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Abstract
This paper develops a new method for analyzing the relationship between a set of 
points and another single point, the latter of which we call a reference point. This 
relationship has been discussed in various academic fields, such as geography, crim-
inology, and epidemiology. Analytical methods, however, have not yet been fully 
developed, which has motivated this paper. Our method reveals how the number of 
points varies by the distance from a reference point and by direction. It visualizes 
the spatial pattern of points in relation to a reference point, describes the point pat-
tern using mathematical models, and statistically evaluates the difference between 
two sets of points. We applied the proposed method to analyze the spatial pattern of 
the climbers of Mt. Azuma, Japan. The result gave us useful and interesting findings, 
indicating the method’s soundness.

Keywords Point pattern · Reference point · Directional variation · Distance · 
Visualization

JEL Classification C020 · C180 · C630

1 Introduction

This paper develops a new method for analyzing a set of points in relation to another 
single point, the latter of which we call a reference point. We aim to evaluate the 
spatial relationship between points and a reference point.

An example is the relationship between a retail store and its customer distribu-
tion, which has been discussed in retail geography and marketing science (Davies 
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2012; Scott 2017). Customers of convenience stores are tightly clustered around 
the stores, while those of shopping malls are widely spread. Epidemiology studies 
the relationship between air pollution and respiratory, cancers such as lung, bron-
chus, and larynx cancers (Filippini et al. 2019). Cancer cases are often clustered 
around air-polluting sites. Geographic profiling is an important topic in criminol-
ogy (Kent et  al. 2006; Trinidad et  al. 2021). It analyzes the spatial relationship 
between crime locations and the offender’s residence location.

The distance plays an important role in the above relationships. Customers 
generally decrease with the distance from retail stores. Cases of respiratory can-
cers often also decrease with the distance from air-polluting sites. Crime loca-
tions, on the other hand, exhibit different patterns. Offenders often avoid the 
neighborhood of their residence as crime locations, and consequently, crimes first 
increase and then decrease with the distance from their residences.

The direction is another important factor. Customers of retail stores are often 
more widely spread along highways due to easy accessibility. Air-polluting mate-
rials are conveyed by air currents, which leads to an anisotropic spatial pattern of 
cancer cases around air-polluting sites (Kurumatani and Kumagai 2008; Nakaya 
2010). Directional variation is also found in crime locations since the spatial cog-
nition of criminal offenders varies by direction (Kent and Leitner 2007; Frank 
et al. 2011; Mohler and Short 2012).

Studying the spatial relationship between points and a reference point helps us 
understand the properties of points and consider their underlying structures, i.e., how 
point patterns are formed. The relationship between retail stores and customer distribu-
tions tells us how the distance and direction affect the customers’ store choice. Analysis 
of the relationship between cancer cases and air-polluting sites permits us to find air-
polluting sites that are more likely to cause respiratory cancers, which may have to be 
closed or downsized (Brender et al. 2011; García-Pérez et al. 2015). Using past data to 
analyze the relationship between crime locations and offenders’ residences permits us 
to detect offenders’ unknown residences from their crime locations (Kent et al. 2006).

However, analytical methods of the spatial relationship between points and a 
reference point have not yet been fully established, as discussed in the next sec-
tion. To fill the research gap, this paper proposes a new method for analyzing the 
spatial pattern of points in relation to a reference point. We aim to reveal how 
the number of points varies by the distance from a reference point and by direc-
tion. We consider the number of points in relation to the number of the potential 
locations of points, i.e., the locations where points can be located. Suppose the 
customers of a retail store in a region. All the residents in the region can be the 
store’s customers; thus, their residence locations are represented as potential loca-
tions. Consideration of potential locations is important since their number affects 
the number of points. Potential locations are often referred to as inhomogeneous 
population in spatial statistics since the distribution of potential locations is gen-
erally inhomogeneous (Gatrell et al. 1996; Diggle 2013).

The rest of the paper is organized as follows. Section 2 reviews related works. 
Section 3 describes the proposed method in detail. Section 4 applies the method 
to analyze the spatial pattern of climbers of Mt. Azuma in Japan. Section 5 sum-
marizes the conclusions with a discussion.
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2  Related works

2.1  Analysis of a single set of points

Point pattern analysis has long been discussed extensively in geography, ecol-
ogy, statistics, and other fields. The nearest-neighbor distance method is a basic 
but essential method to discuss clustered and dispersed point patterns (Clark and 
Evans 1954). The method evaluates the degree of point clustering within a sta-
tistical framework. The K-function and its standardized version, the L-function, 
consider point patterns with a scale parameter represented as the radius of circles 
randomly placed in a study region (Ripley 1976). These functions represent the 
degree of point clustering as a function of the geographic scale of analysis. The 
two-point correlation function is often used in astronomy (Peebles 1973, 1993). It 
aims to indicate the probability of finding an unknown galaxy as a function of the 
distance from known galaxies.

