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Abstract One of the issues in planning research and

planning practice are their apparent incompatibility. Vari-

ous fields study aspects of planning, but too little is jointly

used in practice. Starting from the human planner as a

cognitive system, we elaborate the mixed initiative

approach, in which we combine three fields: cognitive

aspects of the task of the human planner, computer support,

and algorithms. In this article, we argue that algorithms

should be created for planners’ subtasks rather than for

planning problems. We demonstrate this in a prototype that

we developed for a shunting planning project we are

involved in at the Netherlands Railways [Nederlandse

Spoorwegen (NS)]. In this project, a task analysis resulted

in a planning support system with bottom up designed

scheduling algorithms.

Keywords Cognition � Task analysis �
Mixed initiative support � Shunting planning

1 Introduction

During the last 15 years, two basic starting points guided

our research in planning. In the first place, we believe that

planning is so complex and so much involved with

organizational and cognitive issues that despite the

power of many modeling and algorithmic techniques, a

mathematical/formal approach to planning alone is not

sufficient (Van Wezel et al. 2006; Van Wezel and Jorna

1999, 2001; MacCarthy and Wilson 2001). One has to look

at the way planners as cognitive (or human information

processing) systems within organizations solve planning

problems. This implies a cognitive task analysis as well as

an analysis of organizational settings. The second starting

point is that, despite the fact that much variety exists in

planning situations, scheduling domains, and human cog-

nition, there are also many similarities. The availability of

generic production planning frameworks, Enterprise

Resource Planning Systems, and Advanced Planning

Systems shows that such similarities are widely recognized

in literature from a domain perspective. However, planning

literature mostly refrains from investigating similarities in

the tasks of human planners and the relation between

generic models of task performance and generic models of

computer support. Still, according to Breuker and Van de

Velde (1994) and Schreiber et al. (2000), tasks in which a

configuration is created or an assignment is realized can be

generalized. In other words, there are similarities at the

problem solving level between a planner working with

lorries and freights and a ward nurse assigning shifts and

staff. This implies that abstraction is not only possible from

a domain perspective, but also from a cognitive and

organizational point of view (Van Wezel et al. 1996, 2006;

Van Wezel 2001).

Coming back to the two starting points within our

planning research we mentioned, we will concentrate in

this article on the human planner and his task activities.

The planning problem we are focusing on is the planning of

shunting operations within the Netherlands Railways (NS).

Trains that arrive at the end of the day must be parked

somewhere on the shunting tracks, and at night their con-

figuration often needs to be changed. The shunting planners
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must plan the tracks where the coaches are parked, the

movements on the tracks, the train drivers who perform the

movements, at what time the coaches must be washed, etc.

Shunting planning is the full time task of approximately

150 planners in the NS. For this shunting problem, we will

describe the cognitive and task analysis of shunting plan-

ners. Furthermore, we will describe our mixed initiative

approach that implements the relation between the task

analysis and abstraction/reuse of software modules. The

task analysis is used to decompose the planning problem,

and operations research algorithms are created to support

the subtasks.

In Sect. 2, we will unfold what the issue in so-called

automatic plan generation is. In Sect. 3, we will focus on

the cognitive aspects of the planning task and we will

describe details of the various cognitive approaches in

planning support. In Sect. 4, we will describe the mixed

initiative planning support approach we focus on. In

Sect. 5, we will give the case description: the shunting

scheduling in the NS (in Dutch: de Nederlandse Spoo-

rwegen or NS). Section 6 deals with the task analysis in this

shunting problem by following several planners in their

task execution. In Sect. 7, we describe a prototype shunting

planning support system in which we have implemented

the mixed initiative support approach. Section 8 gives

conclusions and research lines for the future.

2 Automatic plan generation for shunting planning:

what is the issue?

Automatic plan generation is not widely applied for shunting

planning (Allan et al. 1996). This is no surprise, because in

general the use of the computer in the planning task in

organizations is restricted to providing information and

manually editing a plan. Such planning software can be seen

as a kind of word processor for planning. Plans can be copied,

altered, printed, saved, and some basic calculations can be

made. In many cases, the system that is used actually is a

word processor or spreadsheet. Dedicated scheduling

systems provide algorithms or heuristics that can generate

solutions, but this generative support is seldom used (Watson

2000). One of the reasons is that automated schedule

generation often leaves little room for human control in the

search process (Carey and Carville 2003). Furthermore,

researchers in the field of human factors in operations

management argue that analytical models cannot deal

adequately with uncertainty and instability of the real world

(Buxey 1989; McKay et al. 1988, 1995; Sanderson 1989).

In general, there are three main philosophies (or cate-

gories) of schedule generation. In order to be able to

describe our approach, we will outline the three categories

shortly.

