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Abstract Wetlands are sustaining large communities of

people in Rwanda where 10 % of its land surface consists of

many local wetlands. Sustainable future management of

these numerous wetlands requires a reliable inventory of

their location and a dynamic quantitative characterization

that allows assessment of their climate change sensitivity.

The aimof this studywas to assess the importance of climatic

factors for determiningwetland location at different regional

scales. Wetland locations were analyzed and statistically

modeled using their location factors with logistic regression.

Wetland location probability was determined using topo-

graphic (elevation, slope), hydrological (contributing area)

and climatic (temperature and rainfall) location factors. A

wetland location probability map was made that demon-

strated a calibration accuracy of 87.9 % correct at national

level compared to an existing inventory, displaying even

better fits at subnational level (reaching up to 98 % correct).

A validation accuracy of 86.2 % was obtained using an

independently collected dataset. A sensitivity analysis was

applied to the threshold values used as cutoff value between

wetland/non-wetland, demonstrating a robust performance.

The developed models were used in a sensitivity scenario

analysis to assess future wetland location probability to

changes in temperature and rainfall. In particular, wetlands

in the central regions of Rwanda demonstrate a high sensi-

tivity to changes in temperature (1 % increase causes a net

probablewetland area decline by 12.4 %) and rainfall (?1 %

causes a net increase by 1.6 %). This potentially significant

impact onwetland number and location probability indicates

that climate-sensitive future planning of wetland use is

required in Rwanda.

Keywords Wetland management � Topography � Climate

change � Spatial scales � Probability model

Introduction

Wetland environments encompass the transitional zone

between land andwater where the land is covered by shallow

water or with a water table at or near the surface (Cowardin

et al. 1979). Alternatively, wetlands are defined as spatial

units having ecosystems associated with long-term inunda-

tion of the soil (Keddy 2010). This latter description

emphasizes the eco-hydrological and geomorphological

characteristics of wetlands. Consequently, various

researchers have developed wetland modeling approaches

on the basis of hydrological and geomorphic characteristics

(Albert et al. 2005; Brinson 1993; Large and Petts 1996; Xie

et al. 2011). To a lesser extent, wetlands have characterized

on the basis of topographic, hydrological as well as climatic

factors (Mendoza-Sanchez et al. 2013; Ralph and Hesse

2010). Although these three components can be identified
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separately, it is apparent that there is a considerable inter-

dependency between them. The link between water avail-

ability and local hydrodynamics becomes more enlightened

when contributing area (CA) or ecological factors are con-

sidered too (Curie et al. 2007; Zhou et al. 2008).

In Rwanda, wetlands are recognized as an important

natural resource and explicitly considered in national

planning and policy. In 2008, the Rwanda Environmental

Management Authority conducted a national inventory and

mapping of all wetlands, lakes and rivers (REMA 2008).

The delineation and classification accuracy of the inven-

tory, however, were quickly questioned as numerous

inconsistencies were identified during the nationwide land

registration process that started 2 years later. These

inconsistencies point to the fact that wetland bodies are

changeable over time. During ‘wetter’ years, more wetland

will exist than during ‘drier’ years. Human interventions

such as artificial drainage or dam constructions will also

affect wetland locations and size. A reliable demarcation of

wetland in Rwanda is needed since rapid conversions

change a lot on bio-physical and hydrological conditions

(Hansen et al. 2009). Given the dynamic properties of

wetlands, a probability approach instead of a static delin-

eation (mapping) approach is considered more appropriate

and flexible for future sustainable development.

Up to now, modeling approaches to characterize wet-

lands are generally based upon slope (wetlands tend to

have flat slopes) and water accumulation derived on the

basis of contributing area (Buis and Veldkamp 2008).

Digital elevation models (DEM) are readily accessible

nowadays, and automated procedures exist to compute

terrain derivatives (slope, curvature, topographic index,

variance in slope, etc.) which can discern real depression

features from spurious ones (Hogg and Todd 2007; Temme

et al. 2006; Yamazaki et al. 2012).

