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Abstract
The visible landscape represents an important consideration within landscape man-
agement activities, forming an inhabitants’ perception of their overall surround-
ings and providing them with a sense of landscape connection, sustainability and 
identity. The historical satellite imagery archive can provide key knowledge of the 
overall change in land use and land cover (LULC), which can inform a range of 
important management decisions. However, the evolution of the visible landscape 
at a terrestrial level using this information source has rarely been investigated. In 
this study, the Landsat archive is leveraged to develop a method that depicts changes 
within the visible landscape. Our method utilises other freely available data sources 
to determine the visibility of the landscape, and LULC composition, visible from 
road networks when the imagery was captured. This method was used to describe 
change in the visible landscape of a rural area in Ñuble, Chile, in the period from 
1986 to 2018. Whilst native forests on the slopes of the mountains within the study 
area provide a natural backdrop, because of the flat topography of most of the area, 
the foreground dominates the overall landscape view. This has resulted in a visible 
transition from a landscape visibly dominated by agricultural use in 1986 to one of 
equal agriculture and plantation forestry in 2018. It is hoped that the method out-
lined within this study can be applied easily to other regions or at larger scales to 
provide insight for land managers regarding the visibility of LULC.
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1  Introduction

Historical satellite imagery provides a rich source of information that can be used 
to depict temporal change that occurs upon the surface of the Earth (Hemati et al. 
2021). Descriptions of these changes, derived from satellite imagery, present a range 
of land use and land cover (LULC) processes, including; urban growth and indus-
trialization (Chen et  al. 2020), deforestation (Nguyen et  al. 2020), desertification 
(Bezerra et al. 2020) and wildfire intensification (Hislop et al. 2018) among others. 
The process of these aforementioned change events have had profound influence on 
the characteristics of landscapes across the world (Song et al. 2018).

An important development in the proliferation in the use of satellite imagery for 
mapping change within landscapes is the increased availability of open data (Her-
mosilla et al. 2022). Open data, like that captured by the Landsat series of satellites, 
has provided continuous imagery in some areas since 1972 (Wulder et  al. 2018). 
In combination with modern computational power and processing techniques, the 
current openness and availability of satellite imagery has allowed analysis across 
extensive areas and throughout the entire period of the image archive (Wulder et al. 
2018). Studies which utilise change analysis from open satellite imagery, either over 
discrete dates or time-series analysis, have provided insight into a range of current 
environmental, cultural and social issues; including the effects of climate change 
(Bannari and Al-Ali 2020), environmental disasters (Deliry et  al. 2020) and food 
production dynamics (Kafy et al. 2021).

Satellite imagery analysis provides an opportunity to investigate change across 
the entire two-dimensional extent of a landscape (Hermosilla et al. 2022). This com-
plete description provides important information that is currently used in many land-
scape decision-making and planning processes (Wulder et al. 2018). It is understood 
that the composition of LULC plays an important role in the overall aesthetic values 
that landscape holds and how the public, at both small and larger scales, may per-
ceive or preference it (Ren 2019). Therefore, understanding how change in LULC 
may alter this aesthetic landscape value is important within the process of landscape 
management (Tveit et  al. 2006). For example, some LULC types (such as natural 
land covers or those linked to local livelihood) may be preferred by the general pub-
lic within local populations, and the exposure to more continuous land covers pro-
vides a sense of openness (Ode et al. 2009; Lee and Cho 2016). As such, it is impor-
tant to understand how change in the composition of landscapes translates to the 
visible landscape, and in turn, how this affects public perceptions (Tveit et al. 2006; 
Roe et al. 2013).

In order to understand the visible composition of a landscape, viewshed analysis 
is often employed. This approach utilises spatial data to determine the areas visible 
from any single point within the landscape (Sahraoui et al. 2018). Analysis of views-
hed outputs has been used to determine the scenic properties of an area from one 
or more vantage points. This includes determining the impact of proposed LULC 
change on the visible landscape (Jeung et al. 2018), determining how prevalent pref-
erable landscape qualities are (Labib et  al. 2021) and what role certain landscape 
features play in visibility (Garré et al. 2009). Whilst, viewshed analysis provides an 
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indication of what is visible from a specific point (both spatially and temporally), 
further information describing the composition of that visible area is required for 
many applications. As such, the combination of viewshed analysis with satellite 
imagery and its derivatives (such as LULC maps or greeness indicators) has proven 
to be a strong combination in these assessments.

