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Abstract
Changes in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact
of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the
massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia
and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model
to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations
suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of
1.6·1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990
to 2100, climate change alone is projected to cause emissions of about 1.8 (±1.1) Pg carbon. Hypothetical recultivation of
the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (±0.9) Pg
carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (±1.2) Pg carbon.
For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only
moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to
the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use
change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.
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Introduction

Soil organic carbon (SOC) stocks received increasing
attention in the context of climate change, food security and
degradation of soils (FAO 2017). Being a main component
of soil, SOC is an indicator for soil health, fertility and water
availability. The anthropogenic influence on SOC stocks
affects the capacity of soils to be a carbon sink or could
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convert soils to a net source of the greenhouse gas carbon
dioxide (CO2) (FAO 2017).

SOC stocks build up when the incorporation of organic
material from flora, fauna, and microorganisms is dominant
over degradation processes and land conversion and shrink
vice versa, depending on environmental site conditions and
land-use history. Under stable climatic conditions without
anthropogenic interference, an equilibrium establishes
between the SOC stocks and the carbon fluxes between
atmosphere, biosphere and the soil. A major disturbance of
this equilibrium is the cultivation of land for agricultural
purposes (Tilman 1998; Foley et al. 2005). SOC losses
caused, for example, by cropland expansion can be
determined by estimating three carbon fluxes: the net
annual emissions from land-use change, the residual
terrestrial carbon sink and the lost additional sink capacity
(Houghton 2018). Previous analyses have suggested that
global estimates for historical losses of SOC due to
agricultural activities and soil degradation range between
42–78 PgC (Lal 2004) and 133 PgC (Lal 2020). Annual
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losses were estimated as 1.14±0.18 PgC a−1 (mean ±
standard deviation) between 1920 and 1999 (Houghton et al.
2012). Assuming the current SOC stock in the upper 100 cm
to be between 1325 PgC (Köchy et al. 2015) and 1550 PgC
(Global Soil Data Task 2000), then approximately between
2.6 and 5.6% of the total initial stocks were lost. Yet,
land-use related emissions are likely to be underestimated
(Arneth et al. 2017).

The potential of recovering SOC stocks was estimated
as 50 to 66% of the historically lost SOC (Lal 2004) when
applying recommended land-use practices that sequester
carbon on croplands. In general, cropland abandonment
is associated with net carbon sequestration (Kurganova
et al. 2015; Kämpf et al. 2016) whereas cropland
expansion typically reduces SOC stocks (Lepers et al. 2005;
Ramankutty et al. 2018). The area that was converted to
cropland globally in the twentieth century is estimated at
around 400 Mha and mostly resulted from the conversion
of natural grasslands and steppe vegetation (Ramankutty
and Foley 1999; Klein Goldewijk 2001). The conversion of
steppe soils alone was associated with the reduction of SOC
stocks by 38–43% in the upper 10 cm (Mikhailova et al.
2000) or 25% in the upper 100 cm (Beniston et al. 2014).

Climate change is expected to have negative effects on
SOC stocks which are probably influenced by positive
feedbacks, e.g. via enhanced microbial decomposition
under elevated soil temperatures (Allison et al. 2010;
Lal 2020). When weather extremes, such as heavy
rainfall, droughts and storms, increase in frequency
and intensity, erosion and deterioration of the soil will
become more likely. Increasing mean temperatures enhance
decomposition rates of soil organisms as long as soil
moisture is sufficent (Davidson and Janssens 2006),
although the long-term effect is under debate (Lloyd and
Taylor 1994). Lloyd and Taylor (1994) found that the
initially increasing decomposition rates decline after a few
years of elevated temperatures, probably because of a
decline of microbial biomass, which may rise again when
microbial communities are adapted to higher temperatures
(Allison et al. 2010). On the other hand, rising temperatures
also induce drier conditions and with it reduced plant
growth, which leads to reduced replenishment of SOC by
organic matter and a decline in SOC stocks (Bischoff et al.
2016). Hence, it is expected that warming would increase
the release of carbon in the form of carbon dioxide as well
as methane, both of which are powerful greenhouse gases
(Houghton 2018).

Besides climatic change, the conversion of grassland to
cropland has profound effects on SOC stocks in Eurasian
grasslands. Probably, the fastest and most widespread
policy-driven cropland expansion in human history was the

‘Virgin Lands Campaign’ (VLC) in the south of European
Russia, western Siberia and northern Kazakhstan between
1954 and 1963 (Durgin 1962; McCauley 1976; Kraemer
et al. 2015; Frühauf et al. 2020). The Campaign allowed
to increase grain output in the first two years after the
start with beneficial weather conditions, but was officially
ended in 1963, following a sequence of droughts (McCauley
1976; Josephson et al. 2013). Despite the acknowledg-
ment of the Campaign’s failure to alleviate the Soviet’s
grain shortages (Einaudi 1964; Josephson et al. 2013), crop-
land cultivation in the Eurasian steppes continued until the
fall of the Soviet Union in 1991. Following the break-
down of the Soviet Union in 1990, approximately 32 Mha
of previously converted cropland were abandoned (Lesiv
et al. 2018). The successional vegetation and secondary
steppe began to re-establish on most of the abandoned crop-
lands (Schierhorn et al. 2013; Kämpf et al. 2016), whereas
the conversion of former cropland to pasture was negligi-
ble (Hankerson et al. 2019; Dara et al. 2020). Since the
2000s, some of the abandoned croplands have been recul-
tivated partially in response to economic growth, higher
world market prices for grains and favourable policies
(Meyfroidt et al. 2016).

The large-scale land-use changes, both cropland expan-
sion and abandonment, had substantial consequences for the
SOC dynamics in the region. Field measurements in the
Kulunda steppe of Altai Krai in Russia revealed SOC losses
in the upper 25 cm of the soil of 20–35% due to cropland
expansion (Bischoff et al. 2016; Guggenberger et al. 2020).
An assessment of SOC stocks with a terrestrial ecosystem
model enabled the evaluation of the carbon dynamics for the
part of the VLC region in European Russia and found that
substantial amounts of carbon were sequestered in the soils
of abandoned croplands (Schierhorn et al. 2013).

