Murphy LN, Pourmand A, Clement AC, Canuel EA et al (2018) Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia. Earth Planet Sci Lett 481:30–40. https://doi.org/10.1016/j.epsl.2017.10.001

  • Sharifi A, Shah-hosseini M, Pourmand A, Esfahaninejad M (2018) The vanishing of urmia Lake: A geolimnological perspective on the hydrological imbalance of the World ’s second largest hypersaline lake. In: Nooran PG et al (eds) Lake Urmia: A Hypersaline waterbody in a drying climate. Springer Nature Switzerland, pp 1–38. https://doi.org/10.1007/698_2018_359

  • Sharifi A, Esfahaninejad M, Kabiri K (2021) Hydroclimate of the Lake Urmia catchment area: A brief overview. In: Peygham G, Nooran, Evgeniy V, Yakushev OAN and JB (eds) Lake Urmia: A hypersaline waterbody in a drying climate. Springer Nature Switzerland. https://doi.org/10.1007/698_2021_809

  • Sheldon ND, Retallack GJ, Tanaka S (2002) Geochemical climofunctions from North American soils and application to Paleosols across the Eocene-Oligocene boundary in Oregon. J Geol 110:687–696. https://doi.org/10.1086/342865

    Article  CAS  Google Scholar 

  • Shumilovskikh L, Djamali M, Andrieu-Ponel V, Ponel P, Beaulieu J et al (2017) Palaeoecological insights into agri-horti-cultural and pastoral practices before, during and after the Sasanian Empire. In: Sauer E (ed) Sasanian Persia: Between Rome and the Steppes of Eurasia. University Press, Edinburgh, pp 51–73

  • Sima S, Ahmadalipour A, Tajrishy M (2013) Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens Environ 136:374–385. https://doi.org/10.1016/j.rse.2013.05.014

    Article  Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431(7012):1084–1087. https://doi.org/10.1038/nature02995

  • Stallard RF (1985) River chemistry, geology, geomorphology and soils in the Amazon and Orinoco Basins. In: Drever JI (ed) The Chemistry of Weathering. N.A.T.O. Advanced Science Institutes Series. D. Reidel, Dordrecht, pp 324–345

  • Stevens LR, Djamali M, Andrieu-Ponel V, Beaulieu J-L (2012) Hydroclimatic variations over the last two glacial/interglacial cycles at Lake Urmia, Iran. J Paleolimnol 47:645–660. https://doi.org/10.1007/s10933-012-9588-3

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615–621

    Google Scholar 

  • Street-Perrott FA, Roberts N (1983) Fluctuations in closed basin lakes as an indicator of past atmospheric circulation patterns. In: Street-Perrott A, Beran M, Robert R (eds) Variations in the Global Water Budget. Springer, Netherlands, pp 331–345

  • Stuiver M, Reimer PJ, Reimer RW (2021) CALIB rev. 8.2; Stuiver, M, and Reimer PJ, 1993. Radiocarbon 35:215–230

  • Talebi T, Ramezani E, Djamali M, Lahijani HAK, Naqinezhad A et al (2016) The Late-Holocene climate change, vegetation dynamics, lake-level changes and anthropogenic impacts in the Lake Urmia region, NW Iran. Quat Int 408:40–51. https://doi.org/10.1016/j.quaint.2015.11.070

  • Team Rs (2015) RStudio: integrated development for R. https://www.rstudio.com/

  • Torrence C, Compo GP (1995) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78. https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2

  • Tudryn A, Motavalli-anbaran S, Tucholka P, Gibert-brunet E (2021) Late Quaternary environmental changes of Lake Urmia basin (NW Iran) inferred from sedimentological and magnetic records Late Quaternary environmental changes of Lake Urmia basin (NW Iran) inferred from sedimentological and magnetic records. Quat Int. https://doi.org/10.1016/j.quaint.2021.03.024

    Article  Google Scholar 

  • Van Zeist W, Bottema S (1977) Palynological investigations in western Iran. Palaeohistoria, pp 19-85

  • Wick L, Lemcke G, Sturm M (2003) Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13:665–675. https://doi.org/10.1191/0959683603hl653rp

    Article  Google Scholar 

  • Zoljoodi M, Didevarasl A (2014) Water-level fluctuations of Urmia Lake: relationship with the long-term changes of meteorological variables (solutions for water-crisis management in Urmia Lake Basin). Atmos Clim Sci 04:358–368. https://doi.org/10.4236/acs.2014.43036

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Naser Ghasemi, Majid Pourkerman, and Mehdi Moradi for their extensive support during the fieldwork. Dahvya Belkacem is also thanked for assisting in laboratory pollen extraction.

Funding

This research was supported by the National Science Foundation grant EAR-1003639 to A. Pourmand and by a Geological Society of America Graduate Student Research Grant to A. Sharifi. The field campaign was supported by INIOAS project No 391-012-01.

Author information

Authors and Affiliations

Authors

Contributions

A. S. and A. P. designed the study. Fieldwork and sampling were conducted by A. S. and H. A. K. L. organized the expedition. X. R. F. analysis of cores and data interpretation performed A. S. and L. C. P. Pollen extraction and data interpretation were performed by M. D., M. G. P. A, and J. L. B. Geochemical analyses were performed by A. S., A. P., and P. K. S. DEM model and GIS mapping was conducted by M. E. A. S. wrote the original draft of the manuscript. All authors equally contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Arash Sharifi or Ali Pourmand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Juan Ignacio Lopez Moreno

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3700 KB)

Supplementary file2 (XLSX 536 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, A., Djamali, M., Peterson, L.C. et al. The rise and demise of Iran’s Urmia Lake during the Holocene and the Anthropocene: “what’s past is prologue”. Reg Environ Change 23, 121 (2023). https://doi.org/10.1007/s10113-023-02119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10113-023-02119-x

Keywords

Navigation