Whilst several studies have utilised single date satellite imagery to analyse the 
visual landscape (Van Berkel et al. 2018; Hilal et al. 2018), to date, historical sat-
ellite imagery has rarely been used to map the evolution of the visible landscape. 
Examples of studies which do utilise historical satellite imagery for this purpose 
have often used it as an auxiliary datasource (Schirpke et  al. 2020) or to provide 
a static LULC map (Schirpke et al. 2021). Schirpke et al. (2020) for instance, uti-
lised LULC mapping along with other land cover information (some of which was 
derived from satellite imagery) at five distinct time points to analyse the changes in 
Italian Alps over the last 150 years. Through the inclusion of visibility analysis from 
manual digitisation of road and path networks, Schirpke et al. (2020) showed that 
increased access to the landscape can result in distinct changes (both positive and 
negative) in aesthetic value. Schirpke et  al. (2021) extended this study to include 
selected points within the European Alps utilising a similar method, however, in 
this case the LULC derived from satellite imagery was held constant for three time 
points.

This study aims to develop a workflow to monitor LULC changes within the vis-
ible landscape utilising open geospatial data. The method is demonstrated within a 
case study area in Chile, in which historical records as used in similar previous stud-
ies were unavailable. As such the method aims to primarily rely on satellite data and 
be transferable to wherever that imagery exists.

2 � Materials and methods

2.1 � Study area

The municipality of Yungay, Chile, was selected as the study area for this paper 
(Fig. 1). The Yungay municipality covers 824 km2 and contains significant areas of 
relief including a plateau in west, with an altitude between 105 m and 200 m Above 
Sea Level (ASL), and the Andes mountain range in the East reaching > 2000  m 
ASL. The current LULC within the West of Yungay is comprised primarily of plan-
tation forestry (Eucalytpus and pine species) and Agriculture (consisting of primar-
ily grain crops and stone fruit); conversely, LULC on the slopes in the East of Yun-
gay is primarily native vegetation (forests and grasslands). Yungay was chosen for 
this study as, like the remainder of Chile, it is has undergone significant economic 
development. As such, it was expected that the road network and the LULC will 
have undergone some change during the study period (1986 to 2018) (Fig. 1). This 
includes the effects of increases in commercial forestry operations, a reduction of 
land used for agricultural practice, as well as the region suffering from several natu-
ral disasters, such as the Chilean Earthquake in 2010 and wildfires in 2017.
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Fig. 1   Red, Green and Blue composites of the Yungay region in the years a 1986, b 1998, c 2008 (Land-
sat-5) and d 2018 (Landsat-8). e the ALOS3D Digital Surface Model
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2.2 � Data

2.2.1 � Satellite imagery

Satellite imagery from the United State Geological Service Landsat series, 
retrieved from Google Earth Engine, was used in this study. Landsat-8 Surface 
Reflectance (SR) Level 2, Collection 2, Tier 1 data was used for 2018 and Land-
sat-5 SR Level 2, Collection 2, Tier 1 data for 2008, 1998 and 1986. Noting the 
year 1986 was substituted for 1988 due to it being the closest year with at least 
one Landsat image with < 30% cloud cover from the same period available. Fol-
lowing, Phan et al. (2020) a median image was generated based on all cloud free 
pixels from between 1 August and 31 October in each year. Each band was re-
sampled to a spatial resolution of 30 m before classification.

Nine indices and entropy (a measure of image texture) commonly used in 
LULC classification methods were generated from the Landsat images taken for 
each year. These indices include the Normalized Difference Vegetation Index, 
Enhanced Vegetation Index. Soil Adjusted Vegetation Index, Modified Soil 
Adjusted Vegetation Index 2, Normalized Difference Water Index, Modified Nor-
malized Difference Water Index, Normalized Difference Water Body Index, Nor-
malized Difference Built-up Index and simple ration.

2.2.2 � Digital surface model

A Digital Surface Model (DSM) provides a representation of the height of the top 
most surface within an area. In this study an ALOS World 3D (ALOS3D) DSM 
was used (Tadono et al. 2014). This DSM has a spatial resolution of 30 m and is a 
freely available dataset that is an upscaled version of the commercially available 
5 m resolution DSM (Caglar et al. 2018). The ALOS3D DSM has a reported ver-
tical error of up to 1.8 m at 1� (Jain et al. 2018; Caglar et al. 2018). The DSM was 
resampled to coincide with the LANDSAT imagery.