The aim of our study was to evaluate the impact of land-
use changes and climate change on the SOC stocks of the
entire VLC region. Here, we used the dynamic vegetation
and crop growth model LPJmL (Bondeau et al. 2007;
Rolinski et al. 2018) to simulate the carbon cycle including
all relevant fluxes between the atmosphere, vegetation and
soil. We quantified carbon emissions caused by land-use
change and climate change and highlighted the relative
importance of both dynamics. Specifically, we addressed
the following research questions:

1. What are the legacies of the VLC cropland expansion
and the post-soviet abandonment for SOC stocks?

2. How likely is the recovery of the SOC stocks until
2100?

3. Are land-use changes or climate change more important
for historical and future changes in SOC stocks?
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Methods

Study area

We examined the central area that was subject to the Virgin
Lands Campaign (VLC), 226 million hectares (Mha) in
total. The VLC was initiated after World War II by the
General Secretary of the Communist Party of the Soviet
Union, Nikita Khrushchev (Josephson et al. 2013; Kraemer
et al. 2015) to alleviate grain supply shortages in the Soviet
Union (McCauley 1976; Wein 1980). During the campaign
from 1954 to 1963, 45 Mha of ‘virgin’ steppes, temperate
grasslands and fallow lands were converted to cropland
(Durgin 1962), mostly in the south of European Russia,
northern Kazakhstan and western Siberia (Fig. 1). The
campaign was a major state development activity, included
the resettlement of more than 300,000 people and aimed
to transform the target regions into a main agricultural
production area in the Soviet Union. After this large-
scale conversion, further 42 Mha of grassland steppe were
converted to cropland, mainly for wheat cultivation, until
1980 (Wein 1980).

The climatic conditions in the VLC region are continental
semi-humid in the north to semi-arid in the south and
characterized by low annual precipitation (500 mm in the
eastern, 400 mm in the northern, 200 mm in the southern
part), falling mostly in summer but with high interannual
variability (Afonin et al. 2008; Blinnikov 2021). From north
to south, the natural vegetation in the VLC region consists of
forest steppe, meadow, dry and semi-arid steppes (Ogureeva
et al. 1999; WWF-Russia 2018). The northern boundary of
meadow (grassland) steppe is located between 53 and 54◦ N
in the European part of Russia and between 55 and 56◦ N in
the Ural and Siberian regions (Tchebakova et al. 2009).

Crop production is constrained by short vegetation peri-
ods, early frost and strong winds. Following the climatic
gradient, carbon-rich black soils (Chernozems) dominate
in the north of the study area, while brownish soils with
smaller organic carbon contents (Kastanozems) are found

in the south. Salt-affected soils can be found throughout
the VLC area (Josephson et al. 2013) which is a natu-
ral phenomenon in arid steppe regions, where the soils
contain a large amount of soluble salts (FAO/IIASA/ISRIC-
/ISSCAS/JRC 2012). Crop yields can be high in years with
above-average rainfall, such as in the early 1950s (Durgin
1962). However, consecutive drought years are common and
exacerbate soil salinization and soil erosion, mainly caused
by wind, pose major environmental challenges and cause
high yield variability (Kraemer et al. 2015). The volatile
weather conditions are also reflected in the high fluctua-
tions in grain yields in the 1960s ranging between 0.3 and
1.1 t ha−1 (Petrick et al. 2013). The low yields
are mainly caused by low fertilizer application rates
(Prishchepov et al. 2019), extreme climate conditions,
and the very short cropping season (one of the shortest
worldwide) (Kühling et al. 2017), which requires using
adapted, yet old and low-yielding spring wheat varieties
(Morgounov et al. 2010). The low yield levels and general
productivity limit the carbon sequestration in agricultural
soils.

Dynamic global vegetationmodel LPJmL

Simulations of the vegetation, the soil dynamics and the
water cycle were performed using the dynamic global
vegetation, hydrologic and agricultural model LPJmL
(‘Lund Potsdam Jena managed Land’; Sitch et al. 2003;
Bondeau et al. 2007; Rolinski et al. 2018). The model
was designed to simulate the global carbon cycle and
separate flux components (gross primary productivity
(GPP), net primary productivity (NPP), heterotrophic
respiration, disturbances such as fire or harvest) and carbon
pools (vegetation carbon, soil organic carbon), and it was
validated in comparison to local measurements and global
data sets (Schaphoff et al. 2013; Müller et al. 2017;
Schaphoff et al. 2018b). Previously, LPJmL was also used
for carbon flux and stock simulations in parts of the
former Soviet Union (Schierhorn et al. 2013; Kuemmerle

Fig. 1 Map of virgin lands
campaign area
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et al. 2015). For the assessment of the carbon budget, net
ecosystem exchange (NEE) was derived by substracting
net primary productivity from the sum of the carbon
emissions due to heterotrophic respiration, fire, harvest and
deforestation, so that negative values denote a net flux into
the biosphere or carbon sequestration.

In LPJmL, plants are represented in the form of func-
tional types, which represent major growth habits of plants
in response to environmental conditions. For the natural
vegetation, plant functional types (PFTs) were parametri-
zed and for agricultural activities, crop functional types
(CFTs) were defined. The PFTs were distinguished by
their ability to capture light, take up water and nutri-
ents and their rates of growth, respiration and mortality.
The composition of the natural vegetation was then cal-
culated internally by establishment of PFTs according to
their bioclimatic limitations and competition between the
PFTs for water and light. Nine PFTs were parametrized
within LPJmL from which four prevail in the study
region (Table S1). The 12 agricultural crop types include
temperate and tropical cereals, rice, maize, pulses, tem-
perate and tropical roots, sunflower, soybean, ground-
nuts, rapeseed and sugarcane with or without irrigation
(Bondeau et al. 2007).