Less commonly used for wetland modeling are the more

dynamic climate-related data that determine water avail-

ability and the local net water balance. Net water availability

is a function of rainfall and evapotranspiration in the wetland

catchment and thewetland itself. Evapotranspiration, in turn,

is a function of vegetation, temperature and humidity.

In short, improved modeling of wetlands and their

spatial and temporal dynamics requires the use of topo-

graphic, hydrological and climate variables (Adam et al.

2010). An essential advantage of such a modeling approach

lies in its capability to determine how climate changes can

affect wetlands in a spatially disaggregated manner.

It is therefore the objective of this paper to characterize

Rwanda’s wetlands in a dynamic spatially explicit way that

also allows a climate sensitivity assessment. As argued

above, a probability approach is followed in order to allow

quantification of wetland probability in space and time.

Previous investigations have demonstrated that the spatial

scale (grain and extent) of analysis and management (Fóti

et al. 2014; Kok and Veldkamp 2011; Veldkamp and Fresco

1997) can affect outcomes of land system properties.

Materials and methods

Study area

Rwanda is a country with considerable bio-geophysical

diversity, with a main gradient from the lower and drier

east to higher and wetter western part of the country.

Rwanda, as case study, offers the opportunity to identify

the underlying factors that drive the formation of wetlands

at different spatial scales.

Rwanda is located on the great East African Plateau,

which includes the continental water divide between theNile

and Congo rivers. Its climate is moderated by the altitude

with an annual average temperature of 19 �C and an annual

cycle of four seasons: short rainy season, short dry season,

long rainy season and long dry season (Prioul and Sirven

1981). The highland passes in a north–south direction

through the western part of the country. To the west of the

divide, the land drops abruptly to Lake Kivu in the Great Rift

Valley. To the east, elevation gradually declines from the

central plateau to the lowland of the eastern border of the

country (Fig. 1), with the following natural units:

1. Ten agroecological zones (AEZ): Buberuka Highlands

(BH), Bugarama Plain (BP), Central Plateau (CP),

Congo Nile Watershed Divide (CNWD), Cyangugu

backside (CB), Eastern Ridge and Plateau (ERP),

eastern savanna (ES), Kivu lakeside (KS), Mayaga

Plateau and Central Bugesera (MPB) and volcanic

summits and high plains (VHP).

2. Two main major drainage basins: the Nile basin in the

east covering 67 % of the country and the Congo basin

in the west which covers the remaining 33 % (REMA

2008). The two drainage basins are subdivided into ten

watersheds: Akagera (NAKA), Akanyaru (NAKU),

Kivu (CKIV), Mukungwa (NMUK), Mulindi (NMUL),

Muvumba (NMUV), Mwogo (NMWO), Nyabarongo

amont (NNYT), Nyabarongo aval (NNYL) and Rusizi

(CRUS).

Potential geophysical location factors for wetlands

in Rwanda

Topographic factors

The Rwanda National Land Use and Development Master

Plan Project produced a high-quality DEM with a

10 m 9 10 m raster cell size for Rwanda (Swedesurvey

1636 E. Nyandwi et al.

123



2010). From the DEM, a point grid was extracted with an

interval of 10 m. The DEM was provided by the Rwanda

Natural Resources Authority for this study.

In addition to elevation data, the DEM was used to

derive the slope gradient which is used as a landform

characteristic in this study. The slope gradient data set,

which indicates the rate of maximum change in elevation

for each cell of the DEM, was calculated using the fol-

lowing (Eq. 1):

Slope %ð Þ ¼ 100:Sqrt ððdx2 þ dy2Þ=ð2 � grid sizeÞ2Þ
ð1Þ

where dx height difference (m) of the pixel in x direction

and dy height difference (m) of the pixel in y direction, and

grid size is the length of the side of one grid that assume

the length for each side is the same.

A second topographic derivative that was extracted from

the DEM is the contributing area (CA), which represents a

hydrological characteristic. The CA dataset was generated

using LandscApe ProcesS modeling at mUlti-dimensions

and Scales (LAPSUS) techniques, as this resolves the issue

of divergent flows and multiple depressions (Temme et al.

2006).