The above methods assume the complete spatial randomness (CSR) in the 
null hypothesis, i.e., point distribution follows a uniform distribution in a study 
region, which does not always hold in the real world. Cuzick and Edwards (1990) 
resolve this problem by a statistical method for evaluating point patterns where 
points can be located only at limited locations. Diggle and Chetwynd (1991) also 
discuss point clusters under inhomogeneous potential locations.

The above methods, unfortunately, do not meet our demand since they con-
sider only a single set of points. We aim to discuss the relationship between a 
single set of points and another reference point, implying that we need to consider 
two different sets simultaneously.

2.2  Analysis of two sets of points

The nearest-neighbor spatial-association measure evaluates the spatial proximity 
between two sets of points (Lee 1979). The method provides the probability that 
the observed proximity occurs under the CSR. The cross K-function and L-func-
tion are more flexible and widely used in various academic fields (Ripley 1977). 
They can change the geographical scale of analysis to evaluate the spatial proxim-
ity and can handle cases where the location of one set of points is fixed under the 
null hypothesis. A drawback is that they also assume the CSR in the null hypoth-
esis. The colocation quotient (CLQ) resolves this problem by introducing a ran-
domization test (Leslie and Kronenfeld 2011). Cromley et al. (2014) generalizes 
the CLQ using the spatial weight function and proposes a local version of CLQ. 
Li et al. (2022) further extends the CLQs into the spatiotemporal dimension.

The above methods analyze the relationship between two sets of multiple 
points. They are effective for grasping the overall pattern of the relationship 
between points. Our interest, on the other hand, lies in the detailed relationship 
between a set of points and a reference point, which existing methods cannot 
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discuss. In addition, the above methods do not explicitly consider the directional 
variation in point patterns around reference points.

2.3  Analysis of the directional variation in a single set of points

Anisotropic K-function (Dale 2000; Rosser and Cheng 2019) considers the direc-
tional variation in point patterns. Extending the original K-function, it evaluates 
point clustering as a function of geographic scale and direction of analysis. The 
method, unfortunately, assumes a single set of points, and thus, it does not meet our 
objective.

Directional statistics is a useful tool for discussing the directional variation 
of spatial phenomena (Pewsey et  al. 2013; Ley and Verdebout 2017). It has been 
widely used in biology, astronomy, climatology, etc. A drawback is that directional 
statistics does not consider the radial dimension, i.e., the distance from a reference 
point. Our study requires the consideration of both the directional and radial dimen-
sions, which are not satisfied by directional statistics.

3  Method

3.1  Analysis of a single set of points 1: visualization

This subsection proposes a method for visualizing the relationship between a sin-
gle set of points Ω and a reference point Z in the region Ξ. We first assume that the 
potential locations of points are uniformly distributed in Ξ. We describe our method 
under this situation and then proceed to the case where the potential locations of 
points are not uniformly distributed.

The method first divides the region Ξ into L sectors centered at Z, which are num-
bered clockwise from north {Ʌ1, Ʌ2, …, ɅL} as shown in Fig. 1. The number of 
points in Ʌi is denoted by Mi. Let Ωi = {Pi1, Pi2, …, PiMi} be the set of points in Ʌi 
arranged in increasing distance from Z. We use the polar coordinate system originat-
ing from Z to indicate the location of points. The location of Pij is given by rij and θij, 
the distance from Z and the angle measured clockwise from north, respectively. The 
following uses variables i and j to represent the ith sector and the jth point in each 
sector, respectively.

We then determine the area inside which the α percentage points around Z are 
contained in each sector. The number of points inside this location in sector Ʌi is 
given by

where Mi is the number of points in Ʌi. If j is an integer, we take Pij as the location 
inside which the α percentage points around Z are contained. If j is not an integer, 
we consider the two adjacent integers j1 and j2 between which j is contained. Using 

(1)j =
�

100
Mi,
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points Pij1 and Pij2, we define Ui, the representative location of the α-covering area 
in sector Ʌi. Its radial and angular coordinates are given by

and

respectively, where L is the number of sectors. The red points in Fig. 2 indicate the 
representative locations of the points shown in Fig. 1, where α = 50.