Carbon from dead plant material enters PFT-specific
litter pools for above- and belowground material so
that differences in degradability between different PFTs
and different plant organs can be accounted for. The
decomposition of litter emits 70% of the decomposed
carbon as CO2 to the atmosphere, while the remainder is
transferred to the slow (1.5%) and fast (98.5%) soil carbon
pools across the soil layers. Decomposed soil carbon is also
emitted to the atmosphere. Decomposition rates of litter and
soil carbon pools are sensitive to soil temperatures and soil
moisture, which are calculated dynamically for each fo the
5 soil layers (0–20, 20–50, 50–100, 100–200, 200–300 cm).
A more detailed description of soil carbon dynamics is
provided by Schaphoff et al. (2018a).

We ran the simulations using model version 3.6 (Rolin-
ski et al. 2018) with the following improvements: The
treatment of cropland expansion was adjusted since large-
scale conversion of natural vegetation plays an important
role for the carbon cycle in the study region. There-
fore, that aboveground tree biomass (100% of the sap-
wood and 66% of the heartwood) is removed from
the fields upon land conversion and only the remainder
(34% of the heartwood) is added to belowground lit-
ter pools. For comparison of the simulated patterns of
vegetation (appendix A) and carbon pools with refer-
ence data (‘Comparison of simulations with soil organic
carbon measurements’), we used input data as specified
in ‘Climate scenarios and input data sets’ in the model
runs.

Climate scenarios and input data sets

We used climate and soil input data with a spatial
resolution of 0.5◦ × 0.5◦ for the simulations with LPJmL
(‘Dynamic global vegetation model LPJmL’). Climate input
data comprised raster data from 1901 to 2099 with daily
values of air temperature, precipitation, long and shortwave
radiation (Weedon et al. 2014). Following the framework
‘Global Assessment of Land Use Dynamics, Greenhouse
Gas Emissions and Ecosystem Services’ (GLUES; Liniger
et al. 2017) within the project KULUNDA (Frühauf et al.
2020), we included scenarios for climate projections until
the year 2100 based on the storylines of the IPCC Special
Report on Emissions Scenarios (SRES, Nakićenović et al.
2000). From the available storylines, we included the
marker scenarios for the A1, A2 and B1 scenario families
(appendix B). For each of the scenarios, the results of three
general circulation models (GCMs) were chosen from the
CMIP3 data set as input data from 1901 to 2100, namely
MIUB ECHO-G, MPI ECHAM5, and UKMO HadCM3
(Meehl et al. 2007).

Global averages of annual atmospheric CO2 concentra-
tions were used (Keeling and Whorf 2003). Soil charac-
teristics were compiled from global data sets (FAO/IIASA-
/ISRIC/ISSCAS/JRC 2012) using FAO classification of 13
soil types (IUSS Working Group WRB 2006).

Land-use data sets

To represent actual land use, a data set is necessary with the
information on the area fraction in each grid cell per year,
crop functional type and irrigation system. Here, we used
two different land-use data sets (Fig. 2) and derived two
counterfactual future scenarios (Table 1).
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Fig. 2 Extent of total agricultural (black), cropland (red) and grassland
(blue) area in the VLC region for the land-use data set based on
statistics of sown areas (solid, LUV, Schierhorn et al. 2013) in
comparison to the global standard data set (dashed, LUD, Klein
Goldewijk et al. 2010). Grey shadings denote the VLC era and the
collapse of the Soviet Union
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Table 1 Land-use data sets, scenario design and description

Acronym Name Description

LUD Standard data set based on HYDE

LUV Specific data set for the
former Soviet Union

based on official statistics from 1940 to 2012 and
extrapolated with trends from HYDE

LUV-E Expansion scenario LUV with cropland expansion from 2000 to 2050

LUV-A Abandonment scenario LUV with cropland abandonment from 2000 to 2050

The data set LUD is based on HYDE (Fader et al.
2010; Klein Goldewijk et al. 2010), a widely used data
set with spatially explicit cropland extent from 1700 to
2000. LU D includes information on irrigated cropland and
irrigation systems (Portmann et al. 2010; Jägermeyr et al.
2015). However, HYDE does not reflect the agricultural
dynamics in the VLC region (Fig. 2, red dashed line). In
LUD, cropland extent was roughly stable from 1960 to 1990
(83.3 ± 2.3 Mha) so that it represented neither expansion
nor abandonment (Fig. S4a).

Therefore, additional land-use data in the VLC region
and the former Soviet Union were compiled from 1940 to
2012 based on official statistics on sown areas (detailed
description in appendix C), which were found to be a good
proxy for cropland expansion (Durgin 1962; Prishchepov
et al. 2020) and abandonment (Ioffe and Nefedova 2004;
Schierhorn et al. 2013). For simulating the effects of
cropland expansion during the VLC era (Kraemer et al.
2015), the LUV data set was essential (Fig. 2, solid lines).
In LUV, the cropland extent increased by 41.9 Mha from
1940 to 1963 and decreased by 31.0 Mha after 1990
(Fig. 2, solid red line) so that the expansion period as
well as the abandonment period was represented (Fig. S4b).
Total agricultural area (cropland and managed grasslands)
increased from 1950 to 1963 by 71.9 Mha (Fig. 2, solid
black line).

For modelling purposes, the available land-use data had
to be extended to the entire period from 1700 to 2099.
To ensure consistent land-use data sets from the different
sources for the VLC region, LUV was extrapolated with
cropland information from HYDE (Klein Goldewijk et al.
2010) from 1700 to 1940. For the projections during the
twenty-first century, both data sets were extrapolated from
2001 to 2099 with cropland and grassland area trends from
the LUD data set.

