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Abstract
This work is concerned with the spatiotemporal dynamics of the coronavirus dis-
ease 2019 (COVID-19) in Germany. Our goal is twofold: first, we propose a novel 
spatial econometric model of the epidemic spread across NUTS-3 regions to iden-
tify the role played by commuting-to-work patterns for spatial disease transmis-
sion. Second, we explore if the imposed containment (lockdown) measures during 
the first pandemic wave in spring 2020 have affected the strength of this transmis-
sion channel. Our results from a spatial panel error correction model indicate that, 
without containment measures in place, commuting-to-work patterns were the first 
factor to significantly determine the spatial dynamics of daily COVID-19 cases in 
Germany. This indicates that job commuting, particularly during the initial phase of 
a pandemic wave, should be regarded and accordingly monitored as a relevant spa-
tial transmission channel of COVID-19 in a system of economically interconnected 
regions. Our estimation results also provide evidence for the triggering role of local 
hot spots in disease transmission and point to the effectiveness of containment meas-
ures in mitigating the spread of the virus across German regions through  reduced 
job commuting and other forms of mobility.
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1 Introduction

Understanding the main transmission channels of the coronavirus disease 2019 
(thereafter: COVID-19) pandemic is a key factor for effectively suppressing its 
spread until a pharmaceutical cure is available for large parts of the population. This 
work is concerned with an econometric analysis of the spatiotemporal dynamics of 
COVID-19 in Germany during the first pandemic wave in spring 2020. The goal is 
twofold: First, we identify the significance of commuting-to-work patterns between 
NUTS-3 regions (Kreise und kreisfreie Städte) as an explicit channel for spatial dis-
ease transmission before containment measures have been introduced in mid-March 
2020. While it seems natural to assume that the spread of COVID-19 has a spa-
tial dimension, estimating the magnitude of mobility effects related to professional 
and social interactions is challenging as these interactions are difficult to measure 
(e.g., social contacts with family and friends, shopping behavior, etc.) and disentan-
gle—even with novel digital data sources such as mobile phone or social media data 
available (see Schlosser et al. 2020, for an overview).1

The identification strategy proposed in this paper makes use of detailed informa-
tion on interregional commuting flows across German NUTS-3 regions measured at 
the onset of the COVID-19 outbreak to proxy structural labor market interdepend-
encies between regions. Although pre-COVID-19 data on interregional commuting 
cannot directly track behavioral changes in mobility patterns associated with the 
pandemic development (see, e.g., Lee et al. 2020; Pepe et al. 2020; Gao et al. 2020; 
Schlosser et al. 2020, for this type of analysis using mobility as key outcome), we 
argue that the main advantage of our identification strategy is precisely to exploit 
this exogeneity of using pre-pandemic mobility data to size the infection effects 
from mobility at the regional population level. To do so, we estimate a series of spa-
tial panel error correction models (SP-ECMs), which allow us to combine elements 
from a theoretically grounded long-run specification of epidemic diffusion between 
regions together with a flexible short-run approach that accounts for the nonlinear 
dynamics of new COVID-19 cases.

Building on the SP-ECM specification, our second goal is to assess the effects of 
containment (lockdown) measures on the strength of interregional disease transmis-
sion through job commuting. In the case of Germany, several public health measures 
were targeted to reduce the mobility of the population in spring 2020 (e.g., Berle-
mann and Haustein 2020; Hartl and Weber 2020). While, for instance, almost all 
white-collar workers have been encouraged or ordered to work from home, educa-
tion institutions, most retail stores and service activities (restaurants, bars, hairdress-
ers, etc.) have been temporarily closed during the first lockdown between mid-March 
and mid-April 2020. We test for the effectiveness of such mobility constraints in 
slowing down the epidemic spread by measuring changes to the strength of spatial 
diffusion of COVID-19 across German regions with and without policy interven-
tions in place. We argue that the analysis of the first pandemic wave and lockdown 

1 Tizzoni et al. (2020) also point to the potential problem of overestimation of mobility flows, such as 
commuting networks, when mobile phone rather than census data are used.
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phase in Germany during spring 2020 is well suited to answer our research ques-
tions as both (a) the international arrival of COVID-19 and (b) the imposition of 
containment measures can be regarded as an exogenous shock to the local popula-
tion so that early anticipation effects biasing our estimation results are likely to be 
small. This is less so the case for the second wave in autumn 2020 with lockdown 
measures being imposed in a much more staggered way accompanied by an incon-
sistent implementation of these rules (Warren et al. 2021).

Foreshadowing some key findings, consistent with prior results we find strong 
evidence for spatial dependence in regional COVID-19 data during the first pan-
demic wave. The main novel finding from our study is that this spatial correlation is 
significantly determined by job commuting—even when we control for other types 
of spatial dependence. Particularly, job commuting was found to be the first factor 
that significantly correlated with the spatial spread of COVID-19 after its interna-
tional arrival in February 2020. With regard to the size of this propagation effect, 
we find that a doubling of new COVID-19 cases in neighboring regions intercon-
nected through commuting flows is associated with an up to 20% higher number of 
new COVID-19 cases in a region. Importantly, we also find that the estimated spa-
tial commuting channel (different from spatial dependence of general form) breaks 
down once mobility restrictions during the first lockdown are in place, which points 
to the effectiveness of such strict measures in mitigating spatial disease transmis-
sion. Our estimated effect size is comparable to recent other studies, such as for US 
cities reported in Glaeser et al. (2020).

From the perspective of public health policy, our results indicate that commuting 
linkages need to be considered and accordingly monitored as a relevant transmis-
sion channel when containment measures are planned. Though apparently effective, 
mobility constraints bear considerable socioeconomic costs, though, which are dis-
cussed in the end of this paper (Sect. 6). Before that, in the next section, we briefly 
summarize the related empirical literature on modeling the spatiotemporal dynamics 
of epidemic diseases, specifically COVID-19, that is used to guide our estimation 
approach. This is followed by a brief discussion of the empirical specification and 
estimator choice in Sect. 3. Section 4 presents the data and variables. In this sec-
tion, we also refer to institutional details of containment measures in Germany and 
discuss the time span when new infections can be expected to be shown in the data. 
Empirical results are presented in Sect. 5. Section 6 concludes the paper. Additional 
topics are discussed in the online appendix.

2  Related literature

Our research approach draws on three strands of the empirical literature focusing on 
the spatial transmission channels of infectious diseases. The first strand deals with 
general empirical research on the role of human mobility (prior to COVID-19). The 
second strand relates to the nascent research field studying the link between mobil-
ity, mobility restrictions and disease spread during the first wave of the COVID-19 
pandemic at an international scale. As third strand, we refer to recent contributions 
that model the spatiotemporal dynamics of COVID-19 and lockdown effectiveness 
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in Germany, particularly at the regional level. These strands of the literature are used 
as conceptual framework guiding our spatial econometric analysis.