2.2.3 � Road network

The road network was downloaded as a shapefile from (https://​www.​bcn.​cl/​siit/​
mapas_​vecto​riales/​index_​html). This file contained the primary road network within 
the Yungay region as of 2019. The roads were segmented into 300 m lengths. Each 
segment was then compared to a true colour composite made from each years Land-
sat image. If there was no evidence that a road was present within a satellite image it 
was removed from the network for that year and all preceding years. Evidence used 
to determine the presence of a road included, the road being visible in the image, 
buildings evident along the extent of the road, and the road being visible in any 
image prior to the current year. This approach is similar to the one taken by Nasci-
mento et al. (2021) who found it to be 98% accurate.

https://www.bcn.cl/siit/mapas_vectoriales/index_html
https://www.bcn.cl/siit/mapas_vectoriales/index_html
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2.3 � Training and validation data

Training data, consisting of attributed LULC class at each location, were determined 
based on visual interpretation of the Landsat image from each year. Where possible 
a multiple lines of evidence approach was used. This included high resolution satel-
lite imagery in interpreting the 2018 data, other Landsat images captured in differ-
ent seasons within a year of the image date and local knowledge. This process was 
completed for 645 points at each date. The points were chosen within a regular grid 
covering the bounding box of the Yungay municipality buffered by 5 km.

A further 143 validation points were collected in 2018. These points were visited 
in the field with the LULC class and GNSS location recorded as well as images 
captured in four cardinal directions. The location of the in situ validation sites was 
determined by randomly distributing 60 points within each LULC class (based on 
an initial classification of the imagery). The locations were then visited until a mini-
mum of 20 points from the four main classes (agriculture, plantation forestry, native 
forests and urban areas) were recorded. Any points that were inaccessible or close to 
a LULC boundary were not used in the study.

2.4 � Land cover classification

Broad LULC classes describing the whole of the Yungay landscape and surrounds 
within the land cover classification were used for this study (as provided in Table 1). 
These broad classes were chosen to correspond to the major LULC classes within 
Yungay and to those that can be understood by a local lay person with minimal 
explanation.

Following Phan et al. (2020) a random forest classifier was used to provide land 
cover classification for each year. Similar to Phan et al. (2020) 100 trees (ntree = 
100) were used and the number of variables selected at each split was set to the 
square root of the total number of features. The SR images (composed of the twelve 
Landsat-8 and five Landsat-5 bands), derived indices and texture metrics and sur-
face elevation (from the DSM) were used as features describing the properties of 
each pixel. All pixels within 5  km of the Yungay border were considered in the 

Table 1   The definition of the LULC classes used in this study

LULC class Composition

Agriculture Areas used for grain and canola crops, stone-fruit and for grazing.
Plantation forestry Pine and eucalypt plantations
Native vegetation Areas consisting undisturbed or regeneration native vegetation. Including 

forests and shrub and grass lands.
Built-up Areas Urban areas and areas for the processing of timber and agricultural goods.
Water Rivers, lakes and canals
Bare ground Areas of bare soil where future land use can not be determined
Snow Snow cover
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classification. The random forest was trained on 70% of the training data with 30% 
held out for validation.

2.5 � Visible landscape determination

Two viewshed methods were used to determine the properties of the visible land-
scape from each location; planimetric analysis and tangential analysis. The imple-
mentation of these viewsheds within PixScape 1.2 was used (Sahraoui et al. 2018).

Planimetric analysis determines the area (via a count of the pixels) visible from 
a view point (Sahraoui et  al. 2018). This type of analysis was used to determine 
the total area of the landscape visible from each location along the road network. 
Tangental analysis uses the vertical angle of the view of each pixel to provide it a 
weight in determine the visible area (Sahraoui et al. 2018). This analysis was used to 
provide the visible LULC class proportion from each view point. Tangental analysis 
was preferred over planimetric analysis for this purpose as it provides a better cor-
respondence to the view of an observer (Sahraoui et al. 2018; Nutsford et al. 2015)

In both cases, view points were set at the centre of each Landsat pixel that con-
tained any part of the road network for each year and an observer height of 1.6 m 
was used. Analysis was computed to determine metrics and visible areas at 1400 m, 
5000 m and infinity. These distances were used as distances to the foreground, mid 
ground and background. 1400 m was chosen as it is the distance at which recogni-
tion of individual features is no longer possible (Garré et al. 2009) and 5000 m as it 
has been shown to be the distance at which background, foreground and mid views 
separate (Martín et al. 2018).