In order to capture the uncertainty in future land-use
dynamics, two diverging scenarios were generated based on
LUV: in the abandonment scenario LUV-A, all cropland in
2000 is gradually abandoned until 2050 (Fig. S4c), whereas
in the expansion scenario LUV-E all areas abandoned after
1991 were gradually re-converted to wheat cultivation until
2050 (Fig. S4d).

Model setup

Model runs were performed with a daily temporal and
0.5◦ × 0.5◦ spatial resolution. The model was not initialized
based on current conditions, but was run from bare soil
in a spinup phase of 5000 years. The aim of the spin-
up simulation is to establish an equilibrium between the
carbon fluxes and stocks in the soil and vegetation, which
can be assumed to exist under the absence of anthropogenic
disturbances and stable climatic conditions (prehistoric
equilibrium). Starting simulations from this equilibrium
state ensures that simulated carbon fluxes reflect the
response to changes in drivers during the simulation period
and not a mismatch between initialized carbon pools and
parameterized processes. The prehistoric equilibrium is
subsequently disturbed in a transient simulation, which
introduces historical land use from 1700 onward and
historical climate dynamics from 1901 onward. For the
simulation years before 1901, the climate data from 1901
to 1930 were recycled because of the lack of alternative
historical data.

Reference data for comparison

For comparison with simulated SOC stocks, we used
SOC measurements in the VLC region (Table S4). The
measurements sampled in the region between 47◦ N and
55◦ N and 40◦ E and 108◦ E cover a climatic gradient from
forest to dry steppe types. The aim was to investigate the
impact of cropland expansion on SOC stocks. The available
data are SOC inventories from 56 sites, each consisting of
two to five horizons. Observed values (obs) (e.g. in Bischoff
et al. 2016) are given in mgC g−1 soil, whereas the unit of
the simulation (sim) is gC m−2. Conversion of the units was
achieved with

sim = 10−3 · obs · BD · d

100
(1)

with the measured bulk densities BD (e.g. between 1.2 and
1.54 · 106 g m−3; Bischoff et al. 2016) and the soil layer
depth d in cm.
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Table 2 Cumulative carbon fluxes (Pg C) in the VLC region during six time periods and the entire simulation time for four land-use scenarios
(mean ± standard deviation across climate scenarios). Negative values indicate a net carbon uptake by the land

Period LUD ± LUV ± LUV-E ± LUV-A ±

I: 1925−1940 0.39 0.013 −0.14 0.016 −0.14 0.015 −0.14 0.016

II: 1950−1965 0.60 0.015 1.57 0.041 1.57 0.041 1.57 0.041

III: 1990−2005 −0.26 0.027 −0.50 0.010 −0.48 0.010 −0.53 0.002

IV: 2040−2055 −0.01 0.176 −0.20 0.165 0.29 0.146 −1.18 0.204

V: 2060−2075 1.02 0.240 0.88 0.194 1.08 0.143 0.28 0.219

VI: 2084−2099 1.36 0.721 1.54 0.756 1.65 0.694 1.27 0.838

1900−2099 3.69 1.147 2.72 1.025 4.50 0.854 −0.86 1.165

Analysis methods

Results were analysed for six different periods of 16 year
length each (Table 2), which are highlighted as grey bands in
figures showing time series. These periods are defined along
significant changes in time (e.g. pre-VLC, VLC period,
post-collapse of the Soviet Union) and intended to support
the discussion of results.

Simulation results were analysed for four subregions of
the VLC area which are characterized by different climatic
conditions and vegetation types (Fig. S8 and description
in section E). Regions differ in precipitation (1: dry, 2:
moderate, 3: higher, 4: lowest, Fig. S9), vegetation types (1:
steppe, 2: forest, 3: mostly forest, 4: cropland) and land-use
intensity (1: very intense, 2: low, 3: nearly none, 4: intense).

Agreement with SOC measurements was statistically
tested by linear regressions using the function lm of
programming software R (R Core Team 2020). Temporal
trends were derived by the partial Mann-Kendall test
(Hamed and Rao 1998; Yue and Wang 2004) which
calculates the median value of all differences between
subsequent values and their successors. Its result was
considered to be significant for P < 0.05.

To evaluate the relative importance of land-use and
climatic drivers on SOC, we calculated standardized
regression coefficients or β-weights (Nathans et al. 2012).
This measure gives the change of a predicted variable
when an explanatory variable is changed by one standard
deviation. For the calculation, we used function lm.beta of
package ‘QuantPsyc’ of programming software R (R Core
Team 2020).

Results

Simulation results are presented for current SOC stocks
(3.1), which we compared to field measurements. Temporal
changes of the inventory of organic carbon in the soil

and the vegetation as well as the net ecosystem exchange
are evaluated (3.2) before depicting changes of the spatial
patterns of SOC stocks (3.3) and analysing the drivers for
changes in SOC (3.4).

While vegetation dynamics are also important for SOC
dynamics, we here focus on the presentation of SOC.
Results on LPJmL’s ability to reproduce the gradient from
steppe to forest (Fig. S1, Table S2) as well as changes in
vegetation patterns under climate change (Figs. S2 and
S3) and associated changes in patterns of evapotranspiration
(Fig. S10) are included in the supplementary material only.

Comparison of simulations with soil organic
carbonmeasurements

We found high agreement between simulations with LPJmL
and field-based SOC measurements in the topsoil (0–
20 cm) in the study area (Table S4) and the model results
(for the period 1985–1995) (Fig. 3). The variability of
measurements at single sites cannot be captured because
of the coarser spatial resolution of the model grid, but the
overall agreement with simulated values was significant
(Table S5, Fig. 3a). The agreement with measurements to
50 cm soil depth was also significant (Table S5, Figs. S5a
and S6a). When considering deeper soil layers, the number
of available observations was low and the coefficient of
determination of the regressions was not significant, but
the simulated values were in the right order of magnitude
(Fig. S6b and c).