2.1  Spatial transmission channels of infectious diseases

There is a broad consensus within the multidisciplinary field of epidemiologi-
cal modeling that mobility and transport links, such as trade and commuting pat-
terns, significantly affect the magnitude and speed of spatial disease transmission 
at national and global scales (see, for instance, Charaudeau et  al. 2014; Cromley 
and McLafferty 2012; Wen et al. 2012). A particularly influential analysis tool for  
analyses in this context is the susceptible-infective-recovered (SIR) model (see 
Höhle 2016, for an overview).2 SIR-type models can be spatialized by dividing the 
overall population into a number of sub-populations in different geographical areas 
and by allowing for various types of linkages between these sub-populations, for 
instance, proxied through the geographical distance between them. In the case of 
directly transmitted human diseases (such as COVID-19), a distinct focus is often 
placed on the temporary, recurrent movement of infectious individuals between 
sub-population, e.g., through job commuting and long-distance airplane travelling. 
A specific commuter-based SIR model is, for instance, presented in Tizzoni et  al. 
(2014).

There are different ways to calibrate or estimate the key parameters of spatial SIR 
models.3 A particularly flexible empirical adaptation of the spatial SIR framework is 
the Held–Höhle–Hofmann (HHH) model (see Held et al. 2005, for a description and 
Lu and Meyer 2020, for a recent application), which decomposes the infection dynam-
ics of regional sub-populations into an endemic and epidemic component. While the 
endemic component typically includes deterministic short- and long-run trends in 
new disease cases (e.g., seasonal variations), the epidemic dynamics is essentially 
estimated as an autoregressive specification of new disease cases (i.e., the reproduc-
tion of cases in the own region), regional population levels to proxy the stock-flow 
relationship between susceptibles, infectious and newly infected together with random 
regional effects and covariates capturing the infection dynamics in other, spatially 
interconnected regions. A standard way to incorporate spatial dependence in the HHH 
and related multivariate time-series SIR models is to rely on gravity-type mechanisms 
relating interregional disease transmission between sub-populations to the inverse geo-
graphical, social and/or economic distance between them (e.g., Xia et al. 2004).

2.2  Mobility and mobility restrictions during COVID‑19

Several recent contributions have adopted SIR-type models to predict the develop-
ment of COVID-19 cases at the country and regional levels (see, e.g., Atkeson 2020; 
Wang et  al. 2020). In several of these models, mobility between sub-populations 
has been found as a significant factor predicting the spatiotemporal dynamics of 

2 Other types of region-scale models are, for instance, presented in Bertozzi et al. (2020).
3 We provide a summary of different methods in the online appendix.
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COVID-19 (e.g., Chang et al. 2021; Liu et al. 2020; Wu et al. 2020, among others). 
Complementary approaches based on network analysis and spatial econometrics 
have confirmed the link between human mobility and the international transmission 
of COVID-19 for different connectivity measures such as flight connections and 
international trade relations (Krisztin et al. 2020).

COVID-19-related research is thereby particularly concerned with the role played 
by mobility restrictions in slowing down the disease spread during the first pan-
demic wave (e.g., Chinazzi et al. 2020; Gatto et al. 2020; McGrail et al. 2020; Klein 
et al. 2020a, b; Glaeser et al. 2020). While the focus in Chinazzi et al. (2020) is on 
the national and international COVID-19 transmission delay caused by the travel 
ban from Wuhan, China, in January 2020, Gatto et al. (2020) model the countrywide 
spread of the COVID-19 in Italy on the basis of provincial data and estimate the 
effects of restrictions posed to human mobility and human-to-human contacts. Their 
findings from a spatial SIR model indicate that lockdown measures associated with 
professional and social mobility constraints have significantly reduced COVID-19 
disease transmission rates.

McGrail et al. (2020) investigate the effect of social distancing policies on com-
munity mobility. The authors find for US data from the Google mobility reports 
that average mobility rates in response to regional or national mitigation  policies 
declined by 40–50%. Similarly, Klein et al. (2020a, b) find for interregional mobil-
ity data in the USA that COVID-related mobility constraints temporally coincide 
with a strong reduction in overall mobility patterns (commuting volumes between 
US census tracts and inter-city travel, i.e., visits of two US Census Bureau Com-
bined Statistical Areas (CSAs) within 24 h) by up to 60%. Extending this descriptive 
evidence, Glaeser et  al. (2020) study the causal impact of changes in mobility on 
the development of COVID-19 per capita for five US cities. The authors find that a 
decrease of roughly 20% in COVID-19 cases for every 10% points falls in mobility.

2.3  Predicting regional COVID‑19 developments in Germany

Some first studies have also investigated the infection effects of COVID-19 in Ger-
many and have assessed lockdown effectiveness. We focus on research with an 
explicit regional dimension here. Schlosser et al. (2020) use mobile phone data to 
investigate mobility patterns across German NUTS-3 regions (without distinguish-
ing different types of mobility, though). Key findings from their network analysis 
of mobility changes are that (a) long-distance travel has been strongly reduced dur-
ing the spring lockdown rendering mobility patterns more local and (b) the density 
of the German mobility network has been reduced. The authors use a spatial SIR 
model to assess the mediating effect of changes in a mobility network (although the 
model is not calibrated to COVID-19 parameters). They conclude that the reduced 
global mobility during a lockdown likely slows down the spatial disease spread.

Mixed evidence for lockdown effectiveness  in Germany is reported in Berle-
mann and Haustein (2020). Their analysis is focused on predicting regional counts 
(NUTS-3 regions) of newly infected persons in the HHH-model framework and on 
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evaluating the effectiveness of three waves of containment measures during spring 
2020. Estimation results indicate that particularly the first wave of containment 
measures (ban of mass events) contributed to flatten the curve of new infections. 
Similar to Berlemann and Haustein, results reported in Wieland (2020) provide 
mixed evidence for a regional trend change in infections around the timing of public 
interventions in spring 2020. As the author points out, in nearly two-thirds of Ger-
man counties the flattening of the infection curve was found to occur before the full 
lockdown came into force on March 23 and one in eight counties even experienced a 
decline of infections even before the closures of schools, child day care facilities and 
retail facilities.

Kergassner et al. (2020) use a combined SIR-type and mobility network model to 
study the effect of infections stemming from selected “seeds” such as (a) Heinsberg 
in Germany during the Carnival season 2020 and (b) returning travelers from Ischgl 
in Austria. The authors conclude that refraining from traveling and large events are 
two key interventions that can effectively attenuate the spreading of COVID-19 at 
the regional level. Felbermayr et al. (2020) similarly report that the road distance to 
Ischgl is an important predictor for infection cases across German regions and that 
mobility restrictions have helped to suppress the further disease spread.

Taken together, while these earlier studies provide first important insights on 
the role of mobility and the effectiveness of containment measures in  influencing 
the spread of COVID-19, no empirical investigation of the underlying transmission 
channels for these mobility effects has yet been undertaken. We will add to the sci-
entific debate by providing an in-depth analysis of the role played by commuting-to-
work patterns across NUTS-3 regions for the spatial spread of COVID-19.