2.6 � Analysis

The accuracy of the LULC maps calculated for each year was summarised through 
overall accuracy, users accuracy (a measure of commission) and producers accu-
racy (a measure of omission) which were calculated from the confusion matrices. 
For the 2018 LULC classification accuracy was determined against both the in-field 
collected validation points and the 30% of the manually determined points held out 
from the training set. Only the manually determined points held out from the train-
ing set were available for determining accuracy in 1986, 1998 and 2008.

The overall landscape was summarised by percent cover of each class and Shan-
non’s diversity index. Percent cover provides an indication of the abundance of each 
LULC class. While Shannon’s diversity index quantifies landscape diversity based 
on the number and proportional cover of different patch types. Shannon’s diversity 
index is a measure of fragmentation with higher values representing a more frag-
mented landscape (Plexida et al. 2014).

The visible landscape determined by the tangental viewshed was summarised by 
the mean proportion of each LULC class visible from each viewpoint as well as the 
mean Shannon’s diversity index of the projected view. Qualitative comparisons were 
made between the overall landscape metrics and those of the visible landscape.
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3 � Results

3.1 � Changes in landscape visibility

The road network within Yungay increased in length from 229 to 339 km during 
the study period (1986 to 2018). The majority (61 km or 55% of the total increase) 
of the road development occurred between 1986 and 1998. Smaller increments in 
road development, mainly around the two population centres (Yungay and Cam-
panario), were seen from 1998 to 2008 (38 km), and then again between 2008 and 
2018 (11 km) (Table 2).

According to the planimetric viewshed analysis 635 km2 (76%) of the Yungay 
region was visible from at least one point on the road network in 1986. With a fur-
ther 1351 km2 visible from the road network but outside of Yungay. This increased 
in each of the subsequent analysis years as road networks increased in length 
Table 2. With the smallest increase observed between 2008 and 2018 corresponding 
to lower road development. Without restricted viewing distances the mountainous 
east of Yungay was the most visible area in each year, with some areas being visible 
from more than 50% of the road network.

Increases in landscape visibility occurred primarily adjacent to the road network 
within the topographically flat areas Fig. 2. This is indicated as the newly visible 
areas also occurring in the planimetric viewsheds of the restricted viewing distances. 
When viewing distances were restricted, the most visible landscape areas were those 
around the urban and industry centres of Yungay (in all years), Campanario and 
Cholguan (from 2008).

3.2 � LULC classification

The LULC classification of the 2018 Landsat-8 image achieved an overall accuracy 
of 86% when compared to the ground truth data. The water class had the lowest 
users accuracy (20% with one of five observations being correctly classified) and 
was often misclassified as being either a cell containing plantation or agriculture 

Table 2   Length of the road 
network and the associated 
visible area from roads at each 
of the study dates

Area within the municipality of Yungay and including the surround-
ing area (all) are provided for each viewing distance. Note that the 
’infinity’ viewing distance is calculated to the edge of the imagery 
set at bounding box of Yungay buffered by 5 km

Year Road network Visible area

Length (km) 1.4 km 5 km Infinity

Yungay All Yungay All Yungay All

1986 229 320 365 455 637 635 1986
1998 290 390 444 522 732 672 2049
2008 328 440 496 573 789 699 2093
2018 339 446 581 582 804 703 2100
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cover  (Table  3). Confusion also occurred between plantation and native forests 
resulting in a user accuracy of 77% for plantations and a producer accuracy of 78% 
for native forests.

When compared to the held-out manually interpreted data, an overall accu-
racy of 84% in 1986, 82% in 1998, 89% in 2008 and 90% in 2018 was achieved 
for the respective years. The greatest source of error was misclassification occur-
ring between the Agricultural, Plantation and Native Vegetation classes in all 
years  (Table  3). The 1998 classification had the lowest overall accuracy. This 
could be attributed to a greater area classified as bare ground and misclassification 
between this class (indicated lower producers and user accuracy than other years) 
and Agriculture and Plantation forestry. 

3.3 � Change in the overall landscape

The landscape in 1986 was dominated by agricultural land use (52%, see Fig. 3). 
Native vegetation cover (28%) occurred primarily in the east and Plantation forestry 
(13%) interspersed with agriculture in the west. By 2018 plantation forestry cover 
had grown by 22% (to 35%) with corresponding decreases in agricultural land use 
(by 19% to 33%) throughout, and Native Forests (by 6% to 22%) at the foot of the 
mountains. The urban areas in Yungay also increased from 0.1% in 1986 to 0.3 % of 

Fig. 2   Proportion of road vantage points from which an area was visible 1986 (4817 vantage points), 
1998 (9263 vantage points), 2008 (10464 vantage points) and 2018 (10,814 vantage points)
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the area by 2018. Water, snow and bare ground all varied in cover across the study 
period. However, an overall decrease in water cover (0.8 to 0.3%) was notable.

The changes in cover corresponded to a more fragmented landscape indicated by 
an increase in Shannon’s diversity index from 0.59 in 1986 to 0.68 in 1998. How-
ever, only minor differences were observed between 1998, 2008 (0.65) and 2018.

3.4 � Change in the visible landscape

The change in the proportion and fragmentation of each LULC classes visibility 
from the road network followed a similar trend to the overall landscape composi-
tion (Fig. 4). Notably, the overall view is dominated by the foreground composition 
(Fig. 4 columns 1 and 4). This is because of Yungay’s terrain being composed of a 
flat plain, with the mountains to the East providing the only background view. This 
is further indicated by the high proportion of Native vegetation (> 50%) visible in 
the background in each year. A steady decline in the visibility of native vegetation in 
the background is noticeable (by 1% every four years to 52% in 2018). This decrease 
is accompanied by an increase in the Plantation class (from 4% in 1986 to 23% in 
2018) in the background. Further, native vegetation is the only class to have lower 
visibility in all years in comparison to its overall cover (by between 1% and 4%). 
This is due to the lower road density in the denser areas of native vegetation.

Change in urban visibility follows a similar trend to urban cover. However, urban 
areas are between 3 and 6% more visible than the urban cover in all years. This is 
due to the increased road density in urban areas, as the visible proportion of these 
areas was highly bimodal. Views from roads in urban centre of Yungay contain-
ing > 90% urban cover and views from the other roads containing very little urban 
LULC. This is further highlighted by a low prevalence in the background view. Bare 
ground was significantly more visible in 1998 (21% compared to a maximum of 6% 
in the other years) as the areas close to roads appear to have been under transition 
from agriculture to plantation forestry. This corresponded to a decline in both Agri-
cultural and plantation visibility between 1986 and 1998. Whilst this decline was 

Table 3   Users (UA) and producers (PA) accuracy of the LULC classification for each year

1986 to 2018 data are evaluated against manually interpreted points held out from training set. The 2018∗ 
are evaluated against validation data collected infield

Class 1986 1998 2008 2018 2018∗

UA PA UA PA UA PA UA PA UA PA

Agriculture 88 92 80 92 88 97 91 94 91 98
Plant. forestry 82 74 86 73 90 89 87 91 78 84
Native Veg. 78 85 81 85 92 84 94 86 88 79
Urban 100 100 100 100 67 100 75 100 100 71
Bare ground 100 56 80 63 82 90 89 89 70 100
Water 100 25 100 33 – 0 67 67 100 20
Snow 100 100 100 100 100 100 100 88 100 100
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present in agricultural cover, it was not seen in the overall landscape contribution of 
the plantation class.

Agriculture dominates the visible landscape in 1986, with a mean proportion of 
visibility of 64%. This class then follows a similar trend to the overall landscape 
decreasing to a proportion of visibility of 40% in 2018. Agricultural visibility in the 

Fig. 3   LULC maps generated from Landsat images from a 1986, b 1998 b 2008 and c 2018



114	 D. San Martin Saldias, J. McGlade 

1 3

Fig. 4   The mean visible proportion (solid lines) for each of the seven LULC classes within the fore-
ground, middle ground and background. LULC cover for all of Yungay is provided for reference (dashed 
line)
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foreground increased between 1998 and 2008 due to the establishment of new roads, 
indicated by an increase in Agricultural cover (from 53% to 55%). The visibility of 
the plantation class increases between 1986 and 2018. By 2018 this class makes up 
a similar proportion of the overall view to agriculture. Whilst agriculture is more 
visible from the roads than its overall cover in all years, plantation forestry is rep-
resented similarly in 1998 (11% visible and 11% cover) and 2008 (21% visible and 
17% cover) and only becomes highly visible in 2018 (37% visible and 19% cover).

Fragmentation of the visible landscape increased, similarly to the overall land-
scape during the study period. Mean Shannon’s diversity index increased from 0.06 
in 1986 to 0.9 in 1998, 2008, 2018. This index was observed to be higher in roads 
surrounding urban centres, with only minimal changes in the connecting roads. The 
overall increase was therefore primarily a result of the expansion of Yungay and 
Campanario urban areas.

4 � Discussion

4.1 � Evolution of the visible landscape

Despite the study only covering a 32-year time-span widespread changes in the over-
all landscape composition were observed. Visibility analysis from the road network 
also suggests that the changes seen in the visible landscape follow the same trend as 
changes in the overall LULC. Due to Yungay, for the most part, being located on a 
flat plain the foreground is dominated by near road landscapes. This leads to LULC 
centralised around road networks dominating the visible proportion of the landscape 
calculated from the tangential viewshed analysis. As such, early in the study period 
(1986), and as new roads were built to accommodate the growing plantation tim-
ber industry in the area (Uribe et  al. 2020), agriculture was the dominant LULC 
class. However, by 2018 plantations had reached the same visibility from the road 
network.

Given the increased proximity of plantations to road networks, this gradual tran-
sition over time would have profound effects on the visible landscape of Yungay. 
The seasonal variations in the crop intensive agriculture in the region would have 
presented inhabitants with a seasonally changing landscape, which would now not 
be the case in areas where visibility is dominated by slow growing plantation spe-
cies (both pine and eucalyptus). Further, a completed survey undertaken in the area 
in 2018 by San Martin Saldias et al. (2021) showed that Plantations were the most 
unappreciated land cover type. This suggests that the landscape transition to one that 
is equally dominated by agriculture and plantation has not been viewed favourably 
by the residents.

Some loss of native forest—from 28% (1986) to 26% (2018)—was observed 
within the study period. Areas of native forest over time primarily transitioned to 
plantation forest Fig.  3. Notably, this transition occurred within the background 
of landscapes visible from the majority of the road network. The distances chosen 
when delineating the back, middle and foreground views were based on literature 
review, with the 1400 m threshold indicated to be the distance at which individual 
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objects could be distinguished (Garré et al. 2009). It is unclear as to whether this 
transition of native forest to plantation was evident to residents who frequent the 
areas where they occurred. Whilst observers would be unlikely to perceive individ-
ual trees, this transition may be evident due to the linear patterns often present in 
plantation forests. For example, the interpretation of these forest types from satellite 
imagery utilises larger landscape patterns; such as abrupt transitions in land cover, 
configuration of stands and trees, and potentially the colour of plantations in com-
parison to the irregular growing patterns in native forests.

Satellite imagery is able to capture cyclical temporal events. For example in this 
study the water levels in the 1998 imagery suggested a very dry year, indicated low 
water levels in the Bio-Bio river. Such fluctuations would also play a role in the 
lived experiences of the residents.

4.2 � Data and analysis

A key point of differentiation of this work to similar prior studies is the use of locally 
trained classifiers, in the context of both time and space. Schirpke et al. (2021), for 
example, utilised the CORINE land cover map that was generated for the whole of 
Europe (outlined in Bossard et al. (2000)) and choose to keep this constant through-
out the study period (1950 to 2010) due to classifier error within the study area. 
The use of a locally trained classifier was designed to minimise errors within the 
region of interest. However, it is important to recognise that any land cover map 
is dependent on choices made by the producers in order to reconcile information 
needs and the end user applications (Comber et al. 2005). In this case, we consider 
the accuracy achieved in each year, for the broad LULC classes chosen, to be eas-
ily interpreted by laypeople suitable for the analysis performed. However, a choice 
was made not to analyse local changes (i.e. transition of individual pixel classes) in 
LULC as the methods employed and the localised classifier likely makes this analy-
sis unsuitable.

In terms of underlying data, a key goal of this study was to utilise open geospatial 
data to conduct the desired analysis. For this purpose, the publicly available Landsat 
archive represents an excellent resource for the analysis similar to that completed in 
this study. This archive provides imagery throughout the data period with similar 
characteristics and at spectral and spatial resolutions high enough to determine the 
LULC classes of interest when considering landscape perception. Whilst the satel-
lite imagery used within this study was able to capture some of the water features 
in the area, such as the Bio-Bio river flanking the Yungay border to the south (see 
Fig. 3a), many of the smaller rivers are represented only by the natural landscape 
buffer in place to protect the water source from plantation forestry operations. In 
these cases, higher resolution data (such as freely available sentinel imagery or com-
mercial imagery) may provide better discrimination of these features. Further, ver-
tical features such as water falls (of which there are several in the area), cliffs or 
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building facades cannot be well represented in satellite imagery. These features are 
still important however, as studies have clearly shown that natural features such as 
rivers and waterfalls are more likely to be perceived and appreciated by the public 
and therefore must still be considered Schirpke et al. (2021). As such, even mini-
mal representation of such features from a vantage point may enhance the perceived 
quality of that landscape.

Importantly, for the analysis performed, the temporal and spatial resolutions 
of the underlying satellite imagery should be matched by the resolutions of the 
underlying data where possible. For example, the ALOS3D DSM used here pro-
vided similar resolution to the Landsat imagery. It is likely that abrupt changes 
in surface height, such as from a plantation or building, are not captured at this 
resolution. Therefore, it is likely that the visible proportion of plantations, native 
forests and urban classes—within scenes with mature trees and buildings close 
to the road—are underestimated in this study. Furthermore, the DSM (captured 
in 2018) was considered static throughout the study period. This means that 
changes in top surface elevation due to developments such as the construction 
of a road or water course through previously forested area or a plantation being 
grown or harvested were not represented within this study. Such changes may 
have significant impact on the visible landscape. For example, with a large plan-
tation likely to represent a larger portion of the visible area when directly adja-
cent to one side of a road.

In this study we used a manually edited road network. Whilst the method 
we used indicated high accuracy, due to the absence of historic datasets, it is 
likely errors of omission and commission were present using this approach. This 
manual approach was also laborious and restricted the study area and number of 
time points that could be compared. Having access to historically accurate road 
networks, including the date of road establishment, may facilitate more in depth 
analysis across space and time. Further, whilst this analysis suggested there was 
only a small amount of public road network development in the area. Compara-
tively, significant private road development was observed including a range of 
roads corresponding with the expansion of the plantation land use. These roads 
were not included in the analysis as they were not indicated in the public road 
network and thus the degree of usage and/or whether the public could use them 
was unclear. An indication of usage would have enhance this study as it would 
allow views from heavy usage roads to be weighted more highly as these are the 
most likely used by the public.

This study demonstrates that the LULC change when viewed from all roads 
in Yungay follow a similar pattern to the overall landscape change. However, 
it is unlikely that individuals access all roads within the area, nor use the roads 
they access equally. The amount of usage of a road is likely to be dependent on a 
number of factors. For example, whilst Chile had a relatively low car ownership 
before 1990 (Lee and Rivasplata 2001), the number of cars increased by 4% per 
year in the period between 1991 and 2001 (Zegras and Hannan 2012). A similar 
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trend is likely to be observed in Yungay, suggesting that Yungay’s occupants 
had lower mobility. With lower mobility in 1986 it is likely that landscapes in 
the local area surrounding people’s homes and places of work had more influ-
ence on how the landscape of Yungay was perceived than in 2018. Road usage 
data is now routinely collected through smartphones, in car navigation apps or 
through simulations (Lana et al. 2018). Such data could be integrated into future 
landscape perception analysis through the use of weights when generating these 
summary statistics.

5 � Conclusion

Understanding the perception of landscapes by local populations is critical for the 
effective communication and planning by landscape managers. Geospatial data 
have shown the potential to assist in the analysis and understanding of this per-
ception over different time periods. This study further highlights the role geospa-
tial data can play in understanding landscape perception through the development 
of a methodology using open source satellite imagery for describing the visibility 
of LULC change from public road networks. We demonstrate this method within 
Yungay, Chile, between the years from 1986 to 2018 over four time periods. The 
results we have presented show the transition over time, with a large proportion 
of the landscape originally being used for agriculture in 1986 now used for plan-
tation forestry. Furthermore, the method we have designed is able to show the dif-
ference between the landscape visible and ground level and the overall landscape 
composition visible from satellite imagery. However, for the case of Yungay, this 
difference between perspectives was shown to be minimal. As this method utilises 
data sources that are largely freely available at a global scale, it is hoped that it 
may be applied easily over larger scales and within other regions to provide land 
managers with information regarding the visibility of landscape use and cover.
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