Simulation results of the carbon balance

Vegetation in the VLC region contained on average 2.16
kg C m−2 (i.e. in total 5.7 Pg C) at the beginning of the
twentieth century for the simulations with the land-use data
set LUV and on average 1.77 kg C m−2 (4.8 Pg C) for LUD

(Fig. S11). During the twentieth century, values remained
quite stable, except from 1940 to 1950 when abandonment
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Fig. 3 a Soil organic carbon stocks (kg C m−2) in the topsoil
(0–20 cm) averaged over 1985–1995. Colored areas represent model
results using land-use dataset LU V and dots show averages of mea-
sured values. b Comparison of simulated and measured soil organic

carbon stocks (kg C m−2) in the upper 20 cm averaged over 1985–
1995. A one-to-one line (grey dashed line) and regression line (black
line) are given for orientation. Colors indicate western (R1) and the
southern central subregion (R4) in which the observations were made

during World War II and increasing atmospheric CO2

concentrations led to an increase in vegetation carbon
(Bastos et al. 2016). For the LUV data set, vegetation
carbon during the VLC era (1954 to 1963) declined,
followed by a stable phase without large fluctuations. With
widespread cropland abandonment after 1991, vegetation
carbon increased. At the end of the twenty-first century,
the loss rates of vegetation carbon were lowest for the
moderate scenario B1 (−7.5 gCm−2 a−1 for LUD and LUV)
and largest for scenario A2 with the highest temperature
increases (−29.3 and −34.6 gC m−2 a−1 for LUD and LUV,
respectively).

The annual carbon flux between atmosphere and
biosphere for the entire VLC area fluctuated mostly between
−0.2 and 0.2 Pg C a−1 and did not differ significantly
between scenarios and climate models until 2010. Since
annual values of net ecosystem exchange (NEE, see
‘Dynamic global vegetation model LPJmL’, with negative
values for land carbon uptake) varied strongly due to
climatic fluctuations, we analysed the long-term fluxes as
cumulative sums of NEE since 1900 (Fig. S12). In the first
half of the twentieth century, carbon fluxes were relatively
balanced for LUV and already showed carbon losses for
LUD. Both showed a peak before the VLC era when
vegetation carbon increased (Fig. S11), which led to carbon
sequestration of −0.34 kg C m−2 for LUV and carbon
losses of 0.14 kg C m−2 for LUD in 1947 in comparison to
1900. The beginning of the VLC era was characterized by
high positive fluxes for LUV (0.17±0.05 kg C m−2), which
denoted high carbon emissions to the atmosphere. The
following period until 2020 showed rather stable conditions
and huge differences depending on the land-use scenarios.
At the end of the twenty-first century, standard variations
across land-use scenarios (0.34 to 0.45 kg C m−2 a−1) were
much lower than those across climate scenarios (0.79 to 0.98
kg C m−2 a−1).

We summarize the net carbon balance of uptake and
emissions over the defined six periods of 16 years each
(Table 2). For the LUV data set, the biosphere was a source
of carbon only during the VLC period and a carbon sink
until 2055 otherwise (Table 2). Carbon sequestration was
small before the VLC era (period I from 1925 to 1940)
(about −0.14 Pg C), but large carbon emissions occurred
during the VLC era (1.57 Pg C in period II). Following
the period of widespread cropland abandonment after the
collapse of the Soviet Union, carbon storage increased at
the end of the twentieth century (period III) and nearly
doubled during the middle of the twenty-first century
(period IV) (Fig. S11). From 1990 to 2100, the cumulative
carbon emissions are highest for the expansion scenario
LUV-E with 3.5 (±0.9) Pg C, lower for the scenario with
LUV with 1.8 (±1.1) Pg C, whereas they were negative
for the abandonment scenario LUV-A (-1.8±1.2 Pg C).
Nevertheless, the region is projected to be a carbon source
for the future periods V and VI, so that the overall balance
from 1900 to 2100 results in a loss of 2.7 Pg C to the
atmosphere und static future land use (LUV and LUD,
Table 2). The scenarios for future cropland expansion and
abandonment resulted in the same values until 2000 but
caused higher losses for LUV-E and lower losses for LUV-A

for periods V and VI, as expected. The net balance from
1900 to 2100 under cropland expansion was calculated as
4.5 Pg C and for abandonment as −0.9 Pg C (Table 2).

The carbon fluxes were less pronounced for LUD for
which larger losses were calculated before the VLC era
but less during the time of cropland expansion. Carbon
sequestration after cropland abandonment until 2055 was
smaller as well but losses in the future are estimated in the
same order of magnitude so that the net loss for LU D in
2100 was projected to be on average 3.7 Pg C.

SOC stocks for the VLC region were simulated for
the entire soil column of 3 m. The SOC content, that
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Fig. 4 Simulation results for soil organic carbon in the VLC region (kg
C m−2) from 1900 to 2100 for the climate scenarios A1, A2 and B1
(color-coded; thick lines denote averages over three GMCs and shaded
areas the range) and four different land-use data sets (line types). Shad-
ings indicate VLC era and breakdown of the Soviet Union (light grey)

and periods for further analysis (dark grey). Endpoints are denoted in
right inset by dots (average values) and lines (ranges over three GCMs)
per land-use dataset. The upper panel shows average values for the
entire VLC region, and the lower figures for the four subregions R1 to
R4

accumulated until 1900 in this region, added up to 18.7
kg C m−2 for LUV and 18.4 kg C m−2 for LUD (Fig. 4)
which is 8.8 (LUV) or 10.2 (LUD) times the carbon stocks
in the vegetation. SOC stocks globally are estimated for soil
depth until 3 m as 2397 PgC (1836 and 3257 PgC were
given as 2.5th and 97.5th percentile; Carvalhais et al. 2014).
Our simulations suggest that the soils in the VLC area
contain about 2.1% (1.6–2.7%) of the global stocks. SOC
average values are determined by the eastern region R3 with
40.5 and 40.9 kg C m−2, where the further development is
determined by the climatic conditions. Lowest SOC in the
western region R1 (6.4 kg C m−2) are reduced during the
VLC era but stabilize and even increase after 1990. Loss of
SOC was highest in the central regions 2 and 4 (0.22 and

0.14 kg C m−2), where most of the cropland expansion took
place.