(2)Ri(�) =
rij1 + rij2

2

(3)�i =
2�

L

(

i −
1

2

)

,

P11
P21

P31

P32

P33

P22

P23

P24

P12

P13

P14

P15

�1 �2

�3

Fig. 1  Radial sectors centered at the reference point Z indicated as the red point. Labels of the points in 
Ʌ1, Ʌ2, and Ʌ3 are indicated as examples (color figure online)
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We finally connect the representative points from U1 to UL to generate a polygon 
containing the α percentage points. We call it the α-covering area. The red dotted 
line in Fig. 2 indicates the 50-covering area of points shown in Fig. 1. Unlike exist-
ing methods, this area explicitly assumes that the point pattern varies by direction, 
thus permitting us to grasp the anisotropic pattern of points in relation to reference 
point Z.

In the above procedure, we must determine the number of radial sectors L. A 
large L is desirable if there are enough points since it permits us to discuss the 
point pattern in detail. A concern is that the α-covering area can drastically fluctu-
ate along the angular axis, preventing us from grasping the overall directional pat-
tern of points. Spatial smoothing, such as the moving average and kernel smoothing 
along the angular axis resolves this problem (Silverman 1986; Scott 2015). Smooth-
ing conceals complicated details and increases the interpretability of overall point 
patterns.

Fig. 2  Representative locations where α = 50 (red points) and the 50-covering area (red dotted lines) 
shown in Fig. 1 (color figure online)
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If there are not enough points, we have to decrease sectors. The minimum num-
ber of points necessary in each sector depends on the value of α. Let us assume 
α = 50, where we aim to find the area containing half the points. We consider two 
cases where each sector contains two points and two hundred points, respectively. 
We obtain the same 50-covering area in both cases, but the result obtained in the lat-
ter is more reliable since it is based on more information. To evaluate the reliability, 
we introduce a statistical framework that is used for discussing the necessary sample 
size in binomial distribution (Lwanga et al. 1991; Desu 2012). We assume that the 
probability that a point is located inside the 50-covering area is 50 percent. In the 
first case, where there are two points in each sector, the probability that one point is 
located inside the 50-covering area and the other is outside the area is

If we set the significance level to five percent, this situation is insignificant 
because it can happen by chance. In the second case, where there are two hundred 
points in each sector, the probability that half of the points are located inside the 
50-covering area is

Though it is still insignificant at the five percent level, the result is more reli-
able than the first case’s. An increase of points decreases the probability and thus 
increases the reliability. Table 1 shows Mmin(α, s), the minimum number of points 
in each sector required at significance level s. As seen in the table, more points are 
necessary as α goes away from 50. When points are insufficient, we have to decrease 
sectors or use α value close to 50.

So far, we have assumed that the potential locations of points are uniformly dis-
tributed in the region Ξ. We then proceed to the cases where the potential loca-
tions of points are not uniformly distributed. Let us assume that the region Ξ con-
sists of Y regions, in each of which the number of potential locations is reported. 
A typical example is the population data aggregated across spatial units such as 

(4)
(

1

2

)2

2C1 = 0.5.

(5)
(

1

2

)200

200C100 = 0.056.

Table 1  The minimum number of points in each sector

α 5 10 15 20 25 30 35 40 45 50

Mmin(α, 0.05) 1338 707 499 398 339 302 277 264 257 255
Mmin(α, 0.10) 335 177 125 99 85 73 68 66 62 62
Mmin(α, 0.20) 83 45 31 24 21 19 17 16 15 15

α 55 60 65 70 75 80 85 90 95

Mmin(α, 0.05) 257 264 277 302 339 398 499 707 1338
Mmin(α, 0.10) 62 66 68 73 85 99 125 177 335
Mmin(α, 0.20) 15 16 17 19 21 24 31 45 83
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census districts and zip code areas. The numbers of points and potential locations 
are denoted by {p1, p2, …, pY} and {q1, q2, …, qY}, respectively. The average of the 
latter is

We standardize the number of points in each region to eliminate the effect of the 
variation in the number of potential locations. The standardized number of points in 
the ith region is given by

This value works as the ratio of the number of points to the number of potential 
locations. If qi is larger than its average, we reduce the number of points by ran-
domly choosing p′

i
 points from the pi points. If qi is smaller than its average, we 

randomly locate p′
i
-pi points in the ith region. This eliminates the effect of the varia-

tion in the number of potential locations. After the standardization, we construct the 
α-covering area.