Climate factors

A network of 183 meteorological stations (see Fig. 2a)

distributed throughout the country records rainfall, tem-

perature, evapotranspiration and relative humidity. Annual

averages of these data were measured for most stations

using 60-year records starting from 1950 to 2010 and

obtained from the Rwanda Meteorological Center. We

interpolated these data using the thin-plate smoothing

spline algorithm as proposed by Hijmans et al. (2005). The

produced maps were transferred to raster datasets with a

10-m cell size following the approach of Mukashema et al.

(2014).

Wetland, agroecological zone and watershed data

In addition to above-described factors data, several addi-

tional GIS and remotely sensed data sets were used. For

Fig. 1 Inland lakes and hydrological network Rwanda with Akagera

as main river, collecting water from 67 % of the country into the Nile

River Basin (a). The delimitation of regions used in subnational

modeling is visualized by two maps in right corner, namely ten

agroecological zones (b) and ten main watersheds (c)
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wetland/upland sampling, wetlands, lakes and country

boundary data were used. The wetland data used originate

from the inventory conducted in 2008 by REMA, which

produced 860 wetlands covering a total surface of

278,536 ha, corresponding to 10.6 % of total country area.

The administrative boundary of Rwanda, agroecological

zone boundaries (defined on the basis of altitude, rainfall

and soil characteristics) and main watershed boundaries

were obtained from the Centre of GIS and Remote Sensing

of the University of Rwanda. In addition, field data were

collected at 299 locations (see Fig. 2b), randomly spread

over the country during March–July 2013 and December–

April 2014. For each geographic location, the X, Y coor-

dinates of site categorized as wetland/upland were recor-

ded. The empirical data generated from field work are used

for independent validation of the statistical models.

Fig. 2 Location of a 183

Rwandan (agro) meteorological

station and b Field dataset

sampling sites overlapped to

Rwandan Wetlands as defined

by the inventory and mapping of

wetland by REMA (2008)
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Data preprocessing and processing

Data preparation

In this study, we limit ourselves as much as possible to the

use of original measured data. The rationale for this is to

avoid data redundancy, between derivatives that share the

same data source. A terrain derivative such as the topo-

graphic index, which is frequently used in simpler models

that do not consider hydrological data (Chirico et al. 2005),

is therefore not included in the analysis. Evapotranspiration

and relative humidity are highly correlated with (often

calculated using) temperature and rainfall and therefore

also excluded from the analysis (Creed et al. 2003; Hogg

and Todd 2007). The most important and independent

topographic and climatic factors to predict the occurrence

of wetlands in Rwanda are summarized in Table 1a.

To correspond with the spatial resolution of the DEM,

all factor raster data were resampled a 10-m cell size.

Another motive for choosing a high spatial resolution is to

also capture smaller-sized wetlands of which there are

many in Rwanda. Factor data were subsequently stan-

dardized into a range from 0 to 1 using a minimum–max-

imum linear transformation. This normalization is

necessary to ensure comparison of values of the same

range, which is an important prerequisite for multiple

variable analysis with continuous variables (Long et al.

2010).

Sampling design

Training sample points were randomly selected from wet-

land and non-wetland locations. To prevent spatial auto-

correlation, data points were sampled from the REMA map

of wetland for training (50 %) and validation (20 %) pur-

poses, respectively. Wetland polygons were merged to

allow random distribution of points to be generated from

total coverage. The non-wetland area was identified using

ArcGIS overlay functionality by excluding all wetlands

and water bodies. The sampled point dataset with 1 single

attribute (0 = non-wetland, 1 = wetland) was further

populated by extracting the associated elevation, slope,

contributing area, rainfall and temperature values from

the respective factor raster data. The fully populated

attribute table was then exported and analyzed using SPSS

Statistics 20.

The same process was repeated for each agroecological

zone and for each watershed.

