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Abstract The global animal food chain has a large con-

tribution to the global anthropogenic greenhouse gas

(GHG) emissions, but its share and sources vary highly

across the world. However, the assessment of GHG emis-

sions from livestock production is subject to various

uncertainties, which have not yet been well quantified at

large spatial scale. We assessed the uncertainties in the

relations between animal production (milk, meat, egg) and

the CO2, CH4, and N2O emissions in Africa, Latin America

and the European Union, using the MITERRA-Global

model. The uncertainties in model inputs were derived

from time series of statistical data, literature review or

expert knowledge. These model inputs and parameters

were further divided into nine groups based on type of data

and affected greenhouse gas. The final model output

uncertainty and the uncertainty contribution of each group

of model inputs to the uncertainty were quantified using a

Monte Carlo approach, taking into account their spatial and

cross-correlation. GHG emissions and their uncertainties

were determined per livestock sector, per product and per

emission source category. Results show large variation in

the GHG emissions and their uncertainties for different

continents, livestock sectors products or source categories.

The uncertainty of total GHG emissions from livestock

sectors is higher in Africa and Latin America than in the

European Union. The uncertainty of CH4 emission is lower

than that for N2O and CO2. Livestock parameters, CH4

emission factors and N emission factors contribute most to

the uncertainty in the total model output. The reliability of

GHG emissions from livestock sectors is relatively high

(low uncertainty) at continental level, but could be lower at

country level.

Keywords Livestock � N2O � CH4 � Uncertainty analysis �
Global assessment modelling � Monte Carlo simulation

Introduction

Increasing global animal production is an important cause

of various environmental problems (Delgado et al. 1999;

Smil 2002; Steinfeld et al. 2006; Galloway et al. 2007).

Expanding livestock sectors can contribute to greenhouse

gas (GHG) emissions, agricultural land expansion and

associated deforestation (Steinfeld et al. 2006), surface

water eutrophication (Seitzinger et al. 2005; Boyer et al.

2006), decrease in terrestrial biodiversity (Dise et al. 2011)

and nutrient imbalances (Smaling et al. 2008; Menzi et al.

2010). The global animal food chain, including land use

change, contributes 14.5 % of the global anthropogenic

GHG emissions, including carbon dioxide (CO2), methane

(CH4) and nitrous oxide (N2O), expressed in CO2 equiva-

lents (CO2-eq; Gerber et al. 2013). The contribution of

livestock production to global anthropogenic GHG emis-

sions varies highly across the world (Gerber et al. 2013). In
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2005 Latin America and the Caribbean have the highest

level of GHG emissions from livestock chains (almost 1.3

Gton CO2-eq per year), while Eastern Europe and Russian

Federation had the lowest level of emissions ([0.2 Gton

CO2-eq per year; Gerber et al. 2013). Cattle is the main

contributor (65 %) to the global livestock sector’s GHG

emissions, while pigs, poultry, buffaloes and small rumi-

nants have much lower emission levels, each representing

between 7 and 10 % of total livestock emissions. The bulk

of the GHG emissions originate from four main categories

of processes: CH4 emissions from enteric fermentation,

CH4 and N2O emissions from manure management, CO2

and N2O emissions from feed production, processing and

transport, and CO2 emissions from energy consumption

(Gerber et al. 2013).

The Intergovernmental Panel on Climate Change

(IPCC) provides guidelines for calculating GHG emissions

from various inventories, using various default emission

factors (EFs) for CO2, N2O and CH4 emissions from dif-

ferent sources (IPCC 2006). GHG emissions models of

livestock sectors are well established in the literature (De

Vries and De Boer 2010; Kros et al. 2012; Bellarby et al.

2013). There are two main types of models that have been

developed: process-based dynamic models (IPCC Tier 3

approach), e.g. the Dutch model for enteric fermentation

(Bannink et al. 2011) and empirically based (usually

emission factor based) models (Tier 1 or 2 approach), e.g.

CAPRI (Weiss and Leip 2012) or MITERRA-Europe

(Lesschen et al. 2011).

To our knowledge, no studies have yet been performed

to assess the uncertainties in the GHG emission profiles of

livestock at continental scale. Only research focussing on

one sector and/or on agriculture in general has been exe-

cuted so far. Examples are the quantification of uncer-

tainties in: (1) soil N2O emissions from croplands in the

USA, using the process-based DAYCENT model (Del

Grosso et al. 2010), (2) total emissions of N2O for the

European Union and its member states, using the empirical

INTEGRATOR model (Kros et al. 2012), (3) CH4 emis-

sions from livestock in Canada, using the IPCC Tier 2

methodology (Karimi-Zindashty et al. 2012) and (4) GHG

emissions from dairy cow production systems using a

stochastic modelling approach (Zehetmeier et al. 2014).

The expected benefit of an improved reliability of esti-

mated GHG emissions, both now and in response to

management actions, is likely to enhance actors including

governments, sector representatives and farmers to further

implement activities to reduce the GHG emissions.

The objective of this research is to assess the GHG

emission profiles of livestock sectors and livestock prod-

ucts and their uncertainty at continental scale. We used the

MITERRA-Global model (Lesschen et al. 2014), an

emission factor (EF)-based model, to assess the uncertainty

in GHG (CO2, CH4, and N2O) emissions from livestock

production at continental scale using a life cycle assess-

ment (LCA). We applied the MITERRA-Global model for

three continents, Africa, Latin America and Europe (EU-

27), to represent continents with different socioeconomic

status.