The computational complexity of the above processes is given as follows. We 
rearrange the points in increasing distance from Z in each sector. The calculation 
order of sorting algorithms such as heap sort and merge sort in the ith sector is

(Tridgell 2005; Cormen et al. 2022). The total complexity is thus given by

where

Equation (9) assures that the computation ends in an acceptable time (Papadimi-
triou 2003; Arora and Barak 2009).

3.2  Analysis of a single set of points 2: point pattern modeling

Visualization is effective at an early stage of analysis. Visual analysis, however, 
is inevitably subjective, as mentioned in Sect. 2. This subsection proposes a more 
objective method to complement the visual analysis.

(6)q =

∑

i

qi

Y
.
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Mi log
(

Mi

))

(9)

∑

i

O
(

Mi log
(

Mi

))

=LO
(

M

L
log

(

M

L

))

=O
(

M log
(

M

L

))
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(10)M =
∑
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We introduce mathematical models to describe each sector’s decreasing pattern of 
points. The models are applied after the standardization mentioned earlier. The negative 
power function is used in gravity models (Colwell 1982; Fotheringham and O’Kelly 
1989):

where r represents the distance from Z. The parameters βi and γi represent the num-
ber of points at the reference point and the decreasing speed of points with the dis-
tance from the reference point, respectively.

A drawback of this function is that it is undefined at r = 0. The negative exponential 
model is often used instead that can be defined at r = 0 (Haggett 1966; Haynes 1975).

The logistic model is another option:

Where µi represents the distance between the inflection point and the reference point.
Criminology often uses more complicated models for describing crime locations 

since crimes first increase and then decrease with the distance from the offender’s 
residence. Normal and lognormal models describe the spatial pattern of crimes 
(Snook et al. 2005; Paulsen 2006; O’Leary 2009, 2011):

and

The functions are maximized at r = µi and r = exp[µi] in Eqs.  (14) and (15), 
respectively.

Choosing a mathematical model, we estimate the model from the observed data. 
We consider two cases that are different in the possible location of points. The first 
case is that points can be located anywhere in the region Ξ. In this case, the function 
fi(r) is the probability density function of points. We estimate the model by using the 
maximum likelihood method, where the likelihood is given by

The second case is that points can be located at limited discrete locations in Ξ. 
This happens, for instance, when points represent retail stores that can be located 

(11)fi(r) =
�i
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,
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only at the sites in commercial areas. Sites are classified into two groups, i.e., inside 
and outside commercial areas. We denote the latter in sector Ʌi and their distances 
from Z as Ω ′i = {P′

i1, P′
i2, …, P′

iMi} and {r′i1, r′i2, …, r′imi}, respectively. They rep-
resent the locations where points cannot be placed. We consider a stochastic model 
where the probability that a point is located at a given location is given by the func-
tion fi(r). The likelihood of this model is

We estimate the model again based on the maximum likelihood method.
Having estimated models, we statistically compare them to choose the best 

model. If models have the same number of parameters, we can compare them by 
their likelihoods. If models contain a different number of parameters, information 
criteria such as AIC and BIC are effective for evaluating the model fitness (Kuha 
2004; Chakrabarti and Ghosh 2011).

The choice of L depends on the analysis objective and the number of points. A 
detailed discussion of the spatial pattern of the models requires a large L, while the 
global pattern can be captured by a small L. Appropriate model estimation requires 
a certain number of points in each sector. The sample size problem has long been 
discussed in statistics (Cohen 2013; Kraemer 1974). The necessary sample size 
depends on the model structure, the number of parameters to be estimated, the sam-
ple distribution, and so forth. Therefore, discussing sample size problems in a gen-
eral setting is difficult. In regression modeling, 100–200 samples are often said to 
be the minimum size for obtaining significant results (Comrey 1978; Green 1991; 
Tosteson et al. 2003). Since the structures of the models mentioned above are simi-
lar to those of simple regression models, it sounds desirable to determine L so that 
each sector contains at least 100–200 points.