The SOC level remained stable for the simulation with
the LUV data set until the middle of the twentieth century
with slight fluctuations and increasing values before 1915
and 1947. Both periods were times of reduced land use
because of the world wars, which was also reflected in
preceding peaks in vegetation carbon (Fig. S11). Average
decline of the SOC stocks from 1950 to 1965 (period II) is
nearly twice as high for scenario LUV (−0.23 kgC m−2) as
for LUD (−0.14 kgC m−2).

During the VLC era, the moderate decline for LUV

was −9.0 gC m−2 a−1. The SOC stocks declined for all
realizations with the three climate model results until 2020
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with steady rates of −3.8 gC m−2 a−1. From 2060 on, the
decline for all simulations persists (−8.3 gC m−2 a−1) but
with higher deviations between the simulations. Strongest
decline from 2070 to 2099 of −14.3 gC m−2 a−1 was
simulated for the scenario with cropland expansion LUV-E

and lowest for LU V-A (−4.1 gC m−2 a−1), whereas the
rates were in between for LUD and LUV with −12.4
and −10.2 gC m−2 a−1, respectively (significant trends
according to Mann-Kendall test, Yue and Wang 2004).

Spatial distributions of the soil organic carbon
balance in the VLC region

The spatial distributions of the SOC stock for LUV show
a gradient of higher values of about 38 kgC m−2 in
the northeast to lower values in the southwest (Fig. S7).
In the dry steppe region R1, average SOC stock was
5.7±0.04 kgC m−2, in the typical steppe area R2
21.7±0.02 kgC m−2 and in the forested eastern R3 about
38.4±0.00 kgC m−2. To visualize the development over
time, we show absolute values for the first period (1925 to
1940) (Fig. S7 a) and difference values for the subsequent
5 periods (Fig. S7 b to f). At the end of the twenty-
first century, the grassland area R3 in the east gained on
average 0.4 kgC m−2 to 6.1±0.06 kgC m−2, whereas the
northern region R2 and the forest area lost on average
1.2 kgC m−2 to 19.5±0.77 kgC m−2 and 1.9 kgC m−2

to 36.5±0.66 kgC m−2, respectively. Locally, both losses
and gains in SOC increased over time, but with different
spatial patterns. While in the second period, about 1.1% of
the VLC area lost 1 kgC m−2, about 19.6% were lost in
the third and 54.2% in the last period. Losses of more than
3 kgC m−2 occurred from the third period (0.9% of the
area) and increased to 15.7% for the last period. Losses of
more than 6 kgC m−2 occurred on 1.1% of the area with
maximum values of 9.5 kgCm−2. On the other hand, carbon
accumulated in the soil on 21.4% of the area and on 6.7%
this gain was more than 1 kgC m−2. Differences to the
future land-use scenario LUV-E amounted to larger carbon
losses of up to 1 kg C m−2 in the northern part with forested
vegetation and reduced carbon losses on grasslands in the
western part (e.g. 52◦ N, 43◦ W) or in the Kazakh part (e.g.
51◦ N, 70◦ W).

We estimated the SOC loss in the upper 20 cm for grid
cells with specific land-use histories. First, we selected
cells in which natural vegetation was entirely converted to
cropland in the VLC era (e.g. 56.75◦ N, 60.25◦ E) and in
which cropland was abandoned after the breakdown of the
Soviet Union. For those cells, the loss in comparison to
the pre-VLC period (1920 to 1935) for the land-use data
set LUV amounted to 13–18%, whereas SOC remained at
the same level for LUD (changes between −1.8 and 0.2%).
Cropland abandonment reduced SOC loss by up to 1.5 kg

C m−2 in the border region between grassland dominated
and tree-dominated regions and especially in the eastern
part of the region (east of 42◦ W). For the example cells
representing the full conversion, the upper 20 cm of the soil
showed losses of −5.1 to −1.9% compared to the period
before the conversion but recovered after the abandonment.
In the simulations with LUD, the changes between both
periods were mostly positive denoting SOC gains of up
to 5.9%. In our simulation results, we found a significant
relationship between cropland expansion and SOC loss
(r2 = 0.58). We could associate the conversion of natural
vegetation to cropland with a reduction of the upper SOC
stock of 11% (±4.9%).

Analysis of the driving factors of the changes in SOC
in the VLC region

For the evaluation of the relative importance of land-use
changes and climatic conditions for the development of
SOC, we calculated the standardized regression measure β-
weights (‘Analysis methods’). To take into consideration
the response time of SOC, we decided to apply the method
to decadal averages of the SOC values and of the driver
variables cropland and grassland shares, precipitation and
temperature for each of the grid cells within the VLC area.
As target variable, we calculated the temporal difference
of the decadal SOC averages per grid cell. For the entire
VLC area, cropland expansion had the strongest effect on
SOC loss and temperature a smaller effct on SOC gain,
whereas grassland extent and precipitation are of lesser
importance (Fig. 5, left). Cropland expansion had a similar
effect on SOC loss in all subregions except the eastern
R3 with predominantly natural vegetation. In the central
regions R2 and R4, also grassland expansion caused SOC
loss, while temperature was positively associated with SOC
gain. Overall, cropland change was the dominant driver for
changes in SOC, i.e. cropland expansion is associated with
SOC loss and abandonment with SOC gain.

all R1 R2 R3 R4

β−
w

e
ig

h
t

−0.4

−0.2

0.0

0.2

0.4 cropland

grassland

precipitation
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Fig. 5 β-weights calculated for SOC decadal differences in the entire
VLC area (‘all’) and four subregions (R1 to R4)
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Discussion

We provide the first systematic assessment of large-scale
land-use change impacts in the VLC region on the carbon
cycle. The conversion of 45 Mha of steppe vegetation to
cropland from 1954 to 1963 affected 17% of the entire
region, of which 32 Mha (12%) were abandoned after the
breakdown of the Soviet Union in 1990. Our results suggest
that carbon emissions during the VLC era and carbon
sequestration after the abandonment are underestimated
when land-use data fail to properly reflect the expansion
and abandonment in the region (Schierhorn et al. 2013).
Although climate change under all future scenarios will
lead to larger carbon emissions, land-use dynamics have
the potential to determine the regional carbon balance
substantially.

