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Abstract
In the past ten years, cities have experienced a burst of micromobility services as 
they offer a flexible transport option that allows users to cover short trips or the first/
last mile of longer trips. Despite their potential impacts on mobility and the fact that 
they offer a cleaner, more environmentally friendly alternative to private cars, few 
efforts have been devoted to studying patterns of use. In this paper we introduce new 
ways of visualizing and understanding spatiotemporal patterns of micromobility in 
Madrid based on the conceptual framework of Time-Geography. Hägerstrand’s per-
spectives are taken and adapted to analyze data regarding use of micromobility, con-
sidering each trip departure location (origins) obtained from GPS records. The data-
sets are collected by three of the most important micromobility operators in the city. 
Trip origins (points) are processed and visualized using space–time cubes and then 
spatially analyzed in a GIS environment. The results of this analysis help to iden-
tify the landscape of micromobility in the city, detecting hotspot areas and location 
clusters that share similar behavior throughout space and time in terms of micro-
mobility departures. The methods presented can have application in other cities and 
could offer insights for transport planners and micromobility operators to better 
inform urban planning and transportation policy. Additionally, the information could 
help operators to optimize vehicle redistribution and maintenance/recharging tasks, 
reducing congestion and increasing efficiency.
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1 Introduction

The introduction of the sharing economy has impacted many economic sectors, 
including transportation. New services, like micromobility, are offered each day 
and users have access to multiple transport options, radically changing their travel 
behavior (Jiao and Bai 2020). Micromobility has been defined as the short-term 
access to low-speed shared vehicles, according to the user’s needs and conveni-
ence, instead of requiring vehicle ownership (Lazarus et  al. 2020; Shaheen and 
Cohen 2019). In the past decade, micromobility services have gained attention as 
they are changing urban mobility dynamics by offering a flexible transport option 
capable of avoiding road congestion, reducing the required parking space, and 
lowering noise/air pollution, since all vehicles are hybrid electric/electric, as well 
as reducing inequities in the provision of transportation services and encourag-
ing intermodality with mass transit (Aguilera-García et al. 2020; Arias-Molinares 
et al. 2021; Desjardins et al. 2022).

The growth of micromobility services has been enabled by the rapid devel-
opment of information and communication technologies (ICTs), along with 
improvements in Geographical Information Systems (GIS), the emergence of new 
data sources, and advanced data processing capabilities using programming. Indi-
viduals now move using the latest location-aware technology, which requires data 
that fits personal needs. As a result, fundamental questions related to geospatial 
data such as “what?,” “where?” and “when?” are increasingly relevant (Kraak 
2003). New technologies generate a huge amounts of data with high spatiotempo-
ral detail, all of which explains the revival and growing interest in Hägerstrand’s 
Time Geography (Miller 2005; Shen et al. 2013; Dodge and Nelson 2023; Shaw 
2023).

The time-geographic framework proposed by Hägerstrand (1970) at the end of 
the sixties provided a useful means for exploring the spatiotemporal component 
of the human activity. However, when this model was introduced, the available 
data and the tools for its visualization and analysis were scarce. Therefore, despite 
its usefulness, only a few studies implemented time-geographical visualizations 
using empirical data up until the mid-1990s (Kwan 2004). Today’s software’s 
advanced capabilities and the increasing availability of geo-referenced data col-
lected by global positioning systems (GPS) offer high spatiotemporal granularity 
which enables, more than ever before, the operationalization and implementation 
of time-geographic constructs in multiple research areas like crime, public health, 
traffic safety, and construction (Desjardins et  al. 2020; Jing et  al. 2020; Nakaya 
2010; Yang et al. 2017; Roofagari-Esfahan et al. 2015).

Transport planning is one area with potential application for Time Geography 
(Miller 2007). Studies related to the use of space–time paths (st-paths) include 
Osorio-Arjona and García-Palomares (2020), Shaw and Wang (2000) and Frihida 
and Marceau (2004) that delved into the spatiotemporal characteristics of travel 
patterns or Kapler and Wright (2005) and Kraak and He (2009) that included nov-
elties in annotations and the incorporation of icons/images to describe the activi-
ties related to the movements. To explore and process large datasets, Shaw et al. 
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(2008) proposed a generalized method for st-paths to explore temporal changes 
among individuals. Other studies used prims to understand space–time accessi-
bilities and analyze complex activities (Huisman and Forer 1998, 1999; Miller 
1999; Dijst and Vidakovic 2000; O’Sullivan et al. 2000; Hornsby and Egenhofer 
2002; Timmermans et al. 2002; Jacquez et al. 2005; Miller 2005; Ratcliffe 2006; 
Kuijpers and Othman 2009; Neutens 2010; Kuijpers et al. 2011).

All these previously mentioned studies applied Hägerstrand’s concepts to their 
topics of interest, as they analyzed people’s movements. In this paper, draw inspira-
tion from concepts and tools from Time-Geography to propose innovative ways of 
visualizing massive micromobility data. Therefore, we continue the line of research 
set, for example, in Yang et  al. (2020) that proposed a space–time demand cube 
framework to represent and capture the fine-grained spatiotemporal variations in 
bike demand using GPS records from a dockless bike-sharing operator in China. 
They used space–time cubes to aggregate trip origins which helped them to visualize 
and understand historical and dynamic bike demands. Another example is found in 
Pereira et al. (2022), that took the space–time path idea and created a package called 
“{gtfs2gps}” which helps to easily process static GTFS and visualize trajectories of 
public transport vehicles at fine spatial and temporal resolutions. Instead of work-
ing with an individual’s path, they graphed bus routes. They explored the boarding/
alighting of passengers as ‘fixed activities’ that occur at public transport stations. 
As a result, they obtained a graphic visualization of each route’s trip frequency in 
a 3D space–time aquarium with a sequence of space–time paths, one for each trip, 
stacked over time. On both studies, Time Geography represents the base from which 
they take off and delve into new ways of visualizing mobility data, which is the aim 
of this paper.

Using this approach, we try to address the need to understand the space–time 
logic of the use of micromobility tools, and how this logic impacts micromobili-
ty’s operational tasks, as well as the opportunity to analyze demand patterns with 
more spatiotemporal detail. We can use space–time cubes (STC) to visualize and 
analyze the spatiotemporal distribution of micromobility supply and, consequently, 
its impact on the urban landscape and the new challenges it generates (parking space 
needed and conflicts with pedestrians, competition with other modes, etc.). Addi-
tionally, we can investigate the spatiotemporal capability constraints between supply 
(distribution of vehicles) and demand (through land uses).

Hence, our study aims at contributing to the literature that explores micromobil-
ity spatiotemporal travel patterns using GPS records and space–time cubes. More 
specifically, using GPS origin point records from three different shared modes 
(bikes, mopeds and scooters), we intend to identify the most important hotspot 
areas, analyze trip generations according to the time of the day and finally, be able 
to identify different types of areas (location clusters) that share similar behavior in 
space and time in terms of micromobility departures. We believe that these types of 
studies are necessary and more feasible nowadays with the new available sources 
of massive data, that are allowing researchers to go beyond what has been done 
traditionally, and rather innovating in new approaches to address mobility issues. 
Transport authorities and micromobility operators could feed their decision-making 
processes with insights obtained from understanding spatiotemporal patterns from 
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a space–time perspective. The rest of the article is structured in four sections. Sec-
tion 2 summarizes related literature, while Sect.  3 introduces the study case, data 
and methods used, following Sect. 4 with results and lastly Sect. 5 offers discussion 
and conclusions.

2  Literature review

2.1  Research on micromobility’s spatiotemporal patterns

In the last decade, there has been a growing body of literature related to studying 
spatiotemporal travel patterns for shared mobility and micromobility services, espe-
cially bike-sharing programs as they were the first schemes deployed. For example, 
Corcoran et al. (2014) used GPS data and explored the effects of weather and calen-
dar events on spatiotemporal patterns of bike-sharing using multivariate regression 
models. Another similar study conducted by Purnama and Irawan (2018) also ana-
lyzed GPS records from the public bike-sharing system in London and New York 
and use the Pearson’s correlation coefficient to observe the correlation of external 
factors with the daily usage. Similarly, Nickkar et  al. (2019) used GPS records to 
study the influence of socio-demographic factors on travel patterns in Baltimore and 
evaluated the relationship between gender and land use in terms of the trip’s origin 
and destination locations by using statistical analysis.

More recently, with the introduction of new micromobility modes like mopeds 
and scooters, more studies have become available regarding comparative analyses 
between existing bike-sharing schemes and moped-style or scooter-sharing ones. 
One of these studies, conducted by Zhu et al. (2020) compared dockless bike-shar-
ing and station-based scooter-sharing services using GPS records (for bikes) and a 
scraping tool (for scooters) to estimate redistribution trips and fleet sizes as well as 
other descriptive characteristics that help understand the heterogeneity of the two 
services. Moreover, Younes et  al. (2020) used open-access Application Program-
ming Interfaces (APIs) for six dockless scooter-sharing services and historical trip 
data for the city’s public bike-sharing service (Capital Bikeshare, Washington DC) 
to estimate two variables: hourly number of trips and hourly median duration of 
trips. This estimation was based on a negative-binomial regression model including 
environmental and economic variables such as weather-related data, gasoline prices, 
local events or disturbances, day of the week, and time of day. Regarding moped-
style scooter-sharing services (also known as moto-sharing), four recent studies are 
found. One of them by Pérez-Fernández and García-Palomares (2021) that used 
GPS datasets and proposed a methodology to locate parking places based on the 
varying distribution of demand over the day. Jiao and Bai (2020) applied univariate 
LISA to identify areas of high demand (hotspots) in the use of shared e-scooters, 
as a preliminary step before applying regression models. Moreover, Arias-Molin-
ares et  al. (2021) also used mopeds’ trip data to analyze locational patterns over 
time and assess how the different factors influenced its usage level and self-balance 
potential using Exploratory Spatial Data Analysis (ESDA) tools. And lastly, Bach 
et al. (2023) examined the determinants of the spatial coverage of four moped-style 
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scooter-sharing services in Barcelona. Their results suggest that territorial coverage 
is defined by centrality, household disposable income, and topography, with low-
accessibility areas consistently omitted from services. Based on previous literature, 
our main contribution is the comparison of spatiotemporal patterns of three differ-
ent micromobility modes simultaneously (docked bikes and dockless scooters and 
mopeds). These analyses offer useful insights into similarities and differences in the 
usage patterns of these systems across different parts of Madrid, over different hours 
of the day, according to weekdays and weekends, and how they relate to land use.

2.2  Building upon the ideas of time geography to create new ways of visualizing 
micromobility data

We link Time Geography and micromobility data with the offer of a potential tool 
for processing and visualizing massive amounts of data, especially GPS records. 
As stated by Pereira et  al. (2022), space–time cubes make it possible to visual-
ize and explore mobility data in ways that they were not easily done before. We 
depart from the fact that micromobility services are filling the gap or being breach 
modes between walking and motorized transport alternatives. With shared services, 
users have now the alternative to not walk and neither use a motorized transport, 
but rather use an eco-friendly option like a bike, moped or scooter that has no  CO2 
emissions and allows faster speeds (with respect to walking). But for a micromo-
bility trip to even occur, an individual has to both, be located inside a service area 
and also find an available shared vehicle. Therefore, we focus on the access to these 
shared services which are represented by the occurrence of a trip departure, which 
are the places where these two conditions were fulfilled. By aggregating trip origins 
into space–time cubes, we visualize the access locations to shared services and its 
spatiotemporal patterns over time. Based on the notion of stationary activities, trip 
departures constitute the locations where an individual spent some time in order to 
locate, reserve and initiate a shared mobility trip. These departures are also sparsely 
distributed in space and time, where the fleet is available, being also related to the 
service’s constraints. Thus, micromobility could be perceived as a subject to author-
ity restrictions as each service have specific areas of coverage (service geo-fence). 
Its capacity as a mobility service is limited by the number of vehicles (fleet size), 
the distance that can be traveled (mostly short trips), and its geographical distribu-
tion throughout the day. Finally, the system’s success depends on the coupling of the 
vehicles’ location and its demand, and thus, the redistribution of vehicles becomes 
one of the most fundamental elements to consider.

Continuing with this line of research, we intend to explore how spatiotemporal 
dynamics change over a day (hourly), according to different types of days (week-
days and weekends), and how these dynamics are linked to land uses. Additionally, 
we will conduct these analyses not only regarding bikes but also other micromobil-
ity services like shared mopeds and scooters so that comparisons are allowed. We 
believe space–time cubes are a useful tool to study aggregated micromobility pat-
terns because it offers a better overall understanding of the spatiotemporal patterns 
in large datasets, enabling researchers to quickly identify the most relevant changes 
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in dynamics along space and time, which becomes a harder task to do by only using 
traditional 2D maps.

3  Study context, data and methodology

3.1  Study context

The selection of Madrid is of special interest as the city has been known as one 
of Europe’s top living laboratories for shared mobility, allowing its residents to be 
familiar with the emerging transport options, especially micromobility services 
(Aguilera-García et al. 2020). The multiple and varied shared mobility supply, along 
with a solid public transport system, a great land use diversity and high population/
employment densities make Madrid an appropriate area for these new services to 
burst. In 2019, the shared fleet was estimated in more than 20.000 vehicles (Arias-
Molinares and García-Palomares 2020; Bernardo 2019; Granda and Sobrino 2019). 
These services are usually supported by mobile applications where their clients 
register and locate vehicles. In the case of Madrid, all micromobility services offer 
electric vehicles and can be station-based or dockless models. For our research, we 
have established collaboration agreements with two of the most important micromo-
bility operators in Madrid to access anonymized trip data: Movo and Muving. In the 
case of BiciMAD, the data are publicly shared through an open data portal. Station-
based services like BiciMAD have designated locations where users pick and leave 
the vehicles at, while dockless services, like Movo and Muving, offer more flexibility 
as the vehicles can be picked/returned at any location within a geographic area (also 
known as geo-fence).

BiciMAD is Madrid’s public bike-sharing system, in operation since 2014, and 
currently being managed by Municipal Transport Company (EMT), with around 
75.000 subscribers (Ayuntamiento de Madrid 2019). Since its launch in 2014, 
four expansions have taken place and it now has 264 stations with a total of 2.900 
bikes. All BiciMAD’s fleet is equipped with GPS trackers and pedal assistance up 
to 25 km/h. BiciMAD is one of the first micromobility services deployed in the city 
and the one managed by a public transport authority. Secondly, Movo is a moped-
style scooter-sharing (also known as moto-sharing) and scooter-sharing service 
launched in 2018 and it operates 500 mopeds and 1.400 scooters (Polo and González 
2019). Finally, Muving is a moped-style scooter-sharing operator that manages 755 
mopeds. The company was operative in Madrid from 2018 to 2020 (Arias-Molin-
ares et al. 2021) (see Fig. 1).

One of the aspects that most differentiates these services is their area of cover-
age (geo-fence), which is closely related to their different models. In the case of 
BiciMAD, being a station-based model, it covers essentially the city’s core center 
area (inside M-30 Highway) where most bike stations are located. As there are 
specifically designated areas, BiciMAD’s usage is more intense and concentrated 
around these locations. In the case of dockless services, the geo-fence is larger 
reaching other peripheral areas outside the M-30 highway and being more homo-
geneously distributed in the city which creates a relatively less intense usage in 
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each location. This study performs the spatiotemporal analyses of each service 
considering these different geo-fences, not according to a single area of coverage.

3.2  Data

As was mentioned previously, collaboration agreements were established with the 
companies named “Movo” (mopeds + scooters) and “Muving” (mopeds). In the 
case of “BiciMAD” (bikes), this was not necessary because they publicly share 
their data on their website. We obtained datasets for Movo and Muving cover-
ing the months from the last semester of 2019 (from June to December), thus the 
same period was downloaded for BiciMAD to cover the same timeframe for all 
the services evaluated.

• BiciMAD data were extracted from the website: https:// opend ata. emtma drid. es/ 
Datos- estat icos/ Datos- gener ales- (1). They monthly upload datasets (in JSON 
format). BiciMAD datasets offer the origin location (point with XY coordinates) 
of each trip and the exact time when it started (timestamp). It also offers infor-
mation on trip time (seconds). Only BiciMAD separates those origins of admin-
istrative trips (redistribution of vehicles) which is highly useful to filter data.

• Movo the company provided us with a dataset (in JSON format). Movo datasets 
offer information of the original location (point with XY coordinates) of each 
trip, the time when it started (timestamp), and the vehicle type (moped/scooter). 
It also offers information on trip time (seconds).

• Muving the company provided us with a dataset (in CSV format). Muving data-
sets offer information of the original location (point with XY coordinates) of 
each trip and the time when it started (timestamp). It also has information on the 
trip time (minutes) and distance (km).

• Land use data and transport zone data: to perform certain spatial analyses, we 
use land use data provided by the Directorate-General for Cadastre in Spain 
(Cadastre), by a built entity of the study area. The databases define the surface 
area [m2] of each type of land use. These data are updated every six months and 
the data set used corresponds to the update of January 24, 2020.

Fig. 1  Micromobility services analyzed in the study. From left to right: (1) Station-based bike-sharing 
(BiciMAD bikes), (2 and 3) dockless moped-style scooter-sharing (Movo and Muving mopeds) and 4) 
dockless scooter-sharing (Movo scooters)

https://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1
https://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1
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3.3  Methodology

3.3.1  Processing and cleaning the datasets

The data processing workflow covered entering, cleaning, transforming, and out-
putting the final valid datasets (using Python vs. 3.8). For all the datasets, the 
initial cleaning process involved eliminating those observations (origin points) 
with trip distance or time equal to zero (erratic data). A second cleaning stage 
consisted of filtering datasets by making certain assumptions, such as not consid-
ering the origins of trips that lasted over a certain time or cover large distances 
(as seen in the filtering criterion in Table  1). This was necessary to eliminate 
unrealistically long-distance trips (probably GPS errors) and redistribution trips 
(as only BiciMAD tagged them). Thus, we cleaned BiciMAD and Movo datasets 
by trip time and in the case of Muving, we cleaned the dataset by both trip time 
and distance.

After obtaining the cleaned datasets for all services (bikes, mopeds and scoot-
ers), we decided to separate the databases according to different scenarios based 
on the day of the week: weekdays (from Mondays to Fridays) and weekends (Sat-
urdays and Sundays). We also determined to work with the count of origin points 
for an average day. Therefore, we divided the weekdays databases by 120 (5 days 
* 4 weeks * 6 months = 120 weekdays in 6 months) and the weekends databases 
by 48 (2 days *4 weeks * 6 months = 48 weekends in the same period).

3.3.2  Understanding spatiotemporal travel patterns

Once our cleaned and averaged datasets were obtained, we visualize and ana-
lyze origins (departures) using STC. Geography was represented according to 
a hexagonal grid (with a centroid-to-centroid distance equal to 250 m that cov-
ers the study area, while the height was representing each hour of the day. A 
250  m-sided hexagonal grid was determined based on similar research as this 
size ensures that each cell contains several city blocks (García-Palomares et al. 
2015; Degele et  al. 2018; McKenzie 2019b; Megler et  al. 2014; Barros et  al. 

Table 1  Filtering criterion for the second stage of dataset cleaning

Variable Min value Max value Filtering criterion

Time 60 s 2 h  Min value: trip duration longer than one minute was kept in our 
study dataset (McKenzie 2019b). Trips with a duration less 
than 60 s are probably cases of users that had problems with 
the vehicle/app

 Max value: two hours is the maximum battery life of an electric 
vehicle given continuous movement. Any trip lasting longer 
than two hours implies that the vehicle was offline for some 
period (i.e., recharging or in a truck for relocation)

Distance 100 m 70 km  Min value: only those trips with a road network distance greater 
than 100 m were kept (McKenzie 2019b)

 Max value: mostly, micromobility vehicles’ autonomy is 70 km
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2020). Following this scheme (see Fig. 2), when creating the STCs, we aggre-
gate each origin (departure point) to the correspondent bin (hexagons and hour) 
when the trip was initiated. STCs were then created for weekdays and weekends. 
This step results in the creation of six cubes: bikes-weekdays, bikes-weekends, 
mopeds-weekdays, mopeds-weekends, scooters-weekdays, and scooters-week-
ends, which are the input layers for the rest of the analyses, performed with Arc-
GIS Pro version 2.8.3.

With the STCs created, the first analysis intends to capture micromobility’s 
different dynamics with two complemental visualizations: daily (2D maps) and 
hourly (3D maps) behavior. For 2D visualizations, we make a map representing 
the total amount of departures (origin points) by hexagon according to the day of 
the week and mode. In the case of 3D visualizations, two STCs are created. The 
first one shows hourly departures (origin points) hourly, while the other represents 
the hot and cold spot analyses hourly, using Getis-Ord’s index (Gi). This statis-
tic measures the degree of clustering for either high or low values. The result-
ant z-scores and p-values report where features (in this case hexagons) with either 
high or low values are clustering spatially. This method analyses each feature 
within the context of neighboring features, for which we determined a 500 m dis-
tance band, as it will include all the neighbors surrounding each hexagonal cell 
and based on similar previous research (García-Palomares et  al 2015). For both 
3D visualizations, and due to space reasons, we determined to show results at cer-
tain relevant hours (instead of all hours), which helped to understand and high-
light important dynamics throughout the day: 00 h (majority of people at home or 
nightlife activities), 08 h (rush peak AM hour), 14 h (lunch and midday activities) 
and 19 h (rush peak PM hour and nightlife activities) (as we can observe and jus-
tify by Fig. 4). Finally, the results of Hotspot Analysis by each hour are summa-
rized in a 2D map that represents the percentage of times that each hexagon was a 
hotspot throughout the day.

Fig. 2  Space–time cube models’ scheme
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3.3.3  Identifying locations that share similar travel behavior

The second analysis intends to identify and group locations that shared similar 
space–time behavior in terms of micromobility’s departures. This helps to catego-
rize types of spaces obtaining what we called “location profile-time clusters”. To 
this end, we used Time-Series Clustering, which is the process of partitioning a 
time-series dataset into a certain number of clusters, according to a certain similar-
ity criterion (Huang et  al. 2020). Clustering is a data mining technique in which 
similar data is placed into related/homogeneous groups without knowing the group’s 
definition. More specifically, clusters are formed by grouping objects that have max-
imum similarity with other objects within the group and minimum similarity with 
objects outside the group (Aghabozorgi et al. 2015). A special type of clustering is 
time-series clustering. A sequence composed of a series of nominal symbols from a 
particular alphabet is usually called a temporal sequence, while a sequence of con-
tinuous, real-valued elements is known as a time series. A time series is dynamic 
because its feature values change as a function of time, which means that the 
value(s) of each point of a time series is/are one or more observations that are made 
chronologically. Hence, time series are a type of temporal data which is high dimen-
sional and large in data size (Keogh and Shruti 2003; Rani and Sikka 2012; Warren-
Liao 2005; Aghabozorgi et al. 2015). The Time-Series Clustering method identifies 
the locations in a space–time cube that are most similar and partitions them into dis-
tinct clusters in which members of each cluster have similar time-series characteris-
tics. These techniques have been applied in several research (Mattera 2022; Li and 
Xu 2021; Wang et al. 2021; Aghabozorgi et al. 2015). Time series can be clustered, 
so they have similar values across time, stay in proportion across time, or display 
similar smooth periodic patterns across time. This latter one is the Profile (Fourier) 
type, and it is used to cluster time series that have similar smooth, periodic patterns 
in their values across time. These periods are sometimes called cycles or seasons, 
and they represent the durations of a single pattern that then repeats in a new period. 
As micromobility services follow repetitive seasonal trends, we determined to use 
this approach.

The cluster results finally help us to explore the relationship between the types 
of locations (profile-time clusters) and land use. To that end, we first identify the 
predominant land use in each hexagon in Madrid. The predominant land use was 
then grouped into three generic land uses, according to cadastral data: residential 
(when more than 66.6% of built-up area in the zone is residential), activity (when 
more than the 66.6% is non-residential, i.e., offices, industry, retail or education) and 
mixed residential (all other cases). Finally, the spatial intersection of the resulted 
types of locations with this generic land use information enabled us to obtain the 
number of hexagons that represent a certain type of profile-time cluster and that are 
located at certain land use. This analysis resulted in a summary table indicating the 
percentage of hexagons for each type of land use according to clusters.



413

1 3

Uncovering spatiotemporal micromobility patterns through…

4  Results

4.1  General patterns

Table 2 summarizes the main characteristics of the datasets analyzed. As it can be 
seen, bikes are the most important shared mode with the highest departures (ori-
gin points). To grasp bikes’ importance, we can state that for every person that 
took a moped or scooter to travel during weekdays in 2019, there were approxi-
mately four and 24 people respectively, taking a bike. For weekends, however, 
the difference is slightly reduced as for every person taking a moped or scooter, 
approximately three and 18 people were taking a bike respectively. When iden-
tifying the days of the week with the highest departure counts, bikes are mostly 
used on Tuesdays while the dockless modes are mostly used toward the weekends 
on Thursdays (in the case of scooters) and Fridays (for mopeds). Preferred hours 
are also different for station-based and dockless services as BiciMAD’s peak hour 
is at 17 h while in the case of both dockless services, peaks are shown at 19 h. 
These preferred days and hours for the different services could suggest that sta-
tion-based bikes are mostly being used for commuting or conducting routinary 

Table 2  Descriptive characteristics of the datasets analyzed for micromobility services

Characteristic Bikes Mopeds Scooters

Weekdays
Total departures 1,311,372 329,094 55,242
Departures on an average day 10,928 2,742 460
Departures in peak day of week 274,499 (Tuesday) 71,729 (Friday) 11,733 (Thursday)
Departures in peak hour 94,740 (17 h) 26,410 (19 h) 4,944 (19 h)
Average departures by hour 455 114 19
Standard deviation 260 71 15
Coefficient of variation 57 62 79
Max 790 220 41
Min 43 9 1
Weekends
Total departures 311,589 111,427 17,746
Departures on an average day 6,491 2,321 370
Departures in peak day of week 167,337 (Saturday) 60,899 (Saturday) 9,356 (Saturday)
Departures in peak hour 19,784 (18 h) 8,270 (20 h) 1,500 (19 h)
Average departures by hour 271 97 15
Standard deviation 105 48 11
Coefficient of variation 39 49 73
Max 412 172 31
Min 79 17 2
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activities as their prime time is when the week starts and especially in the PM 
rush hour when people usually are returning home, while the dockless services 
could be more related to other leisure/recreational activities, which supports what 
has been found in similar research (McKenzie 2019b; Ji et al. 2020). When ana-
lyzing the weekend behavior, we observe that for all the three modes, the highest 
departure counts are found on Saturdays and bikes and mopeds are preferred for 
an hour later (18 and 20 h, respectively) while scooters’ preference is maintained 
at 19  h. Hence, we can infer that scooters’ behavior is very similar disregard-
ing the day of the week, while bikes and mopeds vary from weekdays to week-
ends. This is also noticeable when analyzing the coefficients of variation which 
describe how the services behave during the day, showing a more stable pattern 
for BiciMAD against a more unstable pattern shown for mopeds and scooters. 
Interestingly, the coefficient of variation in the three modes is lower for week-
ends, meaning that they behave with fewer variations along these days. 

Figure 3 represents the absolute and percentual distribution of departures along 
the course of an average day. During weekdays, the three modes show three peaks 
associated with AM and PM rush hours and lunch or midday activities. However, 
some differences are noticed. The first one is that bikes are seen to be used in earlier 
hours (at 07, 13 and 17 h) compared to dockless services (at 09, 14–15 and 18–19 h). 
Secondly, bikes are used in the morning almost in the same way as they are used in 
the afternoon, which supports that the service has a more homogenous trip distri-
bution about dockless services. Dockless services’ departures increase toward the 
afternoon (especially scooters) showing a more unbalanced usage throughout the 
day. In the case of weekends, the AM rush hour peak disappears, and origins trips 
increase toward the afternoon in all modes, especially scooters and mopeds from 19 

Fig. 3  Absolute (top) and percentual (bottom) distribution of departures by mode over an average day
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to 20 h. A new peak is seen though for all three modes in the early morning hours 
from 00 to 01 h, which is closely related to nightlife activities during weekends.

Figure 4 shows the daily behavior for departures (total count of origin points) by 
mode and according to the day of the week. The first noticeable difference is how 
each service’s departures behave spatially. With bikes being a station-based model, 
they show a higher scale (ranging from cells that have from eight to 215 departures 
on an average day) which means a more intense usage of space as all origin points 
are aggregated only in those hexagons where bike stations fall at. On the contrary, 
dockless services allow users to start their trip at any location within the service’s 
geo-fence, which causes a more dispersed usage of space as origin points are aggre-
gated in more cells (ranging from one to 22 departures on an average day).

Moreover, the map yields the important differences between weekdays and week-
ends. During weekdays, trip departures cover a more extensive area, although none 
of them, except mopeds, extends beyond the M-30 highway urban area (central 
area of the city). When comparing both scenarios (weekdays and weekends), we 
see more trips starting from high employment areas of the city during weekdays 
(i.e., the north–south axe of Paseo la Castellana), as was also found in Forest (2019) 
and Lazarus et  al. (2020). During weekends, however, these work-related activity 
areas are mostly turned off in terms of micromobility trip departures and they rather 
tend to be more concentrated around the city core center, especially, in the case of 
bikes. With most users not having to work or conduct routinary activities, weekends’ 
behavior is more active at the city core center where most of the recreational/leisure/

Fig. 4  Daily departures by mode and according to the day of the week
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commercial areas are located as well as the most touristic and visited areas, also 
similar to findings in Yang et al. (2020) and McKenzie (2019a).

In general, departures for the three modes seem to be quite related to transport infra-
structure and this relationship is maintained on both, weekdays, and weekends. Trans-
port intermodal stations are very attractive and could be considered relevant infra-
structures in terms of micromobility services, supporting findings from Duran-Rodas 
et al. (2019) and Teixeira and Lopes (2020). Central districts show to be important no 
matter the day of the week for both dockless services. These areas of the city concen-
trate on mixed-residential land use that hold a varied offer of activities throughout the 
day and throughout the whole week. While, in the case of bikes, a close relationship 
between the spatial distribution of departures with the location of cycling infrastruc-
ture (i.e., segregated cycling lanes) can be observed, supporting what was also found 
by Romanillos et al. (2018) and Talavera-García and Pérez-Campaña (2021).

4.2  Understanding spatiotemporal patterns

We take the advantage of STC constructs and visualize how departures distribute 
across space and along different hours of the day, which enables a better understand-
ing of urban dynamics in a more granular manner (see Fig. 5). The results clearly 

Fig. 5  Spatiotemporal distribution of micromobility departures on an average day
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illustrate some important differences between weekdays and weekends dynamics. 
For all three modes, there are two main differences. The first one related to routinary 
activities (work/education or other) that take place during the morning rush hours, 
as at 08:00 h on weekends, trips drastically decrease (most people are free from rou-
tinary activities), while at this same time on weekdays, many trips are starting, and 
especially coming from residential zones. The second difference is related to night-
life activities that take place mostly during late night and early hours, as we can see 
the trips at 00:00 h considerable higher in weekends and mostly starting from loca-
tions at the city core center where most entertainment places are concentrated.

From space–time cubes, we can also infer that afternoon hour (from lunch on) 
are the most profitable ones for micromobility operators, as departures are main-
tained in high counts no matter the scenario (weekday or weekend) and they seem 
to be better distributed around the city urban area (greater coverage). In the case of 
weekdays, we can see the relevance that holds some of the most important office/
workplace areas of Madrid where a high number of departures are observed around 
14:00 h (lunch) and 19:00 h (return to home).

Hot and cold spot results support and emphasize the previous findings (see 
Fig.  6). There are few hotspots at 08:00  h on weekends and few hotspots at 
00:00 h on weekdays. Additionally, from the hotspots results, we infer that after-
noon hours are the most profitable time of the day, as they cover a greater sur-
face in the city, disregarding the day of the week, even though they still tend 
to concentrate more on the city core center on weekends. These findings sup-
port what was also found in (Arias-Molinares et  al. 2021). Therefore, hotspot 

Fig. 6  Hot and cold spots results across time
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areas represent the places of the city that have greater vitality and attractiveness 
in terms of micromobility departures, maintaining high counts throughout the 
day and not just specific hours which benefits operators as they do not need to 
redistribute as many vehicles. As we have seen, using STC visualization methods 
brings a new perspective to GPS data, as they complement what 2D maps are 
not able to capture, which is a more granular (hourly) analysis of differences/
similarities.

Figure 7 shows the percentage of times that each location (hexagon) is a hotspot 
(with a p-value 0,05) which enables us to quickly identify the most important areas of 
the city regarding micromobility departures (origin points). The general pattern shows 
that trips start from a more extensive area during weekdays, covering those areas with 
a high concentration of workplaces/office sites. On the contrary, departures on week-
ends tend to be concentrated mainly around the city core center for all three modes. 
Mopeds represent the mode with the highest hotspot coverage area during weekdays 
and especially during weekends, which means its users are departing from many dif-
ferent locations of the city, while in the case of the other two modes (bikes and scoot-
ers), they tend to start their trips in more particular areas. Both maps allow the identi-
fication of the city core center and its surroundings as areas with more vitality in terms 
of micromobility departures during weekdays and weekends. This is related to the fact 
that these areas hold great employment and residential zones, a consolidated public 
transport and cycling infrastructure as well as a varied offer of commercial and recrea-
tional activities supporting findings (Yang et al. 2020).

Fig. 7  Locations with the highest/lowest percentage of times being Hotspots (p-value 0,05)
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4.3  Identifying locations with similar profile time

Once we understand the different daily/hourly dynamics, we can furtherly iden-
tify and group types of locations that share similar space–time behavior regarding 
micromobility departures. The results of the Time-Series Clustering analysis enable 
the identification of different clusters. Based on this method, and after different tests, 
our results show that the maximum dissimilarity between groups and maximum 
similarity within each group was obtained at five (5) clusters for each mode during 
weekdays and weekends (see Figs. 8, 9, 10).

The results obtained for the different clusters can be analyzed in terms of intensity 
(departure counts) and temporal variations. On one hand, regarding intensity, we observe 
differences for both, weekday and weekend scenarios, as the types Wd4/Wd5 and We4/
We5 show a more intense usage (“intensity types” with higher departure counts) than 
the rest of the clusters. On the other hand, in terms of temporal variations, differences 
are more noticeable in the weekday scenario, as some types show high departure counts 
in both morning and afternoon hours (i.e., Wd4, Wd2 and Wd1), while others increase 
only toward the afternoon (i.e., Wd3 and Wd5). In the case of weekends, all the clusters 
increase in departures in the afternoon hours, being more similar in terms of temporal 
patterns and only differentiating themselves by usage intensity.

Moreover, the clusters’ spatial distribution shows some important findings. One 
of them regard the different dynamics of weekdays and weekends and the other high-
lights the different land uses that are more active at certain hours. Regarding the first 
difference, during weekends, most high-intensity clusters are mainly concentrated 

Fig. 8  Location clusters for bike departures
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Fig. 10  Location clusters for scooter departures

Fig. 9  Location clusters for moped departures
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around the city core center, except BiciMAD which seems to have a more homoge-
neously distributed pattern (in some cases related to transport intermodal stations). 
Regarding the second difference, the results show for all three modes, a consistent 
tendency for weekdays. During morning hours, areas with high usage (departures) 
intensity are mostly residential zones (types Wd1 and Wd2), while during the after-
noon hours, the most active areas are workplace/office sites (Wd3 and Wd5). Those 
areas that have intense activity from both, morning and afternoon hours (Wd4), are 
the most profitable for micromobility operators. In these hours, the system is balanc-
ing itself with high vehicle rotation, while other areas, that have activity only during 
certain periods, require more vehicle redistribution.

As we have seen in previous figures, the different types of locations seem to 
be related to the dynamics associated with land use activity. Therefore, we try to 
explore this relationship in more detail by overlaying land use with the resulted 
clusters (Table  3). To respect the maximum manuscript length, we have only 
included the analysis of the weekday scenario. In general, for all three modes, 
we can observe that residential and mixed-residential land concentrate the high-
est percentages of clustered hexagons. Clusters Wd1 and Wd2 (low intensity and 

Table 3  Distribution of location 
clusters (percent of hexagons) 
over land uses during weekdays

Mode Land use Wd1 Wd2 Wd3 Wd4 Wd5

Bike Residential 36% 36% 12% 28% 23%
Mixed-residential 46% 52% 71% 54% 59%
Commercial 4% 2% 2% 0% 0%
Workplaces (office) 3% 2% 9% 0% 9%
Education 1% 1% 0% 0% 0%
Parks 3% 2% 2% 8% 9%
Other 7% 7% 4% 10% 0%
Total 100% 100% 100% 100% 100%

Moped Residential 55% 46% 21% 24% 14%
Mixed-residential 28% 47% 63% 66% 61%
Commercial 2% 1% 1% 3% 0%
Workplaces (office) 7% 1% 7% 1% 22%
Education 4% 1% 3% 1% 0%
Parks 4% 2% 4% 2% 2%
Other 1% 2% 1% 2% 0%
Total 100% 100% 100% 100% 100%

Scooter Residential 57% 29% 15% 31% 27%
Mixed-residential 25% 57% 67% 57% 59%
Commercial 2% 2% 4% 2% 5%
Workplaces (office) 8% 3% 7% 2% 2%
Education 4% 1% 0% 2% 0%
Parks 4% 2% 5% 2% 7%
Other 0% 5% 2% 3% 0%
Total 100% 100% 100% 100% 100%
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morning-afternoon peak) are mostly associated with departures from residential 
areas, with moderate usage intensity in departures for both, morning, and after-
noon hours. Similarly, Wd3 (medium intensity), Wd4, and Wd5 (high intensity) 
are mainly located near mixed-residential land uses but show high usage intensity 
in departures for both morning and afternoon hours. Hence, we could infer that 
mixed-residential land use represents the most attractive areas for starting micro-
mobility trips during the entire day.

On the other hand, some differences are noticed when considering other land 
uses. The highest percentage of hexagons associated with work activities is clus-
tered Wd3 and Wd5 in the case of bikes, Wd5 for mopeds, and Wd1 and Wd3 for 
scooters, which are all clusters that share the characteristics of increased departures 
counts toward the afternoon. Consequently, bikes, mopeds, and scooters have a close 
relationship with departures in the afternoon from work-related areas (commute to 
return home). Moreover, educational land use is related mostly to clusters Wd1 for 
all modes, which is characterized by a low usage intensity but a clear morning peak 
period (probably related to the entrance to schools). Finally, parks are mostly associ-
ated with cluster Wd5 for bikes and scooters, and Wd1 and Wd3 for mopeds. There-
fore, bikes and scooters show to be closely related to intense use of this mode for 
recreational purposes (especially in the afternoon hours), while mopeds are shown 
to have a more moderate usage related to this land use.

5  Conclusions

This study has shown that the exploration of spatiotemporal micromobility travel 
patterns can be better understood within the Time Geography framework, using 
space–time cubes. Micromobility systems generate huge amounts of data, in the 
form of trip GPS records, with high spatiotemporal resolution. This data facilitate 
the representation of spatiotemporal patterns in Space–Time Cubes (STC). One 
of the main findings is that bikes are the most important shared mode analyzed in 
the city as it shows high departure counts throughout the day while mopeds, and 
especially scooters gain importance toward the afternoon. In the case of Madrid, 
we have found that central (midday) and late afternoon hours (from 18 to 20 h) 
are the most profitable time for micromobility operators, as hotspots are more 
homogeneously distributed.

In addition, the analyses performed allowed us to identify the areas of the city 
with the highest vitality and attractiveness in terms of micromobility departures. 
These areas concentrate residential, mixed-residential, commercial, and work-
related land uses that are closely linked to an intense usage during the entire day 
(morning and afternoon). Therefore, clusters Wd4/We4 and Wd5/We5 are the 
types of locations that represent the better scenario for micromobility operators, 
as redistribution trips could be reduced due to users starting their trips in the most 
attractive areas where others previously have left a vehicle as was also found in 
Arias-Molinares et al. (2021). This study identified five types of places according 
to each scenario (weekdays and weekends) and each mode, which offers valuable 
insights for micromobility operators to distribute their vehicles in the areas and at 
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the specific times that increase profitability. During weekdays, the results show 
that there are some locations associated with high departure counts coming from 
residential (clusters Wd1 and Wd2) and commercial areas (Wd1), as well as the 
importance of certain modes to conduct certain activities (for example, mopeds in 
the afternoon and departing from work-related areas, as well as bike and scooter 
in the afternoon departing from parks). Nevertheless, micromobility seems to 
have a good capacity to serve trips associated with activities that Hägerstrand 
called flexible activities, such as leisure. Thus, the peaks are usually shown in 
the afternoon and evening hours, especially during the weekend. On these trips, 
micromobility is a good complement to public transport.

The proposed methodology could be implemented in any city and could offer 
operators and authorities useful insights regarding the hourly changing dynam-
ics of shared services. Our aggregation approach was to add each origin point to 
the hexagonal grid (XY-axis) and bin (z-axis) that contained it, according to the 
specific location and time of the starting point, and then totalize (adding) all the 
origin points (departures) by hexagon over the day (daily) or hourly. This helped 
us to understand the spatial and temporal distribution of the origins of micromo-
bility trips, identifying the most important areas and times of the day and their 
relationship with land uses. For policy-oriented decision processes, authorities 
should try to understand the different dynamics according to the day of the week 
and hourly patterns. Promoting dense, mixed-residential land use, and offering 
micromobility infrastructures such as segregated cycle lanes and parking places 
in hotspot areas could increase the importance and usage levels of these shared 
mobility modes.

As limitations of the study, we could highlight one related to the moped and 
scooter datasets used, which were provided by two and one, respectively, of the 
many operators in Madrid. Hence, it is important to consider that, while in the case 
of bikes with BiciMAD, we almost cover all records as there are few shared bike 
operators in Madrid, this is not the case for the other two modes. For dockless ser-
vices, the results must be carefully interpreted, as we are not covering the entire 
available moped (27%) and scooter (15%) fleet, thus the presence of other compa-
nies would vary the vehicle density in some areas, which could have an impact that 
we are not yet able to identify. Future research could try to include more operators to 
analyze a better sample and conduct regression models to better explain the relation-
ship between the types of locations (clusters) and the different land uses.
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