The computational complexity of model estimation is given as follows. We esti-
mate the models using a numerical optimization algorithm such as the EM algo-
rithm. Each iterative process treats M/L points, whose calculation order is O(M/L). 
We repeat the model estimation in L sectors, and thus, the total complexity of model 
estimation is

3.3  Analysis of two sets of points

So far, we have discussed the relationship between a single set of points Ω and a ref-
erence point Z. This subsection compares the two sets of points that share the same 
reference point. Suppose another set of points Θ in the region Ξ. Let Θi = {Qi1, Qi2, 
…, QiNi} be the set of points in sector Ʌi arranged in ascending order of the distance 
from Z. The distance of Qij from Z is denoted by sij.

Our interest lies in the difference in the spatial patterns of points around Z, 
or more precisely, whether points of Ω are more widely spread than those of Θ, 

(17)L�
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fi
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or vice versa. We first compare the two point sets in each sector. To this end, we 
adopt a statistical procedure that compares the two sets of distances {ri1, ri2, …, 
riMi} and {si1, si2, …, siNi}. We combine and compare the two sets by rearrang-
ing the distances in ascending order. This is a typical two-sample problem where 
many statistical tests have been proposed, such as the Mann–Whitney and the 
Kolmogorov–Smirnov tests (Corder and Foreman 2014; Deshpande et al. 2017). 
The Mann–Whitney test is effective when two sets share an equal variance (Sokal 
and Rolf 1981; Siegel and John Jr 1988). The Kolmogorov–Smirnov test is appli-
cable under unequal variances. A drawback of the Kolmogorov–Smirnov test is 
that it is less statistically powerful than the Mann–Whitney test due to its wide 
flexibility. Runs tests are also available for this two-sample problem (O’Brien 
1976; O’Brien and Dyck 1985; Maritz 1995). Tests have been developed based on 
the number and the maximum run length.

The above statistics permit us to test the statistical difference between Ωi and Θi 
in each sector. Let ωi be the statistic calculated in sector Ʌi. Using ωi, we evaluate 
the overall difference between Ω and Θ, where the null hypothesis is that there is no 
statistical difference between the two sets. Let ωi be the statistic calculated in sector 
Ʌi. Its summation is given by

The static ω shows a large positive value if the points of Ω are more widely dis-
tributed around Z than those of Θ. If the points of Θ are more widely distributed, ω 
shows a small negative value. The static ω is close to zero if no significant difference 
exists between Ω and Θ.

When each sector contains enough points (at least 50, but 100 is desirable 
(Zhang and Wu 2002; Happ et  al. 2019; Uttley 2019)), the probability distribu-
tion of ωi under the null hypothesis independently follows the same distribution. 
The Mann–Whitney statistic, for instance, follows the standard normal distribution 
under the null hypothesis. The same distribution also approximates the Kolmogo-
rov–Smirnov statistic.

If the number of radial sectors L is large enough, the central limit theorem allows 
us to easily calculate the probability distribution of ω under the null hypothesis. Let 
φ and �2 be the mean and variance of the probability density distribution of ωi under 
the null hypothesis. We define the statistic ω0 as

The central limit theorem assures that ω0 follows the standard normal distribution 
under the null hypothesis, and thus we can evaluate the statistical significance of ω, 
i.e., the overall difference between Ω and Θ.

Even if L is not large enough, the probability density distribution of ω is approxi-
mated by a normal distribution when ωi approximately follows a normal distribution 
under the null hypothesis. The Mann–Whitney statistic is a case where this require-
ment is satisfied. Some statistics used in runs tests also follow normal distributions. 

(19)� =
∑

i

�i.

(20)�0 =
� − L�
√

L�
.



 Y. Sadahiro, H. Matsumoto 

1 3

The reproductive property of the normal distribution assures that ω follows a normal 
distribution whose mean and variance can be calculated.

The above discussion assumes that each sector contains enough points. If points 
are not enough, we calculate the probability distribution of ω under the null hypoth-
esis by using the Monte Carlo simulation. We randomize the location of two sets of 
points in each sector, calculate ωi, and sum up all the ωi’s. We repeat this process 
many times (generally 10,000 times) to obtain the probability distribution of ω.

The computational complexity of the above processes is given by the same dis-
cussion in Sect. 3.1, i.e.,

where

Similar to Eq. (9), the calculation order shown in Eq. (21) is acceptable.