Previous investigations on the dynamics and effects of
the large-scale land-cover change in the steppe belt of
Eurasia, including in the VLC region, mainly assessed
the massive cropland abandonment after 1991 (Schierhorn
et al. 2013; Nguyen et al. 2018) and its role for grain
and fodder crop production after the collapse of the
Soviet Union (Meyfroidt et al. 2016; Prishchepov et al.
2012). Earlier studies combined land-use change with
estimates on the SOC changes based on measurements
(Schierhorn et al. 2019) and extrapolation of SOC
chronosequences (Kurganova et al. 2014; Kurganova et al.
2015). Additionally, SOC measurements on grasslands
and croplands up to 30 years after the conversion were
used to calculate net effects on the SOC (Bischoff et al.
2016; Wertebach et al. 2017). Long-term losses for the
former Soviet Union from 1850 to 2015 were evaluated
by a bookkeeping model with 10.7(±4.3) PgC (Houghton
and Nassikas 2017). With our study, we complement
observation-based studies on land-use change effects in
several parts of the VLC region with a consistent, model-
based assessment for the entire VLC region.

The LPJmL model can well represent the vegetation
patterns of the VLC region. Our simulations show a
vegetation composition of grass-dominated steppes in the
south and a transition towards tree-dominated areas in
the northern and eastern parts. The transition zone was
simulated for 1990 between 54.2◦ and 56.5◦ N depending
on the longitude. Observation based maps of vegetation
show in the border region of northern Kazakhstan and
Russia the transition from grassland steppe to forested area
between 54◦ and 55◦ N (Tchebakova et al. 2009) which
matches with our results. Wertebach et al. (2017) describe
the vegetation at sites in the Tyumen province (between
55.7◦ N, 65.7◦ E and 57.8◦ N, 69.2◦ E) as belonging to the
forest steppe ecozone, i.e. the transition between forested
and treeless regions. In this area, LPJmL simulates a tree
coverage of less than 50% south of 56.5◦ N so that we

consider the representation of the vegetation composition
as reliable. Also the observed SOC stocks as, e.g., reported
in the literature (see Table S4) can be reproduced well
by the model, even though small-scale variability in SOC
estimates cannot be reproduced due to the coarseness of the
simulation and input data.

Conversion of steppe grassland to cropland during the
VLC was a major driver for SOC losses and caused
extensive soil erosion in this semi-humid to semi-arid
region (McCauley 1976; Titlyanova and Naumov 1995;
Schierhorn et al. 2013; Bischoff et al. 2016). Although
methodological uncertainties remain in assessing SOC
losses from observations, the cultivation of virgin steppe
landscapes was identified as a major driver of carbon losses
in these studies. For example, Orlov et al. (1996) found
that the impact of the organic matter removal at harvest
on the reduction of carbon replenishment of the soil is
usually underestimated. Thus, not only consequences for
SOC stocks but also for other soil properties, such as water
availability for plant growth, may have been misjudged
(Orlov et al. 1996). Our results confirm the strong influence
of the land-use changes on SOC losses and associated
deterioration of soil functions.

Our estimates of the effect of cropland expansion on
SOC stocks are on the lower range of observed values.
The stability of organic carbon in the soil is known to
be associated with the texture and the structure within
the soil, e.g. expressed in the particle size distribution
(Lehmann and Kleber 2015), which is not accounted for
in LPJmL. Findings from the Kulunda steppes in western
Siberia suggest that tillage alone did not lead to an increase
in mineralization of organic matter associated in macro-
aggregates (Bischoff et al. 2017). The decline in SOC
after conversion to cropland was primarily attributed to
the reduction of plant residue input into the soil. The
LPJmL model accounts for SOC loss inherent in residue
management. For the entire Kulunda steppe, a loss of 20–
35% of the soil organic carbon is estimated (Guggenberger
et al. 2020). Regarding the VLC region, our results for the
entire soil column suggest a loss of 1.6 Pg carbon which
is about 3.5% of the SOC stock before the conversion. For
the upper layer of 20 cm, soils converted to cropland lost
13–18% of their SOC. Although the sampling sites for the
comparison were chosen only when the respective land-use
history was not contradicting the land-use in the respective
grid cell, the simulation results do not reflect a detailed
reconstruction of the situation at the experimental sites. The
deviation between these estimates are thus partly caused by
differences in the land-use history and partly by the scale
effect and differences in computing results at a grid with
an extent of 0.5◦ × 0.5◦ vs. extrapolating field data from
specific sites. In the upper 50 cm, soils of West Siberia lost
1.1–1.3 Pg C according to experimental data, i.e. 10–40%,
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of their initial C stock due to agricultural activities during
the twentieth century (Titlyanova and Naumov 1995) which
is consistent with our results. In the dry steppe and semi-
desert regions of Kazakhstan, the relative SOC stock change
was evaluated with a loss of 17–24% after 50 years of
continuous tillage (Morgounov and Trethowan 2008). The
conversion of grassland to cropland showed highest losses
in the upper 10 cm with 38–45% (Mikhailova et al. 2000)
but influences SOC content also in deeper layers (25% less
in first 100 cm, Beniston et al. 2014).