First, there are approaches that focus mainly on the

domain without analyzing the way in which the human

planner solves the problems. The possibilities of the

computer are then not restricted by the human planner. In

such approaches, characteristics of domain entities and

their relations are analyzed (for example, capacity of

machines, shift requirements, historical data of working

hours, etc.) and an algorithm is formulated that can effi-

ciently find a schedule which does not violate constraints.

Examples are Operations Research Techniques, Constraint

Based Scheduling Techniques, and Artificial Intelligence

Planning Techniques. This approach has been applied to

shunting planning by Freling et al. (2002).

Second, approaches can focus on imitating the human

problem solving processes with rule bases or expert (or

knowledge) systems. This approach is also called the

transfer view because the knowledge is extracted from a

human and transferred into a computer program (Schreiber

et al. 2000). For this approach, the problem solving

approach of the human scheduler must be analyzed. As with

the domain-oriented approach, the distribution of tasks

between the computer and the user is mainly towards the

computer, but the available computational capacity of the

computer is not used since the computer is seen as a sym-

bolic processor. The representations of computer and

human are supposed to be equivalent. It is understandable

for the human planner why a generated plan is as it looks,

because he would have done the reasoning steps in more or

less the same way. The main disadvantage of this approach

is that although the system inherits the capacity of abstract

reasoning that is so typical of humans, it also has the myopic

fire fighting tactics that human schedulers practice (Smith

1992). Carey and Carville (2003) showed the application of

this approach in the shunting scheduling domain.

Third, in the mixed initiative approach, the focus is on

improvement of the solution by establishing a coalition

between the computer and the user. In this approach, not

the domain or the problem solving process is the main focal

point, but the task of the human planner. This implements

the common DSS view that both human and computer

should do the tasks they are best at. Surprisingly, literature

about interactive or mixed initiative planning systems is

mainly focused on OR or AI scheduling algorithms.

Descriptions of such systems in literature explain how the

human planner can interact with algorithms that are based

on domain analyses, for example:

• The planner can choose from a number of alternative

solutions that are generated by algorithms (Lauer et al.

1994; Ulusoy and Özdamar 1996).

• The planner may specify weights on goal functions

(Smed et al. 2000; Gabrel and Vanderpooten 2002),

after which the algorithm generates a schedule.
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• The planner can steer the backtracking process of the

algorithm (Bernardo and Lin 1994).

• The planner can specify parameters for the algorithm

(Ulusoy and Özdamar 1996; Dockx et al. 1997; Oddi

and Cesta 2000; Myers et al. 2002).

This article adds in two ways to existing literature. First,

existing mixed initiative approaches lack a relation to task

analyses of planners as used in the expert system approa-

ches. Second, the mixed initiative approach has not yet

been applied in the shunting scheduling domain. In the

remainder of the article, we will describe both how task

analyses can be used in interactive planning support, and

how we have applied this in a prototype shunting sched-

uling system.

3 Human factors within planning and scheduling

In the mixed initiative approach, human aspects of plan-

ning are important. Although computers can better do their

part of the job, there still is an important cognitive part.

This means that part of what is known within the expert

system approach (partly cognitive science) has to be taken

into account. The analysis of the cognitive aspects means

that the study of planning is the study of human (intelli-

gent) activities (Miller et al. 1960; Hoc 1988). Cognitive

aspects of planning in organizations are closely related to

human planning in psychology (Van Wezel et al. 2006).

Although a strict demarcation between both can not be

made, there are differences (Van Wezel and Jorna 2001;

Wäfler 2001). But, especially when we look at the orga-

nizational planning task from a cognitive perspective, we

encounter similar issues as we see in planning literature in

psychology. These issues must be reckoned with in creat-

ing planning support. We will discuss three of these issues:

(a) the relation between planning and problem solving

(Newell and Simon 1972; Das et al. 1996), (b) whether

human planners work hierarchically or opportunistically

(Newell and Simon 1972; Hayes-Roth and Hayes-Roth

1979), and (c) whether representations in human memory

are frames or production rules (Riesbeck and Schank

1989).

Concerning planning and problem solving, Newell et al.

(1958) describe a planning method as a part of a general

problem solving technique. Because planning as well as

problem solving means searching for routes, i.e., sequences

of actions, which lead to a solution or a goal state, the

explicit distinction between planning and problem solving

disappears in the later work of Newell and Simon (Newell

and Simon 1972). Das et al. (1996, p. 40) argue against this

‘‘planning is a subset of problem solving’’ approach in

saying that ‘‘planning is a more pervasive, general

regulating process than problem solving, with problem

solving being a part of a planning process.’’ Planning

includes anticipation and overview and refers to future

actions, whereas these components seem to be absent in

problem solving. Das et al. and Newell and Simon,

although working within the same cognitive tradition, did

not settle this issue. Therefore, it might be insightful to

distinguish planning as second order problem solving from

‘‘ordinary’’ problem solving. If, in line with Newell and

Simon, one considers the planning task in organizations

and companies to be a problem solving process, the ques-

tion can be formulated how planners construct an initial

representation.

