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Abstract
Over the past two decades, systemic-based risk assessment methods have garnered more attention, and their use and popu-
larity are growing. In particular, the functional resonance analysis method (FRAM) is one of the most widely used systemic 
methods for risk assessment and accident analysis. FRAM has been progressively evolved since its starting point and is 
considered to be the most recent and promising step in understanding socio-technical systems. However, there is currently 
a lack of any formal testing of the reliability and validity of FRAM, something which applies to Human Factors and Ergo-
nomics research as a whole, where validation is both a particularly challenging issue and an ongoing concern. Therefore, 
this paper aims to define a more formal approach to achieving and demonstrating the reliability and validity of an FRAM 
model, as well as to apply this formal approach partly to an existing FRAM model so as to prove its validity. At the same 
time, it hopes to evaluate the general applicability of this approach to potentially improve the performance and value of the 
FRAM method. Thus, a formal approach was derived by transferring both the general understanding and definitions of reli-
ability and validity as well as concrete methods and techniques to the concept of FRAM. Consequently, predictive validity, 
which is the highest maxim of validation, was assessed for a specific FRAM model in a driving simulator study using the 
signal detection theory. The results showed that the predictive validity of the FRAM model is limited and a generalisation 
with changing system conditions is impossible without some adaptations of the model. The applicability of the approach is 
diminished because of several methodological limitations. Therefore, the reliability and validity framework can be utilised 
to calibrate rather than validate an FRAM model.
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1 Introduction

Risk assessment is a crucial aspect of Human Factors and 
Ergonomics (HFE) research. Instead of the reactive approach 
taken in accident analyses, which looks at a particular erro-
neous scenario, risk assessment adopts a proactive approach, 
trying to identify hazards or looking for what could happen 
in the future to prevent or mitigate adverse events or to facili-
tate desirable outcomes. Over the past 20 years, systemic 
based risk assessment methods have garnered more atten-
tion and their use and popularity are growing (e.g., Dal-
lat et al. 2017; Hollnagel 2012; Hughes et al. 2015; Hulme 
et al. 2019; Larsson et al. 2010; Leveson 2004; Salmon et al. 

2012). These methods try to describe performance at the 
level of the overall system and see the accident process as a 
complex and interwoven event that cannot be broken down 
into its individual parts. Emerging events caused by complex 
and non-linear interactions between the various system parts 
can affect the performance of the system and cause an acci-
dent (Laaraj and Jawab 2018; Qureshi 2007; Wienen et al. 
2017). In general, systemic models acknowledge the com-
plexity and socio-technical nature of systems, and further 
emphasise the need for an understanding of the functional 
abstraction of the system, rather than structural decomposi-
tion (Rasmussen 1997).

In particular, the functional resonance analysis method 
(FRAM) (Hollnagel 2012) is one of the most widely used 
systemic methods for risk assessment and accident analy-
sis. It allows the modelling of mechanisms within complex 
socio-technical systems (STS), including their interfaces 
between humans and technology, coupling and dependency 
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effects, nonlinear interactions between elements, and func-
tional variability (Woltjer and Hollnagel 2008). In general, 
the results of an FRAM analysis contribute to an under-
standing of real work and reveal unsafe functional interac-
tions within one agent and between different agents; these 
are needed to assist risk management as regards the proac-
tive assessment of technological changes and their impacts 
(Ferreira and Cañas 2019; Patriarca and Bergström 2017). 
In addition, FRAM should form the basis for systemic risk 
assessments in complex STS, for example for contempo-
rary applications, such as automated driving in road traffic 
(Grabbe et al. 2020, 2022). These authors do so by provid-
ing a useful understanding of the actual system mechanisms 
and interactions that are needed to assist the system design, 
enhanced by considering non-linear, complex, and emergent 
system behaviour (Grabbe et al. 2022). In the past, FRAM 
has been widely used and enhanced methodologically in a 
variety of domains for retrospective as well as prospective 
analyses, as detailed in a comprehensive review by Patri-
arca et al. (2020). Hence, FRAM has been progressively 
evolved since its starting point in 2004 (Hollnagel 2004) 
and is considered to be the most recent and promising step 
in understanding STS (Nemeth 2013).

However, there is currently a lack of any formal testing 
of the reliability and validity of FRAM. This applies to the 
HFE research as a whole, where validation is both a par-
ticularly challenging issue and an ongoing concern (Stan-
ton and Young 1999a, 2003; Stanton 2016). In fact, Stanton 
and Young (1999a) stated that practitioners often assume 
validity, but seldom test and prove it empirically. Further-
more, methods are often chosen by practitioners that are 
based on familiarity and ease of use rather than on reliability 
and validity evidence (Stanton et al. 2013). Thus, findings 
from the application of HFE methods suffer from an objec-
tive evaluation, making the research findings questionable. 
However, HFE methods must prove that these methods can 
intentionally work in their applied domains (Stanton 2014) 
and to promote the credibility of HFE methods and their 
whole community (Stanton 2016). In this context, and since 
FRAM should form the basis for systemic risk assessments 
in complex STS (Grabbe et al. 2020, 2022), validation is an 
absolute priority and a compulsory aspect in engineering 
disciplines (where HFE is part of it), especially in the afore-
mentioned field of automated driving, due to the enormous 
societal impact which benefits FRAM by providing a clear 
evaluation of its performance and value.

Thus, this paper aims to first define a more formal 
approach to achieving and demonstrating the reliability 
and validity of an FRAM model that forms the basis for 
risk identification and design recommendations within the 
FRAM method, and second, to apply this formal approach 
partly to an existing FRAM model so as to prove its validity, 
and to evaluate the general applicability of this approach.

The remainder of this paper is structured as follows. Sec-
tion 1.1 summarises the theoretical foundations and individ-
ual analytical steps of FRAM, as well as previous validation 
approaches. Following on from this, Sect. 1.2 summarises 
approaches for testing the reliability and validity of HFE 
methods. Section 2 outlines the understanding and defini-
tions of reliability and validity in literature and transfers 
these to the context of FRAM to define a framework that 
addresses the reliability and validity of FRAM models. In 
Sect. 3, we describe the methodology for the evaluation of 
predictive validity in a driving simulator experiment. Sec-
tion 4 presents the results, including the evaluation of the 
predictive validity of the analysed FRAM model according 
to the three different research questions of the study. Sec-
tion 5 then discusses the results with respect to the research 
goals of this paper and also outlines methodological limi-
tations. Finally, a brief conclusion and outlook for future 
research are provided in Sect. 6.

1.1  Basics of FRAM and previous validation 
approaches

The purpose of the model produced by the FRAM method 
is to describe and understand what is happening in an STS 
in terms of functions rather than components. An FRAM 
model focuses on adjustments to everyday performance, 
which usually contribute to things going right. In rare cases, 
these performance adjustments aggregate in unexpected 
ways, leading to functional resonance, with accidents being 
the most extreme result.

FRAM relies on four principles (the equivalence of suc-
cess and failures, approximate adjustments, emergence, and 
functional resonance), and follows four steps (modelling the 
system by identifying its functions, identifying the function’s 
performance variability, aggregating the variability, and 
managing the variability), as detailed in Hollnagel (2012). 
The steps are briefly described in the following. In the first 
step, the essential functions of a system are identified to 
build a model. Basically, each function is characterised 
by six aspects (i.e., input, output, precondition, resource, 
control, and time), which couple each function with sev-
eral other functions representing a specific instantiation of 
the model that traditionally is represented graphically by 
hexagons. Furthermore, the functions can be divided into 
two classes: foreground and background functions. Fore-
ground functions are the core of the analysis and may vary 
significantly during an instantiation of the model. In con-
trast, background functions are stable and represent common 
conditions as a system boundary that are used by foreground 
functions. The second step is to specify the performance 
variability of each function that can be characterised in its 
simple form using two phenotypes, namely, timing and pre-
cision. Here, the function’s output in terms of timing can 
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occur too early, on time, too late, or not at all, whereas for 
precision, the output can be precise, acceptable, or impre-
cise (Hollnagel 2012). In the third step, the variability is 
aggregated to understand how the variability can propagate 
through the system and where functional resonance emerges 
leading to adverse outcomes. This is done by defining 
upstream–downstream couplings, where variability can be 
caused through couplings of upstream functions, when the 
output used as input or resource, for example, is variable 
and thus affects the variability of downstream functions. The 
fourth and final step consists of the monitoring and manage-
ment of the previously identified performance variability to 
ensure the safety and performance of the system.

In the past, some attempts were made to formally verify 
an FRAM model. The first attempt at formal verification 
was the FRAM model-based safety assessment that used 
model checking and theorem proving to verify the FRAM 
model so as to determine whether pre-set safety require-
ments can be observed (Yang and Tian 2015). The same 
authors enhanced this approach using the Simple Promela 
Interpreter (SPIN) tool and applied it to develop an air traffic 
management system. The analysis demonstrated that FRAM 
can benefit from a formal verification with the aid of model 
checking through more rigorous computation that improves 
its efficiency and accuracy (Yang et al. 2017). In addition, 
the software tool FRAM Model Interpreter (FMI) (Hollnagel 
2020) has recently become available, which is a stepwise 
automatic interpretation of the syntactical and logical cor-
rectness of an FRAM model to formally check and adjust 
its consistency and completeness. With regard to valida-
tion, subjective evaluation through interviews with experts, 
workshops, and discussions was mainly used to improve the 
face validity of developed FRAM models, as pointed out 
by Bridges et al. (2018), Kaya et al. (2019), and Ross et al. 
(2018). The reason may be associated with an experts' deep 
knowledge of the work system and daily operations, which 
can help to enrich developed FRAM models and to provide 
more reliable models (Salehi et al. 2021). However, a more 
formal approach for validation is still lacking.

1.2  Previous approaches to testing the reliability 
and validity of HFE methods

On the whole, studies are rarely conducted that report the 
reliability or validity of HFE methods. However, some exam-
ples can be found and are summarised in the following. The 
reliability of ergonomics methods is often assessed using a 
test–retest paradigm (Baysari et al. 2011). Examples of the 
measures used here include percentage agreement (Baber 
and Stanton 1996; Baysari et al. 2011; O'Connor 2008), 
Pearson’s correlation (Harris et al. 2005; Stanton and Young 
2003), the index of concordance (e.g., Olsen and Shorrock 
2010), and Cohen’s kappa (e.g., Makeham et al. 2008).

Studies assessing the validity of ergonomics methods 
can also be found in literature (Baber and Stanton 1996; 
Stanton et al. 2009; Stanton and Young 2003). Many of 
these have focussed on human reliability and error pre-
diction methods in general (Baysari et al. 2011; Kirwan 
et al. 1997; Stanton and Young 2003) or more specifically 
on the systematic human error reduction and prediction 
approach (SHERPA) (Stanton and Stevenage 1998) and 
task analysis for error identification (TAFEI) (Stanton and 
Baber 2005). In these studies, the validity of methods was 
assessed by comparing a method’s results (e.g., errors pre-
dicted) against actual observations (e.g., errors observed). 
More recently, system analysis methods, such as the cogni-
tive work analysis (Cornelissen et al. 2014), a factor clas-
sification scheme for Rasmussen's Accimap (Goode et al. 
2017), the networked hazard analysis and risk manage-
ment system (Net-HARMS) (Hulme et al. 2021a), and the 
operator event sequence diagrams (Stanton et al. 2021a, 
b, c, d) have also been empirically validated. Furthermore, 
there has been a thorough comparison of intra-rater relia-
bility and criterion-referenced concurrent validity between 
three systems-based risk assessment approaches: the sys-
tems-theoretic process analysis (STPA) method, the event 
analysis of systemic teamwork broken links (EAST-BL) 
method, and the Net-HARMS method (Hulme et al. 2021b; 
see also Hulme et al. 2021c). In general, quantitative meth-
ods to compare expert results versus novice results (or 
predicted versus actual outcomes) are often based on the 
use of signal detection theory (SDT) to calculate the sen-
sitivity of the method under analysis (Baber and Stanton 
1994; Stanton et al. 2009; Stanton and Young 2003). The 
SDT and its metrics are commonly used to assess the reli-
ability and validity of ergonomics methods, such as human 
error prediction (Stanton et al. 2009). This was pioneered 
in particular by Stanton and Young (1999a, b) as a means 
of establishing empirical validity of methods.

A comparison of the reliability and validity of a range of 
HFE methods has been undertaken by Stanton and Young 
(1999a, b, 2003), which showed that the methods vary 
quite considerably in their performance. This demonstrates 
the urgent need for more reliability and validation studies 
of other HFE methods, and in particular FRAM. Moreover, 
FRAM follows a safety-II perspective (Hollnagel 2014) 
for which validity is seldomly addressed instead of safety-
I (Hollnagel 2014) based methods as, e.g., human error 
analysis methods as mentioned previously.
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2  Proposed reliability and validity 
framework

2.1  Understanding and definitions of reliability 
and validity

According to Stanton and Young (1999a), reliability and 
validity are interrelated, where a method can only be valid 
if it is reliable but may be reliable and not valid. Thus, 
these two criteria have to be evaluated mutually.

Reliability is a measure of the stability of the method 
over time and across analysts, ideally demonstrating that the 
application of an ergonomics method will result in the same 
results if it is used by different people (inter-rater) or at dif-
ferent points in time by the same people (intra-rater) (Stan-
ton et al. 2016). This is often assessed using a test–retest 
paradigm between experts and novices, including measures, 
such as percentage agreement and Cohen’s Kappa (e.g., Bay-
sari et al. 2011; Hulme et al. 2021a; Makeham et al. 2008).

When considering validity, we have to distinguish 
between the following two main terms: verification and vali-
dation. According to Balci (1998), verification determines 
whether the formal implementation of a model is correct, 
which deals with building the model correctly. On the other 
hand, validation determines whether a model can be sub-
stituted for the real system for the intended purposes and 
objectives in the applied domain, which deals with building 
the right model. Overall, a model must be useful with regard 
to its objective, which means providing a reasonably accu-
rate answer to the question to be answered (Liebl 2018, p. 
203). Consequently, the concept of validity has to be guided 
by this requirement and should not be regarded as absolute 
(Schrank and Holt 1967). This has various implications for 
the nature of validation (Liebl 2018, pp. 203–205):

• model-individual, meaning that it is impossible to 
postulate a standardised validation procedure due to 
various forms and applications of models. Rather, the 
required validity criteria and their weighting change 
depending on the problem (Banks et al. 1987).

• gradual, showing how good or bad a model is in fulfill-
ing its purpose and describing the validation process as 
a trade-off between additional costs/effort and the added 
information value of increased validity (Van Horn 1971).

• result of a negotiation process, according to which the 
validity of a model largely equates to the question of 
credibility and acceptance. Within this process, it is 
negotiated when the model is considered sufficiently 
valid and which validity criteria and methods should 
be applied (cf. Sargent 1984).

• continuous and iterative, meaning that validation takes 
place during the entire development process and “con-

fidence is built into the model as the study proceeds” 
(Bulgren 1982, p. 126) rather than depicting a separate 
section at the end as an end state.

Furthermore, different categories of validation can be 
found in literature. For instance, Liebl (2018) distinguishes 
between outcome-based, function-based, and theory-based 
validation. Outcome-based validation aims to compare 
results, checking the extent to which the model produces 
results that match those of the real system. Function-based 
validation comes into play when the real system is not fully 
observable, so one has to validate exclusively on the model 
itself. Here, the reaction mode of the model is checked for 
plausibility, hence validity ultimately presents itself as a 
failed falsification of the model (Hanssmann 2018, p. 93). 
Theory-based validation compares the model results with 
theoretically expected results, which usually come from ana-
lytical models or literature.

As for HFE methods, Stanton and Young (1999b) pro-
posed four types of validity for ergonomics methods: con-
struct, content, concurrent and predictive. Construct valid-
ity concerns the underlying theoretical basis of a method. 
Content validity relates to the credibility that a method can 
achieve with its users, which can also be referred to as face 
validity. Finally, concurrent and predictive validity address 
the extent to which an analysed performance is representa-
tive of the performance that might have been analysed, 
where concurrent validity describes the current performance 
sampled, and predictive validity (i.e., criterion-referenced 
empirical validity) concerns the performance in the future. 
Furthermore, HFE methods should possess a certain level of 
concurrent or predictive validity suitable for their applica-
tion (Stanton 2016). However, it is debatable as to whether 
all ergonomics methods have to fulfil all four types of valida-
tion, as shown by a distinction between analytic and evalu-
ative methods, assuming that construct and content validity 
might be sufficient for analytic methods, whereas predictive 
validity might be required for evaluative methods (Annett 
2002).

Finally, various concrete techniques can be used to test 
the aforementioned validation and verification types. Balci 
(1998, p. 355) presented an overview of more than 75 tech-
niques, placing them into four categories: informal, static, 
dynamic, and formal. The use of mathematical and logic 
formalism by the techniques increases from informal to for-
mal. Informal techniques are the most commonly used and 
rely heavily on subjectivity. Examples include audits, face 
validation, turing tests, and walkthroughs. Static techniques 
assess the model’s accuracy based on the characteristics 
of the static model design, including, for example, control 
analysis, semantic and syntax analysis as well as structural 
analysis. Dynamic models, on the other hand, evaluate the 
model based on its execution behaviour, including, among 
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others, predictive validation, sensitivity analysis, and statisti-
cal techniques. Last but not least, the formal techniques are 
quite objective and are based on a mathematical proof of 
correctness, for instance, induction and logical deduction.

2.2  Transfer and applicability to FRAM

As we have seen before, validity is not an absolute concept, 
but rather a relative one. Thus, there is no standard approach 
to validity. Instead, an approach to prove validity and reli-
ability has to be developed for each method itself according 
to the features and context of the application. Therefore, 
the aforementioned knowledge will be transferred to the 
concept of FRAM to define one potential approach to dem-
onstrate reliability and validity for an FRAM model in the 
following (see Fig. 1). It should be pointed out that we have 
to distinguish between an FRAM model and a particular 
instantiation of the model when trying to define a validation 
approach for the FRAM method. According to Hollnagel 
(2012), the functions are potentially coupled in an FRAM 
model, meaning that there is no predetermined a priori order 
or fixed sequence of the functions, whereby the functions 
actually become coupled in an instantiation for a specific 
set of conditions, resulting in temporal and causal relations. 
Against this background, validation is only possible for a 
particular instantiation of an FRAM model, but not for an 
FRAM model in general. For the sake of simplicity, we use 

the term “FRAM model” as meaning an “instantiation of an 
FRAM model” in this paper.

Basically, FRAM is a qualitative modelling method that 
offers great flexibility in terms of how it is applied and used, 
since it is a method-sine-model which means that FRAM 
is used as a method to produce a model and not vice versa 
(Hollnagel 2012, pp. 127–133). In addition, an experienced 
team of experts is required to analyse and model the system 
(Accou and Reniers 2019; Jensen and Aven 2018; Pereira 
2013), where the quality of the output in FRAM directly 
depends on the team of experts and the information they pro-
vide as input for the functions and their variability (Salehi 
et al. 2021). Although some practical guidance material 
exists in Hollnagel et al. (2014), there is no explicit standard 
for determining how much information should be included 
in the analytical process to define the objective, scope, and 
granularity of the model, as highlighted by Anvarifar et al. 
(2017), Grabbe et al. (2020), Li et al. (2019), and Patri-
arca et al. (2017). Due to these low limitations or regula-
tions regarding modelling, as well as the strong dependency 
between model outputs and the competence of the modeller 
team, an FRAM model is ultimately subject to a very strong 
subjective component. This means that when applied to the 
same work context and using the method traditionally, an 
FRAM model and its risk derivation are unlikely to be con-
gruent between different users and even with the same user 
on a different occasion. For this reason, the classic test–retest 

Fig. 1  Validation approach for an FRAM model
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paradigm, which is often used to assess the reliability of 
HFE methods as mentioned in Sect. 2.1, seems inappropri-
ate in the context of FRAM, particularly for largely com-
plex FRAM models. Therefore, the reliability for an FRAM 
model cannot be proven but it can be achieved and increased 
using mixed methods and multiple data sources, such as doc-
ument reviews, interviews, observations and simulations, as 
well as workshops and focus groups (see Fig. 1). These help 
to integrate multiple limited perspectives and dimensions 
that adhere to the verification strategies of Creswell and 
Miller (2000), complying with the four qualitative terms of 
credibility, transferability, dependability, and confirmability 
(Anfara et al. 2002) to improve the quality, scientific rigour, 
and trustworthiness of the model. One application of this 
can be found in Adriaensen et al. (2019) and Grabbe et al. 
(2022) in the context of aircraft cockpits and automated driv-
ing, respectively.

In addition, an FRAM model can be simply verified 
through the already established FMI (Hollnagel 2020) soft-
ware that automatically interprets and parses the syntactical 
and logical correctness of an FRAM model step-by-step to 
formally check and adjust its structure with regard to con-
sistency and completeness while obeying the FRAM “rules” 
(see Fig. 1). An important part of this is the identification 
of orphans or potential auto-loops as well as the question of 
whether relations between functions are mutually consistent, 
thus allowing an event to develop as intended. The use of 
FMI can be enhanced by other tools, such as model checking 
and theorem proving, as described in Sect. 1.1.

Validity should be divided into construct, content, and 
predictive validity according to Stanton and Young (1999b), 
since FRAM is an ergonomics method. In this case, concur-
rent validity is omitted, because an FRAM model does not 
generate absolute outputs; the outputs can only be evalu-
ated relatively if something is changed in the model. This 
means that only future performance and not current per-
formance can be validated. However, this is not a problem, 
since predictive validity is the higher maxim of the two 
anyway. Furthermore, FRAM is both an analytic and evalu-
ative method. The analytic part is used through the quali-
tative and traditional application to gain an understanding 
of the mechanisms that underlie the functional interactions 
between system elements by modelling to comprehend what 
is happening, for example, to facilitate design decisions or 
to identify sources of performance failures and successes. 
In contrast to this, the evaluative part is used more in a 
semi-quantitative approach to measure and predict a certain 
parameter, such as performance variability, which is the fun-
damental factor explaining system behaviour in the FRAM 
method with its core principles of performance adjustments, 
emergence, and functional resonance. The analytic and eval-
uative parts are covered by construct and content validity, 
and predictive validity, respectively (cf. Annett 2002) (see 

Fig. 1). Construct validity should be ensured through the 
strong and sound systems theory basis of FRAM, as well as 
the tremendous credibility that the method gained amongst 
users over the last decade (cf. Patriarca et al 2020), which 
is also an argument for the content validity. Thus, construct 
validity can be generally assumed for an FRAM model as 
long as the method and its principles were correctly and 
comprehensively used, once again emphasising the strong 
dependency between an FRAM model’s output quality and 
the experience and training of the user and modeller as 
mentioned above. Content validity can mainly be proved by 
face validity using subjective evaluation through interviews, 
workshops, and discussions with experts who have a deep 
knowledge of normal work systems and daily operations, as 
already applied by Bridges et al. (2018), Kaya et al. (2019), 
and Ross et al. (2018). In addition, a theory-based valida-
tion could be used to further increase the content validity 
by comparing the FRAM model’s outputs with both other 
models or indicators in literature or incident and accident 
reports (including contributory factors and reasons) regard-
ing the same application context. For instance, Bridges et al. 
(2018) modelled real accidents as "Mini FRAMs" based on 
accident reports that served as a comparison for the logic of 
the overall FRAM model.

Finally, predictive validity could be demonstrated by a 
mixture of function- and outcome-based validation. The rea-
son for the combination is that an outcome-based validation 
alone is not possible, because an FRAM model does not gen-
erate absolute, observable outputs as a final product of the 
entire model. Instead, it must be linked to a function-based 
validation to produce relative, observable outputs through 
controlled variations in the model. The function-based vali-
dation can be realised by a sensitivity analysis with delib-
erate and controlled variations in the model to evaluate 
responses in the model for plausibility, which can also be 
called a “structured what-if analysis” (SWI-FRAM) (cf. Hill 
et al. 2020; MacKinnon et al. 2021). Here, one upstream 
function will be manipulated to vary its output to understand 
its impact on the system as well as how this variability can 
propagate through the system. In terms of predictive vali-
dation, this can be used to check whether the variation in 
the output of the upstream function actually influences the 
output of the coupled downstream functions while keeping 
all other functions constant at the same time. This process 
must be carried out for all direct upstream–downstream cou-
plings of foreground functions in an FRAM model to fully 
test its predictive validity. This is exemplified in Fig. 2 and 
Table 1, which will be described in the following. Function 
A, highlighted in green, is initially manipulated to test the 
couplings AB, AC, and AD and to see if these couplings 
actually lead to a change in the output of functions B, C, 
and D. In the next steps, this procedure is also carried out for 
the other upstream–downstream couplings of the remaining 
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functions (see Table 1) up to the end function H, highlighted 
in red. The proof of all direct couplings is sufficient as this 
automatically explains the indirect effects too, for example, 
if function A has a direct impact on function D and D in 

turn on function F, then A also has an indirect effect on F. 
If the expected effect for one coupling can actually be con-
firmed, it is valid and if not, the coupling is not relevant and, 
therefore, invalid. However, this only validates the predictive 
performance for one instantiation and thus for one specific 
scenario, which does not mean that the model will be gener-
ally valid or invalid for other situations.

The final comparison between expected and actual 
effect then corresponds to an outcome-based validation, 
where the predictions of the FRAM model are matched 
with actual observations in reality. This is where the 
SDT comes into play, which was pioneered by Stanton 
and Young (1999a, b) to establish the empirical validity 
of ergonomics methods as mentioned in Sect. 1.2. This 
technique divides the method’s outputs up into hits (H), 
misses (M), false alarms (FA), and correct rejections (CR). 
In the context of FRAM, it provides a method to compare 
the predicted variability effect of an upstream function to 
its coupled downstream functions, illustrated through the 
FRAM model, with the actual observed variability effect 
in simulator or field tests. In this work, the four events in 
Fig. 3 are defined as follows:

• Hits: predicted variability effect in a downstream func-
tion’s output through the manipulation of its upstream 

Fig. 2  Fictitious instantiation of an FRAM model with nine functions and thirteen couplings marked through letters. Function A is the start 
function and function H is the end function, as highlighted in green and red, respectively

Table 1  Assignment of upstream functions, downstream function, 
and their related couplings with regard to the fictive FRAM model in 
Fig. 2

Upstream function Couplings Down-
stream 
functions

A-> AB -> B
AC -> C
AD -> D

B-> BE -> E
C-> CE ->E

CG -> G
D-> DF -> F
E-> EH -> H
F-> FE -> E

FG -> G
FI -> I

G-> GH -> H
I-> IC -> C
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function’s output by the FRAM model and observed vari-
ability effect in a simulator or field test.

• Misses: no predicted variability effect in a downstream 
function’s output through the manipulation of its 
upstream function’s output by the FRAM model, but 
observed variability effect in a simulator or field test.

• False alarms: predicted variability effect in a down-
stream function’s output through the manipulation of its 
upstream function’s output by the FRAM model, but no 
observed variability effect in a simulator or field test.

• Correct rejections: no predicted variability effect in a 
downstream function’s output through the manipulation 
of its upstream function’s output by the FRAM model 
and no observed variability effect in a simulator or field 
test.

In the following, the four events mentioned above will 
be explained using examples with the fictive FRAM model 
in Fig. 2. For instance, we will manipulate the output of 
function C to test the predictive validity. Potential hits or 
false alarms could be the couplings CE and CG to its direct 
downstream functions E and G, with one potential result 
being that coupling CE is a hit and CG a false alarm. The 
couplings EH and GH are indirect downstream effects of 
function C to function H and, therefore, out of the scope as 
we only measure direct downstream effects. Potential misses 
or correct rejections could be all the remaining functions 
that are not indirectly influenced by function C, and where 
no direct downstream couplings currently exist with func-
tion C and thus no variability effects are expected. It has 
to be proven whether the manipulation of function C has 

a variability effect on the outputs of the functions A, B, D, 
F, and I. Potential results could be that the “potential” cou-
pling to function B is a miss and the potential couplings to 
the functions A, D, F, and I are correct rejections. Several 
metrics comprising the four events can now be used for the 
subsequent and concrete evaluation of predictive validity, 
which will be explained in more detail in Sect. 3.6.

All of the methods described above to demonstrate or 
increase the reliability, verification, and validity either influ-
ence or improve the performance and value of an FRAM 
model to increase the objective evaluation of research find-
ings by FRAM as depicted in Fig. 1. In the next step, the 
process of predictive validity will be exemplified through an 
FRAM model for human and automated driving by Grabbe 
et al. (2022) to show its credibility as well as the appli-
cability of the previously described predictive validation 
approach. This is because first, predictive validity represents 
the highest maxim of validation, and second, reliability, veri-
fication, and content validity for the analytical part of the 
validation have already been implemented by Grabbe et al. 
(2022) for the model to be examined. Therefore, the evalu-
ative part of the validation is still open and thus addressed 
in the methods section.

3  Methods

3.1  FRAM model

The FRAM model to be validated in this paper is the FRAM 
model for overtaking in road traffic created by Grabbe et al. 
(2022). This model is very large and detailed, comprising 
285 functions and including 210 foreground functions, all of 
which theoretically have to be analysed individually to test 
the predictive validity of the entire model. This is practically 
impossible and would go beyond the scope of this work. 
We, therefore, selected the two functions ‘driving free’ (lead 
vehicle, LV) and ‘driving free’ (oncoming vehicle, OV) to 
demonstrate the predictive validity. Both functions have a 
major impact on the system or rather the model and basically 
represent the longitudinal and lateral driving behaviour of 
LV and OV. The two functions and their couplings as well 
as their context will be described in more detail in Sects. 3.5 
and 3.7.1, and 3.4.2, respectively.

3.2  Research questions

The analysis of the predictive validity of the FRAM model 
by Grabbe et al. (2022) pursues three research questions:

1) Is the model predictively valid for the basic scenario?

Fig. 3  Signal detection theory (SDT) matrix
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2) Is the model predictively valid for changing environmen-
tal conditions?

3) Is the model predictively valid for changing human fac-
tors conditions?

3.3  Sample

Forty German participants with valid driving licences took 
part in this experiment. This sample was divided into two 
subgroups with twenty participants each for the between-
subjects factor levels of time pressure or no time pressure. 
The mean (M) age of the time pressure group was 29.4 years 
(SD = 14.5 years) with a range from 19 to 75 years, and that 
of the no time pressure group was 31 years (SD = 14.2 years) 
ranging from 21 to 72 years. The time pressure group con-
sisted of twelve (60%) men and eight (40%) women, while 
the no time pressure group consisted of eleven (55%) men 
and nine (45%) women. In addition, Table 2 gives an over-
view of a comparison between the no time pressure and time 
pressure group as regards driving experience and driving 
style. Based on this data, the two samples can be considered 
as comparable.

3.4  Apparatus

3.4.1  Driving simulator

The experiment was carried out in the static driving simula-
tor of the Chair of Ergonomics at the Technical University 
of Munich (see Fig. 4). The simulator consisted of a BMW 
E64 vehicle mock-up. A high-quality, 6-channel projection 
system provided a realistic driving environment. Three pro-
jectors were used for the front and back view each. The front 
field of view is approx. 180°. The back view through the 
mirrors is realised through three separate canvases. SILAB 
6.5 of the Würzburg Institute for Traffic Sciences GmbH, 
with a refresh rate of 60 Hz, was used as the driving simula-
tion software. An additional sound system provided vehicle 
and environmental sounds.

3.4.2  Scenario and experimental track

The scenario of the analysed FRAM model was an overtak-
ing manoeuvre on a rural road as detailed in Grabbe et al. 
(2022). An ego vehicle (EV) driven by the participant wants 
to overtake an LV travelling at a speed of 80 km/h on a 
straight rural road for a distance of 2500 m with no vertical 
elevation. The maximum speed limit is 100 km/h, overtaking 
is permitted and no obstructions exist. A rear vehicle (RV) is 
following the EV, and a line of cars are approaching on the 
oncoming lane at 100 km/h with different fixed time gaps. 
There were a total of ten gaps on the straight, with the first 
four time gaps being 10 s and for the last six gaps 12 s, corre-
sponding to critical and uncritical time gaps according to the 
mean of 11.5 s (Crawford 1963) and median of 9.9 s (Tapio 
2003) found in literature regarding accepted gaps when over-
taking passenger cars. The road is 6 m wide, with one lane 
in each direction and a dotted line in the middle. The road 
is well constructed and all necessary road markings are in 
place. There is light vegetation on the side of the road. The 
weather conditions are sunny and dry. All simulation-con-
trolled vehicles, which are passenger cars, always keep the 
necessary safety distance to their vehicle in front and comply 
with the traffic regulations. Before the actual test scenario, 

Table 2  Comparison between the no time pressure and time pressure group regarding driving experience and driving style

Measurement No time pressure group Time pressure group

Participation in driving simulator studies M = 7.7 (SD = 8.5) M = 10.3 (SD = 24.3)
Mileage [km/year] M = 12,272 (SD = 5,054) M = 12,777 (SD = 5,995)
Driving regularity [daily, weekly, monthly, annually] Daily 40%

Weekly 45%
Monthly 15%

Daily 50%
Weekly 40%
Monthly 10%

Driving style [5-Likert scale: from (1) very safe to very risky (5)] M = 2.5 (SD = 0.8) M = 2.5 (SD = 0.9)
Driving pace [5-Likert scale: from (1) very leisurely to very rapid (5)] M = 3.3 (SD = 0.6) M = 3.4 (SD = 0.9)
Driving capability [5-Likert scale: from (1) very inexperienced to very experi-

enced (5)]
M = 4.0 (SD = 0.8) M = 4.1 (SD = 0.9)

Fig. 4  Static driving simulator
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the overtaking manoeuvre on the straight rural road, each of 
the test subjects drove a small winding course for a distance 
of 2,000 m through a wooded area so that the entire scenario 
would appear as natural as possible. To get a better overview, 
the scenario can be divided into five temporal and spatial 
stages from the EV’s point of view (see Fig. 5): following a 
vehicle in front, swerving into the oncoming lane, passing 
the leading vehicle, merging back into the starting lane, and 
getting in the lane again.

3.5  Experimental design

We used a 2 × 3 × 3 mixed factorial design for this experi-
ment. The human factors condition (no time pressure or time 
pressure) was the between-subject factor, while the environ-
mental condition (basic, truck, fog and rain) and the function 
manipulation (no manipulation, manipulation of driving free 
LV, manipulation of driving free OV) were within-subject 

factors (see Fig. 6). Half of the participants experienced time 
pressure as realised by an expiring time counter in the head-
up display, forcing them to overtake as early as possible. The 
timer was set to expire as soon as the fourth gap had passed, 
forcing the test persons to overtake in the gaps with the 
smaller and critical time gaps described in Sect. 3.4.2. The 
reason for this is that impatient drivers under time pressure 
tend to reduce the accepted gaps during passing manoeuvres 
(Pollatschek and Polus 2005). Each test subject drove all 
nine scenarios, comprising the three different environmen-
tal conditions as well as function manipulations, where the 
scenarios were permuted to mitigate potential sequence and 
learning effects. The basic condition corresponded to the 
standard scope of the examined FRAM model, whereas the 
LV, which was basically a passenger car, was substituted 
through a truck in the truck condition, and the weather con-
ditions, that were basically sunny and dry, were changed to 
fog and rain in the third condition. The first three scenarios, 

Fig. 5  Schematic illustration of the overtaking scenario comprising different road users/agents and divided into five temporal and spatial stages. 
EV ego vehicle, LV lead vehicle, RV rear vehicle, OV oncoming vehicle, according to Grabbe et al. (2022)

Fig. 6  Illustration of the mixed factorial design
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in which no manipulation was implemented, served as refer-
ences for the three environmental conditions to analyse the 
predictive validity for the function manipulation of driving 
free for both the LV and the OV. The manipulation of driv-
ing free was realised for the LV by multiple abrupt braking 
and acceleration as well as repeated lateral offsets, such as 
"weaving around ", and for the OV by increasing the speed 
from 100 to 120 km/h, which reduced the time gaps of the 
first four gaps to 8.33 s and for the last six gaps to 9.99 s, 
resulting in even more critical time gaps. Finally, scenarios 
4 and 7 must be compared with scenario 1, scenarios 5 and 
8 with scenario 2, and scenarios 6 and 9 with scenario 3 
(see Fig. 6).

3.6  Procedure

Participants were welcomed and informed about the study 
goals and the procedure. After risks such as nausea and the 
option of withdrawing from the study without needing to 
cite reasons were outlined, written consent was obtained. 
Participants filled out a demographic questionnaire, which 
also asked for details of their driving experience and driv-
ing style. They then drove in the driving simulator for about 
10 min to familiarise themselves with the steering, braking, 
and the driving simulator system. Afterwards, the partici-
pants drove a modified basic scenario with no oncoming 
vehicles and just the LV, with the goal of overtaking this. 
They were then asked to fill out a questionnaire to rate the 
timing and precision variability performance of some sub-
jective functions on a 7-Likert scale, as will be more detailed 
in Sect. 3.7.1. This initial trial run served as a familiari-
sation for the participants with the basic procedure of the 
subsequent nine test drives as well as the non-trivial subjec-
tive rating of the functions. The actual nine test runs then 
began, each followed by completing the questionnaire on 
the subjective functions. Finally, the participants filled out 
five follow-up questions to rate the perception of the simu-
lated drive. In general, the test subjects were instructed to 
overtake the LV before the end of the straight by obeying the 
traffic regulations but also showing her or his most natural 
and everyday driving behaviour. No restrictions were given 
regarding overtaking behaviour to ensure idiosyncratic and 
diverse driving styles. However, an exception exists for the 
subjects in the group with time pressure who were intention-
ally instructed to overtake the LV before the timer expires.

3.7  Measures and analysis

3.7.1  Independent and dependent variables

The overall study consisted of three independent variables 
comprising the function manipulation, environmental con-
dition, and the human factors condition. Moreover, the 

dependent variables were the performance variability values 
of several subjective and objective functions in which the 
performance variability of their outputs, if driving free LV or 
OV are manipulated, should either change (expected direct 
downstream effects) or should not change (no expected 
direct downstream effects) according to the FRAM model 
by Grabbe et al. (2022) (see Table 3). It should be empha-
sised that the variability of the outcome or output from a 
function was measured and not the variability of the func-
tion itself. This work only investigated the expected and 
unexpected downstream couplings of the two manipulated 
functions to the functions of the agent EV and not to the 
other agents to test for predictive validity. In the case of 
expected direct downstream effects, the corresponding func-
tions were assigned to the H/FA category, and in case of 
no expected direct downstream effects, the corresponding 
functions were assigned to the M/CR category, according to 
the application of SDT to FRAM as described basically at 
the end of Sect. 2.2. Furthermore, in the case of the M/CR 
category, these functions do not represent all of the potential 
functions that have to be tested, but only a selection of func-
tions, as otherwise there would be far too many functions 
for any practical test. Theoretically, these would be all of the 
remaining functions of the entire model that are not expected 
to be directly or indirectly influenced by the manipulated 
functions.

The performance variability of the subjective functions 
was based on the rating of the timing and precision vari-
ability performance in the questionnaire on a 7-Likert scale. 
Here, the timing was coded as 1 for too early, 3 for on time, 
5 for too late, and 7 for not at all, whereas precision was 
coded as 1 for precise, 4 for acceptable, and 7 for imprecise. 
The subjects were asked when (timing) or how (precision) 
they, for example, estimated the distance to OV until they 
swerved. Finally, the two values for timing and precision 
were multiplied into one representative value for the perfor-
mance variability of the subjective functions. By contrast, 
the performance variability of the objective functions was 
based on driving data (e.g., speed, lane deviation, and dis-
tance between cars) gathered in the driving simulator. For 
the sake of simplicity, we gathered the performance vari-
ability of the objective functions either in terms of timing 
or precision but not both. An overview of the measurement 
definitions of each objective function is given in Table 4.

3.7.2  Statistical analysis

To evaluate the predictive validity, the performance variabil-
ity had to be reduced into the four events of SDT, namely, 
hits, false alarms, misses, and correct rejections, by compar-
ing the predictions of the model with the observations in the 
simulator.
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First, the mean and standard deviation of the performance 
values were calculated for the scenarios 1–3 (as these form 
the respective reference for testing for differences in perfor-
mance variability as described in Sect. 3.5) for each analysed 

function per between-subject factor group, from which the 
95% confidence interval was calculated to define a "normal" 
everyday variability range. In medicine, one also speaks of 
normal ranges, which are defined for blood pressure or blood 

Table 3  Assignment of 
manipulated functions and 
analysed functions of EV, and 
their allocation to the type of 
rating and SDT event category

Manipulated function Analysed functions of EV Type of rating SDT 
event 
category

Driving free LV Check vehicles in front of LV Subjective H/FA
Check LV is not about to change speed H/FA
Gauge future driving actions of LV H/FA
Check LV is not indicating or about to turn H/FA
Maintain an adequate view of the road ahead H/FA
Evaluate reasonableness for overtaking H/FA
Assess the situation to enter safely H/FA
Judge LV's relative speed to OV H/FA
Judge LV's speed H/FA
Judge available passing time H/FA
Determine pass can be completed H/FA
Observe road behind M/CR
Check for safe distance to merge M/CR
Judge first OV's speed M/CR
Judge distance from first OV M/CR
Maintain headway separation Objective H/FA
Keep in lane H/FA
Position car to the right H/FA
Position car to the left H/FA
Reduce headway from normal following H/FA
Avoid tailgating and intimidating LV H/FA
Adjust speed to that of LV H/FA
Adopt overtaking position H/FA
Swerve completely to the oncoming lane H/FA
Accelerate LV decisively H/FA
Merge back into starting lane H/FA
Merge progressively into starting lane H/FA
Comply with the speed limit M/CR

Driving free OV Judge first OV's speed Subjective H/FA
Judge LV's relative speed to OV H/FA
Judge available passing time H/FA
Determine pass can be completed H/FA
Assess the situation to enter safely H/FA
Judge distance from first OV M/CR
Judge LV's speed M/CR
Observe road behind M/CR
Check for safe distance to merge M/CR
Accelerate LV decisively Objective H/FA
Merge back into starting lane H/FA
Merge progressively into starting lane H/FA
Comply with the speed limit M/CR
Maintain headway separation M/CR
Keep in lane M/CR
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sugar, for example, to distinguish healthy patients from sick 
patients. Afterwards, the difference between the upper/lower 
limit of the confidence interval and the mean was calculated, 
which reflects a maximum positive or negative everyday 
fluctuation in performance that is normal and thus should 
not be regarded as a significant performance variability.

We then calculated the absolute differences between the 
intraindividual performance values of scenario 4 and 7 to 
1, scenario 5 and 8 to 2, and scenario 6 and 9 to 3 for each 
analysed function as we were interested in both the posi-
tive and negative direction of the performance variability. 
In the next step, one-sided one-sample t tests with a p-value 
of 5% were used to determine whether the sample mean 
of the absolute differences in performance of, for example, 
scenario 4 to 1 was statistically greater than the respective 
maximum value of everyday fluctuation in performance. The 
Wilcoxon signed-rank test was used as an alternative when 
the statistical requirements for the one-sample t-test were 
not met. If the p-value was lower than 5%, then a signifi-
cant performance variability in the analysed function in the 
respective scenario was assumed, otherwise not.

From this, it was possible to finally assess which of the 
four events according to SDT applies per analysed function, 
group and scenario. Subsequently, the number of the four 
events per manipulated function (driving free LV and OV), 
human factors condition (time pressure, no time pressure) 
and environmental condition (basic, truck, rain and fog) 
were calculated. Based on this, the accuracy, H-rate (HR), 
and CR-rate (CRR) were calculated to be able to prove the 
predictive validity. We decided to use the accuracy and not 
the Matthews (1975) correlation coefficient (MCC), which 
is generally recommended by Stanton and Young (1999a, 
2003) and successfully applied, for example, by Stanton 
et al. (2021a; b, c, d) and Hulme et al. (2021a; b, c), as 
an appropriate statistical metric to validate human factors 
methods in binary classification problems. The reasons are 
twofold. First, the analysed FRAM model is clearly com-
plex with a wide scope, and according to Stanton and Young 
(2003), the wider the scope of the method or model, the 
more difficult it is to obtain favourable data on validity per-
formance, so it would be detrimental to use a harsh metric 
like the MCC. Second, the true positive results should be 
favoured over the true negative results as considerably more 

Table 4  Overview of the measurement definitions of each objective function

Objective function Stage Phenotype Definition

Maintain headway separation Follow Precision The average distance between EV and LV in the period, where the straight 
begins and the driver of EV starts to swerve, indicated by the left activated 
indicator or the steering angle

Keep in lane Follow Precision The average absolute lane deviation between of EV in the period, where the 
straight begins and the driver of EV starts to swerve

Position car to right/left Follow Precision The average gap to the left/right lane edge of in the period, where the straight 
begins and the driver of EV starts to swerve

Reduce headway from normal following Swerve Precision The average distance between EV and LV in the period, where the driver of EV 
starts to swerve and driving completely in the oncoming lane, indicated by the 
left activated indicator or the steering angle, and the lane index showing in 
which lane EV is driving, respectively

Avoid tailgating and intimidating LV Swerve Precision The distance between EV and LV at the last point, where the driver of EV is 
driving in the starting lane and already has started to swerve

Adjust speed to that of LV Swerve Precision The average speed difference between EV and LV in the period, where the 
straight begins and the driver of EV starts to swerve

Adopt overtaking position Swerve Precision The sum of the speed of EV, absolute lane deviation of EV, and the distance 
between EV and LV at the point, where the driver of EV starts to swerve

Swerve completely to oncoming lane Swerve Timing The time difference between starting to swerve and driving completely in the 
oncoming lane

Accelerate LV decisively Pass Precision The average speed of EV in the period, where the driver of EV starts to drive 
completely in the oncoming lane and starts to merge, indicated by the lane 
index showing in which lane EV is driving, and the right activated indicator 
or the steering angle, respectively

Merge back into starting lane Pass Precision The number of times the driver of EV merged back into the starting lane even 
though the driver has already swerved into the oncoming lane to overtake

Merge progressively into starting lane Merge Timing The time difference between starting to merge and driving completely in the 
starting lane

Comply with the speed limit All Precision The average speed difference between EV’s speed and the speed limit in the 
period, where the straight begins and the driver of EV is driving completely in 
the starting lane again after passing LV
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H than CR can be identified in an FRAM model validation 
due to the practical limitations mentioned in Sect. 3.7.1. The 
accuracy score tends to favour positive cases (Baber and 
Young 2022). With this in mind, accuracy seemed to be 
more appropriate than MCC to obtain a high validity score, 
because it is quite difficult to obtain a high score through 
good prediction results in only all four of the confusion 
matrix categories. Nevertheless, as using the accuracy alone 
as a single value to prove predictive validity could be mis-
leading in the case of imbalanced classification data sets 
(cf. Chicco and Jurman 2020), we also considered the HR, 
and especially CRR, to achieve a broader and more detailed 
analysis.

The numerical value of accuracy represents the propor-
tion of true or expected results (both true positive (H) and 
true negative (CR)) and was calculated as follows (1):

HR or sensitivity represents the proportion of true posi-
tives or expected and observed results and was calculated 
as follows (2):

CRR or specificity represents the proportion of true nega-
tives or not expected and not observed results and was cal-
culated as follows (3):

All three metrics are expressed along a percentage scale 
ranging from 0 to 100. Ultimately, a criterion for acceptable 
levels of predictive validity has to be considered, as there 
is no universally accepted measure. A review of reliability 
and validity levels found that, across 25 studies, the average 
value used to indicate acceptable percentage agreement was 
76%, with a range of 70–88% (Olsen 2013). As described 
in Sect. 2.1, validation is gradual rather than binary. Thus, a 
single value indicating that an FRAM model is predictively 
valid or not seems to be inappropriate. Rather, a more dif-
ferentiated approach was used in this work, defining different 
levels for predictive validity from poor to almost perfect 
according to the reliability result levels applied to SDT by 
Olsen (2013) (see Table 5). However, to answer the research 
questions in Sect. 3.2, we additionally defined a value for 
sufficient predictive validity, which was set at 70%. We have 
chosen this value, because it defines first, the minimum of 
acceptable percentage agreement (Olsen 2013), and second, 
the median of the category of substantial predictive valid-
ity, which should be the minimum category to aim for (see 
Table 5).

(1)Accuracy =
H + CR

H + FA +M + CR

(2)HR =
H

H +M

(3)CRR =
CR

FA + CR

4  Results

This section presents the results according to the three dif-
ferent research questions defined in Sect. 3.2. An overview 
of the results of the SDT event category for every analysed 
function per manipulated function, with a differentiation 
between human factors and environmental conditions, is 
shown in Table 6.

4.1  Predictive validity for the basic scenario

Figure 7 shows the comparison of the accuracy, HR and 
CRR associated with the predictive validity levels (see 
Table 5) between the environmental and human factor con-
ditions with the manipulated function of driving free LV. 
Furthermore, the 70% threshold as the value for sufficient 
predictive validity is indicated by a horizontal dashed red 
line. For the basic scenario in the no time pressure group, 
the accuracy, HR, and CRR account for 79%, 81% and 0%, 
respectively. The accuracy and HR lie above the sufficient 
predictive validity, reaching a substantial and almost perfect 
predictive validity level, respectively. However, the predic-
tive validity level of the CRR is poor. In total, there are six 
(21%) functions that do not meet expectations: ‘observe road 
behind’, ‘check for safe distance to merge’, ‘judge first OV's 
speed’, ‘judge distance from first OV’ (all are M instead of 
CR) as subjective functions and ‘merge back into starting 
lane’ (FA instead of H) and ‘comply with the speed limit’ as 
objective functions (M instead of CR). It is noticeable that 
the false predictions are mainly based on misses.

Figure 8 is the same as Fig. 7, but for the manipulated 
function of driving free OV. Here, the accuracy, HR, and 
CRR account for 53%, 56% and 50%, respectively, for the 
basic scenario in the no time pressure group. Therefore, all 
three metrics lie below the sufficient predictive validity and 
achieve a moderate predictive validity level. In total, there 
are seven (47%) functions that do not meet expectations: 
‘judge LV's relative speed to OV’ (FA instead of H), ‘judge 
distance from first OV’, ‘judge LV's speed’, and ‘observe 
road behind’ (all are M instead of CR) as subjective 

Table 5  Levels for predictive validity associated with percentages of 
selected metrics according to Olsen (2013)

Predictive validity level Percentage of 
accuracy, HR, and 
CRR 

Poor 0
Slight  > 0–20
Fair 21–40
Moderate 41–60
Substantial 61–80
Almost perfect 81–100
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Table 6  Assignment of manipulated functions and analysed functions of EV, and their respective results of SDT event category, with a differen-
tiation between human factors and environmental conditions

Manipulated function Analysed functions of EV No time pressure Time pressure

Basic Truck Rain/fog Basic Truck Rain/fog

Driving free LV Check vehicles in front of LV H H FA H H H
Check LV is not about to change speed H H H H H H
Gauge future driving actions of LV H H H H H H
Check LV is not indicating or about to turn H H H H H H
Maintain an adequate view of the road ahead H H H H H H
Evaluate reasonableness for overtaking H FA H H H H
Assess the situation to enter safely H H H FA FA FA
Judge LV's relative speed to OV H H H H H H
Judge LV's speed H H H H H H
Judge available passing time H H H H H H
Determine pass can be completed H H H H H H
Observe road behind M CR M M M M
Check for safe distance to merge M CR M M M CR
Judge first OV's speed M M M M M M
Judge distance from first OV M M M CR CR CR
Maintain headway separation H H FA H H FA
Keep in lane H H H H H FA
Position car to the right H FA FA H H H
Position car to the left H FA FA H H H
Reduce headway from normal following H H H H H H
Avoid tailgating and intimidating LV H H H H H H
Adjust speed to that of LV H H H H H FA
Adopt overtaking position H H H H H H
Swerve completely to the oncoming lane H H H H H FA
Accelerate LV decisively H H H H H H
Merge back into starting lane FA FA FA FA FA FA
Merge progressively into starting lane H H H H H H
Comply with the speed limit M M M M M M

Driving free OV Judge first OV's speed H FA H H H FA
Judge LV's relative speed to OV FA H H H H FA
Judge available passing time H FA H H H H
Determine pass can be completed H H H H H H
Assess the situation to enter safely H FA H FA H FA
Judge distance from first OV M M M CR CR CR
Judge LV's speed M M M CR CR M
Observe road behind M M M M M CR
Check for safe distance to merge CR M M M M M
Accelerate LV decisively FA FA H FA H FA
Merge back into starting lane FA FA FA FA FA FA
Merge progressively into starting lane H FA H FA H H
Comply with the speed limit CR M M M CR CR
Maintain headway separation CR CR CR CR M CR
Keep in lane M CR M M M CR
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Fig. 7  Comparison of the accuracy, HR, and CRR associated with the predictive validity levels between the environmental and human factors 
conditions for the manipulated function of driving free LV

Fig. 8  Comparison of the accuracy, HR, and CRR associated with the predictive validity levels between the environmental and human factors 
conditions for the manipulated function of driving free OV
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functions and ‘accelerate LV decisively’, ‘merge back into 
starting lane’ (both are FA instead of H) and ‘keep in lane’ 
(M instead of CR) as objective functions. There is a roughly 
equal distribution of false alarms and misses here.

Besides, a comparison of the accuracy, HR, and CRR 
between objective and subjective functions shows no clear 
differences in terms of the type of rating (see Fig. 9). In most 
cases, the differences amount to a maximum of 10% and 
alternate, so that sometimes the objective functions achieve 
a higher value than the subjective functions and vice versa.

4.2  Predictive validity for other environmental 
conditions

The accuracy, HR, and CRR account for 75%, 86% and 33%, 
respectively, for the truck scenario in the no time pressure 
group with the manipulated function of driving free LV (see 
Fig. 7). Thus, the accuracy and HR lie above the sufficient 
predictive validity, reaching a substantial and almost perfect 
predictive validity level, respectively. However, the predic-
tive validity level of the CRR is fair. These results are similar 
to the ones of the basic scenario. For the rain/fog scenario 
in the no time pressure group with the manipulated function 
of driving free LV, the accuracy, HR, and CRR account for 
64%, 78% and 0%, respectively (see Fig. 7). Therefore, the 
accuracy lies below and the HR lies above the sufficient 
predictive validity, both reaching a substantial predictive 

validity level, respectively. However, the predictive valid-
ity level of the CRR is poor. Slight differences can thus be 
determined compared to the basic scenario.

For the truck scenario in the no time pressure group with 
the manipulated function of driving free OV, the accuracy, 
HR, and CRR account for 27%, 29% and 25%, respectively 
(see Fig. 8). This means that all three metrics lie below the 
sufficient predictive validity, reaching a fair predictive valid-
ity level. Compared to the basic scenario, this is one level 
lower. In contrast, the accuracy, HR, and CRR account for 
53%, 54% and 50%, respectively, for the rain/fog scenario 
in the no time pressure group with the manipulated function 
of driving free OV (see Fig. 8). Thus, all three metrics lie 
below the sufficient predictive validity, reaching a moderate 
predictive validity level. These results are similar to those 
for the basic scenario.

If we consider the functional level of each analysed 
function and respective changes to the SDT event category 
between the environmental conditions in relation to the basic 
scenario for the no time pressure group in Fig. 10, we see 
that in the truck scenario, 18% of the analysed functions 
for the manipulated function of driving free LV and 53% 
of the analysed functions for the manipulated function of 
driving free OV deviate relative to the SDT event category. 
In the rain/fog scenario, 14% of the analysed functions for 
the manipulated function of driving free LV and 33% of the 
analysed functions for the manipulated function of driving 

Fig. 9  Comparison of the accuracy, HR, and CRR between the subjective and objective type of rating, with a differentiation between the envi-
ronmental conditions and manipulated function
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free OV deviate relative to the SDT event category. Hence, 
we can see far greater differences in the predictive validity 
on the functional level when the environmental condition 
changes compared to the results of the three metrics shown 
above, especially with the manipulated function of driving 
free OV. The number of deviations between the two environ-
mental conditions are similar in the case of the manipulation 
of driving free LV and different in the case of the manipu-
lation of driving free OV, where the truck scenario shows 
considerably more deviations than the rain/fog scenario.

4.3  Predictive validity for other human factors 
conditions

First, we present the results for the manipulated function 
of driving free LV. For the basic scenario in the time pres-
sure group, the accuracy, HR, and CRR account for 79%, 
84% and 33%, respectively (see Fig. 7). Thus, the accuracy 
and HR lie above the sufficient predictive validity, reach-
ing a substantial and almost perfect predictive validity level, 
respectively. However, the predictive validity level of the 
CRR is fair. These results are similar to those for the basic 
scenario in the no time pressure group, except for the CRR, 
which is two levels higher. The accuracy, HR, and CRR 
account for 79%, 84% and 33%, respectively, for the truck 
scenario in the time pressure group (see Fig. 7). Therefore, 
the accuracy and HR lie above the sufficient predictive valid-
ity, reaching a substantial and almost perfect predictive 
validity level, respectively. However, the predictive validity 
level of the CRR is fair. These results are similar to those 
for the truck scenario in the no time pressure group. The 
accuracy, HR, and CRR account for 68%, 85% and 25%, 
respectively, for the rain/fog scenario in the time pressure 
group (see Fig. 7). Hence, only the HR lies above the suf-
ficient predictive validity, reaching an almost perfect predic-
tive validity level. However, the predictive validity levels of 

the accuracy and CRR are substantial and fair, respectively. 
These results are similar to those for the rain/fog scenario 
in the no time pressure group, except for the CRR, which is 
two levels higher.

The results for the manipulated function of driving free 
OV are presented below. The accuracy, HR, and CRR 
account for 47%, 50% and 43%, respectively, for the basic 
scenario in the time pressure group (see Fig. 8). This means 
that all three metrics lie below the sufficient predictive valid-
ity level, reaching a moderate predictive validity level. These 
results are similar to those for the basic scenario in the no 
time pressure group. The accuracy, HR, and CRR account 
for 67%, 64% and 75%, respectively, for the truck scenario 
in the time pressure group (see Fig. 8). Therefore, all three 
metrics reach a substantial predictive validity level, but only 
the CRR achieves the sufficient predictive validity thresh-
old. These results differ from those for the truck scenario in 
the no time pressure group, since all three metrics are one 
predictive validity level higher. The accuracy, HR, and CRR 
account for 53%, 60% and 50%, respectively, for the rain/
fog scenario in the time pressure group (see Fig. 8). Thus, 
all three metrics lie below the sufficient predictive validity, 
reaching a moderate predictive validity level. These results 
are similar to those for the rain/fog scenario in the no time 
pressure group.

On the functional level of each analysed function and 
their possible respective changes to the SDT event category 
between the human factors conditions relative to each envi-
ronmental condition in Fig. 11, we can see a trend of increas-
ing deviations for the manipulated function of driving free 
LV, starting from the basic scenario (7%), via the truck sce-
nario (25%) to the rain/fog scenario (32%). In contrast, the 
deviations for the basic scenario (47%), the truck scenario 
(67%) and the rain/fog scenario (53%) are similar in the 
basic and rain/fog scenario, whereas the truck scenario has 
a clearly greater deviation in the case of the manipulation of 

Fig. 10  Relative frequencies 
of deviations in the SDT event 
categories within the analysed 
functions between the manipu-
lated function of driving free 
LV and OV for the no time 
pressure group in the truck, and 
fog and rain scenario, each com-
pared to the basic scenario
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driving free OV. Moreover, the number of deviations is con-
siderably higher than for driving free LV. We can see much 
greater differences in predictive validity on the functional 
level when the human factors condition changes compared 
to the results of the three metrics shown above, the same as 
with the environmental conditions. However, the number 
of deviations is below 10% in the case of the manipulation 
of driving free LV for the basic scenario, which should be 
acceptable, whereas the remaining cases represent clearly 
higher deviations.

5  Discussion

The aim of this paper is first, to define a more formal 
approach to achieving and demonstrating the reliability and 
validity of an FRAM model, and second, to apply this formal 
approach partly to an existing FRAM model so as to prove 
its validity and to evaluate the applicability of this approach. 
In the first part of the paper, a formal approach was derived 
by transferring both the general understanding and defini-
tions of reliability and validity along with concrete meth-
ods and techniques that have been applied in other research 
areas, or specifically to HFE methods, to the concept of 
FRAM. In the second part, the predictive validity, which is 
one part of the formal approach to demonstrate the evalua-
tive part of the validity of an FRAM model, was assessed for 
a specific FRAM model by Grabbe et al. (2022) in a driving 
simulator study. Predictive validity represents the highest 
maxim of validation and the remaining parts of the formal 
approach had already been applied by Grabbe et al. (2022). 
Finally, the results of the study have to be discussed so as to 
prove the credibility of the analysed FRAM model, to cover 

methodological limitations and to evaluate the utility and 
applicability of the approach in general.

5.1  Predictive validity of the analysed FRAM model

The research questions from Sect. 3.2 have to be answered in 
the following to assess the predictive validity of the analysed 
FRAM model. The following rule applies here: if both the 
accuracy and HR are sufficient, then predictive validity can 
be assumed as the true positive results are favoured over the 
true negative results.

The FRAM model is predictively valid for the basic sce-
nario in the case of the manipulation of driving free LV, 
because the accuracy and HR are sufficient and reach at least 
a substantial predictive validity level with high sensitivity. 
However, the CRR is poor due to several misses, indicat-
ing a low specificity. In contrast, the FRAM model is not 
enough predictively valid for the basic scenario in case of 
the manipulation of driving free OV, because all three evalu-
ation criteria are insufficient and only reach a moderate level 
of predictive validity. Overall, the results show that the pre-
dictive validity of the FRAM model for the basic scenario is 
limited, in particular in its specificity, indicating deficiencies 
in the credibility of the examined FRAM model. In total, the 
couplings to 13 functions have to be updated. The valida-
tion performance of the FRAM model is comparable with 
the better performing HFE methods in terms of validation 
(Stanton and Young 1999a; Stanton et al. 2013) only in case 
of the manipulation of driving free LV, except for the low 
specificity. Some of the best methods in the field, for exam-
ple, are associated with the prediction of human error (Baber 
and Stanton 1996; Harris et al. 2005; Stanton et al. 2009). 

Fig. 11  Relative frequen-
cies of deviations in the SDT 
event categories within the 
analysed functions between the 
manipulated function of driving 
free LV and OV, comparing 
each environmental condition 
between the no time/time pres-
sure groups
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These better-performing methods typically achieve validity 
statistics above 0.8 (Stanton et al. 2021b).

When comparing the differences between the environ-
mental conditions, the results show that the predictive valid-
ity is comparable between the three different conditions for 
both manipulation cases, apart from the truck condition for 
manipulation of driving free OV, though the deviations in 
the SDT event categories within each analysed function are 
clearly high. Therefore, the FRAM model is not predictively 
valid for other environmental conditions. When the human 
factors condition is changed, the results indicate that the 
predictive validity is similar for the two conditions with 
every environmental condition and both manipulation cases, 
except the truck condition for manipulation of driving free 
OV. However, the deviations in the SDT event categories 
within each analysed function are once again clearly high, 
except the basic condition for manipulation of driving free 
LV, which shows low deviations. Hence, the FRAM model 
is predictively valid for other human factors conditions in the 
case of the basic scenario with the manipulation of driving 
free LV, but not for the remaining cases. Consequently, it 
can be said that a generalisation of the predictive validity of 
an FRAM model is greatly limited so that an FRAM model 
has to be adapted to changes in both the environmental as 
well as human factors conditions, especially if conditions 
are combined. This is not surprising as an FRAM model can 
only be validated for specific instantiations, and if the con-
ditions change, the instantiation will change and the model 
will then have to be adapted and no generalisation will be 
possible. Against this background, it can also be assumed 
that the effects of shared and traded control (Sheridan 1992) 
between the driver and an automation system by enhanc-
ing the scenario through an interaction of the driver with 
an advanced driver assistance system (ADAS), e.g., lane-
keeping assist (LKA) and adaptive cruise control (ACC), 
cannot be validly predicted without adapting the FRAM 
model. Here, the effects and their prediction of conflict or 
confusion situations between the two agents would be of 
particular interest. For example, a dangerous situation can 
occur when the driver performs a lane change without acti-
vating the turn signal, which the LKA could then interpret 
as an unintentional drift and decide to return the car to the 
main lane. In addition, this could lead to a decrease in trust 
or an increased stress level which in turn degrade the driv-
ing performance or potentially result in a deactivation of the 
ADAS by the driver. Such conflicting decisions are called 
human–machine dissonance when contradictory information 
exists between humans’ and autonomous systems’ knowl-
edge, from information processing to actions on a controlled 
process (Vanderhaegen 2021), and these discrepancies can 
affect human factors and produce, e.g., discomfort, over-
load, or stress (Vanderhaegen 2014, 2016). In the FRAM 
model examined, these conflicts are already present in the 

form of human–human dissonances, e.g., the manipulation 
of driving free for the LV by multiple abrupt braking and 
acceleration could be interpreted by the driver of EV in two 
main aspects: either that LV is reacting to an obstacle or 
leading vehicle or that the driver of LV is drunk. Here, the 
result of the interpretation probably leads to two different 
reactions of the driver of EV which can lead to dangerous 
situations. For instance, the EV’s driver gauges future driv-
ing actions of LV which is significantly facilitated when LV 
is reacting to the traffic in front and the EV’s driver has a 
clear sight compared to the situation when LV’s driver is 
drunk as her/his driving behaviour is random. In addition, 
the strange driving behaviour of LV may affect human fac-
tors by causing anxiety or increased stress for the driver of 
EV. This could be a possible reason for false expectations in 
the FRAM model. Thus, various behavioural changes can 
be triggered in the system, which primarily affects human 
factors, which in turn cause behavioural adaptations in the 
system through interdependencies (cf. Wege et al. 2014). 
As previously described, changing human factors conditions 
and their effects cannot be fully predicted with the FRAM 
model. It would, therefore, be relevant in the future to adapt 
the FRAM model in this direction and to prove whether the 
FRAM model is valid in the context of interaction between 
drivers and ADAS. This appears to be especially impor-
tant given the increasing introduction of such automation 
systems into the road system and their risk assessment. In 
principle, possible conflicts in the sense of dissonance can 
be represented and identified in an FRAM model via the 
couplings between the functions when analysing them in 
the form of “what‐if analyses” (Hill et al. 2020; MacKin-
non et al. 2021) to understand how a potential conflicting 
coupling affects several downstream functions and how this 
propagates through the system.

5.2  Limitations

Some methodological limitations are discussed in the fol-
lowing, including the sample, the driving simulator valid-
ity as well as the test setup, the statistical analysis, and the 
theoretical concept of the predictive validation approach.

The participant characteristics play a role in a driving 
simulator study (Blana 1996). The narrower sample here 
might not represent the entire driver population, which is 
why the evaluation of predictive validity based on perfor-
mance variability is only valid to a limited extent. Neverthe-
less, the sample size can be considered as sufficient for the 
narrower population, since a sample size of 20 test drivers, 
for example, is sufficient to test the controllability of driver 
assistance systems according to ISO 26262 (2018).

If we take a closer look at the perceptions in the simula-
tor and compare these between the two different groups (see 
Table 7), we see that the feeling of time pressure cannot be 
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assumed for the time pressure group as the value is even 
higher than in the no time pressure group. Furthermore, 
there are no clear differences in the efficiency/safety trade-
off between both groups, which is in contrast to the expecta-
tion that the no time pressure group should drive as safely as 
possible, and the pressure group more efficiently. Thus, it is 
questionable whether the measures to generate time pressure 
actually worked. According to Rastegary and Landy (1993), 
time constraints such as those used in this study may be 
insufficient for eliciting time pressure per se. These authors 
attested that not having enough time creates a feeling of time 
pressure only if the time limit is compulsory and if violating 
the time limit leads to a sanction. Although the time limit 
was compulsory, it did not lead to any sanctions. Never-
theless, almost all the drivers in the group with time pres-
sure tried to overtake seriously before the time expired and 
actually overtook. Therefore, it can be argued that the main 
intention, to simulate impatient drivers under time pressure 
who tend to reduce the accepted gaps while performing pass-
ing manoeuvres, was accomplished.

According to Grabbe et al. (2022), a driving simulator 
is an appropriate tool for assessing performance variabil-
ity in terms of action functions at the operational level, but 
not for perception and cognitive functions, where we have 
chosen a mix of objective and subjective measurement of 
performance variability. This leaves room for criticism, as 
the variables selected to measure performance and the data 
collection measures affect the driving simulator validity 
(Blana 1996; Kaptein et al. 1996). In particular, the vari-
ability measured subjectively could be limited in represent-
ing the real performance variability as the self‐awareness 
of humans about their performance may be biased. How-
ever, this does not appear justified, since no great differ-
ences could be found between the type of rating and level 
of validity. Another issue is the definition of performance 
variability for the objective functions. For the sake of sim-
plicity, their variability was based either on a timing or a 
precision metric, but not both. Furthermore, the variability 
measurement of each objective function was subjectively 
defined. Thus, it is uncertain whether the variability that is 

measured objectively completely fits the real performance 
of a respective function.

The driving simulator could, on the whole, have a great 
impact on the validity results as the validity of driving simu-
lators is an ongoing concern. Typically, they are valuable 
tools in road safety and human factors research and have 
been used to assess a variety of driving performances (Mul-
len et al. 2011) by providing a safe and controllable environ-
ment to investigate driver behaviour ethically, effectively, 
and efficiently (Larue et al. 2018). However, simulators 
will never reproduce reality accurately and tend to compro-
mise real-life situations (Espié et al. 2005). For instance, 
participants will probably not drive normally, because they 
perceive the driving task as a game, experience motion sick-
ness, or find the driving task unrealistic (Larue et al. 2018). 
In particular, simulator validity depends on the simulator 
fidelity (Hoskins and El-Gindy 2006; Nilsson 1993), the 
specific driving task, and the realism of its implementation 
(Kaptein et al. 1996). Ultimately, literature shows that rela-
tive validity for driving simulators can be assumed, but abso-
lute validity is limited (Mullen et al. 2011). This means that 
the validation results of the FRAM model are valid within 
the simulator environment but cannot be completely trans-
ferred to real on-road behaviour.

The calculation of the normal range of everyday variabil-
ity per analysed function could be improved in the future by 
performing the reference scenarios 1–3 at least twice to dis-
cover which deviations in variability are normal, even if the 
participants are driving the same scenario again. However, 
this would increase the number of scenarios as well as the 
time needed, which was already high for the test subjects. 
This makes it a cost–benefit question, where we think that 
our simplified approach should be acceptable and sufficient.

In addition, the purely descriptive evaluation of the pre-
dictive validity can be criticised. It should be remembered 
that the focus of the predictive validity assessment was to 
analyse those functions, and how many functions, for which 
the predictions about performance variability through the 
FRAM model are valid or invalid rather than to know the 
number of test subjects for which the predictions are valid 
or not. The reason for this function focus is that potential 

Table 7  Comparison of the no time pressure and time pressure group with regard to perception in the driving simulator

Measurement No time pressure group Time pressure group

Realistic simulation behavior [5-Likert scale: from (1) very realistic to very unrealistic (5)] M = 2.5 (SD = 1.0) M = 2.6 (SD = 1.1)
Realistic driving behaviour of other road users [5-Likert scale: from (1) very realistic to very 

unrealistic (5)]
M = 2.8 (SD = 1.1) M = 2.6 (SD = 0.9)

Equivalent overtaking manoeuvers in real life [5-Likert scale: from (1) very equal to very 
unequal (5)]

M = 3.1 (SD = 1.4) M = 3.0 (SD = 1.2)

The feeling of time pressure [5-Likert scale: from (1) very strong to very weak (5)] M = 3.2 (SD = 1.0) M = 3.5 (SD = 1.0)
Efficiency/safety trade-off of overtaking manoeuver [5-Likert scale: from (1) efficient to safe (5)] M = 2.3 (SD = 1.0) M = 2.2 (SD = 1.1)
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invalid predictions could subsequently be refined to calibrate 
the model, which would otherwise be impossible. Therefore, 
it was not possible to calculate a distribution of the evalu-
ation metrics per scenario, but only a single value in each 
case. This is why no inferential statistical analysis could be 
applied to evaluate the potential effects of changing environ-
mental or human factors conditions.

Furthermore, scientific researchers can employ several 
statistical rates to evaluate binary classifications and their 
confusion matrices. In this work, the accuracy, HR, and 
CRR are used to evaluate the predictive validity in contrast 
to the MCC. This contradicts the general recommendation 
of Stanton and Young (1999a, 2003) to use the MCC as 
an appropriate statistic for the validation of human factors 
methods using the SDT, as well as the conclusion of Chicco 
and Jurman (2020) that the MCC is the most informative 
score for evaluating binary classification tasks and should 
be given preference over accuracy and F1 score by all sci-
entific communities. However, the findings of Zhu (2020) 
challenge this general statement. Finally, there is no clear 
recommendation that just one specific metric should be 
used; this depends to a large extent on the context of the use 
and objective of the validation. Rather, a mix of different 
metrics, as applied in this paper, should be used to avoid 
misleading interpretations.

Last but not least, some methodological issues concerning 
the theoretical concept of the predictive validation approach 
can be identified. First, it is impossible to validate the whole 
FRAM model due to the overwhelming number of func-
tions that have to be tested in a large and complex FRAM 
model. Only a few functions and their expected, as well as 
unexpected effects can be examined. Second, when manipu-
lating one function, it is difficult to actually keep all of the 
remaining functions constant that were supposed to be con-
stant, since the type of manipulation measure can potentially 
affect the performance of other functions. This problem is 
exacerbated by the fact that it is not even possible to check 
which functions this applies to, as it is impossible to analyse 
the performance variability for all functions. This results in 
interaction effects, whereby observed effects can no longer 
be fully attributed to the manipulated function. Furthermore, 
it might be difficult to find a targeted manipulation measure 
for each function in the model, e.g., for cognitive functions, 
since either no targeted manipulation is possible or several 
functions would be manipulated at the same time. Moreo-
ver, the extent and manner in which a manipulation has to 
be carried out to achieve the desired effect are generally 
unclear. Thus, following the method of constant stimuli from 
psychophysics (Fechner 1860), different stimulus intensi-
ties or types would have to be varied per manipulated func-
tion to see to which extent or manner a manipulation of 
an upstream function has to be carried out that results in 
a significant change in the performance variability of the 

individual downstream functions. Naturally, the extent and 
manner of the stimulus required vary between the individual 
downstream functions. Third, the performance variability 
of a downstream function may only change when several 
upstream inputs are varied instead of just the one manipu-
lated function. Thus, an expected coupling could make sense 
and be valid even if no effect was observed in isolation. Con-
sequently, all what-if combinations would have to be taken 
into account to be able to represent the complexity, which is 
simply impractical. Fourth, it is impossible to test whether 
there is also a direct influence for the functions that are 
indirectly influenced by the manipulated function. In addi-
tion, some functions are tested, where a direct influence by 
the manipulated function can be expected, and at the same 
time other functions that are also directly influenced by the 
manipulated function provide upstream inputs for the tested 
function. Hence, in these cases, there is always a degree of 
uncertainty as to whether the effect is direct or indirect.

5.3  Utility and applicability of the formal approach 
to assess predictive validity in FRAM

A research‐practice gap of systemic models and methods 
(Underwood and Waterson 2012), especially FRAM, cur-
rently exists in literature, which means that researchers are 
presently applying systemic methods due to the current state‐
of‐the‐art and, in contrast, many practitioners press ahead 
with more traditional methods because of their ease of use 
or popularity despite known limitations (Grabbe et al 2022). 
Frequently mentioned reasons for this are a difficult and 
time‐consuming application (Salmon et al. 2020), reduced 
model validation and usability, and a potential analyst bias 
(Underwood and Waterson 2012). Against this background, 
the results of the validation must be correlated to usability 
as a cost-effectiveness trade-off to be able to evaluate the 
utility benefit of the predictive validation approach in gen-
eral (cf. Stanton and Young 2003). The effectiveness hereby 
represents the validity of the FRAM model to explain per-
formance variability in an overtaking scenario, and the costs 
are related to the resources and time used by the method. As 
shown in Sect. 5.1, the validity is limited and can only be 
partly assumed. In contrast, the costs of using the method are 
high, since the model development by function identification 
and variability data collection was very time‐ and resource‐
consuming (Grabbe et al. 2022), something that also applies 
to the validation process. It should be noted that only two 
and not all of the functions of the model could be validated 
by this great effort. Therefore, the utility of the analysed 
FRAM model is questionable in terms of predictive validity 
if it is used as an evaluative method. On the other hand, the 
utility of the FRAM model as an analytical method is still 
an open question and difficult to demonstrate objectively.
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In addition, and as shown in Sect. 5.2, there are several 
methodological issues related to the theoretical concept of 
the predictive validation approach for an FRAM model due 
to high complexity, leading to the conclusion that a complete 
validation of an FRAM model is impossible. Rather, the pre-
dictive validation approach developed in this paper should 
be applied to calibrate and not validate an FRAM model. 
This means that it can be used to select a few interesting 
functions in the model and to refine their modelling for a 
better understanding of their potential effects on the system 
behaviour with regard to specific system conditions, but not 
to prove that an FRAM model is valid or not. Consequently, 
the approach is appropriate to enhance any basic knowledge 
about system mechanisms gained by the FRAM model, but 
inappropriate to reach any final decisions concerning the 
approval of designs in safety–critical systems.

6  Conclusions and outlook

This paper developed a framework for evaluating the reli-
ability and validity of an FRAM model, assessed the pre-
dictive validity of one specific FRAM model, and evalu-
ated the applicability of this validation approach. The study 
shows that the validity and usefulness of the FRAM model 
by Grabbe et al. (2022) is limited and that the model results 
cannot be generalised to changing system conditions without 
any model adaptations. However, it is not clear whether this 
arises from the FRAM method itself or from the manner 
in which it was applied (cf. Stanton et al. 2013). Also, the 
applicability of the approach to demonstrate predictive valid-
ity is greatly reduced on account of several methodological 
limitations.

In future, the formal reliability and validity frame-
work, and especially the predictive validation approach, 
should also be applied to other FRAM models in different 
application contexts so as to determine the reliability and 
validity generalisation of the FRAM method. Especially, 
human–machine dissonances and their predicted effects 
through an FRAM model should be validated. Moreover, 
the test–retest paradigm should be applied to rather small 
FRAM models to evaluate the reliability of the FRAM 
method and potential training effects in this context.

In conclusion, this paper contributes to making up for the 
lack of a formal validity approach for the FRAM method as 
well as to the research-practice gap of systemic HFE mod-
els and methods and their associated ongoing concerns of 
reliability and validity. In particular, this work helps ana-
lysts compare the cost-effectiveness of FRAM with other 
HFE methods. Overall, the developed framework provides a 
good foundation to evaluate the reliability and validity of an 
FRAM model. However, there is still potential for improve-
ment and extension, especially against the background of 

the methodological advancement of FRAM and integration 
with other methods offering new opportunities for valida-
tion. Indeed, the reliability and validity framework can be 
used to calibrate rather than validate an FRAM model.
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