Cropland abandonment in the VLC region after 1991
occured on 33.1 Mha in the LUV data set, which is
equivalent to 37% of the cropland in the 1950s in this
region. Assessments of cropland abandonment are available
for several regions of the former Soviet Union, yet not
for the VLC region, e.g. in the northern Kazakhstan
steppe regions, where 40% of the 4.7 Mha cropland
were abandoned by 2013 (Dara et al. 2018), and in the
Kostanay province, where 45% of the 3.1 Mha cropland
in 1990 were abandoned by 2000 (Kraemer et al. 2015).
The dependence of carbon fluxes on land-use types and
their history were studied at the southern rim of the VLC
region in Kazakhstan (Perez-Quezada et al. 2010). On
abandoned cropland, Perez-Quezada et al. (2010) observed
high accumulation of SOC with 536 gC m−2, whereas
other land-use types gained slightly (153 gC m−2 on virgin,
unused land), were nearly neutral (on grassland) or lost
SOC (−191 gC m−2 on cropland). Perez-Quezada et al.
(2010) conclude that uncultivated virgin land is a carbon
sink and that abandonment may replenish SOC. In the
steppe ecosystems of the Russian Federation, a total carbon
sink was estimated from measurements between 52±13
and 81±50 TgC a−1 (Kurganova et al. 2019). For the
abandoned ecosystems in the steppe zone, a stable carbon
sink of 114 to 201 gC m−2 a−1 was derived (Kurganova
et al. 2019; Golubyatnikov et al. 2020). In the topsoil
(0–20 cm), cropland abandonments were associated with
average carbon sequestration rates from 22–47 gC m−2 a−1

(Kurganova and Lopes de Gerenyu 2008; Vuichard et al.
2008) to 92–126 gC m−2 a−1 (Kurganova et al. 2010;
Kurganova et al. 2014), depending on the calculation
approach and time period. In our results, abandonment
of cropland after 1990 led to re-establishment of natural
vegetation, which caused carbon sequestration (0.5 PgC or
11.7 gC m−2 a−1, Table 2). With some delay, the increasing
carbon stock in the biosphere transferred into the SOC pool
(on average 0.86 kgC m−2 in grid cells with complete
abandonment between 1990 and 2005).

For most of the twenty-first century (2010 to 2075),
changes in climate and atmospheric CO2 concentrations
contribute to increasing vegetation carbon while SOC stocks

decline, unless a total abandonment of cropland is assumed
(LUV-A). In the scenario with further cropland abandonment
until 2050 (LUV-A), model results project the highest levels
of soil and vegetation carbon. Without further land-use
change from 2050 to 2100, future climatic conditions are
projected to lead to substantial carbon losses. Restoration of
abandoned cropland to natural vegetation in the dry steppe
zone in the south-eastern part of the VLC region resulted in
the recovery of the SOC stocks. The recovery rate depends
on the soil types (Calcisols and Solonetz) and reaches 64%
and 89% of the natural carbon pool within the upper 50 cm
of the soil after 42 and 12 years, respectively (Kalinina et al.
2015). For both soil types, a complete recovery is projected
after about 100 years. For other major soil types (Retisols,
Luvisols, Chernozems), Kurganova et al. (2015) found that
a new equilibrium of SOC stock can be reached after 30 to
40 years.

Projections may be altered by changes in salinity,
which was not considered in our modelling approach.
Increasing salinity is often associated with decreasing
plant productivity and therefore also reduced SOC stocks
(Wong et al. 2010). Investigations in the Kulunda steppe
showed that organic carbon was not reduced by higher
salinity but more effectively stored in the soil because
of its association with minerals and reduced availability
for microbial decomposition (Bischoff et al. 2018). This
implies that semi-arid steppe regions can store organic
carbon in comparable magnitudes when soil moisture
conditions are sufficient, independent of salinity (Bischoff
et al. 2018). We did not explicitly study different forms
of cropland management, such as conservation agriculture,
that can also strongly modify the dynamics of SOC under
cropland.

Our results demonstrate that the development of agri-
cultural production area would have more impact on the
changes in SOC stocks than climate change alone. Until the
middle of the twenty-first century, increasing temperatures
and rising atmospheric CO2 concentrations are beneficial
for the vegetation as well as the ability of the vegetation and
soils to sequester carbon in the study region. After 2070,
all projections showed declines in carbon fluxes to the bio-
sphere and drastic changes in the vegetation. Assumptions
about future land use are decisive for whether the bio-
sphere will constitute a carbon source or sink at the end of
the twenty-first century. These findings should inform cur-
rent discussions if the abandoned cropland in the Eurasian
steppes should be recultivated (Schierhorn et al. 2019). Our
results are also useful to identify areas where the recultiva-
tion of former cropland in the VLC region can contribute
to increasing global grain production with low carbon emis-
sions (Meyfroidt et al. 2016).
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Conclusion

We examined the effects of changes in land use and climate
for soil organic carbon content in the entire area that
was exposed to the Virgin Lands Campaign. Our analysis
particularly focused on the widespread cropland expansion
during the Campaign as well as the abandonment after the
fall of the Soviet Union. The results from the dynamic
vegetation model highlight the importance of accurately
accounting for changes in cropland extent, particularly
in regions that witnessed fundamental restructuring of
their agricultural sector, such as our study region in
the former Soviet Union. With the given importance
of cropland extent for the region’s carbon dynamics
and the apparent conflict between agricultural production
and carbon sequestration for healthy soils and climate
mitigation, different agricultural management systems need
to be tested in and for the region. The findings are important
for assessing the carbon costs of recultivation and potential
carbon gains that can be expected from restoring steppe
ecosystems.

The legacies of the VLC era were evaluated with a locally
more accurate land-use dataset with a loss of 1.6 PgC,
which is 1 PgC more than the result with a standard dataset
not representing the cropland expansion period. Potential
recovery of SOC until 2100 was achieved in the simulation
results only for the assumption of complete cropland
abandonment. Therefore, further investigations considering
soil improving techniques on cropland are necessary to
evaluate the possibilities of agricultural activities without
soil depletion. In comparison to climatic drivers, cropland
extent turned out to be the major driver for SOC changes.
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