3  Econometric specification

3.1  Spatial panel error correction model

The specification of our econometric model accounts for the key factors identified 
in the empirical literature of epidemic disease modeling: First, we follow the logic 
of HHH-type epidemiological models and place a space–time dynamic autoregres-
sive mechanism at the heart of our short-run specification. Second, to cover disease 
transmission through stock-flow relationships (as stressed in SIR-type models), we 
propose an estimation approach that adapts the logic of space–time cointegration 
and error correction (e.g., Beenstock and Felsenstein 2010). Specifically, the latter 
framework allows us to add long-run information about the cumulative number of 
COVID-19 cases within and across regions in our short-run regression specification 
without the risk of running spurious, i.e., biased and regressions. The main driving 
force behind this model is the specification of a long-run co-movement (cointegra-
tion) path for the cumulative number of COVID-19 cases in interconnected regions, 

10



1 3

The propagation effect of commuting to work in the spatial…

whereby deviations from this long-run trend are expected to influence the regional 
short-run new case development.4

Formally, we estimate a spatial panel error correction model (SP-ECM) of the 
following form5

where Δcovidi,t is the log-transformed number of new COVID-19 cases in region 
i at day t, which are regressed on l = 1,…, L time autoregressive and m = 1,…, M 
space–time lags of Δcovidi,t . Throughout this paper, log-transformed variables are 
written in lower-case letters, whereas the underlying original variables are written in 
upper-case letters, i.e., Δcovidi,t is the log-transformation of the variable ΔCOVIDi,t 
(details on variable definitions and the chosen log-transformation will be given 
below, particularly in Sect. 4).

We distinguish between two types of spatial transmission mechanisms in the 
short run: In first place, we are interested in identifying the role played by interre-
gional disease transmission through interregional job commuting linkages. Accord-
ingly, the included space–time lags 

�

∑N

j=1
wCOM
ij

Δcovidj,t−m

�

 measure the (average) 
number of new COVID-19 cases in regions having commuting interdependencies 
with region i, where wCOM

ij
 is a measure for the strength of this interdependency used 

to calculate weighted averages for the j = 1,…, N regions (excluding region i). The 
magnitude of this channel of spatial disease transmission is captured by the regres-
sion coefficients 

∑M

m=1
�m . We thereby assume that spatial transmission does not take 

place instantaneously but with time lags. We apply different empirical concepts to 
operationalize wCOM

ij
 ; details are given in Sect. 4.

In order to avoid omitted variable biases stemming from other (latent) channels of 
spatial dependence, we also include a second spatial lag term 

�

∑N

j=1
wijΔcovidj,t−m

�

 
in Eq.  (1). Spatial weights wij thereby link region pairs (i, j) through the (inverse) 
geographical distance between them. The idea is that other types of social interac-
tions, such as shopping behavior and friendship networks, can be proxied through 

(1)

Δcovidi,t =

L
∑

l=1

�lΔcovidi,t−l +
M
∑

m=1

�m

(

N
∑

j=1

wijΔcovidj,t−m

)

+

M
∑

m=1

�m

(

N
∑

j=1

wCOM
ij

Δcovidj,t−m

)

+ �ui,t−p + DWeekday + �i + Ψk(t) + ei,t,

4 See the online appendix for a stylized simulation model that highlights the concept of (spatial) co-
integration and error correction applied to the case of epidemic disease modeling at the regional level.
5 Different from the approach in Beenstock and Felsenstein (2010), we apply the SP-ECM framework 
to a univariate and not multivariate case. While the multivariate case allows the researcher to include 
two long-run residual adjustment terms in the SP-ECM equation, namely one for adjustment processes 
related to within-group cointegration across variables and a second “spatialized” residual term to account 
for between-group spatial adjustment processes, we only account for the latter through ui,t−p . Moreover, 
while the inclusion of between-group adjustment processes often takes place on an ad hoc basis in spatial 
econometric applications, we provide theoretical priors with regard to the expected time path in the case 
of epidemic diffusion (see the online appendix).
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these general space–time lags. We also control for region-fixed effects ( �i) , weekday 
effects ( DWeekday) and time-fixed effects for each k = 1,…,K calendar week in the 
sample period 

(

Ψk(t)

)

 ; finally, ei,t is the model’s i.i.d. error term. By including region-
fixed effects, our empirical approach explicitly differs from related approaches such 
as the HHH model, which considers region-level effects to be at random (e.g., Berle-
mann and Haustein 2020). However, given distinct regional structures in the data 
such as a visible south–north divide in COVID-19 cases and urban–rural differ-
ences, we argue that such persistent structures are not a random representation and 
may lead to an estimation bias if the correlation of these structures with the included 
set of regressors (essentially historical information about COVID-19 cases) is 
nonzero.

The use of an (unrestricted) short-run dynamics measured through the space–time 
autoregressive (AR) components shown in Eq. (1) is a common feature of epidemio-
logical models as outlined above. Maximum lag lengths are typically chosen by the 
researchers and should be ideally supported by a suitable test strategy.6 The underly-
ing idea of this autoregressive short-run modeling approach is that historical infor-
mation on new cases in region i and its spatial neighborhood captures important 
information on the local infection dynamics even if the maximum lag length cho-
sen is shorter than theoretically expected incubation times at the individual level. In 
other words: The number of newly reported infections yesterday is assumed to be a 
suitable predictor for the number of newly reported infections today as they both—
measured at the local population level—convey information about stocks of infec-
tious persons back in time (together with a given transmission rate).

An exclusive focus on the short-run times-series dynamics may, however, neglect 
some important structural features of the data generation process, which is contained 
in variations in the number (stock) of infectious persons in a region and its spatial 
neighborhood (here: stocks denote the cumulative number of COVID-19 cases). 
Hence, Eq.  (1) also considers that transmission is triggered by deviations from a 
long-run co-movement of regional stocks of infected individuals, i.e., cumulative 
COVID-19 cases. Specifically, in our SP-ECM framework, deviations from a long-
run cointegration path in the infection curve of neighboring regions are captured 
through the term ui,t−p (with p > l, m), which is calculated as the residuals from a 
long-run regression equation of the following form

In Eq.  (2), covidi,t is the (log-transformed) cumulative number of COVID-19 
cases in region i at time t. The coefficient �̂  expresses the estimated long-run spatial 
association between the stock of COVID-19 infections in region i and its spatial 

(2)ui,t =

[

covidi,t − �̂�
N
∑

j=1

wijcovidj,t − Ψk(t) − 𝜇i

]

.

6 For instance, Berlemann and Haustein (2020) use two lags (L = 2, M = 2) in the epidemic component of 
their HHH model for Germany arguing that this lag is sufficient to capture the time-series properties of 
new infections. However, the authors do not explicitly test their choice against some information criteria 
for evaluating the model fit.
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neighborhood 
∑N

j=1
wijcovidj,t . As an extension, we also estimate Eq. (2) including 

∑N

j=1
wCOM
ij

covidj,t to explicitly account for commuting interdependences in the long-
run co-movement of regions along their infection curves.7 With regard to the 
expected transmission lag running from the stock of infectious to new cases through 
ui,t−p , we set lag length for p as p = {8,…,11} days to capture the median incubation 
time for the case of COVID-19 of 5.2 days (Linton et al. 2020; Lauer et al. 2020) 
and a similarly sized median reporting lag for the German RKI data (Mitze et  al. 
2020). See also Sect. 4 for further details.