4  Application

This section applies the method proposed in the previous section to the analysis of 
the spatial pattern of climbers of Mt. Azuma in Fukushima prefecture, Japan. Mt. 
Azuma is a popular mountain that gathers many climbers from all over Japan. Its 
elevation is 2035 m, and a wide variety of climbers, from beginners to experts, enjoy 
hiking, trekking, and mountaineering at Mt. Azuma. We aim to analyze climbers’ 
spatial and temporal patterns and reveal their underlying structure.

YAMAP Inc. developed a smartphone software called YAMAP that records the 
trajectories of climbers. Thirty percent of all the climbers in Japan have installed this 
software. YAMAP Inc. kindly provided us with the location data of YAMAP users 
and those of the climbers of Mt. Azuma from January 2019 to December 2021. Mt. 
Azuma and its climbers serve as a reference point and a set of points in the proposed 
method, respectively. The location data of YAMAP users work as the potential loca-
tions of points mentioned in Sect. 3.1, which are aggregated at the city level to con-
ceal individual information.

Figure 3 shows the location of Mt. Azuma and its competing mountains, whose 
elevation is between 1500 and 2500 m. Competing mountains are primarily located 
in the southwest of Mt. Azuma, while they are sparse in the northern area. Navy 
shades indicate the number of Mt. Azuma climbs per YAMAP user from 2019 to 
2021. The spatial pattern of navy shades reflects the number of competing moun-
tains, i.e., the value is lower in the southwest and higher in the north.

We divided the whole region into L = 96 radial sectors centered at Mt. Azuma 
since this value was large enough to analyze the detailed variation in the spa-
tial pattern of climbers, and each sector contains enough climbers for significant 

(21)
∑

i

O
((

Mi + Ni

)

log
(

Mi + Ni

))

= O((M + N) log (M + N)),

(22)N =
∑

i
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analysis. We performed the analysis using programs written in C++, which ran on 
an i9-9900U, CPU 3.60 GHz, RAM 32 GB computer.

4.1  Visualization and comparison of point patterns

The analysis started with visualizing the spatial pattern of the climbers of Mt. 
Azuma. We calculated the α-covering area of the climbers defined in Sect. 3.1. The 
moving average window of width 5 smoothed the areas. Figure 4 shows the 50- and 
75-covering areas from 2019 to 2021. The areas widely spread from north to south-
west, suggesting that Mt. Azuma attracted climbers from all over Japan. The non-
circular shape of the areas indicates the directional variation in the spatial pattern 
of climbers. The areas were largest in 2019, before the outbreak of COVID-19. The 
areas drastically shrank in 2020 since climbers avoided traveling to distant places for 
mountaineering. The areas expanded in 2021, though they are smaller than in 2019.

0 300km

N

0.0000 - 0.0322

 - 0.0472

 - 0.0594

 - 0.0792

 - 0.1170

 - 0.1667

 - 0.2278

 - 0.3570

 - 0.7943

 - 6.8667

Mt. Azuma

Competing mountains

Number of Mt. Azuma climbs per YAMAP user

500km

1000km

Fig. 3  Mt. Azuma and its competing mountains, whose elevation is between 1500 and 2500  m. Navy 
shades indicate the number of Mt. Azuma climbs per YAMAP user from 2019 to 2021. The data are 
aggregated at the city level (color figure online)
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Table 2 shows the statistic ω0 of the Kolmogorov–Smirnov test that compares 
the spatial pattern of climbers between different years. The absolute value of ω0 
is large if the patterns of two point sets differ, while it is small if the difference is 
insignificant. As seen in the table, the climbers in 2019 are more widely spread 

50-covering area 75-covering area
2019
2020
2021

0 300km

N

Fig. 4  The 50- and 75-covering areas of climbers of Mt. Azuma from 2019 to 2021. The white triangle 
indicates Mt. Azuma

Table 2  The statistic ω0 of the 
Kolmogorov–Smirnov test that 
evaluates the difference in the 
patterns of climbers between 
different years

Positive values indicate that the climbers in the year shown in the 
left column are more widely spread than in the year shown in the top 
row. Asterisks indicate statistical significance at a five percent level

2019 2020 2021

2019 2.016* 0.816
2020 − 2.016* − 0.739
2021 − 0.816 0.739
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than in 2020 at a significance level of five percent, while no significant difference 
was found between other pairs of years. This indicates that COVID-19 has drasti-
cally narrowed the catchment area of Mt. Azuma.

Figure  5 shows the seasonal variation in the 50- and 75-covering areas. We 
considered the four seasons: spring (March to May), summer (June to August), 
autumn (September to November), and winter (December to February). The 
figure indicates that the areas are generally the largest in autumn. This sounds 
reasonable since the autumn leaves of Mt. Azuma attract many climbers from 
wider areas. In contrast, the areas are relatively small in summer, especially in 
the northern area of Mt. Azuma. Summer is the best season for climbing higher 
mountains, requiring sophisticated skills and techniques that are not necessary for 
climbing Mt. Azuma. People prefer difficult mountains in summer, which shrank 
the covering areas of Mt. Azuma.

50-covering area 75-covering area
Spring
Summer
Autumn
Winter

0 300km

N

Fig. 5  The 50- and 75-covering areas of climbers of Mt. Azuma calculated for each season. The white 
triangle indicates Mt. Azuma
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Table  3 shows the statistic ω0 that compares the spatial pattern of climbers 
between different seasons. Large positive values of autumn indicate that the climb-
ers are more widely spread than in other seasons, especially summer and winter. No 
significant difference was observed between other pairs of seasons. Mt. Azuma gath-
ers its climbers from the widest area in autumn, while the spatial pattern of climbers 
is not so different between other seasons. Autumn seems to be considered the best 
season for climbing Mt. Azuma.

4.2  Modelling point patterns

This subsection builds mathematical models to describe the spatial pattern of climb-
ers of Mt. Azuma in detail. One of our primary interests lies in the directional var-
iation in the distance deterrence of climbers. Figure  6 shows the 24 directions in 
which we estimated the models. Directions are numbered clockwise from the north. 
The radial lines connect Mt. Azuma and the farthest YAMAP users in individual 
directions.

We estimated the models represented by Eqs.  (12) and (13) by using the like-
lihood defined by Eq.  (17). Comparing the models using AIC, we found that the 
model represented by Eq. (13) is better in all directions. The following thus focuses 
on the result obtained based on Eq. (13).

The vertical axis in Fig. 7 indicates the probability density function fi(r). Gray 
lines correspond to the areas where YAMAP users do not exist. We classified the 24 
directions by the slope of functions in Fig. 7: G1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 
G2 = {11, 12}, G3 = {13, 14, 15, 16, 17, 18}, and G4 = {19, 20, 21, 22, 23}. Figure 7b 
shows that the slopes of Group G1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} are the most gen-
tle among the four groups. The slopes of Group G4 = {19, 20, 21, 22, 23} are also 
gentle but relatively steeper than those of Group G1. One reason for this difference 
is the difference in train accessibility between these groups. Figure 8 shows the rail-
way network around Mt. Azuma. We checked the timetable of the railway lines and 
found that the trains of Tohoku Shinkansen and Tohoku Lines indicated by thick 
white lines are faster and more frequent than those of other lines. This increases the 
accessibility of Group G1 compared with that of Group G4.

The distance where fi(r) begins to decrease varies among Group G4 = {19, 20, 
21, 22, 23}. They decrease from their maxima β to their half at r from 60 to 
150  km. It is consistent with Figs.  4 and 5, where the 50-covering areas show 

Table 3  The statistic ω0 of the 
Kolmogorov–Smirnov test that 
evaluates the difference in the 
patterns of climbers between 
different seasons

Positive values indicate that the climbers in the season shown in the 
left column are more widely spread than in the season in the top row. 
Asterisks indicate statistical significance at a five percent level

Spring Summer Autumn Winter

Spring 0.939 − 1.887 1.412
Summer − 0.939 − 2.351* − 0.018
Autumn 1.887 2.351* 2.293*
Winter − 1.412 0.018 − 2.293*
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clear anisotropic patterns. For instance, the climbers of direction 19 rapidly 
decrease with the distance from Mt. Azuma in Fig. 8, while the climbers of direc-
tion 23 gradually decrease. The traffic network is weak in these directions, and 
the variation of accessibility causes the variation in estimated models.

Groups G2 = {11, 12} and G3 = {13, 14, 15, 16, 17, 18} have many competing 
mountains in their directions. A difference in their patterns in Fig. 7 lies in that 
fi(r) begins to decrease at a farther distance in Group G2. This is due to the train 
accessibility of the Tohoku Shinkansen and Tohoku Lines mentioned earlier. 
Easy accessibility attracts distant climbers of Group G2. The slopes of Group G3 
are the steepest among the four groups. The probability remains maximum until 
200 km in directions {14, 15, 16, 17}, and suddenly decreases to zero. This result 
is consistent with Fig. 8, where navy shades are dark at least within 200 km of 
Mt. Azuma. Competing mountains cause the steepest slopes in these directions.

0
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9
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4
5
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1000km
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2223

0 300km

N

0.0000 - 0.0322

 - 0.0472

 - 0.0594

 - 0.0792

 - 0.1170

 - 0.1667

 - 0.2278

 - 0.3570

 - 0.7943

 - 6.8667

Number of Mt. Azuma climbs per YAMAP user

Fig. 6  The 24 directions in which the models were estimated. The radial lines connect Mt. Azuma and 
the farthest YAMAP users in individual directions. The numbers and colors of radial lines correspond to 
those in Fig. 7. Navy shades indicate the number of Mt. Azuma climbs per YAMAP user from 2019 to 
2021 (color figure online)
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5  Concluding discussion

This paper has developed a new method for analyzing the relationship between 
points and a reference point. We aim to reveal how the number of points varies by 
the distance from a reference point and by direction. The α-covering area visualizes 
the directional variation in the spatial pattern of points, while mathematical models 
statistically describe the relationship between points and a reference point. The sta-
tistics ω and ω0 permit us to evaluate whether a set of points are more widely spread 
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Fig. 7  The estimated logistic models defined by Eq. (13). The vertical axis indicates the probability den-
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around a reference point than another set of points. Section 4 applied the proposed 
method to analyze the spatial pattern of the climbers of Mt. Azuma, Japan. The 
results gave us useful and interesting empirical findings, which support the sound-
ness of the method.

The strength of the proposed method is summarized as follows. Firstly, the pro-
posed method is effective for analyzing the relationship between a set of points in 
relation to a reference point, which cannot be fully investigated by existing methods 
discussed in Sect.  2. Particularly the α-covering area is a useful tool for an intui-
tive understanding of the overall spatial pattern of points. Secondly, the method is 
flexible in that various models are applicable, as shown in Sect.  3.2. Thirdly, the 
method lets us compare the spatial spread of two sets of points within a statistical 
framework.

The method, however, has several limitations. We finally discuss its future exten-
sions. Firstly, the method neglects the temporal dimension in point patterns. Empiri-
cal application discusses the difference between different periods. However, this 
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Fig. 8  Railway lines around Mt. Azuma. Thick white lines indicate Tohoku Shinkansen and Tohoku 
Lines, whose frequencies are relatively higher in this region. The numbers and colors of radial lines cor-
respond to those in Fig. 7. Navy shades indicate the number of Mt. Azuma climbs per YAMAP user from 
2019 to 2021 (color figure online)
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application involves data aggregation along the temporal dimension, reducing the 
original information’s temporal resolution. An analytical method should be devel-
oped to consider the spatial and temporal dimensions without aggregation.

Secondly, we should introduce a statistical framework for evaluating the 
α-covering area. This permits us to evaluate the statistical significance of the 
obtained areas. Statistical framework, however, needs careful and extensive dis-
cussion. We need to consider null hypotheses, statistics, their probability distri-
butions, and so forth. Though this is an important topic, we leave it for future 
research.

Thirdly, further applications are necessary to evaluate the effectiveness of the 
proposed method. An empirical study in this paper gave us new findings useful for 
understanding the factors determining the climbers’ behavior, such as train acces-
sibility and competing mountain locations. This, however, does not assure that the 
proposed method always works successfully in other academic fields. Applications 
in epidemiology, criminology, ecology, and other fields of spatial information sci-
ence are necessary.

Fourthly, the definition of distance needs reconsideration. The proposed method 
evaluates the distance between points by the Euclidean distance. The Euclidean dis-
tance, however, is not always appropriate for describing the trip behavior of indi-
viduals (Fortney et al. 2000; Okabe and Sugihara 2012). If we introduce the time 
distance in Sect. 4, the directional variation observed in the distribution of climbers 
may be relaxed. It will also be better to include the waiting time for trains. Time, 
network, and mental distances are possible alternatives that can improve the model 
description.

Fifthly, the method neglects the attributes of points. Climbers of Mt. Azuma vary 
in their attributes, such as age, income, expertise level, etc. Older climbers may tend 
to choose nearby mountains than younger ones. One option is to classify climbers 
by age and compare their α-covering areas. This approach, however, depends on the 
classification scheme, which can be subjective, especially when treating numeri-
cal attributes. Further discussion is necessary to consider the point attributes in the 
analysis.
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