Materials and methods

Calculation of livestock GHG emissions

with MITERRA-Global

MITERRA-Global calculates among others the emissions

of the greenhouse gases CO2, CH4, N2O, in a deterministic

and annual basis using emission and leaching factors

(Lesschen et al. 2011). The main emission pathways rela-

ted to livestock production are shown in Fig. 1.

MITERRA-Global also calculates emissions of gaseous

NH3 and NOx and NO3 leaching to groundwater and N

runoff to surface water. The latter two were not further

investigated in this study.

The modelling concept of MITERRA-Global is similar

to the MITERRA-Europe model (Velthof et al. 2009;

Lesschen et al. 2011), but it includes a larger geographic

region. Main MITERRA-Global input data include: crop

data, livestock data, feed data, fertilizer consumption data

and spatial data on land cover, soil and climate. Livestock

types included in the assessment are broilers, laying hens,

pigs, dairy cows, other cattle, goats and sheep. Besides

total GHG emissions per region or per hectare of land, the

model also calculates emissions per kilogram product,

following a top-down LCA-based approach as described in

Lesschen et al. (2011). Calculations are performed at a sub-

national level (e.g. province level), and the output can be

provided at sub-national, national or continental level.

MITERRA-Global accounts for the following GHG

sources: CH4 from enteric fermentation, CH4 and N2O

from manure management, direct and indirect N2O soil

emissions, CO2 and N2O from organic soils, CO2 from

lime and urea application, and GHG emissions from fer-

tilizer production and fossil fuel use. All emissions were

converted to CO2 equivalents (CO2-eq) using the IPCC

estimates of 100-year global warming potential (GWP)

values, which are 25 and 298 times the GWP of CO2 for

CH4 and N2O, respectively (IPCC 2007). All emissions

were calculated by multiplying activities affecting the

GHG emissions with emission factors (EFs). CH4 emis-

sions from enteric fermentation were calculated using

animal- and continent-specific Tier 1 EFs derived from the

IPCC guidelines (IPCC 2006). CH4 emissions from manure

management were calculated using region-specific EFs that

depend on animal type, mean annual temperature and
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manure system. The N2O emissions from agricultural soils

consist of direct and indirect soil emissions. Direct N2O

emissions were calculated by multiplying N inputs from

application of N fertilizer and animal manure, crop resi-

dues, cultivation of organic soils, and urine and faeces

produced during grazing by IPCC (2006) EFs for different

N sources. Indirect N2O emissions, related to emissions

from N leaching and runoff and from atmospheric depo-

sition of N volatilized (mainly NH3) from managed soils,

were also calculated by multiplying the N fluxes calculated

with MITERRA by the IPCC (2006) EFs for those N

sources. CO2 emission sources included in our assessment

are fuel use for feed production, on farm energy use, fer-

tilizer and pesticide production. CO2 emissions from fuel

use and fertilizer production were calculated according to

Lesschen et al. (2011). Emissions from on farm energy use

were based on Opio et al. (2013) and Macleod et al. (2013),

who derived emission factors in terms of emission and/or

energy per unit of animal product. CO2 emissions from

pesticide use were based on country average pesticide use

from FAOSTAT and a general emission factor of 10.97 kg

CO2-eq/kg active ingredient from BioGrace (2011).

Uncertainty quantification of model inputs,

parameters and model outputs

The causes for uncertainty of model outputs can be dis-

tinguished in three sources: (1) model input and parameter

uncertainty, (2) model structure uncertainty and (3) model

solution uncertainty. In the context of MITERRA-Global

model, model inputs refer to: (1) activity data, such as

animal numbers, crop yields and N fertilizer amounts, and

(2) spatial environmental data, such as climate and land

use. The model parameters refer to excretion and emission

factors. The model solution uncertainty refers to errors

caused by rounding, numerical evaluation of integrals, sub-

optimal optimization solutions, etc. Compared to model

input and model structure uncertainty, model solution

uncertainty mostly has a marginal contribution to the out-

put uncertainty and has therefore been ignored in this

study. The quantification of the uncertainty caused by

model structure, however, is not an easy task. A possibility

is to compare the results of MITERRA-Global with the

results from other models, but this requires the develop-

ment and application of an independent concurrent model.

Another possibility is a comparison with independent data,

e.g. based on atmospheric concentration via inverse models

(Leip et al. 2011a). Hence, the impact of model input and

parameter uncertainty on the uncertainty in GHG emissions

is the focus of our study.

We used a Monte Carlo (MC)-based method to analyse

the uncertainty of GHG emissions from livestock sectors in

Africa, Latin America and Europe as calculated by the

MITERRA-Global model. The analysis included uncer-

tainty quantification (UQ) and uncertainty analysis (UA),

using a methodology adapted from Kros et al. (2012). The

purpose of UQ is to quantify the model output uncertainty

in response to input and parameter uncertainty, whereas

UA aims to determine how much the uncertainty of indi-

vidual (groups of) model inputs and/or parameters con-

tributes to the model output uncertainty.