The long-run residual ui,t takes positive values if the cumulative number of 
COVID-19 cases in region i exceeds the average value in the spatial neighborhood. 
In this case, region i can be characterized as a relative hot spot of COVID-19 cases 
(vis-à-vis its spatial neighborhood) and we expect that this excess infection level 
marks another channel that helps predicting the number of new cases emerging in 
region i as outcome variable of our SP-ECM. As shown in the online appendix in 
greater detail, we can formulate ex ante expectations about the strength of spatial 
(dis-)equilibrating forces induced by this adjustment mechanism which depend on 
the state of regions along an S-shaped infection curve during an epidemic wave. That 
is, if regions move along their S-shaped infection curves below its turning point, we 
expect that the coefficient � for ui,t−p is positive and exerts a disequilibrating force, 
i.e., it increases the differences in new cases between region i and its geographical 
neighborhood in the short run. Beyond this turning point, however, we expect that 
an equilibrating mechanism comes into play. Accordingly, tracking the evolution of 
� over time allows us to predict the peak of an epidemic wave.

In terms of estimator choice, we estimate the short- and long-run specification 
shown in Eqs. (1) and (2) on the basis of linear panel data models for log-trans-
formed data. Specifically, the short-run SP-ECM in Eq.  (1) is estimated straight-
forwardly as dynamic fixed effects model (DFE) by ordinary least squares (OLS) 
given that it only includes predetermined space–time lags of Δcovidi,t as right-hand-
side regressors, i.e., we do not need to account for the endogeneity of the included 
spatial lag terms. We refrain from applying bias-correction or generalized method 
of moments (GMM) estimation methods for the short-run equation since earlier 
research has shown that the estimation bias in the AR coefficients becomes negligi-
ble for sufficient time periods (Judson and Owen 1999). Similarly, Korniotis (2010) 
has shown through Monte Carlo simulations that with increasing number of time 
observations the reduction in the percentage mean bias in 

∑M

m=1
�m is larger for the 

DFE estimator compared to a bias corrected estimator or the Andersen-Hsiao-type 
IV estimator. Finally, GMM methods are typically found to suffer from instability 
with regard to the choice of overidentifying restrictions used for estimation (e.g., 
Ziliak 1997; Windmeijer 2005).

The long-run equation as shown in Eq. (2) is estimated by (quasi-)maximum like-
lihood including region- and time-fixed effects (Elhorst 2014). The choice of maxi-
mum likelihood estimation is mainly motivated by the contemporaneous inclusion 

7 See the online appendix for conceptual details.
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of the spatial lag of covidi,t as endogenous right-hand-side regressor. For the case 
that the long-run specification in Eq.  (2) contains more than one spatial weight-
ing matrix, we impose exogeneity assumptions on the spatial lag terms included to 
facilitate estimation. Finally, as stated above, for both the short- and long-run speci-
fication, we argue that the inclusion of two-way (region- and time-) fixed effects 
is crucial factor for ensuring estimator consistency in the presence of unobserved 
regional heterogeneity. We thereby essentially deviate from the estimation prac-
tice chosen in related studies on the HHH model such as Berlemann and Haustein 
(2020), which assume that time-constant differences in regional infection cases are 
randomly distributed across regions. The inclusion of region-fixed effects together 
with space–time dynamics motivates our choice for using a linear panel data model 
instead of count data regression approaches.8

While it seems natural on first sight to apply count data estimators for our analysis 
of new COVID-19 infections at the regional level, we follow the methodological lit-
erature arguing that standard count data estimators, such as the Poisson conditional 
maximum likelihood estimator with individual specific constants, are inconsistent 
in settings that involve (two-way) fixed effects together with a dynamic panel data 
structure (Blundell et al. 2002) and may thus result in severe estimation biases.9 As 
Manning and Mullahy (2001) report, the log-transformed OLS estimator deals par-
ticularly better with heavy-tailed data than many generalized linear model (GLM) 
alternatives, such as Poisson-like and gamma models. While the log-transformation 
of data with zero entries is not without limitations either (Bellégo and Pape 2019), 
we carefully account for the pitfalls of this linearized dynamic panel data approach 
and test for biases associated with the transformation and back-transformation of the 
data for model predictions.

3.2  Analysis of the effectiveness of containment measures

To study the effectiveness of containment measures on spatial disease transmission, 
we test if the spatiotemporal dynamics in newly registered COVID-19 cases changes 
over time with and without containment measures in place. A similar identification 
approach for the estimation of time-dependent parameters in SIR models has, for 
instance, been adapted in Hong and Li (2020) studying the COVID-19 develop-
ment in Hong Kong. We make use of an interaction term approach which multiplies 
the binary dummy variables for individual weeks 

(

Ψk(t)

)

 with the set of regressors 
shown in Eq. (1). While the additional number of estimated coefficients makes the 
model cumbersome for forecasting or simulation purposes, from an (ex-post) policy 
evaluation perspective it allows us to identify trends in the space–time COVID-19 
spread within and across regions and thus to test if the spatial transmission dynamics 

8 We, though, apply count data models as a robustness check. Details are given in the online appendix.
9 As discussed in Blundell et al. (2002), a solution to this inconsistency problem would be to apply a 
quasi-differences GMM estimator, which may, however, suffer from a weak instrument bias if time series 
are highly persistent.
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has slowed down after the introduction of mobility constraints. Formally, our time-
dependent parameter specification has the following form

Components 1–3 allow us to gain insights on the temporal heterogeneity in the 
short-run dynamics of the COVID-19 spread in Germany; Component 4 tests for 
time-specific effects in the deviation/adjustment toward a long-run cointegration 
path between regions, which can be used to detect local hot spots and identify the 
peak of the pandemic wave; and  finally, Component 5 tracks the overall develop-
ment of new cases over time, i.e., it is a general measure of the overall dynamic 
development of COVID-19 in Germany (given that we account for differences 
across regions through region-fixed effects). This latter component can be seen as 
the unrestricted version of a deterministic time trend plus seasonal components typi-
cally included in the HHH model.

(3)

Δcovidi,t =

K
∑

k=1

L
∑

l=1

�l,k
(

Δcovidi,t−lΨk(t)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Component 1

+

K
∑

k=1

M
∑

m=1

�m,k

((

N
∑

j=1

wCOM
ij

Δcovidj,t−m

)

Ψk(t)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Component 2

+

K
∑

k=1

M
∑

m=1

�m,k

((

N
∑

j=1

wijΔcovidj,t−m

)

Ψk(t)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Component 3

+

K
∑

k=1

�k

(

ui,t−pΨk(t)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Component 4

+ Ψk(t)

⏟⏟⏟
Component 5

+DWeekday + �i + ei,t.

Table 1  Summary statistics for 
newly reported and cumulative 
COVID-19 cases by regions

ΔCOVIDi,t = newly registered COVID-19 cases for region i at day t; 
COVIDi,t = cumulative number of registered COVID-19 cases. The 
dataset relates to 401 NUTS-3 regions and 95  days between Janu-
ary 28 and May 1, 2020. Data from RKI (2020). Details on panel 
unit root and Moran’s I tests for spatial dependence are given in the 
online appendix. These tests have been applied to log-transformed 
variables. Summary statistics for log-transformed variables are pre-
sented in the replication files available for this study.