Concerning hierarchical and opportunistic planning

Hayes-Roth and Hayes-Roth (1979) stated that hierarchical

planning implies a nested number of goal and sub-goal

structures or a hierarchy of representations of a plan. The

highest level in the hierarchy may be a simplification or an

abstraction, whereas the lowest level is a concrete sequence

of actions to solve (a part of) the planning problem. One

solves a planning problem by starting at the highest level

and one continues by realizing sub-goals until one reaches

the final solution. In contradistinction to the hierarchical

view on plan execution, Hayes-Roth and Hayes-Roth

(1979) propose a so-called opportunistic approach to

planning. This non-hierarchical planning assumes that a

plan is executed with the help of some kind of mental

blackboard where pieces of information, relevant cues and

possible sub-goals are stored. They claim and show that

planning happens asynchronously and is determined by the

momentary aspects of the problem. No fixed order of

operations exists; the plan execution and the steps to be

taken grow out of the problem stage at hand. When plan-

ners solve a planning problem, they may start with the top-

goal, but very soon they loose track of the goal structure

and then they continue to fulfill the goals that are reachable

within reasonable time. Therefore, this kind of planning

behavior is called opportunistic. Although the contrast with

the hierarchical approach is large, a strong similarity is also

present. In the hierarchical as well as in the opportunistic

approach the fundamental assumption is that planning is

problem solving, that can best be described in terms of

problem spaces, production rules and goals. That is to say

that the basic descriptive structure is the same for both, but

that cognitive behavior within the problem space is taking

place differently.

With regard to the problem space description, hierar-

chical and opportunistic planning are comparable. They

differ, however, from the perspective defended by Schank

and Abelson (1977) and Riesbeck and Schank (1989). They

describe the representation of planning problems in terms

of scripts and frames consisting of objects, slots and rela-

tions. Information in the cognitive system, necessary to
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make a plan, is semi-hierarchically structured. This means

that planners retrieve some kind of representational skele-

ton or framework from their memory. Stored plans contain

guidelines for resolution of sorts of problems. In this pro-

cess two stages exist. First a skeleton plan is found, and

second the abstract steps in a plan are filled with concrete

operations. Although general cognitive processing is

involved in making a plan, the emphasis in this approach is

on the memory system.

Regardless of the precise implementation of the mixed

initiative approach that is created, the above issues con-

cerning problem solving and planning, hierarchical and

opportunistic planning and mental representations in the

form of production rules or frames, will return again and

again. In our approach we focus on planning as a kind of

problem solving leading to task support and more on

(flexible) hierarchical instead of on opportunistic planning.

Concerning the representational format we do not favor a

specific position, whether frames or production rules.

The cognitive literature makes clear that even partially

mimicking human reasoning within planning support

requires a plausible representational interface. Therefore,

within the mixed initiative approach the (cognitive) task

performance has to be analyzed. Sanderson (1989),

Crawford et al. (1999) and Crawford and Wiers (2001)

provide extensive overviews of empirical studies in plan-

ning and scheduling in different methodological

approaches: laboratory studies and theoretical models of

human schedulers, reviews of human scheduling behavior,

surveys, and field studies (Crawford et al. 1999). In order to

study human aspects of planning, one needs planners.

There are two main approaches with respect to subjects:

using students and using real planners.

Since students are often readily available to participate

in academic studies, they are a popular category of subjects

for experiments. Mostly, graduate and undergraduate stu-

dents of production and operations management or

industrial engineering are used for these kinds of experi-

ments. Such students at least have some feeling for the

planning domain of the experiments. There are several

examples of such studies. Moray et al. (1991) investigate

the effect of workload on the performance of a planning

task. Nakamura and Salvendy (1988) study six students

that must control a flexible manufacturing system (FMS).

Bi and Salvendy (1994) relate human workload to the task

arrival rate, task complexity, task uncertainty, and task

performance requirements with 12 senior undergraduate

and graduate students of the School of Industrial Engi-

neering. Koubek and Clarkston (1994) show that, for

inexperienced humans performing a control task, it is better

to train abstract relationships first and only then the details

than the other way around. Although planning experiments

with students can yield interesting results, the use of non-

experienced planners is debatable since novice and

experienced planners show differences in their task

performance (Bainbridge 1974; Mietus 1994; Bi and

Salvendy 1994).

The methodological problems that are caused by using

students for empirical research can be alleviated by using

real human planners. Although operations management

literature clearly separates planning, sequencing, schedul-

ing, control, and rescheduling, practice is more diffusing

(see also McKay and Wiers 2003). Two kinds of occupa-

tions are used for empirical research in planning tasks:

planners and machine operators. Planners usually perform

planning, sequencing, scheduling, and rescheduling tasks.