We first selected the model inputs and parameters

(MIPs) which directly and/or indirectly influence the GHG

emissions. We then performed an uncertainty propagation

analyses, using MC simulations to provide uncertainty

estimates for the calculated GHG emissions (model out-

put). Since the uncertainty of spatially distributed inputs

tend to be spatially correlated, which influences the degree

Fig. 1 System boundary and main emission pathways of CO2, CH4 and N2O related to livestock production as included in this study
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to which uncertainties cancel out by spatial aggregation

(Heuvelink and Pebesma 1999), both their cross-correla-

tions and spatial correlations between MIPs were taken into

account.

Based on the data availability, we identified four different

spatial levels, i.e. sub-national, national, continental and

generic. The sub-national level is the lowest spatial level

used in MITERRA-Global. In Europe, NUTS2 regions were

used. In Africa and Latin America, provinces or groups of

provinces were used. The boundaries of national level were

based on the FAO country definition. For the continental

level, we used the IPCC classification of main world regions

and continents. Inputs and parameters at generic level remain

the same among continents. Ultimately, we selected 89MIPs

(see supplementary material for the full list, Appendix S2)

which directly and/or indirectly influence the GHGs emis-

sions (CH4, N2O and CO2 emissions).

Model input and parameter uncertainty quantification

The uncertainties of the MIPs were represented by proba-

bility distribution functions (pdf), further including their

spatial correlations (for the same MIP between different

spatial locations) and their cross-correlations (between

MIPs at the same location). The approach for uncertainty

quantification of the MIPs was based on Kros et al. (2012).

The full table of uncertainty quantification results is pro-

vided in the supplementary material (Appendix S2). The

information regarding the pdfs, spatial and cross-correla-

tions of the MIPs was obtained from available statistical

data (from FAOSTAT), literature information (when data

are not available but published research is available) and

expert knowledge (when neither relevant data nor pub-

lished research is available).

Probability distribution functions The pdfs were descri-

bed by four parameters: (1) mean (l), (2) minimum and

maximum values, (3) distribution type and (4) standard

deviation (r) or coefficient of variation (CV), i.e. r/l. For the
mean (l) of eachmodel input/parameter, we used the default

value in the MITERRA-Global database. The Gaussian

(normal) distribution is often used to describe the random

variation in data. However, many measurements of GHG

emissions, especially for N2O, show a skewed distribution

(IPCC 2006). Skewed distributions are particularly common

when mean values are low, variances are large, and values

cannot be negative (Limpert et al. 2001). Hence, we chose

two types of distributions to describe the MIPs: normal dis-

tribution and lognormal distribution (for skewed MIPs).

Statistical data from FAO do not provide the associated

uncertainty. Here we used the temporal variation in the

yearly data as a proxy for the uncertainty, reflecting the

random error in data collection and the variance of the true

value. Note, however, that this variation not only represents

uncertainty, but also the ‘‘real’’ year-to-year variation and/

or long-term trend. Therefore, we estimated the CV from

the normalized root mean square error (RMSE) by com-

paring the observed temporal variation in the yearly sta-

tistical data with predicted linear trends in time per country

and per category (see supplementary material Appendix S1

for details).

MIPs for which the uncertainties could not be derived

from statistical data were estimated on the basis of litera-

ture or expert knowledge. The group of MIPs for which

uncertainty information was found in literature is summa-

rized in Table 1. This uncertainty information was usually

only expressed as a lower limit (‘‘Min’’ in Table 1) and an

upper limit (‘‘Max’’ in Table 1).

The CVs or standard deviations (SD) and distribution

types for the N2O–N emissions or emissions fractions as

derived from IPCC (2006)were all derived from the reported

default values and lower and upper limit values. The default

was assumed equal to the mean. The deviance of minimum

and maximum from the mean showed that the distribution of

the N2O–N EFs for N inputs, atmospheric deposition and

grazing were all highly skewed to the left. Therefore, a

lognormal distributionwas assumed for all theseEFs. Taking

the interval determined by this minimum and maximum as

the 95 % confidence interval (CI), the minimum was

regarded as 2.5 percentile and the maximum as 97.5 per-

centile. For normal distributions X * N (l, r2), the 95 %CI

is approximately equal to (l-1.96 r, l ?1.96 r). Thus, on
the log scale the difference between the log-transformed

maximum and the log-transformed minimum is equal to

2 9 1.96 9 r or log(Max)-log(Min) = 2 9 1.96 r. Then
the SDof this log-transformed distributionwas calculated as:

(log(Max)-log(Min))/2 9 1.96. This SD was used as the

CV, since a log-transformed SD is approximately equal to a

CV on the original scale (Limpert et al. 2001).

Table 2 illustrates the derivation of the uncertainty

properties of the N2O–N emissions or emissions fraction

based on the mean, minimum and maximum values given

in IPCC (2006).

Since for (many) MIPs little information on uncertain-

ties was available, we assigned the CV of these MIPs using

three categories: high uncertainty (CV = 0.5), moderate

uncertainty (CV = 0.25) and low uncertainty (CV = 0.1)

following Kros et al. (2012). Low uncertainty was used for

MIPs derived from good-quality statistical databases; high

uncertainty was used for MIPs based on expert knowledge

or derived from model estimates; moderate uncertainty was

used for all remaining MIPs.

Cross-correlation Cross-correlations were defined by

cross-correlation coefficients for related MIPs (Kros et al.

2012). The cross-correlation between MIPi and MIPj, at the
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same location, denoted as qcc(i,j), was obtained from FAO

statistics, literature or expert knowledge. The pairs of MIPs

were grouped according to the method used to obtain the

cross-correlation coefficient qcc(i,j) and are listed in

Table 3. The cross-correlation pairs were selected based on

previous research, census data and expert knowledge.

Spatial correlation Given the limited availability of data

on spatial correlations, these correlations have been included

in a pragmatic way as used by Lesschen et al. (2007) and

Kros et al. (2012). For the sub-national level, we assumed

that within each sub-national region, the spatial correlation

equals 1. This implies that a givenMIP has a generic variance

(r2) within the sub-national region. For each MIP, spatial

correlation coefficients were set between spatial units at

different spatial levels: sub-national regions within the same

country (qsub-national), countries within the same continent

(qnational) and continents within the world (qcontinental).

Depending on the spatial dependence of the MIP, the spatial

correlation coefficients were classified into one of the five

assigned levels, following Kros et al. (2012): perfect spatial

correlation (q = 1), high spatial correlation (q = 0.8),

moderate spatial correlation (q = 0.5), low spatial correla-

tion (q = 0.2) and no spatial correlation (q = 0).

Model output uncertainty quantification

The considered uncertain model outputs are CH4, N2O and

CO2 emissions from livestock sectors in Africa, Latin

America and Europe. The GHG emissions include total

emissions from the aforementioned continents, and emis-

sions at product level and sector level. The products

include cattle meat, cow milk, eggs, pig meat, poultry

meat, sheep and goat meat, and sheep and goat milk. The

sectors included broilers, laying hens, dairy cows, other

cattle, pigs, sheep and goats. GHG emissions and

Table 1 Uncertainties of emission fractions (EFs) as derived from literature

Emission fractions References CV SD Distribution

type

Min Max

N2O–N EFa for manure management (Flugsrud and Hoem

2011)

0.35 Lognormal 0 0.5

CO2 EF for gasoil (Flugsrud and Hoem

2011)

0.03 Normal 0 5

CH4 EF for manure management (Flugsrud and Hoem

2011)

0.25 Normal 0 250

CH4 EF for enteric fermentation of cattle and sheep (Flugsrud and Hoem

2011)

0.25 Normal 0 250

CH4 EF for enteric fermentation of other animals (Flugsrud and Hoem

2011)

0.40 Normal 0 150

NH3–N EF from soils for fertilizer application (Monni et al. 2004) 0.30 Normal 0 0.5

N2O–N EF for indirect emissions from leaching and runoff (EF5) (Monni et al. 2004) 0.50 Lognormal 0 0.5

N2O–N EF for emissions from N inputs (EF1) (IPCC 2006) 0.28 Lognormal 0 0.5

N2O-N emission from histosols per ha (EF2) (IPCC 2006) 0.63 Lognormal 0 50

N2O–N EF for emissions from atmospheric deposition of N on soils

(EF4)

(IPCC 2006) 0.82 Lognormal 0 0.5

N2O–N EF for grazing (IPCC 2006) 0.57 Lognormal 0 0.57

a EF stands for emission factor

Table 2 Uncertainty properties in N2O–N emissions or emissions fraction derived from IPCC 2006 guidelines (IPCC 2006)

Emission fractions Information provided by IPCC Log-transformed properties

IPCC min IPCC mean IPCC max Mean Min Max SD

N2O–N EF for N inputs (EF1) 0.003 0.01 0.03 -4.61 -5.81 -3.51 0.28

Emission from histosols per ha (EF2) 2 8 24 2.08 0.69 3.18 0.63

N2O–N EF for atmospheric deposition (EF4). 0.002 0.01 0.05 -4.61 -6.21 -3.00 0.82

N2O–N EF for grazing 0.007 0.02 0.06 -3.91 -4.96 -2.81 0.57
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uncertainties from other livestock sectors (other poultry,

horses, camels, turkeys and other animals) have been cal-

culated and are included in the totals, but results for these

livestock sectors are not presented in this paper. In quan-

tifying the uncertainty, we distinguished various, IPCC

based, sources for CH4, N2O and CO2 emissions. The

sources for CH4 emission included: enteric fermentation

and manure management; for N2O emission: direct and

indirect soil emission from feed crops, direct and indirect

soil emission related to by-product feeds (e.g. soybean

cake), manure management, grazing, and fertilizer pro-

duction; and for CO2: fuel use, pesticide use, fertilizer

production and energy use.

The MC approach was used to generate 1000 multiple

realizations of MIPs sampled from their pdfs while taking

the spatial and cross-correlation into account. Subse-

quently, the model was run repeatedly to generate model

outputs with multiple input realizations, at the model-re-

quired scales. The realizations were generated with the

statistical software environment R (R Project for Statistical

Computing, http://www.r-project.org/).

Uncertainty analysis

To quantify the uncertainty contribution of a group of MIPs

to the uncertainty in GHG emissions (the model output),

we performed a second MC experiment in which the MIPs

were grouped into nine groups (Table 4), with no correla-

tion between MIPs across different groups. We started this

experiment with 200 MC simulations similar to the

uncertainty quantification. Subsequently, 200 MC simula-

tions were performed for each group, in which only one out

of the nine groups was randomized. The other eight groups

remained constant (using the default value stored in the

MITERRA-Global database). The variance from the first

200 runs, Varall, was used as the reference to calculate the

relative contribution of each group to the overall variance

in the model outputs. The relative contribution of each MIP

group to model output uncertainty was expressed as per-

centage contribution of the variance of a group to the

overall variance (PVARgroup):

PVARgroup ¼ Vargroup=Varall
� �

� 100%

Table 3 MIPs for which cross-correlations are considered

MIPi MIPj qcc(i,j) Information source

Animal production data (mostly expressed in tonnes) Livestock number per country 0.9 FAO statistics

Area harvested for wheat Wheat production per country 0.81 FAO statistics

Area harvested for maize Maize production per country 0.81 FAO statistics

Area harvested for soybean Soybean production per country 0.81 FAO statistics

Area harvested for barley Barley production per country 0.81 FAO statistics

Area harvested for other crops Other crop production per country 0.81 FAO statistics

CH4 EF for manure management Temperature 0.5 Expert knowledge

Land areas (FAOSTAT) Area of land cover types (GIS map) 0.5 Expert knowledge

N2O–N emission factor for manure management N2 emission factor from manure management -0.2 Expert knowledge

NOx emission factor from manure management N2O–N emission factor for manure management 0.8 Expert knowledge

Fraction of N of gross mineralization available on grass Fraction of N of gross mineralization on arable land 0.5 Expert knowledge

Table 4 MIPs clustered to nine groups

Code Description Main MIPs (see Appendix S2 for complete overview for all MIPs)

LAD Livestock activity data Livestock numbers and production

CAD Crop activity data Crop areas and production

OAD Other activity data Fertilizer consumption, pesticides, etc.

BFD Biophysical data Climate, soil data

EFC CH4 emission factors EF manure management and enteric fermentation

EFN N emission factors All N emission factors (including leaching and runoff)

LPA Livestock parameters N excretion, manure system usage

CPA Crop parameters N content, N index, etc., grass correction

OPA Other emission factors and parameters CO2 emission factors, fertilizer composition
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For this experiment, 200 runs were sufficient to produce

satisfactory results as concluded from some test runs. With

an increase in MC runs, the performance improved only

slightly, but the time required performing the runs

increased dramatically.

Results

Mean livestock GHG emissions and their

uncertainties

Uncertainties in total emissions

The overall livestock GHG emissions are highest in Latin

America (about 900 Mton CO2-eq) and lowest in Europe

(EU-27, about 400 Mton CO2-eq). The uncertainty

(expressed in terms of CV) ranges from 0.16 to 0.37 for the

three greenhouse gases. The CV increases in the following

direction: total GHG\CH4\N2O and CO2. For the

continents, the CV increases in the following direction:

EU-27\Africa and Latin America (Table 5). For all three

continents, the largest contributor to the livestock GHG

emissions is CH4, followed by N2O and then CO2.

Uncertainties in emissions per livestock product

The total GHG emission (in kg CO2-eq/kg) of the livestock

products is higher in Africa and Latin America than in EU-

27 (Table 6). The per kilogram product-based GHG

emission for sheep and goat meat, cattle meat, and sheep

and goat milk is much higher than for other livestock

products (pig meat, cow milk, eggs and poultry meat). The

uncertainty at continental level ranges from 0.12 to 0.26 in

Table 5 GHG emissions (in

Mton CO2-eq) and the

uncertainty (expressed in terms

of CV) from livestock sectors

per continent

Continent Mean (Mton CO2-eq) CV

Total CH4 N2O CO2 Total CH4 N2O CO2

Africa 560 352 204 5 0.18 0.17 0.37 0.35

Latin America 916 626 275 15 0.17 0.20 0.35 0.35

EU-27 398 235 130 34 0.12 0.16 0.22 0.26

Table 6 GHG emissions (in kg

CO2-eq/kg product) and the

uncertainty (expressed in terms

of CV) from livestock products

per continent

Continent Product Emission (kg CO2-eq/kg) CV

Total CH4 N2O CO2 Total CH4 N2O CO2

Africa Beef 43.73 27.73 15.85 0.15 0.19 0.20 0.40 0.39

Cow milk 4.25 2.48 1.67 0.09 0.18 0.20 0.33 0.38

Eggs 0.86 0.09 0.67 0.09 0.22 0.20 0.25 0.45

Pork 4.39 1.25 2.87 0.27 0.21 0.19 0.29 0.45

Chicken meat 0.81 0.12 0.61 0.08 0.21 0.20 0.24 0.44

Sheep/goat meat 32.32 20.55 11.69 0.08 0.19 0.18 0.40 0.39

Sheep/goat milk 6.59 4.20 2.38 0.02 0.19 0.18 0.40 0.37

Latin America Beef 45.48 31.84 13.06 0.57 0.18 0.21 0.38 0.38

Cow milk 1.45 0.98 0.42 0.05 0.17 0.21 0.31 0.35

Eggs 0.50 0.05 0.38 0.07 0.26 0.21 0.30 0.31

Pork 2.02 0.69 1.23 0.09 0.19 0.19 0.29 0.31

Chicken meat 0.37 0.06 0.27 0.04 0.23 0.21 0.28 0.31

Sheep/goat meat 49.55 29.57 19.09 0.89 0.16 0.17 0.34 0.38

Sheep/goat milk 7.63 4.49 3.00 0.15 0.17 0.18 0.36 0.39

EU-27 Beef 19.64 12.89 5.71 1.03 0.14 0.18 0.23 0.30

Cow milk 0.83 0.53 0.24 0.06 0.12 0.16 0.22 0.27

Eggs 1.13 0.04 0.77 0.32 0.21 0.19 0.23 0.25

Pork 2.51 1.19 0.93 0.39 0.15 0.17 0.25 0.25

Chicken meat 1.15 0.04 0.80 0.32 0.20 0.19 0.22 0.25

Sheep/goat meat 28.07 16.48 9.83 1.75 0.14 0.19 0.22 0.27

Sheep/goat milk 1.79 0.91 0.75 0.13 0.12 0.16 0.21 0.24
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terms of CV. Africa and Latin America have higher

uncertainties for each livestock product as compared to

EU-27. Although there is a clear difference between the

mean GHG emissions for different livestock products, the

uncertainties in GHG emissions are similar for Africa, with

a CV around 0.2. For Latin America, sheep and goat meat,

cattle meat, and sheep and goat milk have the highest

emission per unit product. The uncertainties for these three

livestock products are only slightly lower compared to

other products. For the EU the pattern is similar to Latin

America, but uncertainties are lower for each livestock

product. The products with higher emissions do not have

lower uncertainties per product.

N2O emissions (expressed in kg CO2-eq/kg) are gener-

ally lower than CH4 emission for each product for each

continent. However, the uncertainties of the N2O emissions

are always higher than for CH4. In Latin America and EU-

27, the products with highest N2O emission have similar

uncertainties compared with other products. In general, the

relative uncertainty for CO2 emission is higher for each

product for each continent, while the CO2 emissions are

much lower.

Uncertainty in emissions for IPCC categories

The GHG emissions per GHG source category and con-

tinent (region) are presented in Table 7. For each cate-

gory, EU-27 has a lower uncertainty than Africa and

Latin America. No clear correlation is found between the

amount of emission and the relative uncertainty. The

category with the highest emission, CH4 emission from

enteric fermentation, does have a relative low uncertainty.

However, N2O emission from soil and grazing, which are

the second and third highest emission sources, have high

relative uncertainties.

Contribution of model input and parameter groups

on the uncertainty in livestock GHG emissions

Livestock parameters (LPA), CH4 emission factors (EFC)

and N emission factors (EFN) are the main factors con-

tributing to the uncertainty in total GHG emissions from

livestock in Africa, Latin America and Europe (Fig. 2).

Livestock activity data (LAD) have a relatively small

uncertainty contribution. In Europe, the uncertainty con-

tribution to the total GHG of ‘‘other EF and parameters’’

(OPA) is still about 5 %, whereas its contribution to the

total uncertainty is almost zero for Africa and Latin

America

The uncertainty in CH4 emission is mainly caused by

CH4 emission factors (EFC), with a small fraction caused

by livestock activity data (LAD). The uncertainty in N2O

Table 7 GHG emissions (in Mton CO2-eq) and the uncertainty (expressed in terms of CV) from IPCC categories per continent

Category Mean (Mton CO2-eq) CV

Africa Latin America EU-27 Africa Latin America EU-27

Total 560 916 398 0.18 0.17 0.12

CH4 from enteric fermentation 339 608 191 0.18 0.21 0.18

CH4 from manure management 13 17 44 0.20 0.21 0.19

N2O from Manure Management 7 11 9 0.36 0.33 0.23

N2O from grazing 168 181 23 0.43 0.48 0.40

N2O from soil 23 67 74 0.51 0.38 0.32

N2O from soil related to by-products 3 5 6 0.23 0.31 0.30

CO2 and N2O from fertilizer production 5 20 35 0.51 0.45 0.41

CO2 from fuel use 2 3 15 0.34 0.32 0.22

CO2 from pesticide use 0 2 1 0.34 0.35 0.32

Fig. 2 Uncertainty contribution of different groups of model inputs

and parameters (MIPs) to the total greenhouse gas (GHG) emissions

from livestock per continent (see Table 4 for the explanation of the

used codes)
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emission is mainly caused by N emission factors (EFN),

livestock parameters (LPA) and a small fraction by Live-

stock activity data (LAD) in Africa and Latin America. In

EU-27, other emission factors and parameters (OPA)

slightly contribute to the uncertainty in the N2O emission.

The uncertainty in CO2 emission is mainly caused by other

emission factors and parameters (OPA) and livestock

parameters (LPA). Crop parameters (CPA) further con-

tribute 10 and 6 % to the uncertainty in CO2 emissions in

Africa and Latin America, respectively. However, they do

not contribute to the uncertainty of CO2 emissions in EU-

27.

The uncertainty contribution of groups of MIPs to GHG

emissions from livestock products is presented in Fig. 3.

The MIPs that contribute most to the uncertainty of the

total GHG emission caused by the production of meat and

milk from sheep, goats, cattle or cows are the CH4 emis-

sion factors (EFC), livestock parameters (LPA) and N

emission factors (EFN). For poultry meat, pig meat and

eggs, the MIPs that contribute most to the uncertainty of

the total GHG emission are livestock parameters (LPA), N

emission factors (EFN), crop parameters (CPA) and other

EF and parameters (OPA). Among these, crop parameters

(CPA) have a higher contribution in Latin America. Bio-

physical data (BFD) hardly have any effect on the uncer-

tainty of any GHG, but this can be explained by the use of

mainly Tier1 emission factors, where all uncertainty is

captured in the emission factor, and not in the underlying

explaining biophysical factors.

Discussion and conclusions

Presenting uncertainty results

Uncertainty of model inputs, parameters and outputs can

be presented in different ways. IPCC (2006) provides

guidelines on uncertainty documentation, suggesting that

the uncertainty should be reported as the percentage lower

and upper bound of the 95 % CI over the mean. However,

literature sources use many different presentation ways

and it is not always clear how to interpret the provided

information. Monni et al. (2004) presented model output

uncertainty as upper bounds of the 95 % CI, expressed as

percent relative to the mean value (roughly two times the

SD, if normally distributed). Winiwarter and Rypdal

(2001) also provide the model output uncertainty as two

times the SD over the mean. However, FAO provides the

uncertainty as percentage of SD to the mean (i.e. CV) in

the LCA of GHG emissions from the dairy sector (Gerber

et al. 2010), while in the global assessment of emissions

and mitigation opportunities (Gerber et al. 2013) the

uncertainty is expressed as two times the SD divided by

the mean. This difference makes it confusing and difficult

to compare results from different studies, especially when

the meaning of the presented uncertainty is not stated

clearly.

All methods mentioned above have their advantages and

disadvantages. The CV, as used in our study, is a widely

accepted measure of uncertainty, which can be directly

used in an uncertainty calculation. However, a highly

skewed distribution is not well characterized by the CV. In

this case, a 95 % CI gives more insight into the distribution

type. However, using a 95 % CI also has its disadvantage.

The confidence interval usually has to be transformed to a

SD or CV in order to perform an uncertainty assessment. In

this research, using the CV to document uncertainty was an

appropriate method, since the model output emissions did

not have highly skewed distributions.

GHG emissions from livestock predicted

by MITERRA-Global

The results of this study showed that CH4 emissions con-

tribute most to livestock GHG emissions. This is in line

with the FAO study of Gerber et al. (2013) using the

GLEAM model. Although both studies included compa-

rable major GHG emission sources in feed production and

Fig. 3 Uncertainty contribution of different groups of model inputs and parameters (MIPs) to the total greenhouse gas (GHG) emission from

different livestock products per continent (see Table 4 for the explanation of the used codes)
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livestock production, results from Gerber et al. (2013)

showed a much higher contribution from CO2 emissions

than our study (Table 8). This is caused by a difference in

system boundaries. Gerber et al. (2013) included post-farm

gate processes, such as transport of livestock products and

manufacture of packaging. These downstream processes

are not included in MITERRA-Global. In addition, GHG

emission sources due to land use change are not included in

MITERRA-Global model, but considered by Gerber et al.

(2013). Land use change contributes considerably to the

GHG emissions from livestock sectors, but it is a very

uncertain source. CO2 emission due to land use change

caused by pasture expansion contributes about 15 % to the

total GHG emissions from the beef supply chain. For the

pig supply chains, CO2 emission from land use change

caused by soybean cultivation contributes about 13 % to

the total GHG emissions (Gerber et al. 2013).

Uncertainty in GHG emissions estimated

by MITERRA-Global

The total simulated GHG emissions from livestock sectors

at continental level showed relatively low uncertainty

(12–18 % in terms of CV), although a relatively high

uncertainty might occur at country or sector level. A

review by Nijdam et al. (2012) of a range of LCA-based

studies on livestock products showed a much larger range

of carbon footprints from animal food products. However,

the data used for the LCAs in Nijdam et al. (2012) ranged

from a single farm to complete national industries. In our

study, the uncertainty is estimated at continental level

while taking spatial correlations into account. The GHG

emissions per kilogram products estimated by MITERRA-

Global are in line with the study by Nijdam et al. (2012).

When examining the results of uncertainty in GHG

emission of the individual gases, we found that CO2 and

N2O emissions have a higher uncertainty than the CH4

emissions. Although the relative uncertainty in CH4 emis-

sion is much lower than the uncertainty in CO2 emission,

the total CH4 emission is much higher than CO2 emission,

and therefore the uncertainty contribution of CH4 emission

factors (EFC) is higher than the CO2 emission factors

(OPA).

Another relevant result is that the uncertainty in GHG

emissions in Europe is lower than those in Latin America

and Africa. This can be explained by the availability of

more country-specific data for Europe, leading to a lower

input uncertainty. For the N excretion factors, the IPCC

Tier 1 EFs were used for Latin America and Africa, while

for EU-27 country-specific excretion factors from GAINS

(Klimont and Brink, 2004) were used (Tier 2 approach).

This resulted in a lower uncertainty in N2O soil emissions

for Europe. Philibert et al. (2012) and Leip (2010) sug-

gested that the ranges of the IPCC N2O emission factors

might be overestimated with the Tier 1 approach. This

implies that our uncertainty estimates for N2O emissions in

Latin America and Africa could be overestimated. In

addition, the uncertainty derived from the statistical data is

in general larger in Latin America and Africa than in

Europe (see supplementary material, Appendix S2). Some

data are also available at a higher spatial resolution

(country level) in Europe, and this relatively detailed spa-

tial level reduced the uncertainty for the EU-27 results.

Uncertainties in emissions from the ruminant supply chain

(beef, caw milk, sheep milk, etc.) are mainly determined by

livestock parameters (including N excretion, manure sys-

tem usage), CH4 and N2O emission factors. For pork, it is

mainly caused by livestock parameters and N emission

factors and for eggs and chicken mainly by N2O emission

factors, livestock parameters, crop parameters and other

emission factors. CH4 emission factors do not play an

important role for GHG emissions from eggs and chicken.

We also compared the uncertainty quantification results

with other studies. Gerber et al. (2013) found for ruminants

an uncertainty of 0.25, and between 0.10 and 0.15 for

monogastrics (in terms of CV, values derived from the

95 % CI). In our study, we found 0.12–0.19 for ruminants

and 0.15–0.26 for monogastrics. The higher uncertainty for

monogastrics in our study might be associated with the

high uncertainties involved with the N2O soil emission and

the CO2 emission. In addition, Gerber et al. (2013) only

performed their uncertainty assessment for a few selected

Table 8 Comparing GHG

emissions from livestock from

this study (base year is mean

2007–2009) with Gerber et al.

(2013) (base year is 2005)

GHG % total GHG emission

Our study Gerber et al. (2013)a

Africa Latin America EU-27 All continents on global scale

CH4 63 68 59 44

N2O 36 30 33 29

CO2 1 2 8 27

a Results obtained from FAO report using Global Livestock Environmental Assessment Model (GLEAM;

Gerber et al. 2013)
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countries. Usually, the uncertainty at country level is

higher than at continental level, due to the cancelling out

effect of the uncertainty during spatial aggregation (Kros

et al. 2012). Use of only a few selected countries might not

be representative for the uncertainty at country level in

general, as large variation may exist among countries. In

another FAO study by Gerber et al. (2010) on the GHG

emissions from the dairy sector using a Tier 2 approach,

they reported a CV of 0.12–0.13 for meat and milk, in both

Sweden and Nigeria. Our research showed a comparable

CV for meat and milk production for the EU-27: 0.12–0.14

in EU, but higher CVs for Africa: 0.18–0.19. In

MITERRA-Global, a Tier 1 approach is used in Latin

America and Africa, while for part of the emissions a Tier

2 approach was applied in the EU-27. The difference

between the uncertainty in Nigeria from Gerber et al.

(2010) and the uncertainty in Africa from our study indi-

cates that a Tier 2 approach could reduce the uncertainty.

Recommendations for reducing uncertainties

The focus of our study was on the uncertainty of model

inputs and model parameters, while uncertainty in cate-

gorical input data and uncertainty due to model structure

and model implementation was not considered. Accurate

and comprehensive measurement data of emission cate-

gories to derive probability distributions are seldom

available (Monni et al. 2004). In this research, it was only

possible to quantify the uncertainty for input parameters

derived from FAO database. The same limitation applies to

the correlation and distribution types.

Our research showed that parameter values used for the

CH4 and N2O emission factors are the main contributors

(about 50–60 %) to the uncertainty at continental scale.

Improvement of the accuracy of emission factors values

might therefore be more effective in reducing the uncer-

tainty in GHG emissions from livestock, rather than putting

more effort to improve the activity data. Further imple-

mentation of Tier 2 approaches in both modelling and

inventory reporting may reduce the uncertainties, espe-

cially for Latin America and Africa. However, shifting

from a Tier 1 to Tier 2 approach might also require addi-

tional activity data. For example, for enteric fermentation a

Tier 2 approach requires data on feed intake and feed

quality, which might reduce the uncertainty in the emission

factor, but might increase the uncertainty in the activity

data. Also for a Tier 2 N2O emission factor, a shift in

uncertainty might occur from the emission factor to activity

data and especially the biophysical data, e.g. soil type. The

current neglect of this dependency at Tier 1 may lead to an

underestimation of the uncertainty contribution of BFD. As

discussed before, studies have shown that the uncertainty

of Tier 1 emission factors might have been overestimated.

This effect is more prominent when focusing at a higher

spatial resolution (see e.g. Leip et al. 2011b). Re-evaluating

the uncertainties of these emission factors might also

reduce the uncertainty of GHG emissions estimation. Fur-

thermore, development of country- or region-specific

emission factors and guidelines on applying current emis-

sion factors and their associated uncertainty may further

reduce the uncertainty in GHG emissions.

In summary, our work to quantify the uncertainties of

the GHG emission profiles of livestock at continental scale

showed that the uncertainty is higher in Latin America and

Africa than in Europe and that CH4 emission factors and

livestock-related parameters, such as N excretion and

manure management, contribute the most to the uncertainty

in total GHG emissions from profiles of livestock sectors.

The presented analysis of uncertainties of livestock GHG

emissions per livestock product and total emissions can be

used as guidance for the improvement of national GHG

emission inventories, e.g. by improving data collection for

certain activity data or country-specific emission factors,

especially those that contribute most to the uncertainty.
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