Logistic regression analysis (LRM)

Given that our dependent variable is dichotomous (either

wetland or no wetland) and we have a set of predictor

variables, a binary logistic regression approach is a suit-

able statistical technique for our analysis (Burns and Burns

2009). Binary logistic regression determines the impact of

multiple independent predictor variables presented

Table 1 (a) The most original factors used for wetland occurrence modeling, (b) predicting factors of wetlands occurrence and their statistical

coefficients

Category Factors Description

(a)

Topographic Elevation Preprocessed high-resolution DEM of 10-m cell size produced using ortho-photographs, 2008

Slope Slope calculated using DEM

Contributing

area

Hydrological modeling—multiple flow accumulation using LAPSUS Model

Climatic Rainfall Total rainfall in mm measured at meteorological station, interpolated to obtain values for the whole study

area

Temperature The annual mean measured at meteorological station, interpolated to obtain values for the whole study area

Parameters B SE Wald Exp (B)

(b)

Elevation -0.008 0.001 65.136 0.992

Slope -0.213 0.020 108.038 0.808

Contributing area 0.001 0.001 28.060 1.000

Rainfall 0.002 0.001 11.475 1.002

Temperature -0.815 0.159 42.096 0.357

Constant 30.650 4.395 48.625 2.047E?13
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simultaneously to predict membership of one or other of

the two dependent variable categories (Ravi and Kulase-

karan 2013). The typical link purpose is logit function,

which in this case related the logarithm of the odds ratio of

expected value of wetland probability to linear covariant of

elevation (Elev), slope (Slp), collecting area (CA), tem-

perature (Temp) and rainfall (Rain). If the [p(x)] represent
the expected value of probability of wetland occurrence at

location i, then the logistic regression model is (Eq. 2):

Logit p xð Þi
� �

¼ b0 þ b1 � Elevi þ b2 � Slpi þ b3 � CAi

þ b4 � Tempi þ b5 � Raini

ð2Þ

where x is the probability of wetland occurrence; b0, b1, b2,
b3, b4 and b5 are the regression coefficients to be estimated

for the independent variables.

The T-Wald statistic (z-value) and associated probabil-

ities provide an index of the significance of each predictor

in the equation. The Wald statistics asymptotically follow

v2 distribution (Kharkar and Bowalekar 2014). Also, the

Exp (B) (odds ratio) presents the extent to which raising the

corresponding measure by one unit influences the proba-

bility of the dependent variable (Burns and Burns 2009),

wetland occurrence in this case. In addition, the Nagelk-

erke’s R2, meaning the power of explanation of the model,

was also considered.

Creation of wetland probability geo-database

The wetland probability geo-database was computed (with

ArcGIS 10.1) using the coefficients of the fitted regression

model for the significant predictor variables. The resulting

raster map displays the probability of wetland occurrence,

ranging from low probability (yellow) to high probability

(dark blue).

Sensitivity of the LR model to spatial scale and climate

factors

As discussed above, logistic regression analysis was done to

assess whether topographic and climatic factors can reliably

determine the probability of wetland occurrence. Because

of the potential scale sensitivity, it was relevant to explicitly

assess the influence of spatial scale on the studied system

properties. In order to adequately capture such potential

scale effects, the wetland characterization of Rwanda was

done at two different spatial scales. In first instance, the

analysis was done at national level for Rwanda as a whole.

After the national extent, the analysis was repeated at sub-

national level using the same predictors but now in a spa-

tially disaggregated manner for each individual

agroecological zone and watershed, respectively.

Differences in model performance at national and sub-

national scale were compared to assess whether model fits

are indeed sensitive to spatial extent. The subnational

model results were subsequently reassembled to produce a

new composite probability geo-database for the country as

a whole (Fig. 3).

To illustrate how climate change can impact on spatial

wetland occurrence, a scenario with an overall increase of

1 % for temperature and rainfall, respectively, was calcu-

lated with the developed logic regression models. The

slight increase of 1 % was selected referring to the trend

analysis of the annual mean temperature in Rwanda during

last 52 years (Safari 2012). New wetland probability maps

were calculated and compared. In the two scenario’s cells,

a probability value used as threshold was defined after the

sensitivity analysis of the probability map of wetland

occurrence produced using logistic regression models.

Different thresholds for different scale and models were

expected.