Variable Mean SD Min Max Stationary 
time series

Spatial 
depend-
ence

ΔCOVIDi,t 4.13 10.66 0 310 Yes Yes
COVIDi,t 120.86 289.07 0 5795 No Yes
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4  Data, descriptive analysis and institutional details

4.1  Data, variables and spatial weighting schemes

We use daily statistics on newly reported COVID-19 cases at the level of German 
NUTS-3 regions obtained from the Robert Koch Institute (RKI 2020) which is in 
charge of disease control in Germany. The RKI database is fed from information of 
local health authorities and only covers cases confirmed by a testing laboratory. We 
use the RKI data as main input to build a balanced panel dataset for 401 NUTS-3 
regions and 95  days between January 28 and May 1, 2020 (38,095 region-time 
observations). Our outcome variable of interest are newly reported COVID-19 cases 
( ΔCOVIDi,t ) and their cumulative stocks, where the latter are constructed as

Note that log-transformed variables introduced in Sect.  3 are written in lower-
case letters, i.e., covidi,t and Δcovidi,t are logarithmic transformations of COVIDi,t 
and ΔCOVIDi,t , respectively. Summary statistics for both variables together with 
an indication of the time-series properties and the significance of spatial depend-
ence in the data are given in Table 1 (for details on the applied panel unit root tests 
and Moran’s I tests see the online appendix). The pre-estimation tests indicate that 
we can clearly reject stationarity of cumulative stocks of COVID-19 cases, which 
supports our chosen SP-ECM approach. We also find persistent evidence for spatial 
dependence in the data.

As discussed in Sect. 3, the reader has to note that we use log-transformations of 
both outcome variables for estimation, where the log-transformation for any variable 
X is computed as x = log(X + 1). This type of log-transformation considers that newly 
reported COVID-19 cases may be zero at the regional level (McDonald 2014) while 
assuming that the variable follows a log-normal distribution (e.g., Olsson and Zhang 
2020, for the case of COVID-19 time series). We also account for the problem of 
back-transforming the data in order to use our SP-ECM specification for predictions 
of new and cumulative COVID-19 cases at the regional and national level. Specifi-
cally, we make sure that level predictions from log-transformed data do not suffer 
from a re-transformation bias that arises when predictions of the log-dependent vari-
able are exponentiated. We apply the re-transformation approach suggested by Duan 
(1983) for potentially non-normally distributed residuals ε from a log-transformed 
linear regression equation as y = �

�Ψ + � . In this case, the adjusted re-transforma-
tion is given by Y = exp

(

�
�Ψ

)

E
[

exp(�)
]

, with E
�

exp (�)
�

=
1

NT

∑

exp
�

�i,t
�

 . We 
finally make sure that predicted values are corrected for the add factor (+ 1) intro-
duced during the logarithmic transformation.

When it comes to the measurement of interregional commuting linkages, we con-
struct wCOM

ij
 as elements of an N × N spatial weighting matrix �COM in different 

ways. As default specification, we use binary dummies indicating if region i and j 
belong to a joint commuting zone ( wCOM

ij
= 1 ) or not. We employ two concepts 

defining joined commuting zones in Germany. These relate to (a) the German Fed-
eral Institute for Research on Building, Urban Affairs and Spatial Development 

COVIDi,t = COVIDi,t−1 + ΔCOVIDi,t (for t > 1).
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(Bundesinstitut für Bau-, Stadt- und Raumforschung, BBSR), and (b) Kropp and 
Schwengler (2011). The BBSR concept builds on a narrow definition of commuting 
zones and segments the 401 German NUTS-3 regions into 258 local labor markets 
with strong commuting flows. In all cases, regions belonging to a joint commuting 
zone also share a common territorial border, i.e., are immediate spatial neighbors.10 
Kropp and Schwengler (2011) adopt a wider definition and make use of graph the-
ory to arrive at 50 larger commuting zones.11 Different from the BBSR concept, 
Kropp and Schwengler also group regions further away from each other into joint 
commuting zones if they have strong commuting interdependencies. In both cases, 
we row-standardize elements of �COM . This allows us to interpret the spatial lag 
terms generated as the average number of newly registered COVID-19 cases in the 
other regions belonging to the same commuting zone as region i.

As an alternative to these binary indicators, we also measure the intensity of labor 
market interaction directly through gross number of commuter flows between region 
i and j (summed over in- and out-commuting for each pair of regions). Data on gross 
commuter flows have been obtained from German labor market statistics (provided 
by the Institut für Arbeitsmarkt- und Berufsforschung, IAB) and are based on annual 
data for 2019.12 As before, we row standardize the obtained matrix �COM . Impor-
tantly, the use of data on gross commuting flows at the onset of the COVID-19 out-
break ensures the exogeneity of space–time lags calculated on the basis of �COM . 
Summary information for the three different commuting-based weight matrices to 
track the spatial association of newly registered COVID-19 cases across regions is 
reported in the online appendix.

With regard to distance-based spatial dependence (wij) , as default, we construct a 
binary dummy which takes a value of one if region i and j share a common territo-
rial border (i.e., queen-type first-order contiguity). We employ a measure of inverse 
distances between region centroids as an alternative; weights are row standardized.13

Importantly, the inclusion of two different types of spatial transmission channels 
allows us to test for additionalities in the spatial dynamics of the epidemic diffusion 
in Germany. When we interpret the resulting spatial effects, we carefully account for 
the relationship between the two weighting schemes wij and wCOM

ij
 . For instance, 

when we include space–time lags constructed on the basis of the narrow BBSR defi-
nition for joint commuting zones together with spatial lags for regions sharing a 
common territorial border, we can exploit the fact that the former weighting scheme 
is perfectly nested within the latter. Accordingly, the coefficient for the spatial lag 
term for job commuting then measures the additional disease transmission effect for 
regions being in a joint commuting zone on top of a general spatial association in 

10 See https:// www. bbsr. bund. de/ BBSR/ DE/ forsc hung/ raumb eobac htung/ Rauma bgren zungen/ deuts chland/ 
regio nen/ AMR/ Arbei tsmar ktreg ionen. html for further details.
11 Updated data for the most recent definition of commuting zones in Germany in 2016 are obtained 
from the supplementary online materials available at: https:// www. iab. de/ 389/ secti on. aspx/ Publi kation/ 
k1102 22301.
12 For further information on the IAB gross commuting database, see also http:// www. iab. de/ infop lattf orm/ 
pendl er.
13 Summary information on spatial weight matrices is given in the online appendix.
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COVID-19 cases. While other combinations for wij and wCOM
ij

 are only partly over-
lapping, e.g., spatial lag variables defined on inverse distances and gross commuter 
flows, the online appendix shows in greater detail, that for no pair of spatial lag vari-
ables we observe an almost perfect correlation. This is important to rule out the 
problem of multicollinearity.