Machine operators perform sequencing, scheduling, and

control tasks. The sequencing and scheduling tasks are

performed by both, but usually on a different scale of

detail. Studies with planners and operators usually have the

goal to formulate and implement rule based systems or

heuristics with human-based rules of thumb. Empirical

studies of planners are done as case studies (Kiewiet et al.

2005; Crawford 2001; Van Wezel 2001; Wiers 1996),

longitudinal studies (McKay et al. 1995; Hurst and

McNamara 1967), or field studies (Crawford et al. 1999;

McKay and Buzacott 2000). Examples of planning tasks of

operators are described by, e.g., Norman and Naveed

(1990), Beishon (1974), Bainbridge (1974), Dutton (1964),

and Fox and Kriebel (1967). Despite the many similarities,

research results from the control task of operators need

careful consideration before they are applied to the task of

planners, since operators plan their own task, whereas

planners typically plan tasks of others (Van Wezel and

Jorna 2001; Jorna and Van Wezel 2002).

The combination of theories about cognitive aspects of

planning and empirical studies on the planning task provide

a starting point for the design of mixed initiative schedul-

ing support systems. Still, the task analyses that are

available from literature have their limitations. In mixed-

initiative scheduling support, the aim is not to replace the

human planner or to accurately mimic the human problem

solving process, but to provide support for the problem

solving process. In the next section, we will describe how

we apply this approach to shunting planning (or

scheduling).

4 Hierarchical mixed initiative planning support

In this article, we look at the way in which algorithms can

be designed so that planners can use them interactively.

Hofstede (1992) gives some prerequisites for such algo-

rithms. First, the user must be able to interact during

operation. Second, the problem representation must consist

of objects that are meaningful for the planner and it must

168 Cogn Tech Work (2009) 11:165–176

123



be possible to show the progress of the algorithm to the

user. Third, the operations or transitions in the heuristic

must refer to actions in the real world. Fourth, the control

mechanism must allow the user to alter the current state

during execution of the heuristic, and fifth, the control

mechanism must provide a way for the user to make a

trade-off between the cost of applying a decision aid

(efforts to understand and employ the model and process

the information) and the expected benefits (increased

quality and speed of obtaining a solution). Benbasat and

Todd (1996, p. 251) describe a three-step procedure that

uses this trade-off in the design of decision support aids in

general:

1. Decompose the planning problem into sub problems

and obtain estimates for the efforts (costs) to manually

find solutions to these sub problems.

2. Identify the sub problems with a high potential of

effort (cost) reduction for the decision maker and

identify a decision aid that reduces the total effort to

find and use a solution for such a sub problem.

3. Incorporate specific features for automating storage,

retrieval, and computational tasks in the decision aids

to manipulate the cognitive effort associated with

using these decision aids.

In order to investigate whether this approach will also be

worthwhile for scheduling and planning, we have devel-

oped a prototype task-oriented scheduling system for the

shunting planners in the NS. This prototype implements the

idea that algorithms should be created for subcomponents

of the task strategy to support the problem solving process.

The focus is on the level at which the system and the user

communicate (Newell 1981). This elaborates upon the

research of Prietula et al. (1994, p. 660), who introduced

the concept of ‘‘coincident problem spaces’’ in the sched-

uling domain with the following proposition: ‘‘To

configure effectively a support system that can exploit the

knowledge of the scheduling expert, it is important to

direct the behavior of the system to function in a manner

that is consistent with the key problem spaces of the

scheduler; that is, the system and the scheduler should be

problem solving in coincident problem spaces.’’ In our

research, we try to find such coincident problem spaces by

looking at the subcomponents of the task strategy of human

planners, and we link this to the use of algorithms in

planning support.

In applying a task-oriented approach, we first need to

decide what we mean by task and, second, we have to

analyze the way in which a human planner makes a plan.

First, we generally define a task as a sequence of (cogni-

tive) actions in order to reach (various) goals taking into

account (various) constraints (Waern 1989; Zweben and

Fox 1994; Schraagen et al. 2000). A task always requires

an explicit or implicit task model. A task is not a natural

entity, implying that a task analysis may result in several

clear-cut sub-tasks, sub-sub-tasks, etc. Arbitrary end points

may result from this situation. Various dimensions to

divide tasks can be discerned. In terms of the dimension of

time, keystrokes are at the lowest level (less than 1 s) and

making a complete plan for a shunting yard (more than

1 day) is at the highest level. The (sub)tasks we study take

between 1 min and 15 min. The planner in the working

situation determines the grain size of the task. Along

another dimension tasks can be categorized in so called

analytic and synthetic tasks (Clancey 1985; Breuker and

Van de Velde 1994). Diagnosis and fault detection are

analytic tasks and planning and scheduling are synthetic

tasks. Many other task taxonomies can be found (Vicente

1999; Schraagen et al. 2000). Here we will limit ourselves

to the planning/scheduling task that we define as follows:

‘‘Planning or scheduling is attuning (assigning) different

kinds of entities (object tokens) to one another taking into

account different kinds of constraints and working towards

minimizing or maximizing various goal functions’’ (Jorna

et al. 1996). Within the overall planning task, various non-

planning sub-tasks can be discerned, such as sorting,

ranking, diagnosing, comparing, etc. The details of a task

and its subtasks, etc. are to a certain extent situation spe-

cific. This brings us to the second point: the importance of

a rigorous task analysis.

A task analysis describes the activities that constitute the

task and the order in which the activities are carried out

(Schreiber et al. 2000). Analyses of planners have shown

that planning tasks are performed in a hierarchy. Each

activity, or subtask, is performed by a number of ‘‘smaller’’

activities itself (Van Wezel 2001). Linking this to the

principles of Benbasat and Todd (1996) for scheduling

support, our line of reasoning is the following (Van Wezel

and Barten 2002). Task analyses show that the overall

problem is (nearly) decomposable and solved in a number

of steps. In each step, a sub-problem is handled by a sub-

task. In other words, a planning task consists of subtasks,

and each subtask itself consists of subtasks (Van Wezel and

Jorna 1999). If, to create a planning support tool, we ana-

lyze the planning problem without looking at the planner’s

task performance, we come up with a system that does not

support the subtasks that the planner recognizes as

important elements of his problem. He/she will be inclined

to abstain from the use of generative support that is

designed in this way. If we analyze the planner’s task

without looking analytically at the elements in the planning

problem, we will surely inherit planning habits that are

based on the planner’s limited information processing

capacity. Probably not much will be gained in terms of

quality of the plan. The idea is to apply algorithms to

subtasks of planners rather than design algorithms for
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planning problems. In other words: an algorithm should not

be created for a planning problem, but for a planner’s

subtask. Thereby, we overcome both problems: the subtask

division of the planner is used to a certain extent, but we do

not necessarily adopt all his non-optimal behavior.

For any given (sub)task, there are two kinds of algo-

rithms. The first kind is a closed-world black-box algorithm

that does not reckon with the planner’s division of the task

in subtasks. The second kind of algorithm uses the same

division of the task in subtasks as the human planner. The

advantage of the first type of algorithm is that there is more

chance to find an optimal plan for the hierarchical level

under consideration (under the presumption that the opti-

mum can be defined). The advantage of the second kind of

algorithm is that the semantic distance between the planner

and the algorithm is reduced. The planner can understand

more of the reasoning process (and thereby, of the out-

come), and he can interrupt the algorithm and continue

himself from there. At this point, we repeat our line of

reasoning. An algorithm of the second kind consists of (a)

sub-algorithms for each of the subtasks, and (b) a man-

agement strategy to execute the sub-algorithms. Each sub-

algorithm, however, is used to simulate or imitate a sub-

task. And as we saw, sub-tasks that are performed by a

human planner consist of subtasks themselves. Therefore,

each of the sub-algorithms can be of the first kind or second

kind itself, and we can decide per subtask whether a

planner needs to be able to interfere with the search process

or not, what kind of algorithm is needed, and create mixed-

initiative planning support in which both the computer and

the human planner have a role in making decisions.

After the task analysis, we design algorithms bottom-up:

first, analyze the planning subtasks; next, decide per sub-

task what kind of support is needed. In other words:

algorithms are not created for the total planning problem,

but for the planner’s subtasks. As the resulting algorithms

are closely related to the activities that a planner performs,

we expect an increased chance in the actual usage of the

system by the planner, without the risk of adopting all his

non-optimal habits. Applying algorithms to subtasks has

the following advantages and possibilities (Van Wezel and

Barten 2002):

1. The chance that the human planner will accept

algorithms and their outcomes increases.

2. Existing divisions of planning problems in sub-prob-

lems (which a human planner has learned by

experience) can be reused in algorithmic design.

3. Algorithms for subtasks can be used automatically in a

sequence. If an algorithm is available for each subtask

in a task, then the algorithms can be executed

sequentially thereby automating the whole task (the

‘‘push the button and get a plan’’-approach).

4. Algorithms for subtasks can be used interactively in a

sequence. Instead of automatically executing the

algorithms for a sequence of subtasks, the algorithms

can be executed semi-automatically by providing the

planner with a way to (manually) interfere after the

execution of each algorithm.

5. Algorithms can be applied under conditions chosen by

the planner. For example, a production planner might

want to let the computer plan production orders

automatically, except when the capacity usage exceeds

90%.

6. Designing algorithms for subtasks is less complex than

for whole tasks.

7. Different planners use different task strategies, i.e.,

they perform subtasks in different sequences (Mietus

1994). Algorithms can be executed in various

sequences and can therefore be used in different task

strategies.

In the following sections, we first describe the case at the

NS, the shunting problem. Then we continue with the

preliminary results of the application of this approach for

the NS shunting problem.

5 Case description: shunting scheduling

in the Netherlands Railways

Because of European regulations, the Netherlands Rail-

ways (in Dutch: de Nederlandse Spoorwegen; NS) is

liberated in 1995. The NS is still owned by the Dutch

government, but behaves like an independent company.

The main office of the NS is located in Utrecht. The NS

daily transports one million passengers. Transportation

takes place with the help of 2,700 railroad carriages,

which approximately run 5,000 train services per

day. The trains run between 384 stations in the Nether-

lands. The NS itself consists of several independent

business units, like NS-Stations, NS-Real estate, etc., of

which (NS-Reizigers) is the most important one. This

business unit is responsible for the transportation of all

passengers. NS-Passengers has three departments:

Production, Marketing, and Staff and Organization. In

Production, logistics is responsible for all planning and

scheduling.

Within NS four kinds of planning partitionings can be

distinguished. The first concerns timetables and other

plans. The second concerns the partitioning in planning

rolling stock and planning rolling staff. The third concerns

the partitioning in local planning and central planning (of

stock and staff) and the last concerns the distinction in year

plan (long term) and day plan (short term), again of stock

and staff. Overall approximately 400 planners are contin-

uously involved in making plans and schedules.
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In our research project, we analyzed the shunting plan-

ning, which is short term local rolling stock planning. Of

the 400 planners, 150 are planning shunting operations.

Passenger trains stay during the night at a station. They

arrive at the end of the day and depart the next day in a

possibly different configuration of coaches and probably

from a different track. During the night, they must be

stored on one of the shunting tracks, otherwise they would

block the tracks that are needed for incoming and outgoing

trains. Such ‘‘storage’’ capacity at a station is limited.

Additionally, all trains must be washed and cleaned, reg-

ularly, during the night at a track that contains the washing

equipment. The task of the shunting planner is to plan the

movements of the trains and coaches and to decide on what

track trains stay during the night. To plan the movements,

the planner must also assign train drivers, train shunters

(employees that connect and disconnect coaches), and

routes of the trains in the station.

The station of Zwolle, a city in the northeastern part of

The Netherlands, is used to illustrate the planning problem

(see also Van Wezel et al. 2006). This station has also been

studied by Zwaneveld et al. (1996) and Freling et al.

(2002). Figure 1 shows an example of a shunting plan for

station Zwolle. The horizontal axis denotes the time. The

vertical axis contains the tracks. The bars are trains that

occupy a track during a certain amount of time. For

example, the train ZN1 is on track 3B from 05:52 until

07:02. At that time, it is moved to track 4B, where it stays

until 08:14.

In Fig. 1, the movement from track 3B to 4B seems

instantaneous. In practice, however, the movement takes a

few minutes. Figure 2 shows a route from track 3B to track

4B. A more efficient route via track 3A is possible, but

there are trains blocking that track. Due to this kind of

blocking, it sometimes is impossible to find a feasible route

between two tracks.

The aim of the shunting planning support project at the

NS is to implement and experiment with the task oriented

planning support approach. We want both to include

algorithms in the planning support and let the human

planner use them while still being in control. In the fol-

lowing section, we show how we have applied our mixed

initiative approach to the shunting scheduling problem.

6 Task analysis

The task of the shunting planner is to plan the movements

of the trains and carriages and to decide on what track

trains stay during the night. To plan the movements, the

planner must also assign engine drivers, train shunters (the

ones who connect and disconnect carriages), and routes of

the trains on the station. In the research project, we looked

at the local ‘‘day-planner’’. His task is to adjust already

created plans. Some of his activities are (unordered):

1. One of the tracks on the station needs maintenance. All

trains that are on that track during the time of

maintenance must be planned to stay on other tracks.

2. A train that is planned to arrive will not arrive due to

maintenance. A few hours later, a similar extra train is

put on. This train must take the place of the original

train.

3. The time of departure of a train changes. The planner

must find out the consequences and fix the plan where

appropriate.

4. The planner must find an engine driver that can move a

train.

5. The planner must find a route for a carriage or

locomotive to move from one track to another.

6. The planner checks the plan for errors.

7. The planner makes an assessment of the robustness of

the plan.

The planning tasks are performed manually. Some

computer programs are used to collect information, but

the plan itself is made on paper before it is put in the

computer.

We will now focus on the first subtask that is mentioned

in the list above: a number of tracks need maintenance for a

couple of hours during the night, and all trains that are on

those tracks during that time must be repositioned. In some

aspects, this task is an easy one. The configuration of trains

stays the same, so the planner only has to move trains.

Unfortunately, the number of shunting tracks is limited

already, and when there are even less to use, it becomes a

difficult puzzle.Fig. 1 Example of a shunting plan for station Zwolle

Cogn Tech Work (2009) 11:165–176 171

123



An important aspect in the task is weighing the depth

of search against the quality of the plan. We will clarify

this with an example. A train is on a track that is out of

order. The planner searches for an alternative track, but

there is none. The planner can now follow two strate-

gies. First, he can violate some constraints so it does not

have to be at the track to start with, for example, skip

washing the train or let it depart from another track.

Second, he can put the train on one of the tracks, and

search for another solution for the train that is already

there. The planner will now (recursively) follow the

same procedure with the chosen train: search for a

solution that falls within the constraints or be satisfied

with a constraint violation. Of course, because the

planner makes his plan manually on paper, backtracking

is difficult so the depth of searching is limited. The steps

or subtasks are shown in the flowchart in Fig. 3.

The choice between searching depth and plan quality is

apparent in step 2, 3, and 4 in the flowchart. There, the

choice must be made between adding another search layer

and violating a constraint (by choosing a solution in step 5,

6, or 7).

7 Implementation

Currently, a prototype is implemented using an extensible

architecture for scheduling support systems (Van Wezel

2001). The prototype provides a rich set of graphical views

and manipulation possibilities (Figs. 4, 5 show some of the

views) with a blackboard and real-time constraint

checking.

In addition to the GUI, constraint checker, and black-

board, several algorithms are available in the prototype at

different hierarchical levels to implement the hierarchical

mixed initiative support paradigm. Looking at the subtasks

in the task structure, we can discern four basic assignment

tasks: find a free track or combination of tracks, match

incoming to outgoing coaches, route a train, and assign

tasks to train drivers/shunters. By implementing algorithms

for these basic assignment tasks, all steps in the task

structure can be supported algorithmically:

1. Track-finding algorithm. Finding a track for a train that

is available during a specific time window can be used

in steps 2 to 7, by varying the time window and

constraints. Criteria that will affect the decision to

what track the train should be moved are amongst

others: the length of the time interval it can stay at this

track (robustness), the routing distance (i.e., number of

direction changes and total mileage) to this track, the

previous activities of driver and/or shunter, and the

consequences for future actions with this train (i.e.,

internal cleaning, external cleaning, routing to the

track from which it has to leave in the morning, etc.).

The problem the algorithm has to solve is defined as

finding a sequence of partially overlapping time

intervals from the moment of the actual move to the

moment of departure. Sometimes, an additional feature

of the sequence is that the washing track must be

visited somewhere over time. Therefore, the algorithm

will have to include the possibility of stating a set of

intermittent nodes (i.e., intervals on the washing track)

from which at least one has to be included in the final

sequence before the departure track is reached. This

constraint can be relaxed in step 7 of the task structure.

Finally, it has to be possible for the planner to block

several tracks that may not be included at all in the

final sequence, as they have to be reserved for other

purposes such as maintenance or trains running

through the station. The track finding problem is

solved using a K-shortest path algorithm (Riezebos and

Van Wezel 2006).

2. Train unit matching algorithm. Determine how the

coaches that enter the station are matched to the

coaches that leave. This is performed by a mixed

integer programming algorithm that matches arriving

to departing train units. The algorithm is described by

Freling et al. (2002). This algorithm can also be used

on a high hierarchical level by deleting large parts of

an existing plan and matching train units again.

3. Routing algorithm. Given the current plan and infra-

structure information, the inputs for this subtask (step 9

in the task structure) are the source and destination

tracks for a train. The output of the subtask is a list

Fig. 2 Route found from track

3B to 4B

172 Cogn Tech Work (2009) 11:165–176

123



with the shortest feasible routes for shunting the train

to the proposed track. A modified version of the

undirected K-shortest path algorithm of Shier (1976) is

used to determine the K shortest paths from the source

track to the destination track (Riezebos and Van Wezel

2006). Modification of the algorithm of Shier was

necessary in order to determine the occurrence of

direction changes in a route, which is the primary

optimization criterion in the weighing of routing

alternatives.

4. Driver/shunter assignment. The input for this task is

the moment of train movements. In Zwolle, there are at

night six train drivers available. After a movement, the

train driver must walk to the track where he must move

the next train. The main criterion is minimizing the

overall walking distance. An algorithm is currently

being implemented.

As can be seen in the task structure of Fig. 3, there are

several loops in which steps are repeated. According to

our hierarchical mixed initiative scheduling support

approach, the algorithms can be used individually but

they are also linked in sequences which makes it

possible to execute the task in different strategies. Some

scenarios are:

1. Make a ‘‘‘control’’-algorithm that can consecutively

execute the algorithms in a sensible way, i.e., first

match incoming to outgoing train units, then find

Retrieve the next shunting event

1
Does it overlap with the maintenance tracks and time window?

Is another track or combination of tracks 
free during the scheduled time window?

2

No

Can the train use the track before
or after the maintenance time window?

3

Is another track free somewhat earlier or
later than the scheduled time window?

4

Will departing from another track remove
the reason to be at this track?

5

Will internal cleaning at a non-cleaning
track solve the problem?

6

Will skipping washing
solve the problem?

7

10. Select a train
that blocks
a solution

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

Yes

8

Do the driver and/or shunter have
enough time for the altered job?

No

9Yes

Yes

No

Is there a route 
available?

Implement 
solution

Fig. 3 Flowchart of task

structure
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tracks for all train units, and then find routes for all

train movements. This is the black-box ‘push the

button’ approach, but the algorithm follows the

planner’s division of the problem in sub problems.

2. Make an algorithm that can consecutively execute

these algorithms, but after some of the algorithms,

provide a few alternatives from which the planner can

choose. Thereby, the planner can steer the problem

solving process. For example, the track finding algo-

rithm evaluates all possible tracks and provides the

best five, and the planner chooses one. Then, the

routing algorithm selects the best route without

needing to interact with the planner.

3. The planner works manually, but at some subtasks he

can decide to let an algorithm search for a solution. For

example, the planner chooses a track and searches for a

train driver himself, but he executes an algorithm to

choose a route.

The prototype is created for research purposes in a larger

project. The goal of the project is to assess different

approaches for support of shunting planners. Current

research focuses on an extensive experiment with the

prototype. A large number of shunting planners will

participate in a comparison of task performances with a

number of alternative support scenario’s, e.g., with the use

of only graphical manipulation facilities, with only small

(mixed initiative) algorithms, with only a black box

algorithm, and combinations of these.

8 Conclusions and future research

In the past decades, much research on planning has resulted

in few applications in practice. We believe that one of the

reasons is the lack of multidisciplinary planning research;

practice does not let itself be forced into a single point of

view. Cognitive science, organizational science, operations

research, and computer science all play a role in planning

in practice and it is in the balance of these research fields

that we seek opportunities. To realize this we defend the

perspective of taking the human individual as the starting

point.

Fig. 4 Graphical user interface

for shunting scheduling,

showing the occupation of

tracks over time

Fig. 5 Graphical user interface for shunting scheduling, showing the

situation on the track at a point in time. The schedule can be altered

by dragging and dropping trains
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The goal of the shunting scheduling project was to

create task support, including algorithms, for shunting

planners. An in-depth task analysis with one planner and a

less detailed testing phase with two other planners resulted

in a number of task structures. By using these task struc-

tures to design planning support, a combination of

cognitive science (for the task analysis), computer science

(reuse of system components), and operations research (for

algorithms) resulted in a prototype planning system.

Because of the bottom-up approach that was taken, algo-

rithms can be tailored to the task performance of the

planners. By supporting tasks instead of solving problems,

we hope that the use of planning systems will transcend the

typical use of planning systems as plan editors into systems

where human and computer can also collaborate at the

problem solving level.

The bottom-up approach of algorithmic design provides

an extension to the mixed initiative approaches found in

literature (Van Wezel et al. 2006). By describing the cre-

ation of the plan as a hierarchic problem solving process,

we place the discussion about human versus computer at

the level where it belongs: an algorithm should not be

created for a planning problem, but for a planner’s subtask.

Algorithms should be able to communicate in terms of the

dimensions that the planner uses to define the problem

space, and the operators that the planner uses to go from

state to state. The essence of the approach can be sum-

marized as follows (the terminology is borrowed from De

Sitter et al. 1997): we make the move from complex

algorithms in simple human task structures to simple

algorithms in complex human task structures. Algorithms

that are traditionally not considered powerful enough to use

in scheduling support, might very well be used as algo-

rithms for subtasks. A scheduling support system should

have a number of small algorithms that are tailored to

subtasks. The planner can manually execute algorithms,

and algorithms can call each other. For this, each sub-

problem needs to be analyzed; its characteristics determine

what kinds of algorithms might be appropriate.

The project will be continued by extensive experiments

with various levels of planning support. Our overall con-

cern, however, is to generalize our gained experiences into a

comprehensive planning framework. How are cognitive

aspects of the planning task related to the way in which the

planning task is divided within an organization? How can

we get a symbiosis between a planner and a scheduling

system? How can advanced planning systems be used to

redesign the organization of the planning? Where do algo-

rithms get in? The answers can only be found by crossing

the boundaries of the traditional research fields in planning.
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