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Abstract In this article, we capture electrophysiological

measures from a new wearable technology to understand

the human performance envelope. Using the NASA Multi-

Attribute Task Battery (MATB II), participants completed

tasks associated with flight control which included com-

munication, tracking and system and resource monitoring.

Electrophysiological measures relating to cardiac activity

and respiration were taken using the new wearable tech-

nology. Our results show significant differences in both

heart rate and respiration rate in response to different

taskloads and that higher taskloads were associated with

higher mental workload. Frequency measures of heart rate

variability discriminated different task types but not task-

loads. This finding may be related to differences in task

complexity being more important than the number events

which we have used to manipulate taskload. We suggest

that this new generation of wearable sensors could be used

to inform operator locus in a human performance envelope,

indicating when assistance by the aircraft or another crew

member may be necessary to maintain safe and efficient

performance.

Keywords Human performance envelope � Mental

workload � Wearable � Taskload � Aviation � MATB

1 Introduction

In this article, we validate the use of new wearable device

that captures electrophysiological data in response to a

variety of aviation tasks. We use these electrophysiological

responses to characterise differences in the task types and

taskloads that participants are exposed to in a suite of

experimental tasks. We suggest that measures taken using

wearable technologies could influence and specify user

states in relation to the idea of a human performance

envelope, analogous to the engineering envelopes specified

for all aircraft.

Task performance is critical to the safety of flight

operations. Our highly automated aircraft operates with

extraordinary levels of safety. The UK Civil Aviation

Authority’s Global Fatal Accident Review reported that

worldwide, the fatal accident rate between 2002 and 2011

was 0.6 per million flights flown (UK Civil Aviation

Authority 2013). Civil aircraft operations are complex

sociotechnical systems in which highly trained operators

and high-integrity engineering work together to deliver

safe flight every day (Cahill et al. 2014). All aircraft

operate within a flight envelope (see Gratton 2015). A

flight envelope is defined by the limits of the aircraft’s

structural and control capabilities. For example, there is an

upper limit to the height at which aircraft can fly or the rate

at which they can turn. Outside of these limits, structural

damage to the aircraft or loss of control can occur.

Recovery from highly unusual turn or climb rates can

become increasingly difficult. The procedures we use in

modern transport aircraft are designed to keep aircraft

within this flight envelope. Indeed, in some highly auto-

mated aircraft, pilots are unable to make demands on the

aircraft that exceed this manufacturer-specified flight

envelope. As the flight envelope is approached or
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exceeded, aircraft communicate this to the pilots though a

range or alerts and alarms.

This article reports research conducted as part of the

Future Sky Safety programme which looks to characterise

the human performance envelope in a similar way in which

we can specify and use the engineering performance

envelope (Graziani et al. 2016; Silvagni et al. 2015). If we

can reliably detect when a pilot is approaching or

exceeding their performance envelope, we may be able to

deploy automation that could itself recover control of the

aircraft (for example, see Christensen and Estepp 2013), or

targeted guidance or warnings which would guide the pilot

back to a safe zone within their individual human perfor-

mance envelope.

The idea of a human performance envelope has been

progressed in the air traffic management (ATM) domain

(Edwards et al. 2012, 2014). Edwards and her co-authors

characterise the human performance envelope using multi-

factorial human factors concepts which include situation

awareness (SA), mental workload, stress, attention vigi-

lance, teamwork, communication trust and fatigue. These

concepts are proposed as performance shaping factors,

which can differentially and interactively affect successful

completion of a task. The model explicitly declares that

boundaries exist where performance can degrade in line

with the theoretical underpinnings for these concepts.

Effective use of the human performance envelope to

inform operations necessarily demands the measurement of

the factors selected as being critical for the given task. A

valid and reliable measure could be used to adapt a system

to the state user or to inform users or their teams of their

own states. Ideally, these measures would be predictive,

having the ability to identify trends towards poorer per-

formance—in essence a ‘yellow zone’. In this article, we

build on the concept of the human performance envelope

through examination of physiological measures that can

give insight into mental workload in a set of representative

tasks. Our research examines whether these physiological

variables captured by the wearable technology can differ-

entiate tasks and taskloads in the experimental setting.

Broadly, we align the measures taken with the concept of

mental workload as an explanatory concept. Mental

workload is a key performance shaping variable in aviation

operations (Dahlstrom and Nahlinder 2006) and more

general in human factors as a whole (Young et al. 2014).

Clearly, mental workload represents only part of the per-

formance story, and we would expect interactions between

different variables identified by Edwards et al. (2012).

However, one way to look at the human performance

envelope is to disassociate from the human factors meta-

concepts such as SA, a view discussed by Dekker and

Hollnagel (2004). The measure does not know what it

means. If the measure is sensitive to differences in task

demand or task, then these differences could be used to

indicate differences or exceedances in the human perfor-

mance envelope. Physiological measures have been shown

to be sensitive to differences in taskload and task demand

across a range of domains. Measures relating to electro-

cardiac signals and respiration are represented in the recent

peer-reviewed literature (for example, see Fallahi et al.

2016; Hsu et al. 2015; Matthews et al. 2015).

In this research, we capture physiological signals

through exploitation of a newly developed wearable tech-

nology developed by the Swiss company CSEM SA

(Chételat et al. 2015) shown in Fig. 1.

The research addresses three aims:

1. To identify which physiological measures captured

using wearable technology can be used to understand

the effects of taskload.

2. To identify which physiological measures captured

using wearable technology can be used to understand

the effects of task type.

3. To identify which physiological measures captured

using wearable technology can be used to understand

the effects of taskload gradient (from low to high vs

from high to low).

The wearable technology acquires electrophysiological

data, which is wirelessly communicated to a tablet com-

puter. These data can then be displayed in real time and

downloaded for further processing. These new wearable

technologies do not require adhesive or wet electrodes in

contrast to other methods of capturing electrophysiological

data (Baig et al. 2013). The mobile technology means that

the participant is also untethered from a computer further

Fig. 1 Wearable sensor technology developed by CSEM SA and

used in this study
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decreasing the gap between the laboratory and the eventual

application (Guzik and Malik 2016). We capture cardiac

measures that have been shown to differentiate taskloads

(De Rivecourt et al. 2008; Fairclough et al. 2005; Splawn

and Miller 2013) and respiration rates (Backs et al. 2000;

Brookings et al. 1996; Wu et al. 2011; Yao et al. 2008).

Aviation-type tasks are generated using the NASA

Multi-Attribute Task Battery 2 (MATB II) (Comstock and

Arnegard 1992). This tool has been used extensively used

in the recent literature for the assessment of physiological

variables in response to differential tasks and taskloads

(Aricò et al. 2014; Dai et al. 2015; Hsu et al. 2015; Splawn

and Miller 2013). Two taskload schedules, low and high,

were developed, and three task groups were specified

corresponding broadly to auditory, visual and psychomotor

tracking skills.

2 Methods

2.1 Design

A mixed design was used. The within-subjects factors are

task type (tracking task, communications task and system/

resource monitoring task) and taskload (high or low). The

between-subjects factor is gradient (low to high, or high to

low taskload order presentation), which was randomised.

Task order was also randomised. Each participant com-

pleted two five-minute sessions (one high and one low

taskload) of each of the three tasks, and two five-minute

baseline measurements pre- and post-task. During each

block, physiological data from the participants were

acquired by the smart harness. Each 5-min block was fol-

lowed by a 2-min period during which subjective workload

measurements were taken using the mental demand sub-

scale of the NASA TLX. The single scale was used since

the nature of the work is predominantly cognitive rather

than physical. In addition, the single sub-scale reduced the

time burden on participants in an already lengthy experi-

mental procedure.

Physiological measures captured by the wearable tech-

nology and presented in this article include frequency

domain measures (low, very low and high) and time

domain measures (heart rate and the standard deviation of

the heart rate). Breathing rate was also captured by the

sensors. Selection of the heart rate variability (HRV)

measure was guided by the guidelines offered by the

European Society of Cardiology and the American Heart

Association (AHA and ESC 1996). To constrain the scope

of the study, the three standard frequency bands were

adopted for the frequency-based measures. For the time-

based measures, basic heart rate and one variation-based

parameter (SDNN) were selected to provide sufficient

coverage of the key methods used to assess cardiac

response.

2.2 Participants

Ethical approval for the study was granted through the

university ethics board. Thirty-nine male participants took

part in the experiment. Due to missing or incomplete data

resulting from computer failure, eight participants were

excluded from the final analysis. A further one participant

was excluded after reporting health problems associated

with cardiac function. These exclusions resulted in 30 male

participants with a mean age of 34.3 years (SD 10.65). This

number was not informed by a power calculation since no

readily available data are available to reliably compute

effect sizes.

All participants had normal or corrected-to-normal

vision, and none reported consuming alcohol since waking

prior to taking part in the experiment. Four participants

also stated that they had some flying experience. However,

these participants were not professional pilots.

2.3 Tasks

The MATB II was used to deliver tasks to participants.

The MATB II can model a variety of tasks, which are

central to aviation tasks but do not require a qualified

pilot on which to assess performance. Four tasks from the

MATB II were used in this study: the resource manage-

ment task, the tracking task, the system monitoring task

and the communication task (Table 1). The system mon-

itoring and resource management tasks were combined

creating three experimental tasks broadly representing

emphasis on the psychomotor (tracking), auditory (com-

munications) and visual attention/vigilance (system and

resource monitoring) elements of cognition. These tasks

are representative of the key elements of cognition

required in the aircraft cockpit.

Two taskload levels were used: low and high. The event

frequencies are listed in Table 2. The taskload was

manipulated by adjusting the number of events in each

task. Higher taskloads were specified by increasing the

number of events, failures and increased input to maintain

target.

2.4 Procedure

Participants were firstly given a voucher for participation in

the study. Participants were the briefed and asked to pro-

vide informed consent. When informed consent was given,

participants were asked to randomly select their participant

number and select a piece of paper indicating the taskload

condition they would be completing (low to high or high to
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low). Each piece of paper was discarded after it was

selected. Three cards were also presented to the partici-

pants stating the tasks on the back. Participants were asked

to select the cards one at a time which determined the task

order randomly.

Participants then provided brief biographical details and

a stress and arousal checklist on a computerised question-

naire. Participants were then asked to change into the

wearable technology and trained on the MATB II task

groups for 25 min. After training, participants completed a

5-min baseline measurement sitting quietly looking at the

MATB II screen. Participants then completed a total of six

5-min blocks of activity on the MATB II. During each

block, physiological data from the participants were

acquired by the wearable technology. Each 5-min block

was followed by a 2-min period during which subjective

workload measurements were taken. Participants were then

instructed to change and given a full debrief.

3 Results

3.1 Data treatment

The physiological data were recorded in real time. The

harness was worn from before the MATB II training to

the end of the experimental procedure as one continuous

recording. The required recordings were the eight 5-min

segments for each person. These were distinguished by

markers throughout the recording made by the participant

by ‘tapping’ one of the sensors. These markers were

cross-checked with the time recorded for the start of each

activity by the authors. Each recording was then split into

eight individual recordings. The recordings were of 5-min

duration. The quality of each of these recordings was

checked. At this stage, six participants were excluded

from the analysis due to poor quality recordings. In

accordance with guidance provided by AHA and ESC

(1996), the first 50 s and the last 10 s of each recording

were then removed, resulting in eight four-minute seg-

ments per participant. Mean heart rate (HR), breathing

rate (BR), the standard deviation of the N–N interval

(SDNN) were derived. Frequency measures across the

segments for very-low, low- and high-frequency spectral

densities (VLF, LF, and HF) across each 4-min segment

for each participant were captured using ensuring all zero

measures were removed. Following application of

Welch’s method to reduce noise, fast Fourier transforms

were used to derive the different spectral densities. All

data were subtracted from the mean of the post- and

pretest baseline data. Physiological data represent the

difference between a baseline signal and a signal stimu-

lated by the experimental treatments.

Table 1 MATB II interface elements and task descriptions

Task name Task

System monitoring and resource

management

In the system monitoring task, participants detect changes to the colour of the buttons and out-of-range

movement of the scales. In the resource management task, participants switch pumps on and off to

maintain flow. Participants detect failed pumps and adjust their plan

Tracking Participants maintain moving target (circle) within inner square

Communications Participants listen to auditory messages and dial in correct frequency when an ownship announcement is

made. Participants are not required to speak in the communication task

Table 2 MATB II taskload stimulus

Task Stimulus Number of events in 5 min

Low taskload High taskload

Systems monitoring and resource

management tasks

Pump failure 6 9 5 s 10 9 15 s

Gauge alert 6 30

Green light off 4 10

Red light on 4 10

Communications task (comms) Communications 8 20

Tracking task (tracking) Tracking Default low target movement, low

control gain

Default high target movement, high

control gain
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3.2 Mental workload

A 2 9 2 9 3 mixed ANOVA was conducted. The three

factors are taskload (low taskload vs high taskload), gra-

dient (low taskload to high taskload vs high taskload to low

taskload) and task (communication vs tracking vs system

and resource monitoring). Corrections for deviations in

sphericity in the task-type condition used the Greenhouse–

Geisser corrected df. Greenhouse–Geisser e is reported to

characterise the departure where significant. Gradient is a

between-subjects factor. All other factors are within-sub-

jects. Descriptive statistics are listed in Table 3. Since the

main effect of gradient was not significant, this factor has

been collapsed in order to simplify the table. Significant

departure from sphericity was indicated for the task

type 9 taskload interaction (v2
2 = 23.76, p\ 0.01,

e = 0.63). The main effect of task type was significant

(F2,56 = 48.68, p\ 0.01, gp
2 = 0.64). The main effect of

taskload was also significant (F1, 28 = 60.75, p = 0.01

gp
2 = 0.68). No main effect of gradient was found

(F1, 28 = 0.36, p = 0.55). No significant interactions were

found between taskload and task type (F1.26, 35.32 = 0.19,

p = 0.72), taskload and gradient (F1, 28 = 1.81, p = 0.19)

or task type and gradient (F2, 28 = 0.61, p = 0.40). Bon-

ferroni-corrected pairwise comparisons (Table 4) showed

significant differences between all task types at both levels

of taskload.

3.3 Physiological data

This section reports data associated with heart rate vari-

ability (HRV) including frequency- and time-based mea-

sures and respiration rate. For each physiological measure,

a 2 9 2 9 3 mixed ANOVA was conducted. The three

factors are taskload (low taskload vs high taskload), gra-

dient (low taskload to high taskload vs high taskload to low

taskload) and task (communication vs tracking vs system

and resource monitoring). Corrections for deviations in

sphericity in the task-type condition used the Greenhouse–

Geisser corrected df. Greenhouse–Geisser e is reported to

characterise the departure where significant. Gradient is a

between-subjects factor. All other factors are within-

subjects.

Descriptive statistics for all physiological variables are

shown in each section. Since the between-subjects factor of

gradient is counterbalanced and no significant effects have

been found in the analysis, the data have been collapsed

across this factor to simply the tables presented for each

variable. It should also be remembered that the physio-

logical variables were subtracted from baseline. In this

way, a negative heart rate or respiration rate can be pro-

duced and interpreted.

3.3.1 Respiration rate

Descriptive statistics for the respiration rate variable are

listed in Table 5. The main effect of task type was sig-

nificant (F2,56 = 8.04, p\ 0.02, gp
2 = 0.22). The main

effect of taskload was significant (F1, 28 = 10.84,

p = 0.03, gp
2 = 0.28). A significant interaction was found

between taskload and task type (F1,28 = 4.20, p = 0.02,

gp
2 = 0.13). The main effect of gradient was not significant

(F1, 28 = 2.70, p = 0.11). No significant interactions were

found between taskload and gradient (F1, 28 = 1.98,

p = 0.17) or task type and gradient (F1, 28 = 0.14,

p = 0.87). Bonferroni-corrected pairwise comparisons

indicate that the source of the interaction effect is the

absence of any differences in breath rate in the high task-

load condition. In the low taskload condition, significant

pairwise differences were found between the communica-

tions task and the tracking task (mean difference = 1.51

breaths, SE = 0.33, p\ 0.01) and the communications

task and the system monitoring task (mean differ-

ence = 1.46 breaths, SE = 0.23, p\ 0.01). No other sig-

nificant differences were found.

3.3.2 Heart rate variability (frequency domain)

HRV in the frequency domain was assessed in three power

bands specified in accordance with the European Society of

Cardiology and The North American Society of Pacing and

Electrophysiology (AHA and ESC 1996). The very-low-

frequency band is filtered at 0.0033–0.04 Hz, the low-fre-

quency band at 0.04–0.15 Hz and the high-frequency band

at 0.15–0.4 Hz. Power is measured in square milliseconds

(ms2) and offset from the baseline measurement in the

frequency band under examination.

Table 3 Descriptive statistics for mental demand sub-scale of the

NASA TLX

Mean (SD) Lower CI95% Upper CI95%

Communications

Low taskload 19.7 (18.0) 13.1 26.3

High taskload 35.2 (21.3) 27.2 43.1

Tracking

Low taskload 41.8 (23.7) 32.9 50.7

High taskload 54.6 (26.0) 44.9 64.4

System monitoring

Low taskload 53.7 (23.9) 44.8 62.7

High taskload 67.0 (22.8) 58.5 75.5
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3.3.3 Very low frequency

Descriptive statistics for the very-low-frequency powers

are listed in Table 6. Significant departure from sphericity

was indicated for the task-type effect (v2
2 = 27.37,

p\ 0.01, e = 0.61). The main effect of task type was

significant (F1.2, 34.2 = 7.2, p\ 0.05, gp
2 = 0.21). Bon-

ferroni-corrected pairwise comparisons showed one sig-

nificant difference between the communications and

system monitoring task (mean difference = 937.07 ms,

SE = 359.36, p\ 0.05) in the high taskload condition.

The main effect of taskload did not reach significance

(F1,28 = 1.23, p = 0.28). No main effect of gradient was

found (F1, 28 = 0.4, p = 0.85). No significant interactions

were found between taskload and task type (F2, 56 = 0.06,

p = 0.94), taskload and gradient (F1, 28 = 0.04, p = 0.53)

or task type and gradient (F1, 28 = 0.37, p = 0.70).

3.3.4 Low frequency

Descriptive statistics for the low-frequency variable are

listed in Table 7. Significant departure from sphericity was

indicated for the task-type effect (v2
2 = 8.60, p\ 0.02,

e = 0.79) and the task type 9 taskload interaction

(v2
2 = 18.37, p\ 0.01, e = 0.67). The main effect of task

type was significant (F1.6, 44.0 = 8.56, p\ 0.01,

gp
2 = 0.50). Bonferroni-corrected pairwise comparisons

(Table 8) showed significant differences between the

communications and tracking task and the communication

and system monitoring task. No significant pairwise dif-

ferences between the tracking and system monitoring task

were found.

The main effect of taskload did not reach significance

(F1, 28 = 3.41, p = 0.08). No main effect of gradient was

found (F1, 28 = 1.03, p = 0.32). No significant interactions

were found between taskload and task type

(F1.4, 37.5 = 0.42, p = 0.58), taskload and gradient

(F1, 28 = 0.40, p = 0.51) or task type and gradient

(F2, 28 = 1.97, p = 0.15).

Table 4 Pairwise comparisons

for mental demand at high and

low taskload levels

Taskload Comparison Mean difference (SE)

Low Communication versus tracking 22.1 (4.5)**

Communication versus system monitoring 34.0 (3.7)**

Tracking versus system monitoring 11.9 (4.3)*

High Communication versus tracking 19.5 (4.6)**

Communication versus system monitoring 31.9 (3.3)**

Tracking versus system monitoring 12.49 (3.89)**

* p\ 0.05

** p\ 0.01

Table 5 Descriptive statistics for the respiration rate variable

Mean (SD) Lower CI95% Upper CI95% Range

Communications

Low taskload 1.1 (2.2) 0.2 1.9 9.7

High taskload 2.3 (2.3) 1.5 3.2 9.6

Tracking

Low taskload 2.6 (2.5) 1.6 3.5 9.6

High taskload 2.7 (2.2) 1.9 3.6 8.7

System monitoring

Low taskload 2.5 (2.5) 1.6 3.5 10.3

High taskload 3.1 (2.5) 2.1 4.0 10.6

Table 6 Descriptive statistics

for deviation in the very-low-

frequency powers from baseline

(ms2)

Mean (SD) Lower CI95% Upper CI95% Range

Communications

Low taskload 316.8 (1797.1) -354.2 987.9 10,868.0

High taskload 217.7 (1529.4) -353.4 788.8 7022.5

Tracking

Low taskload -385.5 (1427.8) -918.7 147.6 7022.5

High taskload -619.0 (1005.5) -994.4 -243.5 5018.0

System monitoring

Low taskload -516.1 (1079.0) -919.0 -113.2 6117.5

High taskload -719.4 (1048.6) -1110.9 -327.8 6184.0
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3.3.5 High frequency

Descriptive statistics for the high-frequency variable are

listed in Table 9. The main effect of task type was sig-

nificant (F2,56 = 7.1, p = 0.02, gp
2\ 0.20). Bonferroni-

corrected pairwise comparisons showed significant differ-

ences between the communications and tracking task

(mean difference = 148.00, SE = 32.60, p\ 0.05) in the

low taskload condition and the communication and system

monitoring task in the low (mean difference = 101.93 ms,

SE = 38.39, p\ 0.01) and high (mean differ-

ence = 121.53 ms, SE = 30.43, p\ 0.05) taskload

conditions.

The main effect of taskload did not reach significance

(F1, 28 = 2.01, p = 0.17). The main effect of gradient was

not significant (F1, 28 = 0.87, p = 0.36). No significant

interactions were found between taskload and task type

(F2, 56 = 0.72, p = 0.49), taskload and gradient

(F1, 28 = 1.20, p = 0.28) or task type and gradient

(F2, 33 = 0.38, p = 0.94).

A consistent effect is the discrimination of the com-

munications task and the other two tasks, regardless of the

taskload effect by the HRV data. Figure 2 shows estimated

marginal means for task type only clearly showing this

pattern in each frequency band evaluated as part of the

HRV analysis.

Table 7 Descriptive statistics

for deviation in the low-

frequency powers from baseline

(ms2)

Mean (SD) Lower CI95% Upper CI95% Range

Communications

Low taskload 345.6 (1047.5) -45.5 736.7 5127.0

High taskload 151.9 (1067.2) -246.6 550.4 4483.5

Tracking

Low taskload -538.1 (856.3) -857.8 -218.4 4483.5

High taskload -630.5 (800.9) -929.6 -331.5 3268.5

System monitoring

Low taskload -336.3 (870.1) -661.2 -11.4 4124.5

High taskload -579.2 (806.8) -880.5 -278.0 3076.5

Table 8 Pairwise comparisons

for the low-frequency power

deviations at high and low

taskload levels

Taskload Comparison Mean difference (SE)

Low Communication versus tracking 883.7 (178.2)**

Communication versus system monitoring 681.9 (190.8)*

Tracking versus system monitoring Not significant

High Communication versus tracking 782.4 (154.1)**

Communication versus system monitoring 731.1 (137.4)**

Tracking versus system monitoring Not significant

* p\ 0.05

** p\ 0.01

Table 9 Descriptive statistics

for deviation in the high-

frequency powers from baseline

(ms2)

Mean Lower CI95% Upper CI95% Range

Communications

Low taskload -11.5 (227.5) -96.4 73.5 1110.0

High taskload -71.4 (332.1) -195.4 52.6 1702.0

Tracking

Low taskload -159.5 (240.8) -249.4 -69.5 1702.0

High taskload -175.2 (237.4) -263.8 -86.5 983.0

System monitoring

Low taskload -113.4 (258.2) -209.8 -17.0 1207.0

High taskload -193.0 (328.1) -315.5 -70.4 1442.0
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3.3.6 Mean heart rate

Descriptive statistics for the heart rate variable are listed in

Table 10. The main effect of task type was not significant

(F2,56 = 0.14, p = 0.87). The main effect of taskload was

significant (F1, 28 = 5.22, p = 0.03, gp
2 = 0.16). The main

effect of gradient was not significant (F1, 28 = 0.35,

p = 0.85). No significant interactions between taskload

and task type (F2, 56 = 1.16, p = 0.32), taskload and gra-

dient (F2, 28 = 0.25, p = 0.62) or task type and gradient

(F1, 28 = 0.62, p = 0.54) were found.

Fig. 2 Estimated marginal means for HRV deviation from the baseline for each task-type effect for very-low, low- and high-frequency domains.

Error bars show one SE

Table 10 Descriptive statistics for mean deviation in heart rate from

baseline (beats per min)

Mean (SD) Lower CI95% Upper CI95% Range

Communications

Low taskload 0.5 (2.4) -0.4 1.4 9.5

High taskload 0.8 (2.4) -0.1 1.8 10.3

Tracking

Low taskload 0.5 (3.6) -0.9 1.8 10.3

High taskload 1.5 (3.6) 0.1 2.9 17.0

System monitoring

Low taskload 0.7 (3.3) -0.5 2.0 17.2

High taskload 1.0 (3.3) -0.2 2.3 14.8
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3.3.7 SDNN

Descriptive statistics for the SDNN variable are listed in

Table 11. Significant departure from sphericity was indi-

cated for task type (v2
2 = 10.66, p\ 0.01, e = 0.73). The

main effect of task type was significant (F1.46,35.02 = 15.93,

p\ 0.01, gp
2 = 0.40). Bonferroni-corrected pairwise

comparisons are listed in Table 12.

The main effect of taskload approached significance

(F1, 28 = 3.87, p = 0.06, gp
2 = 0.14). The main effect of

gradient was not significant (F1, 28 = 1.56, p = 0.22). No

significant interactions between taskload and task type

(F2,56 = 0.93, p = 0.40), taskload and gradient

(F1, 28 = 0.28, p = 0.60) or task type and gradient

(F2, 28 = 0.49, p = 0.61) were found.

3.4 Results summary

Table 13 summarises our findings in a concise way. In this

table, findings are reported as effect sizes (partial g2).

Effect sizes of non-significant (p\ 0.05) findings are not

reported in this table. No significant main effect of gradient

for any variable was found. Only one significant two-way

interaction was found between task type and taskload. No

other significant two-way interactions were found.

Patterns across the variables include the finding that

mental workload was lowest in the communications task and

highest in the system and resource monitoring task. This

pattern of differences was reflected across all physiological

variables supportive of the general association between

taskload, cognition and the physiological variables. Gener-

ally, the significant findings indicated that for higher task-

loads and task types eliciting higher mental workload, heart

and respiration rates were higher and power spectra across

all frequency components reduced. The frequency domain

measures of heart rate variability were not sufficiently sen-

sitive to differences between the taskloads, but the heart rate

and respiration rates differentiate the taskloads in a sys-

tematic way through the different types of task.

4 Discussion

In this article, we have validated the use of a new wearable

technology to capture physiological signals. We have

shown that the selected measures are sensitive to taskloads

and task types generated in a systematic way using the

NASA MATB II. Of the measures assessed, heart rate and

respiration rate show significant differences between task

types and taskloads. This is consistent with the wider lit-

erature and supports the use of the wearable technology in

this way (for example, see Backs et al. 2000; Brookings

et al. 1996; Fairclough and Venables 2006). A large effect

size and significant differences between high and low

taskloads for each task using the heart rate variables were

found, indicating that this measure has promise in differ-

entiating higher and lower taskloads. Overall, the patterns

of differences across all variables reflect the general trend

in the mental workload measured: lowest in the commu-

nications task and highest in the system and resource

monitoring tasks. The SDNN and the frequency measures

of heart rate showed differences between the tasks but not

between the taskloads in the same task. One explanation

for this pattern of results could be the differences in cog-

nition demanded by the task itself. The communications

task demands the use of auditory attention. Early cognitive

psychology proposed that the echoic sensory store has

greater capacity (between 2 and 4 s) than the iconic store

Table 11 Descriptive statistics for the SDNN variable

Mean Lower CI95% Upper CI95% Range

Communications

Low taskload 2.9 (17.6) -4.2 10.1 93.5

High taskload 2.1 (14.4) -3.7 7.9 59.5

Tracking

Low taskload -9.9 (15.0) -15.9 -3.8 59.5

High taskload -12.1 (13.0) -17.4 -6.9 44.0

System monitoring

Low taskload -7.3 (14.3) -13.1 -1.6 58.5

High taskload -13.5 (13.1) -18.8 -8.2 55.0

Table 12 Pairwise

comparisons for SDNN at high

and low taskload levels

Taskload Comparison Mean difference (SE)

Low Communication versus tracking 12.6 (4.1)*

Communication versus system monitoring 10.6 (3.3)*

Tracking versus system monitoring Not significant

High Communication versus tracking 14.1 (3.3)**

Communication versus system monitoring 15.4 (3.6)**

Tracking versus system monitoring Not significant

* p\ 0.05

** p\ 0.01
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(Treisman 1964) allowing greater capacity to admit the

auditory information to working memory. The highest

levels of workload and the lowest spectral densities were

found in the system and resource monitoring task. This

finding is consistent with the overall trend in mental

workload and is again consistent with the wider literature

(for example, see Delaney and Brodie 2000; Splawn and

Miller 2013). This finding may represent the effects of

another variable: task complexity. This is in line with Gao

et al. (2013) who cited task complexity as a limiting factor

in explaining the relationships between task types and

physiological measures. Although participants trained to

stable performance on the NASA MATB II tasks, the

system and resource monitoring tasks may make greater

demands on endogenous attention, which must be allocated

across the interface. The larger effect size in the low-fre-

quency band reflects the findings, which indicate that this

band is the most sensitive to changes in mental workload

(Veltman and Gaillard 1998).

We did not find differences in any measures associated

with the gradient of the taskload. Regardless of the direc-

tion of the taskload, the same patterns of differences were

observed. This is important from an operational perspective

since a measure that was sensitive to previous taskloads

may under- or overestimate a new taskload (higher or

lower), and this would radically increase the complexity of

considering such a measure in examination of the human

performance envelope.

Participant response to the wearable technology was

positive. The new wearable technology developed by CSEM

SA offers a step change in the quality of signals produced by

a smaller number of electrodes; a clinical electrocardiogram

can demand over 12 electrodes (Guzik and Malik 2016).

These electrodes can be wet or sticky and look like a

medical device. Embedding contact sensors in clothing is a

realistic, and we suggest a more acceptable mechanism by

which electrophysiological data could be captured and pro-

cessed. Our results indicate that these physiological

measures captured in a wearable context could discriminate

higher and lower taskloads across a range of tasks. These

new wearable technologies could then be used in inform

operator locus in a performance envelope.

Our study has a number of limitations. We of course

acknowledge that mental workload is one part of the wider

human performance envelope discussed in this special

issue and the wider literature. However, we are of the view

that this variable may be somewhat more amenable to

measurement that other concepts such as SA which ignite

stimulating, if at times fierce, debate (Klein 2015).

Although we have evidenced differences between dif-

ferent taskloads and task types, these differences have been

established using specific task types. Clearly in the opera-

tional environment, tasks co-occur and the unit of success is

most often the team rather than an individual operator. We

very much doubt that task interaction is simply additive;

however, we are encouraged that our data support a general

task-type trend which follows the subjective reports of

mental demand elicited by the NASA TLX. A limitation of

the more general approach using the types of measures

employed is the time within which the task is assessed. It is

difficult to envisage a real-time one-to-one mapping of the

signal–mental workload relationship that could inform a

locus in a human performance envelope with the current

measures used. As such, a time period must be sampled.

This period could be continuously windowed, but then this

decision would affect the types of task that could reasonably

be monitored using the technique. The measures also have

constraints in this regard. For example, the variance of the

frequency measures increases with the length of the sample;

the VLF band is less reliable at short recording times of less

than 5 min (AHA and ESC 1996).

Overall, our results support the idea of using non-inva-

sive electrophysiological sensors to give insight into

workload in response to taskload. Using the MATB II, we

have validated the signals captured by the wearable tech-

nology in support of this aim. Certainly, the simpler

Table 13 Summary of

significant effects across all

variables

Variable type Variable Partial g2

Taskload Task type Task type 9 taskload

NASA TLX Mental demand 0.68** 0.64** –

Physiological variables HRV (VLF power component) – 0.21* –

HRV (LF power component) – 0.50** –

HRV (HF power component) – 0.20* –

Mean breath rate 0.28* 0.22* 0.13*

Mean heart rate 0.16 – –

Mean SDNN – 0.40** –

– Not significant

* p\ 0.05

** p\ 0.01
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measures of respiration and heart rate discriminate the

taskloads effectively across the tasks in the case of heart

rate in line with subjective reports of mental workload. The

other measures may have discriminated task complexity

rather than taskload; this would need testing in further

research together with interaction effects between different

tasks. However, measures that vary with taskload and are

associated with mental workload have the potential to

secure insight into the human performance envelope.

Developing reliable and valid measures that can tell us

when an operator is approaching the edge of their perfor-

mance envelope has the potential to inform action on the

part of another crew member or indeed the aircraft itself

through changing automation (Christensen and Estepp

2013). Indeed, this is a corollary of human-centred

automation proposed by Billings: ‘The automated systems

must also monitor the human operators’ (Billings 1997,

p. 39). Understanding and specifying an individual’s per-

formance enveloped could permit the aircraft to understand

the state of the crew, in addition to the crew understanding

the state of the aircraft.
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