4.2  Timing of containment measures and visibility of potential effects in the data

An assessment of the effectiveness of containment measures during the first pandemic 
wave chiefly depends on (a) exact information about the timing of restrictions and (b) 
precise expectations about their likely visibility in the data. Elaborating on the first 
aspect, we have systematically reviewed public health measures implemented in Ger-
man federal states as responsible decision-making body for public health regulations. 
This allows us to separate our sample period into two sub-periods with and without 
containment measures in place. While no (systematic) measures were undertaken until 
March 9, federal states imposed various restrictions on economic activities and social 
contacts afterward. As shown in Panel B of Fig. 1, this imposition has been done in a 
staggered manner, i.e., diamonds in Panel B of Fig. 1 indicate the point in time when 
the measure was implemented by the first German federal state. Most measures have 
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Fig. 1  Changes in workplace-related mobility and timing of containment measures. Notes: Data for 
Panel A are obtained from Google mobility reports (Google 2020). The timing of the start of public 
health measures (black diamonds) indicates the point in time when the first federal state imposed a par-
ticular containment measure
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been implemented during the period March 15 to 22 and include the closing of res-
taurants, shopping centers, retail stores and further private and public establishments 
(including museums, theaters, parks, etc.). This was completed by a ban of events and 
even personal contacts constraints up to strict stay-at-home orders in some German fed-
eral states.

To further narrow down the time window when policy measures can be expected 
to impact on the spatial disease transmission, we have additionally screened the 
COVID-19 community mobility reports published by Google (2020). These reports 
map movement trends over time across different categories of places such as retail 
and recreation, groceries and pharmacies, parks, transit stations, workplaces and 
residential for Germany (aggregate). We are particularly interested in screening 
workplace-related mobility trends. Unfortunately, data are only available at higher 
aggregation levels and not for NUTS-3 regions. As Panel A of Fig. 1 shows for the 
German aggregate, we can see a distinct drop in workplace-based mobility from 
March 16 onwards (calendar week 12). At around March 23, i.e., calendar week 13, 
most mobility adjustments had taken place resulting in a relative reduction of mobil-
ity of 40% compared to a five weeks reference period between January 3 and Febru-
ary 6, 2020. This drop on overall mobility provides an important prior for our analy-
sis of time heterogeneities in the estimated SP-ECM as shown in Eq. (2).

Finally, to be able to formally test for the effect of policy interventions on the 
evolution of new COVID-19 cases, we need to consider that reported cases only 
appear in the data with a certain time lag. Two aspects determine this time lag: First, 
we need to consider an incubation time. Prior research has documented a median 
incubation time of 5.2 days for COVID-19 infections (Linton et al. 2020 and Lauer 
et al. 2020). Secondly, we need to account for a reporting lag, i.e., the time period 
between the outbreak of the disease (first symptoms) and the recording of a new 
COVID-19 case in the data. The median reporting lag for German data is found 
to be of almost similar size as the incubation time, which implies a median overall 
transmission lag of approximately 10.5 days (see Mitze et al. 2020).

5  Empirical results

Table  2 reports the estimated short- and long-run coefficients for alternative SP-
ECM specifications. Optimal lag selection has been guided by statistical information 
criteria (see Table S6 in the online appendix for details).14 The table reports coeffi-
cient sums for the AR component and space–time lags together with associated 
standard errors calculated on the basis of the Delta method. For all specifications, 
we find that newly reported COVID-19 cases are autoregressively distributed over 
time; in most cases, the estimated coefficient sum for L = 4 is about 0.5, i.e., a dou-
bling of new cases in the last four days leads to an increase in new cases by roughly 

14 The model’s explanatory power increases with the inclusion of additional lags starting from a simple 
AR(1) specification but becomes smaller for a lag size larger than L = 4 and M = 4. We thus argue that the 
latter lag structure is sufficient to capture both the short-run temporal and spatial dynamics of new infec-
tions.
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50% on day t. We also find a statistically significant degree of spatial dependence in 
interregional disease transmission once we include general space–time lags 
�

∑N

j=1
wijΔcovidj,t−m

�

 in the SP-ECM. In our baseline specification in column (I), 
the estimated overall effect of 0.192 indicates that a doubling in the average number 
of newly reported COVID-19 cases in the spatial neighborhood of region i (in the 
last four days) is associated with a roughly 20% higher number of new cases in 
region i on day t. This significant degree of spatial dependence for new COVID-19 
cases also holds for alternative spatial weighting schemes applied, although effect 
size differs moderately (compare, for instance, column (I) and column (V)).

Having established the fact that spatial dependence strongly matters in the data 
generating process of new COVID-19 cases, our focus is on identifying the role 
played by interregional commuting linkages (see columns (II) to (IV) as well as col-
umns (VI) to (VIII) for alternative weighting schemes and combinations with gen-
eral spatial lag terms). In all cases, the included space–time lags measuring interre-
gional commuting linkages turn out to be statistically significant and positive − even 
if we control for spatial dependence of general form and thus other types of mobility 
effects.15 With regard to the interpretation of effect size, the following can be stated: 
If we take the example of column (III), which measures commuting linkages through 
a binary dummy for regions belonging to a common local labor market, the esti-
mated coefficient sum in Table  2 for 

�

∑N

j=1
wCOM
ij

Δcovidj,t−m

�

 measures the addi-
tional degree of spatial association in newly reported COVID-19 cases for regions in 
a common commuting zone on top of the spatial association observed for spatial 
neighboring regions (measured through the general spatial lag terms). Thus, the 
total strength of the commuting channel can be calculated as the sum to individual 
effects from the two types of space–time lags as 0.169 + 0.033 = 0.20. This indicates 
that a doubling in the average number of newly reported COVID-19 cases in other 
regions of the same commuting zone are associated with an 20% higher number of 
newly reported COVID-19 cases in region i.

Using the broader definition of commuting zones suggested by Kropp and 
Schwengler (2011), as shown in column IV, delivers almost identical estimates. 
When we look at the estimation results that combine spatial lags calculated on the 
basis of metric information (gross commuter flows and inverse distances), the results 
in Table 2 further point to (a) larger spatial transmission effects when gross com-
muter flows are used instead of a binary dummy for a common commuting zone 
(given that higher order neighbors are considered as well) and (b) that commuting-
based interregional dependence dominates the overall effect size stemming from 
spatial dependence in the data generating process. This can, for instance, be seen 
in columns (VII) and (VIII) showing that space–time lags calculated on the basis 
of inverse distances turn nonsignificant or negative once we include space–time 
lags calculated on the basis of gross commuter flows. This is a clear indication that 

15 Regression results only including commuting-based space–time lags are reported in the online appen-
dix.
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geographical interactions through job commuting are a significant determinant of 
the observed degree of spatial disease transmission in the data.

Taken together, the reported short-run parameters for the included space–time 
lags point to a significant propagation effect of commuting to work on the develop-
ment of new COVID-19 cases. The overall effect size is found to be quite stable 
across the different specifications shown in Table 2 (once we account for the degree 
of nestedness of spatial lag terms) and ranges between 0.15 and 0.23. This indi-
cates that a doubling of the (average) number of new cases in the last four days in 
regions have spatial commuting interdependences with region i leads to an increase 
in new cases in region i of approximately 15 to 23% on day t.16 Together with the 
within-region autoregressive component of 0.5, the SP-ECM parameter estimates 
thus underline that the short-run spatiotemporal variation of COVID-19 is a signifi-
cant channel of disease transmission at the regional level. When interpreting these 
effects, one should keep in mind, though, that all regression parameters in Table 2 
measure average effects over the entire sample period, i.e., without and with con-
tainment measures in place.

In addition to these spatiotemporal short-run dynamics, in all model specifica-
tions shown in Table 2, we find a significant long-run correlation of cases between 
regions associated through spatial distance and commuting flows17 and further that 
the coefficient for the adjustment parameter 

(

ui,t−p
)

 is statistically significant and 
positive in all cases. This points to the fact that the COVID-19 dynamics in Ger-
many is significantly determined by local hot spots that antecede the infection devel-
opment in their broader geographical neighborhood. When we accordingly apply the 
SP-ECM approach for hot spot detection, Fig. 2 plots the resulting spatial distribu-
tion of the long-run adjustment coefficient ui,t for selected points in time.

Accordingly, if we look at Panel A plotting the spatial distribution of long-run 
residuals for March 7, the three NUTS-3 regions with the largest deviations of 
cumulative COVID-19 cases from their geographical neighborhood are Heinsberg, 
the Main-Tauber-Kreis and Freising. All three regions have been epidemic epicent-
ers during the first COVID-19 wave in Germany, for which the local disease dynam-
ics can be traced back to individual superspreading events, for instance, related to 

16 The online appendix additionally assesses the robustness of the estimated effects for alternatively 
specified outcome variables in the linear dynamic panel data model and alternative estimators including a 
negative binomial (NegBin) panel data model with random and fixed effects. However, since model prop-
erties of the NegBin specification are unclear in dynamic panel settings (e.g., related to the initial condi-
tion problem in nonlinear models), the obtained (unadjusted) estimates should only be seen as a rough 
proxy for comparison purposes. All in all, these specifications provide similar (or even higher) estimates 
for the included space–time lag coefficients for the short-run dynamics and thus underline parameter 
robustness in the baseline SP-ECM rendering the reported DFE coefficients conservative estimates of the 
propagation effect of commuting to work.
17 In the estimation of the long-run specification as shown in Eq.  (2), we avoid estimating specifica-
tions with higher order spatial weights by assuming strict exogeneity of one of the two included spatial 
lag terms. The results show that the estimated coefficients remain very stable regardless which spatial 
lag term is treated as exogenous right-hand side regressor. For the results shown in Table  2, we have 
maximized the concentrated log likelihood for the general spatial weighting matrix � while included the 
commuting-based spatial lag term as an exogenous regressor.
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vacationers returning from ski holidays (in the Main-Tauber-Kreis, the first 21 out 
of 23 infections were detected among travelers from a tour group returning from 

Heinsberg

Main-Tauber-Kreis

Freising

>=99% Pct.
>=95% Pct. <99%
>=50% Pct. <95%
Below 50% Pct.

Hamburg

Jena

Mannheim

>=99% Pct.
>=95% Pct. <99%
>=50% Pct. <95%
<50% Pct.

Hamburg

Hannover

Schwalm-Eder-Kreis

>=99% Pct.
>=95% Pct. <99%
>=50% Pct. < 95%
<50% Pct.

Hamburg

Steinfurt

Göttingen

>=99% Pct.
>=95% Pct. < 99%
>=50% Pct. < 95%
<50% Pct.

a b

c d

Fig. 2  Local hot spot identification from residuals of long-run spatial regression equation. Notes: In each 
Panel, names indicate the top-3 regions with largest residual values for the respective dates. Residual 
values are calculated for the model specification with first-order contiguity spatial weighting matrix and 
commuting links measured through gross commuter flows (see the long-run equation in Column (IV) of 
Table 2)
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South-Tyrol); in the case of Heinsberg, the COVID-19 spread was triggered through 
social events in the carnival season (see Kuebart and Stabler 2020).

Over time, Fig. 2 indicates that larger urban areas, such as Hamburg and Han-
nover, exhibit a more dynamic COVID-19 development compared to their respec-
tive hinterlands. Finally, the residual plots also highlight why certain policy choices 
were taken. For instance, the local administration in Jena was Germany’s first city 
to mandate the mandatory use of face masks in public transport and sales shops in 
early April (Mitze et al. 2020). As Panel B in Fig. 2 shows, this policy intervention 
coincides with a relatively high number of infections in Jena relative to is spatial 
neighborhood in late March. The visualization of long-run residuals in Fig. 2 thus 
indicates that our proposed SP-ECM model can be used as a tool for the space–time 
surveillance of hot spots to identify locations for targeted policy interventions 
(Desjardins et al. 2020). In addition, the inclusion of ui,t−p as additional source of 
newly reported COVID-19 cases adds a further predictive element to our SP-ECM 
approach, which complements the short-run parameter estimates.

Taken together, we find that the in-sample predictive performance of the spa-
tially augmented SP-ECM increases by up to one fifth compared to a purely autore-
gressive specification (evaluated on the basis of the relative root mean square error 
[RMSE] as reported in Table 2).18 Moreover, for most SP-ECM specifications we 
do not detect residual autocorrelation indicating a good fit (see Breusch–Godfrey 
LM test in Table 2). And lastly, when we evaluate the model’s in-sample predictive 
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Fig. 3  In-sample predictions for newly reported COVID-19 cases (March–May 2020). Notes: Reported 
level predictions from log-transformed model specifications are based on the Duan (1983) re-transfor-
mation method to reduce the re-transformation bias that arises when predictions of the log-transformed 
dependent variable are exponentiated; predicted values have further been corrected for the add factor 
(x + 1) in the logarithmic transformation. Model predictions for SP-ECM based on first-order contigu-
ity spatial weighting matrix and commuting linkages measured on the basis of gross commuter flows; 
AR(4) = time-series autoregressive specification with L = 4; daily count along x-axis

18 The online appendix additionally shows the contribution of the individual model components for the 
in-sample fit on the basis of proportional reduction in error (PRE) tests.

24



1 3

The propagation effect of commuting to work in the spatial…

performance, Fig.  3 shows that the SP-ECM properly tracks the dynamic pattern 
of new COVID-19 cases for the aggregated German development. Importantly, the 
figure also shows that the chosen log-transformation and the subsequent back-trans-
formation do not bias the predictions new cases in levels. The SP-ECM clearly out-
performs the predictive performance of an AR(4) benchmark specification.

By accounting for time heterogeneity in the parameters of the SP-ECM, we 
finally use the model to assess the effects of containment measures on the spatial 
transmission of COVID-19. Figure  4 therefore plots the estimated coefficients 
(rescaled to percentage effects) of the different model components by calendar 
weeks. Panel A and B plot the coefficients for the level (trend) component and 
the adjustment to the long-run spatial association between regions, respectively. 
While the trend component reflects that the number of new COVID-19 cases 
has increased over time between calendar weeks 10 and 13, we observe a side-
ward trend afterward and a consecutive reduction in effect size between calen-
dar weeks 15 and 17. Accounting for incubation times and a reporting lag, this 
period coincides with the timing of imposed containment measures. The evolu-
tion of the estimated trend component in Panel A thus indicates that these meas-
ures were successful in suppressing the overall spread of the virus, although 
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Fig. 4  Temporal heterogeneity of estimated SP-ECM components by calendar weeks. Notes: Results are 
shown for the SP-ECM model specification with general spatial dependence based on first-order contigu-
ity weighting matrix and commuting linkages measured on the basis of gross commuter flows; coeffi-
cient plots show point estimates together with 99% confidence intervals. Calendar week 9 (W9) starts on 
February 24, 2020, W10 on March 2, W11 on March 9, W12 on March 16, W13 on March 23, W14 on 
March 30, W15 on April 6, W16 on April 13, W17 on April 20, W18 on April 27
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effects stay significant over time (evaluated against the baseline period before 
calendar week 9).

The temporal distribution of the spatial adjustment component in Panel B of 
Fig. 4 supports our theoretical considerations that a spatial disequilibrating force 
(driven by emerging local hot spots) is observed if regions move along an expo-
nential growth path of infections. Our estimation results indicate that this was 
particularly relevant in the initial phase of the first pandemic wave in Germany 
during calendar weeks 7 to 9. Hereafter, the effects turn nonsignificant pointing 
to a flatting of the German infection curve. With the imposition of mobility con-
straints, we further get evidence for an emerging equilibrating process as indi-
cated by negative coefficients for ui,t−p . Together with the general trend results 
in Panel A, this indicates that the first wave of new COVID-19 cases peaked 
around calendar week 13 (starting on March 23, 2020).

Finally, Panels C and D allow us to make statements about the degree of spa-
tial association between regions during this first wave of COVID-19 cases in 
Germany. With regard to general spatial effects, Panel C indicates that spatial 
correlation (first-order contiguity) gradually builds up and turns out to be posi-
tive and statistically significant from calendar week 12 onward. In the following 
weeks, the COVID-19 infection dynamics in a region’s immediate geographical 
neighborhood constitutes a relevant transmission channel until week 17 (with 
effect size gradually declining after week 14).

In comparison, for spatial dependence determined by commuter flows, Panel 
D points to an earlier, though, temporally limited time window of significant 
transmission effects. Here, we find a significant spatial association already 
from calendar week 9 onwards, which phases out after calendar week 14 (start-
ing on March 30, 2020). Taking a median incubation time and a reporting lag 
of 10.5 days into account, this phasing out of spatial association through com-
muting flows clearly coincides with the imposition of mobility constraints in 
mid-March as shown in Fig. 1. This result also holds if we disaggregate newly 
reported COVID-19 cases by age groups (see the online appendix for more 
details). The latter disaggregation shows that COVID-19 transmission follows 
a similar spatial pattern across age groups for aggregate regional data. Taken 
together, our SP-ECM approach provides important empirical evidence concern-
ing the effectiveness of lockdown measures in suppressing the spatial spread of 
COVID-19 in Germany. The commuting-based channel of disease transmission 
quickly breaks down after their imposition.

6  Closing remarks

In this paper, commuting-to-work patterns have been identified as the first sig-
nificant spatial transmission channel of COVID-19 across German regions after 
its international arrival in February 2020. We have estimated a spatial panel 
error correction model (SP-ECM) that allows us to track the short-run dynam-
ics of the spatiotemporal evolution of new COVID-19 cases in Germany together 
with a theoretically grounded adjustment processes accompanying a long-run 
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co-movement of cumulative cases between spatially associated regions. We find 
that spatial dependence generally matters for the regional evolution of newly 
reported cases in German NUTS-3 regions and that commuter flows between 
regions mark a relevant channel of epidemic diffusion.

With regard to the overall effect size of spatial transmission, we find that a 
doubling of newly reported COVID-19 in regions interconnected with region i 
through job commuting (and other types of interregional mobility) is associated 
with an approximately 20% higher number of newly reported COVID-19 cases 
in region i. In addition to the spatiotemporal short-run dynamics, we also find 
that disease trajectories for German NUTS-3 regions show a distinct spatial com-
ponent in their long-run development. Importantly, deviations from this spatial 
long-run relationship can be used to identify and surveil emerging local hot spots 
constituting a significant effect channel triggering the short-run dynamics of 
COVID-19.

Another key finding from our empirical analysis is that spatial transmission 
channels vary over time. While spatial disease transmission across NUTS-3 
regions strongly matters during the initial phase of the first pandemic wave of 
COVID-19 in Germany, particularly correlating with commuting-to-job patterns 
early on, the timing containment measures during the German lockdown in mid-
March 2020 coincides with a significant decline in the degree of spatial depend-
ence across regions. This is most strongly shown for the commuting-based trans-
mission channel, which quickly breaks down after lockdown measures have been 
initiated. Our findings of a decline in short-distance job commuting thus comple-
ment related studies pointing to a drop in long-distance mobility during the Ger-
man lockdown and a reduction in the German mobility network (Schlosser et al. 
2020).

Importantly, however, we would like to stress that our study does not come 
without limitations and therefore should be interpreted with some caution. As 
we have pointed out in the main text, for instance, our choice of applying linear 
dynamic panel data models for log-transformed data relies on several assump-
tions about the underlying data generating process. Moreover, our analysis should 
not be seen as a strict causal investigation of policy effectiveness as our primary 
focus is on revealing space–time correlations in COVID-19 data; however, the 
significant temporal heterogeneity in estimated parameters strongly points to the 
fact that mobility constraints have been effective in slowing down the spread of 
COVID-19 across regions.

Finally, seen from a socioeconomic perspective, restricting mobility and spatial 
economic interaction may be costly compared to other measures of social distanc-
ing such as the wearing of face masks (see, e.g., Mitze et al. 2020).19 The costs 
of constraints to workplace-related mobility depend, among other aspects, on 
the ability of firms to run businesses remotely and also the relative productivity 

19 In addition to imposing higher economic costs, Espinoza et al. (2020) argue on the basis of a histori-
cal analysis of earlier epidemics that more extreme mobility restrictions may also bear undesirable epide-
miological consequences.
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performance of home office compared to on-site work. With regard to the for-
mer, first survey results for Germany reported in Hofmann et al. (2020) indicate 
that the majority of firms in Germany was able to rapidly adapt to digitalized 
business processes. About 70% of surveyed firms reported that employees were 
able switch to major or full use of home office work during the lockdown period. 
Prior to the lockdown, only 15% of these firms allowed employees to use of home 
office work (to a large or full extent). With regard to the relative productivity per-
formance, the available empirical results are mixed. Though some studies point at 
low or moderate productivity losses of home office work (Hofmann et al. 2020; 
Valoir 2020), effects may considerably vary by education levels (Bartik et  al. 
2020). Given limits to workplace digitalization, Morikawa (2020) predicts that a 
productivity gap between home office and regular on-site work is likely to remain 
also in the mid-run. