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Abstract
The lineaments are linear features reflecting mountain ridges or discontinuities in 
the geological structure. Lineament extraction is not an easy problem. Recently, an 
automatic approach based on multi-hillshade hierarchic clustering (MHHC) has 
been developed; the approach is based on line extraction from a raster image. An 
essential part of this approach is spatial line segment clustering, a powerful but rela-
tively slow tool. This paper presents a modification of MHHC, which solves the spa-
tial line segment clustering as a facility location problem. The proposed modifica-
tion is faster than MHHC while not changing the method’s core.
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1 Introduction

A lineament is a mappable, simple, or composite linear feature of a surface whose 
parts are aligned in a rectilinear or slightly curvilinear relationship and which dif-
fers distinctly from the patterns of adjacent features and presumably reflects a sub-
surface phenomenon. Discontinuity in a geological structure, a mountain ridge, 
rock boundaries, sedimentary layers, wetness, vegetation changes, and many more 
can form a lineament (see O’Leary et al. 1976). In the field of lineament extrac-
tion from digital images, the lineament is seen as a line or a linear formation that 
is in strong contrast to background pixels (Soto-Pinto et  al. 2013; Hashim et  al. 
2013). The lineaments are beneficial for both application and research areas. The 
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landslide hazard assessment, monitoring of seismic and volcanic activities, and 
natural resource exploration are examples of application use (Ramli et  al. 2010; 
Mallast et  al. 2011). Geological faults comprise an exciting and important sub-
ject of study in geosciences; therefore, identifying the linear patterns of geologi-
cal fault structures becomes an important task (Panagiotakis and Kokinou 2014). 
In geomorphological research, lineaments can be considered as an expression of 
morphotectonic fields, which allows for studying temporal changes of tectonic 
actions on land surface (Minár and Sládek 2009) or understanding of the genetic 
and spatial relationships of fracture systems (Seleem 2013).

Lineament extraction is a method producing line segments as results. Due to 
the fuzzy character of lineaments, the input data are usually multiple line seg-
ments with some inaccuracy which generally means that several similar line seg-
ments represent one lineament. The human eye easily recognizes these objects, 
but computer identification is not trivial (see Fig. 1).

The extraction of lineaments is often done manually. The disadvantage of the 
manual approach is its subjectivity—the user’s opinion influences the result. 
What is more, manual extraction is time-consuming. Therefore, semi-automatic 
and automatic approaches have been developed. A step often used in non-manual 
solutions is the spatial clustering of line segments. It is a method that groups 
line segments based on their length, slope, and position similarity. A representa-
tive line segment of each cluster is picked as a lineament. The spatial clustering 
enables more data input files to process, thus providing results of higher quality; 
however, time consumption might be too high.

An automatic representative method of this type is the multi-hillshade hierar-
chic clustering (MHHC) (Silhavy et al. 2016), which is artifact-resistant, robust, 
and provides similar results as manual extraction; however, it is relatively slow. 
Incorporating a more sophisticated computer science approach may bring a sub-
stantial acceleration while keeping good properties of the original method. And 
this is the main focus of this paper. We concentrate on the clustering step, incor-
porating a facility-location-based approach. The resulting algorithm, acceler-
ated multi-hillshade hierarchic clustering for automatic lineament extraction 
(AMHHC), is faster than the original while keeping its required lineament-extrac-
tion behavior.

Fig. 1  Example of input line segments for lineament extraction
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The paper is structured as follows. Section 2 covers state of the art. Sections 3 
and 4 are devoted to the facility location problem and the original multi-hillshade 
hierarchic clustering algorithm, which are fundamentals for the proposed solution. 
The description of the newly developed approach follows in Sect. 5. Results, experi-
ments, and comparison are in Sect. 6. Section 7 concludes the paper.

2  State of the art

Clustering is a widely used principle in computer science (see Dubes and Jain 1980 
for a survey). It is a process of grouping similar elements into so-called clusters, 
while elements from different clusters must be as dissimilar as possible (Likas et al. 
2003). The input data to be clustered are usually spatial points, but images, patterns, 
or geometrical objects are also possible. Their suitable representation for clustering 
is the points in D-dimensional space, represented by its D spatial coordinates. The 
definition of similarity is crucial and is measured with a distance function, a metric. 
In the simplest case, the Euclidean distance is used. Many metrics (or quasi-metrics) 
for special clustering tasks have been developed, such as Mahalanobis metrics for 
detecting hyper-ellipsoidal clusters (Mao and Jain 1996), Itakura-Saito distance for 
vector quantization in speech processing (Linde et al. 1980), L1 distance for pattern 
recognition (Kashima et al. 2008) or Bregman distances used in machine learning 
(Banerjee et al. 2005).

The clustering problem is classified as NP-hard, so the algorithms produce only 
approximate results. The quality of the approximation is counterbalanced with the 
time of computation. Clustering techniques are applied in many areas, such as data 
analyses (Dubes and Jain 1980), pattern recognition (Baraldi and Blonda 1999), 
image processing (Jain and Flynn 1996), information retrieval (Rasmussen 1992), 
marketing (Russell and Lodwick 1999) or biology (Legendre and Legendre 2012).

Clustering methods can be subdivided into several ways. The taxonomy survey of 
clustering can be found in (Jain and Dubes 1988).

K-means (MacQueen et  al. 1967) and DBSCAN (density-based spatial cluster-
ing of applications with noise, Ester et al. 1996) are well-known partitioning (i.e., 
non-hierarchical) algorithms. K-means is used for its simplicity and performance 
and is supported by many computing libraries. The most significant disadvantage of 
K-means is that the number of clusters must be defined before the algorithm starts.

DBSCAN works well for connected regions of sufficiently high density; other-
wise, the data are marked as noise. For the DBSCAN use, two parameters � and 
MinSample must be defined; � specifies the maximum allowable distance of points 
from the cluster center. The cluster is formed at the point if at least MinSample 
points are at a maximal distance � from this point. In order to improve the DBSCAN 
time complexity O(N2) , it is necessary to involve spatial index structures, such as 
R∗ tree (Beckmann et al. 1990), kd-tree (Bentley 1975) or at least a grid, then time 
complexity O(NlogN) can be achieved. The algorithm does not work well for the 
variable density of input points.

Revisions of existing studies proposing lineament extraction using line segment 
clustering are as follows. Mallast et  al. (2011) used a singularization of identical 
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results from two automatic extraction algorithms to improve the accuracy of the 
lineament map. The whole process was made using GIS analysis but without any 
automation. The method in Jordan and Schott (2005) processed eight different input 
files to produce eight lineament maps that were overlaid, and the line replicates were 
manually eliminated.

Other authors (Abdullah et al. 2010; Seleem 2013) work with multiple input files 
to extract lineaments; they merge the input data to obtain one result.

More references to other methods in the lineament extraction area, such as (Vaz 
2011), (Masoud and Koike 2011), and (Soto-Pinto et  al. 2013), can be found in 
(Silhavy et al. 2016). Let us briefly present at least some, namely those which have 
appeared since the publication of the mentioned paper.

Bonetto et al. (2015) detect linear features on a DTM utilizing algorithms based 
on principal curvature values. Then, the features are grouped according to data col-
lected from the literature review regarding the expected orientation of lineaments in 
the studied area.

The paper by Thiele et al. (2017) describes a novel least-cost path method that can 
“follow” structure traces and lithological contacts between user-defined control points 
in both 2D gridded datasets (photographs, geophysical imagery, etc.) and dense 3D 
point clouds (virtual outcrop models). The method is suitable for computer-assisted 
digitizing structural traces in the point cloud, image, and raster datasets.

Vasuki et al. (2017) is an interactive image segmentation algorithm that harnesses 
the geologist’s input and exploits automated image analysis to provide a practical 
tool for lithology boundary detection, using photographic images of rock surfaces. 
The user is expected to draw rough markings to indicate the locations of different 
geological units in the image. Image segmentation is performed by segmenting 
regions based on their homogeneity in color.

Adiri et al. (2017) compares ASTER, Landsat-8, and Sentinel 1 data sensors in 
automatic lineament extraction, combining image data with pre-existing geological 
maps, the digital elevation model (DEM), and the ground truth.

Karimi and Karimi (2017) extracts line segments from the image, and cluster 
analysis is based on (Silhavy et al. 2016) with some smaller differences.

Msaddek et al. (2019), a semi-automatic extraction of lineaments using satellite 
imagery of Landsat-8 OLI (Operational Land Imager) and digital elevation model of 
SRTM (Shuttle Radar Topography Mission) is presented. The developed algorithm 
used for this purpose combines STA (segment tracing algorithm), ALEGHT (auto-
matic lineament extraction by generalized Hough transform) and AERA (alluvial 
effect reducing algorithm).

Yeomans et  al. (2019) presented two complementary but stand-alone OBIA 
methods for lineament detection (top-down and bottom-up), which both enable 
semi-automatic regional lineament mapping.

In the work by Mohammadpour et  al. (2020), the CANNY algorithm was first 
employed as an edge-detector filter. Later, Hough transform was used to extract lin-
ear features from satellite imagery and geophysical magnetometry data.

The paper by Xu et  al. (2020) uses wavelet modulus maximum transformation 
to detect the edges with four scales on Landsat-8 OLI B5 image and analyzes their 
multi-scale characteristics. The incomplete lineaments are extracted using the 2D Otsu 
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algorithm. Secondly, the hillshade map generated based on DEM is processed to gener-
ate a binarized linear shadow superimposed on the lineaments preliminarily extracted 
to obtain the optimized lineaments.

The study presented in Salui (2018) provides a decision on using a reliable method 
and data source for automated lineament extraction.

The following papers are more oriented to software than to the used method: The 
paper by Masoud and Koike (2017) describes the LINDA tool (LINeament Detection 
and Analysis), a software developed in Visual Basic, which automates processes of 
detection and analysis of linear features from grid data of topography (digital eleva-
tion model, DEM), gravity and magnetic surfaces, as well as data from remote sensing 
imagery. NetworkGT (Nyberg et al. 2018) is an open-source toolbox for ArcGIS capa-
ble of efficient sampling, analysis, and spatial mapping of geometric and topological 
attributes of two-dimensional fracture networks. The toolbox helps to extract and plot 
geometric and topological information from a given two-dimensional fracture network, 
including rose diagrams, frequency distribution plots and topology, and maps of topo-
logical parameters. The paper by Rahnama and Gloaguen (2014) and its later continu-
ation provide a MATLAB-based toolbox TecLines (Tectonic Lineament Analysis) for 
locating and quantifying lineament patterns using satellite data and digital elevation 
models.

The algorithm TRACLUS based on a partition-and-group framework presented in 
Lee et al. (2007) was developed for clustering trajectories, the problem slightly simi-
lar to the lineament extraction. The algorithm contains two phases, trajectory parti-
tioning, and line segment clustering. The clustering part is based on the DBSCAN 
algorithm; therefore, it does not produce good clustering results for data sets with 
significant differences in densities since the MinSample-� combination cannot then 
be chosen appropriately for all clusters or easily determined before clustering (the 
algorithm uses a heuristic to set the parameters properly). For satisfactory results, 
the algorithm requires connected regions of sufficiently high density; otherwise, the 
data are marked as noise. Therefore, while working well for trajectories, the algo-
rithm is unsuitable for the lineaments problem.

The first algorithm for automatic clustering in the lineament extraction problem, 
called multi-hillshade hierarchic clustering (MHHC), was done by Silhavy et  al. 
(2016). The algorithm clusters lineaments to singularize results from multiple dif-
ferent input files. The algorithm provides good results; however, it is relatively slow. 
Therefore, this paper proposes a modification called accelerated multi-hillshade 
hierarchic clustering (AMHHC), which preserves the MHHC’s good properties 
and is faster. The acceleration is achieved by more efficient line segment clustering, 
understood as an instance of the facility location problem, solved by local search.

The following two sections cover the Local Search algorithm and MHHC as two 
fundamental sources of the proposed solution.
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3  Facility location and local search

The clustering used in the proposed algorithm is based on the facility location prob-
lem solution. Let us describe the essence of facility location before proceeding to a 
more formal definition.

Let us have a set of points (sometimes called clients) and a set of facilities (usu-
ally also points, sometimes chosen from the set of clients). The task is to attach each 
particular point to one facility so that some evaluation function is optimized. A typical 
evaluation function is the sum of the distances of the points from their facilities to be 
minimized.

The problem is too difficult to find the global optimum, so local techniques and vari-
ous heuristics are used. For example, first, some initial solution is generated and then 
is tried to be optimized by local reassignments of the points between facilities, the so-
called local search (Korupolu et al. 1998; Charikar and Guha 1999).

The more formal description of the facility location as solved by the local search is 
as follows (Skála and Kolingerová 2011).

Let F = {f i, i = 1, 2,… ,K} be a set of facilities and C = {cj, j = 1, 2,… ,N} be a 
set of clients—the points to be allocated to facilities. A new facility f cj can be opened 
at the client cj , but a facility cost tcost has to be paid for opening a new facility. The goal 
is to minimize the overall clustering cost Q , defined as

where d(cj, f i) is the distance between a point cj ∈ C and its facility f i ∈ F , meas-
ured by a metrics.

A high value of the facility cost brings a low number of large clusters and vice versa.
First, a coarse initial solution is found (Meyerson 2001). The first client is taken 

as a facility; the other clients are then taken in random order. A point cj is connected 
to the closest already open facility f i based on the distance d(cj, f i) . A new facility 
f cj is opened at the point cj if d(cj, f i) > tcost . Otherwise, it is opened with probabil-
ity d(cj, f i)∕tcost . This initial coarse solution is improved by further iterations of the 
following local search step.

The local search step randomly selects a point cp ∈ C . For cp it is computed 
whether a new facility f cp if opened here could improve the current solution (if f cp 
does not exist, a facility cost tcost would have to be paid for its opening). The points 
closer to f cp than to their current facility can be reassigned. Due to this reassign-
ment, some facilities may become too small and be closed to spare their facility 
costs.

A possible improvement to the current solution by declaring the point cp a new 
facility f cp and reassigning all near points from their facilities to f cp is measured by 
a gain function according to the following relation:

(1)Q = K⋅tcost +

K
∑

i=1

∑

j∈f i

d(cj, f i)
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where tcost is the facility cost (zero if the facility f cp is already open), dsj is the dis-
tance spared by reassigning the client cj from its current facility to the facility candi-
date f cp , spi (close spare) is the facility cost minus expenses for reassigning all 
remaining points from their current facility f i to f cp.

If the current facility f i lies closer to cj than f cp , then dsj < 0 and dsj are set to 
zero. Similarly, if spi < 0 (facility f i has enough points and, therefore, no spare can 
be achieved by its closure and reassigning all its points to the new facility f cp ), then 
spi is set to zero.

If gain(p) > 0 , the facility f cp at the point cp is opened (if not already open), and 
reassignments and closures are performed.

The number of iterations of the local search step needed to come to a good clus-
tering solution is at least O(NlogN) (Charikar and Guha 1999).

Advantages of the facility location/local search use for lineaments in comparison 
with DBSCAN are the possibility to cluster regardless of the density of the area, no 
need to build a space index to run fast, and the possibility to distinguish line seg-
ments with substantially different angles without joining them into one lineament.

4  Cluster line analysis in MHHC

In the following section, the line clustering in the original MHHC is described. 
More details can be found in Silhavy et al. (2016).

The goal is to group the input line segments into clusters and then filter clusters 
of small size and compute a representative line segment for each cluster. This repre-
sentative line segment has the length, orientation, and spatial position calculated as 
the average from the line segments forming the same cluster. The average line seg-
ment is the required lineament, and the resulting set of average line segments is the 
required output set of extracted lineaments, the algorithm’s goal.

Let us have a set L of line segments lj, j = 1, 2,…N , where lj is described by the 
following vector:

where Xj, Yj are coordinates of the start vertex of the line segment, �j is the angle 
between the line segment and the positive x-axis (azimuth) and �j is the length of the 
line segment.

The method needs four user-given parameters. The minimum number of line seg-
ments that are allowed to form a cluster is denoted as count threshold ( �cnt ), the 
maximum angle between line segments in a cluster is called the azimuth threshold 
( �az ) and the minimal and maximal allowed size of the so-called buffer zone is bfsmax 

(2)gain(p) = −tcost +

N
∑

j=1

dsj +

K
∑

i=1

spi

(3)lj = [Xj, Yj, �j, �j]
T
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and bfsmin , respectively. The parameters are explained below, with proper values in 
Sect. 6.

The process is shown in more detail in Algorithm 1. The first step (Alg.1, line 1) 
is the filtration of the input line segments to reduce the amount of processed data. 
The filtration is based on a grid approach. The line dataset is inserted into a grid, 
and each line segment increments a counter in the (even partially) covered cell. A 
higher counter value in the grid cell indicates more line segments in the same cell. 
The algorithm deletes all the line segments which cover the area with the average 
cell counter value lower than the given count threshold parameter �cnt.

Then all remaining line segments are sorted according to their length decreas-
ingly (line 2). The main part of the algorithm processes them one by one in this 
order (line 4). In each round (lines 5-14), the longest non-processed line segment 
lj is selected to form a cluster, and all near line segments are tried to be attached 
to this cluster (lines 6-7). To choose the line segments belonging to the currently 
formed cluster, a buffer zone is introduced as a maximally allowed space sur-
rounding the selected line segment lj . In other words, the buffer zone determines 
a minimum distance between two line segments of adjacent clusters. This buffer 
zone decides which line segment is close enough to be inserted into the cluster. 
The size of the buffer zone bfs is computed as:
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where �j is the length of the current investigated line segment lj . In other words, the 
buffer zone becomes bigger according to the length of the line segment concerning 
the minimal bfsmin and the maximal bfsmax distance.

A line segment is inserted into the current cluster only if its azimuth is similar 
to the azimuth of the longest line segment in the cluster (the limits of similarity 
are given by the user parameter azimuth threshold �az , line 8).

If the cluster formed this way contains enough line segments (the required 
number is given by �cnt , line 9), it is saved (line 10), and the average line seg-
ment of this cluster is computed (lines 11-12) using three parameters: the center, 
the length and the azimuth. These parameters are determined from the cluster 
characteristics. The length and the azimuth are average values computed from all 
line segments in the cluster. The center is obtained as a length-weighted average 
of coordinates of each line segment center in the cluster (see Fig. 2). All the line 
segments forming the cluster are removed from the data set (line 13), and the 
algorithm continues with the next yet unprocessed line segment.

Let us move to the time complexity of Algorithm 1. The whole algorithm can 
be divided into three main parts.

Part 1 (line 1), line segments insertion into the grid and filtration, needs Or(N) 
time supposing maximally O(

√

N) ×O(
√

N) size of the grid.
For part 2 (line 2), sorting, some well-known sorting algorithms such as 

quicksort or merge sort can be used. Using an optimal sorting algorithm, part 2 
needs Os(NlogN) time.

The worst scenario of part 3 (line 3-14), the clustering part, can lead to a situ-
ation where all checked line segments in L are outside the buffer zones, which 
means that in every iteration a new cluster is made. As a consequence, step 7 
will check all line segments in O(N) . The overall time complexity of the cluster-
ing part is thus Ocl(N

2).
The total time complexity of clustering line analysis of the MHHC can be 

summarized as OMHHC = Or +Os +Ocl = O(N) +O(NlogN) +O(N2) = O(N2).
Algorithm  1 checks many possible cases of cluster groups and brings a 

usable solution. However, due to the extensive search, it is very slow. A more 

(4)bfs = min(max(bfsmin,
1

10
�j), bfsmax)

Fig. 2  Example of average line computation a construction of the cluster center for a cluster with two 
line segments, b example of the average line (bold) of the cluster with four lines (thin)
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sophisticated clustering method can improve the time complexity and substan-
tially speed up the computation.

5  The proposed method for line segments clustering

The original local search algorithm expects all the point coordinates of the same 
units in the same interval to work correctly. However, suppose the line segments 
given by Eq. (3) are used instead of points. In that case, the particular coordinates 
can have different intervals and units (the azimuth is measured in degrees, and the 
spatial coordinates are usually in meters).

To balance such heterogeneous coordinates, let us define the weight w 
for distance computations. The calculation of the weighted distance dw of 
two points p = (p1, p2,… pD)

T and q = (q1, q2,… qD)
T affected by the weight 

w = (w1,w2,…wD)
T ,wi ∈ R+

�
 is defined as follows:

The domain for w depends on the application or user preferences. By the weights, 
adding more influence to some of the coordinates is possible.

The final clustering cost Q in Eq.  (1) depends on the individual coordinates’ 
weight changes. Let us demonstrate the influence for D = 2 . If the weight of the 
second coordinate is lower than the weight of the first coordinate, then the final 
clusters are more elongated in the direction of the second coordinate; see Fig. 3.

If the weights are used, the overall clustering cost Q is influenced by chang-
ing the weighted distance calculation individually dw . Before calculating the 
weighted distance dw(lp, lq) between line segments lp and lq according to Eq. (5), 
line segments are tested if they lie in the buffer zone and satisfy the azimuth 
threshold �az . If a segment violates one of these thresholds, the weighted distance 
dw is set to infinity. Otherwise, the computation continues according to Eq.  (5). 

(5)dw(p, q) =
√

w (p − q)2

Fig. 3  Influence of the weights, a equal weights, b the weight of the second coordinate is smaller
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So, the computation of the weighted distance dw of two line segments lp and lq can 
be formalized as:

The proposed algorithm uses the distance dw in Eq. (1) instead of d. This modifica-
tion makes a connection between two line segments violating one of the conditions, 
which is costly but not impossible due to the randomness of the local search step. It 
means that, unlike the original cluster line analysis algorithm in MHHC presented 
in Sect.  4, the resulting cluster may violate either the buffer zone or the azimuth 
condition.

Another impact of Eq. (6) can be seen on special occasions, where multiple line seg-
ments are in the same buffer zone but could represent different lineament features. In 
that case, the distance between the cluster and line segments is calculated to determine 
whether the line segment should be connected to the existing cluster or creates a new 
cluster according to the total clustering cost Q.

The newly proposed algorithm is presented in Algorithm 3, using facility location 
for input data given as a set of line segments in Algorithm 2.

The main differences against MHHC are as follows. The cluster line analysis in the 
MHHC algorithm uses filtering (noise reduction) as the first step to save computation 
time. In the proposed algorithm, it is no more needed. It is advantageous because filter-
ing may expel some “useful” line segments and requires extra time. Instead of being 
sorted, the line segments are clustered using the facility location.

Another difference from the clustering algorithm in MHHC is a simplification of 
the buffer zone’s shape around the cluster’s average line segment. Now a rectangular 
buffer zone is used, and its shape is checked whenever the arrangement of the cluster 
is changed (new line segments are added or removed from the cluster) and modified if 
necessary. The width and the height of the buffer zone rectangle are controlled by the 
parameters X and Y , respectively.

(6)dw(lp, lq) =

⎧

⎪

⎨

⎪

⎩

√

w ∗ (p − q)2 if p, q fulfil the buffer zone condition and

azimuth threshold �az
∞ otherwise
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Let us address the complexity of AMHHC. The worst-case complexity of the 
proposed algorithm is reigned by the facility location part (step 1 in Algorithm 2), 
which is O(N2) . It means that the AMHHC algorithm is, in the worst case, not bet-
ter than the MHHC; however, the expected behavior could be better due to the more 
sophisticated clustering part.

6  Experiments and results

The newly proposed AMHHC algorithm and the existing MHHC algorithm were 
implemented in Python 3.7 (Kaas 2017) to make a fair comparison. Experiments 
were run on the computer with Intel ® Xeon ® under Windows 10 with 14 GB 
memory.

The set of parameters for the original MHHC algorithm was chosen to pro-
duce the best possible MHHC results: �cnt = 4 , �az = 20◦ , bfsmax = 200m and 
bfsmin = 100m . The parameters for AMHHC were then chosen similarly for a fair 
comparison. The parameters for AMHHC were: �cnt = 4 , �az = 20◦ , X = 150m and 
Y = 200m.

The datasets for the tests were not taken from one particular geographical area 
but combined from more regions; the main criterion was the number of detected 
lineaments so that we could produce a table with a growing number of lineaments 
and compare the runtimes as a function of input size. The tests were run on 13 data-
sets of various sizes, 1000 up to 300 000 line segments (Kaas and Silhavy 2017a, 
b). The datasets describe natural areas in Canada, the Czech Republic (the Šumava 
mountains), and the Slovak Republic (the Žiar and Hronska mountains). Some of 
these areas were visualized in Silhavy et al. (2016). The two most extensive datasets 
could not have been processed by the MHHC method due to their more considerable 
memory requirements.
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The quality of results was compared in two ways, by mutual correlations com-
puted from the results and by visual comparison.

The correlation of the line segments was computed by the vector-based comparison 
(Silhavy et al. 2016), see Algorithm 4. This algorithm has two sets of line segments as 
input, A , and B . It takes a line segment from A and looks for a corresponding line seg-
ment in B . A corresponding line segment must lie in the defined buffer zone and have 
the azimuth difference from the tested line segment less than �az . The correlation is 
then determined as the number of the found reference line segments and the tested line 
segments in percent. A bigger value means a bigger correspondence between both line 
segment sets. The same test is done with swapped A and B sets.

Table 1, column Corr(MHHC, AMHHC), uses the MHHC line segments as LA 
and the AMHHC line segments as LB , Corr(AMHHC, MHHC) vice versa. Mutual 
correlations proved a high rate of identity between the results of both methods. 
Corr(MHHC, AMHHC) reached nearly 100 percent, which means that nearly for 

Table 1  Correlation and count of clusters comparison

#Lsg Number of line segments, multihillshade hierarchic clustering—MHHC, accelerated multihillshade 
hierarchic clustering—AMHHC, the MHHC without grid filtration—MHHCg− , #Cls number of clusters

#Lsg Corr(MHHC, 
AMHHC)

Corr(AMHHC, 
MHHC)

Corr(MHHC
g−

 , 
AMHHC)

Corr(AMHHC, 
MHHC

g−
)

#cls 
MHHC

#cls 
MHHC 

g−

#cls AMHHC

1 000 97.1 98.6 98.6 99.0 88 92 384
2 000 99.7 98.9 99.7 99.3 144 145 570
3 500 99.6 92.7 99.9 96.4 294 321 927
5 000 99.3 94.4 99.5 97.6 458 475 985
10 000 99.1 93.2 99.7 98.8 851 880 1624
15 000 99.0 90.7 99.8 97.6 1268 1372 2812
20 000 99.4 95.7 99.5 98.2 1854 1870 3321
25 000 99.3 96.8 99.8 98.0 2300 2373 4830
35 000 99.5 94.8 99.9 98.3 3010 3061 5966
50 000 99.6 94.5 99.9 97.5 3875 4158 6235
60 000 99.0 95.2 99.6 99.6 4769 4822 9214
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each line segment computed by MHHC there is a corresponding line segment com-
puted by AMHHC. Corr(AMHHC, MHHC) came to 95 percent on average, imply-
ing that some line segments are computed by AMHHC that do not have a corre-
sponding line segment found by MHHC. These extra line segments in AMHHC 
are usually those which have been filtered in the noise reduction step in MHHC. 

Fig. 4  Visual comparison of 
results (Note multihillshade 
hierarchic clustering—MHHC, 
accelerated multihillshade hier-
archic clustering—AMHHC)
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Therefore the MHHCg− represents the MHHC algorithm without grid filtration 
(step 1 in Algorithm 1). This phenomenon is confirmed by column Corr(AMHHC, 
MHHCg− ), which has increased the correlation to 98 percent on average. The last 
three columns show the number of resulting clusters in all methods. In summary, we 
can say that the AMHHC provides similar results (reaching 98 to 100 percent of cor-
relation) to the original MHHC approach.

The statistical results were confirmed by visual comparison. A typical example is 
shown in Fig. 4a, where the input dataset is represented by gray color, average cent-
ers of MHHC by red, and AMHHC by light green. It can be seen that the results are 
nearly the same. The differences are minimal; see Fig. 4b, where greenly highlighted 
average centers produced by AMHHC are not present in the result of MHHC. These 
extra centers are usually present in regions with a higher density of line segments. 
AMHHC is in some way more careful.

Table 2  Runtime of 
multihillshade hierarchic 
clustering (MHHC), accelerated 
multihillshade hierarchic 
clustering (AMHHC), and the 
speed-up

#Lsg MHHC [s] AMHHC [s] MHHC/AMHHC

1 000 179 81 2.21
2 000 459 179 2.56
3 500 935 300 3.12
5 000 2553 856 2.98
10 000 9122 2425 3.76
15 000 21465 5422 3.96
20 000 30578 9173 3.33
25 000 63360 16439 3.85
35 000 68565 19589 3.50
50 000 157583 36636 4.30
60 000 140877 31084 4.53

Fig. 5  Accelerated multihillshade hierarchic clustering (AMHHC) speed-up against the original multi-
hillshade hierarchic clustering (MHHC)
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Table 2 shows the total computing times of the original MHHC and AMHHC. 
The speed-up of AMHHC is shown in the column “MHHC/AMHHC”.

It can be seen that AMHHC is for tested datasets faster; the trend is shown in 
Fig. 5, i.e., for bigger datasets, there comes a higher speed-up between the proposed 
algorithm and its predecessor. The speed-up is caused by a more sophisticated clus-
tering approach. The first part of the Algorithm 2 continuously investigates a point 
against existing facilities. In real data, the number of facilities slowly increases dur-
ing the algorithm. Therefore, the O(N2) time is rarely needed in practice. The sec-
ond part of the Algorithm 2 with complexity O(NlogN) is enough to make a suf-
ficient clustering solution. In contrast, in MHHC a point is investigated against the 
rest of the data set; therefore, O(N2) is always needed.

7  Conclusion

This paper presented a new algorithm, AMHHC, for the spatial line segment clus-
tering in the lineament extraction. The algorithm is based on a modification of the 
MHHC algorithm. The modification is based on the facility location algorithm for 
clustering, modified for line segments. The experiments verified that the algorithm 
is much faster than the original algorithm and provides nearly identical results, keep-
ing the good properties of the original algorithm. Its minor memory requirements 
allow it to process more extensive data sets.

The proposed solution could be further accelerated using the N-dimensional ver-
sion of quadtree to restrict the searched space of line segments in the function gain 
used in Algorithm 2. Instead of checking the whole input data set of the line seg-
ments, only those line segments, which can be attached to the newly formed cluster, 
would be inspected.
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