Fig. 3 Wetland probability map generated using logistic regression model at national level (a), composite probability map with AEZ models

(b) and composite probability map with watershed models (c)
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Model performance and validation

In addition to statistical significance testing, the perfor-

mance of the model was independently assessed using the

field-based data set, collected at 299 randomly selected

wetland and upland sites. The location of ground-based

dataset of wetland/upland as points map is provided with

Fig. 2.

In this case, we also made a sensitivity analysis for

testing the robustness of the results of our models at

national and regional level using XY scatter plot of dif-

ferent probability values from 0.6 to 1.

Results

Predictors of wetland occurrence at national level

A test of the full model against a constant only model is

statistically significant, indicating that the predictors toge-

ther can significantly distinguish between wetland and non-

wetland locations (v2 = 547.271, p\ 0.000 with df = 5).

Also, the classification error rate changes from 50 % (Step

0); by adding the variables, we can now predict with

85.0 % overall accuracy (87.9 % for wetland and 82.1 %

for non-wetland). Nagelkerke’s R2 of 0.628.

The national model has elevation, slope, rainfall, tem-

perature and contributing area as significant independent

factors considering the Wald’s test. The strong contribution

of single variable expressed by the Exp (B) coefficient is

attributed to both topographic (slope) and climatic (tem-

perature) factors as summarized in Table 1b.

Spatial scale dependence

Agroecological zone level

The analysis at agroecological zone level results in ten

logistic regression models, each with its own coefficients.

Table A (Electronic Supplemental Material) summarizes

the significant drivers of wetland occurrence for each

agroecological zone.

For Mayaga Plateau and Central Bugesera (MPB), all

five potential predictor variables are included in the fitted

model. The odd ratios clearly indicate that slope and

temperature are the most forcing factors predicting wetland

occurrence.

In the agroecological zones of Buberuka Highland (BH)

and Bugarama Plain (BP), elevation, temperature and slope

are the main factors predicting wetlands. As can been seen

in Fig. 1, BH is characterized by rather abrupt altitude and

therefore temperature change. In the Bugarama Plain,

located in the southwestern and lowest part of the country,

temperature and slope are the most important predictors.

For the Central Plateau (CP), with its dense drainage

network, the main predicting factor is temperature. Slope

and elevation have only minor influence; rainfall is not a

significant factor.

The Congo Nile Watershed Divide (CNWD), Cyangugu

backside (CB), Eastern Ridge and Plateau (ERP) and Kivu

lakeside (KS) all have topographically sensitive wetlands.

Slope, elevation and contributing area are, respectively, the

best predicting factors.

In the eastern savanna (ES), wetland occurrence is only

and strongly associated with slope.

The volcanic summits and high plains (VHP) model also

represents an exception by not including ‘elevation’ but

instead introducing ‘rainfall’ as a predictor for wetlands

occurrence.

Temperature is a highly significant climate predictor in

the Buberuka highland, Bugarama Plain, Central Plateau,

Mayaga Plateau and Central Bugesera and Eastern Ridge

and Plateaus. Rainfall predicts wetland occurrence with

moderate significance in the volcanic summits and high

plain zone.

Model fit improved with an increase in Nagelkerke’s R2

from 0.628 to 0.910, and the prediction success improved

with overall accuracies ranging from 0.85 to 0.98 for seven

out of ten AEZ. Model performance decreased in the

Central plateau and the Cyangugu backside (from 0.628 to

0.524 with overall accuracy of classification decreased to

81.7 %). In general, an increase indicates that wetland that

is better captured by the regional models than the model at

national level (Kok and Veldkamp 2011).

Watershed level

At the level of watersheds, the regional models also per-

formed differently in comparison with the national model,

as summarized by Table B (Electronic Supplemental

Material).

Wetlands in the Akagera watershed are predicted by

elevation, slope and rainfall with a highly significant effect

of slope. The Akanyaru watershed retains the same pre-

dictors as the national model, but with improved statistical

performance.

For the Mukungwa catchment, elevation and tempera-

ture are not included in the model as explanatory factors.

For the Mulindi and Rusizi watersheds, both temperature

and contributing area are insignificant. The most significant

factors for these watersheds are, respectively, slope, ele-

vation and rainfall. In Muvumba watershed, wetlands

characteristics can be explained by elevation, slope, con-

tributing area and rainfall.
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In Nyabarongo amont and Nyabarongo aval, elevation,

slope and temperature predict wetlands occurrence with

temperature as the most contributing predictor.

Overall, both topographic and climatic components are

equally important in predicting wetland occurrence at

watershed level, with a minimum of three drivers per

model. The rainfall was included in the model for most

watersheds as significant contributing factor.

Considering the Nagelkerke’s R2 and overall accuracy,

three different outcomes can be noticed with respect to

model outputs: (1) In some watersheds, the model perfor-

mance is more or less equal to the national level namely

Akagera, Kivu, Nyabarongo amont and Mwogo catch-

ments; (2) the subnational models performed not very well

in the Muvumba and Akanyaru catchments; and (3) in four

cases (Mulindi, Nyabarongo aval, Mukungwa and Rusizi),

the catchment model performed much better reaching 90 %

and higher.

A visual inspection of the wetland probability maps at

national, agroecological zone and watershed level shown in

Fig. 4 reflects: (a) quite similar probability for national and

watershed-based models in the northern and western part of

the country; (b) changing probabilities with all models in

south and central part of the country and (c) a more wet

eastern part of the country (i.e., the Akagera watershed).

Exploring climate sensitivity of Rwandan wetlands

The sensitivity scenario of a 1 % increase in, respectively,

rainfall and temperature results in considerable changes in

the spatial pattern and dimension of wetland probabilities.

An increase in rainfall is expected to lead to more/larger

wetlands, whereas an increase in temperature will lead to

more evapotranspiration and therefore result in a reduction

in wetlands. The accuracy of the threshold probability

values was tested independently by a reliability analysis

and will be discussed later.

Table C (Electronic Supplemental Material) summarizes

how a 1 % increase in rainfall or temperature will affect

the extent of wetlands. If we use the national model, a 1 %

overall increase in rainfall will result in an overall growth

of 1.6 % of wetland area (using a threshold probability of

Fig. 4 Wetland sensitivity to climate changes maps at national level:

created with current climate factors value (a), with 1 % increase in

rainfall (b) and with 1 % increase in temperature (c). Sensitivity maps

at the most sensitive agroecological zone of MPB created using

current climate factors value (d), with 1 % increase in rainfall (e),
with 1 % increase in temperature (f)
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0.6). A 1 % increase in temperature will have a consider-

ably stronger impact and results in a nationwide decline of

12.4 % of probable wetland area. To determine the effects

of climate change at a spatially disaggregate level, Table C

(Electronic Supplemental Material) also presents a com-

parison at agroecological zone using Mayaga Plateau and

Central Bugesera as an example. In this case, we see that a

1 % increase in rainfall will result in an expansion of

probable wetland area of 16.2 %. A 1 % increase in tem-

perature in Mayaga Plateau and Central Bugesera will have

a very substantial impact as it will reduce probable wetland

area by as much as 37.9 %.

More in general, the above examples demonstrate that

the impacts of climate change will vary considerably from

place to place. It also underlines the importance of using

spatially disaggregate models as these are capable of

identifying in which locations climate change will have

more effect. The scenarios, also illustrated by Fig. 4,

clearly demonstrate the location-specific regional sensi-

tivity of climate change on wetland probability in Rwanda.

Wetland prediction models sensitivity analysis

and accuracy assessment

A reliability analysis was complemented by using an

independent dataset collected from field. The results are

summarized in Table D (Electronic Supplemental Mate-

rial). The topographic and climatic factors used in the best

fitting statistical and spatial model explained 86.2 % of the

probability of wetland conditions to occur. The number of

field observations was not sufficient to conduct a similar

validation exercise at each AEZ and watershed.

The sensitivity analysis of the used thresholds for wet-

land–non-wetland distinction was done by testing the

robustness of the results of our models at national and

regional level. The 85 % of correct classification of wetland

occurrence was reached with probability value of 0.6. Wet-

land occurrence probability reaching 95 % of accu-

racy/confidence as the target is reachable with a threshold of

0.6 of probability for national model. The AEZ and water-

sheds wetland occurrence probability map need to use

mostly 0.7 and in few cases 0.8 for probability maps with

right visualization as illustrated by XY scatter plot on Fig. 5.

In general, it can be concluded that given the steepness for

the cumulative graphs in Fig. 5, all thresholds are distinctive

and robust in separating wetlands from non-wetlands.

Discussion and conclusions

The use of topographic (elevation and slope), hydrological

(contributing area) and climatic (rainfall and temperature)

factors allowed the construction of statistically significant

models for wetland characterization. The models give

satisfactory accuracy (86.22 %) considering the highly

complex nature of wetlands in Rwanda and the limited

number of variables used. The variables selected in the

logistic regression models vary in number and significance

[standardized betas coefficient and Exp (B)] at the different

spatial scales used in the analysis presented. This indicates

the highly regional-specific nature of Rwandan wetlands.

The potentially most dynamic wetland determining factors

are climate-related factors even though these are not sig-

nificant for all regions. All regional models, however,

contain the more static topographic factors. Clear differ-

ences in wetland characteristics and sensitivities exist

between agroecological regions. When homogeneous and

high spatial and temporal resolution climate data are

available, the potential spatial dynamics of wetland in

Rwanda can be better assessed. Such information, in turn,

is highly valuable for their rational management. A one-

size-fits-all management approach is clearly not going to be

the most appropriate strategy for future policy develop-

ment. We therefore recommend to use a location-sensitive

approach, as presented in our study to identify which

wetland environments require extra attention in order to

make them future proof.

Functional wetlands surfaces characterization

drivers

Our study demonstrates that topographic and climatic

factors are suitable to predict wetland occurrence in

Rwanda at a level of 86.22 % accuracy. The importance of

both factors was demonstrated at national and subnational

levels.

Landforms are relatively stable landscape features

which are dominant factors influencing the particular

hydrological conditions (Hengl et al. 2003). Thus, slope

and elevation appear to be consistent variables for the

prediction of wetlands (Creed et al. 2003; Hogg and Todd

2007).

Climatic components, one the other hand, are more

dynamic and have varying importance as wetland occur-

rence predictor at the different scale levels. Climate vari-

ations or change is a prime driver of the water regime in the

wetland ecosystem and can be a key factor for their char-

acterization (Zhao et al. 2011) and management. Several

studies around the world revealed the importance of cli-

mate factors as hydrological contribution at wetland and

full catchment level (Mendoza-Sanchez et al. 2013;

Nagumo et al. 2013; Schulte et al. 2009). The varying

significance of temperature can be associated with its

altitudinal degradation from bottom land to the hilltop (Dai

and Huang 2006; Melloh et al. 1999). For that reason, some

wetland managers have already integrated climatic

Regional climate sensitivity of wetland environments in Rwanda: the need for a… 1643

123



Fig. 5 Sensitivity analysis using XY scatter plot of probability value of wetland occurrence maps created using logistic regression models from

national (a), AEZ to regional level, respectively, agroecological zones (b) and watershed (c)
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conditions such as rainfall and temperature for assessing

wetness conditions (Dimitriou and Zacharias 2010; Gell

et al. 2013).

Spatial scale sensitivity

The prediction of wetland occurrence probability at mul-

tiple spatial scales revealed variations of predicting factors

and model performance.

In most cases, both climatic and topographic factors

were combined in fitted models with different numbers of

factors and different levels of significance. However, a few

agroecological zones turned out to be exceptions as no

single climatic component was included in the probability

model. These are the Congo Nile Watershed Divide, the

Cyangugu backside, the Kivu lakeside and the eastern

savanna (Fig. 1b, c). Out analysis suggests that in these

regions the wetlands are less climate sensitive as in the

other regions. The agroecological zoning invokes similar-

ities in bio-geophysical conditions and land uses activities

defining characteristics of surrounding ecosystem such as

wetlands (Delepierre 1982; Ndayambaje et al. 2012). The

exclusion of climate variables can be explained by the fact

that the structural relief has an impact on rainfall distri-

bution and hydrological network. On the Kivu lakeside, the

Cyangugu backside and the Congo Nile Watershed Divide,

slope elevation and contributing area are sufficient to pre-

dict wetland. These three agroecological zones are the

result of geologically recent tectonic movement (Grzy-

bowski 1992) creating the Arbertine Rift and the mountains

with sharp boundaries. Here wetlands are bottomland

receiving enough water from the well-watered upland. The

region is the water tower of the whole country. Secondly,

the eastern savanna has relatively large swamps commu-

nicating with a series of lakes. The latter receives water

from Akagera river overflow during wet season, in a

hydrological connectivity mechanism as described by

Karim et al. (2012) for similar case in Australia.

Our analysis shows that the central part of Rwanda, hilly

with medium elevation and many small wetlands, has a

potentially most climate change-sensitive wetlands. That is

in line with others’ studies recognizing the changing impact

of drivers with variation of spatial scale of given ecosystem

(de Koning et al. 1998; Kok and Veldkamp 2001).

Our study also illustrates that future-proof land use

planning requires amulti-scale approach. National level land

use plans that need to be refined for specific targeting of

climate-sensitive wetland areas are strongly recommended.

Wetlands are sensitive to climate variations

The presented climate change scenarios demonstrate that

wetlands in particular zones in Rwanda are more sensitive

to climate change. This result confirms the issue of lakes/

wetlands sensitively expanding, reducing or even disap-

pearing in some part of the country with climate variations

(Nzigidahera 2007). Our study also demonstrates that not

all wetlands are equally sensitive to climate change and

that the more sensitive regions are found in central

Rwanda.

Model performance and accuracy

Model performance is generally better at the more detailed

subnational (AEZ and watershed) scale level. The models

show differences between descriptive and predictive power

of specific variables (Apan and Peterson 1998; Galletti

et al. 2013). The overall accuracy reaching 86.22 %–93 %

with field-based dataset is a clear improvement compared

to studies using topographic derivatives only. Hogg and

Todd (2007) reached only 84 % of accuracy in character-

izing wetlands in southern Ontario using a very high-res-

olution DEM (2 m 9 2 m pixel size) at detailed scales.

The advantage of using empirical models based on

statistical analysis instead of process-based models is the

case study sensitivity. Much of the local specificity is

automatically incorporated by the use of local data. A main

drawback is that many known system sensitivities based on

known processes are not always incorporated or apparent.

Process-based modeling has this capability, but usually

requires very specific data (mainly discharge and evapo-

ration data) which are not commonly available in countries

like Rwanda. We therefore consider our empirical

approach a first step toward understanding the wetland

probability distribution directing future process-based

research.

Other ways to improve functional wetland characteri-

zation may be to use higher-resolution data (now not

available) and/or other data such as accurate soil infor-

mation. Given the human impact on wetlands (used for

agriculture and the constructions of dams of drains), the

inclusion of such factors could also improve wetland

occurrence characteristic.

Conclusion

The results of this study demonstrate the relevance of

combining terrain derivatives and climatic factors in

characterizing functional wetland occurrence in Rwanda.

In line with previous studies, the Rwandese case study

confirms the explanatory power of topographic attributes

(elevation, contributing area and slope). Moreover, the

logistic regression model demonstrates that climatic factors

are also important in determining wetland occurrence

probability. The importance of climatic factors varies
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across space and is more scale sensitive. The logistic

regressions were able to quantify the significance of cli-

matic conditions for wetland definition in Rwanda.

The multi-scale quantification of climate sensitivity,

using different values for temperature and rainfall in the

model, illustrates that wetlands in Rwanda are highly

sensitive to climate changes. An increase of 1 % in the

national average temperature can result in a reduction of

more than 12.5 % of current national wetland coverage.

The multi-scale approach demonstrates that the wetlands in

the central part of the country are the most sensitive to

climate change.

Our results underline that future wetland planning

should be based upon at a multi-scale approach to ensure

future-proof utilization of this important natural resource in

Rwanda.
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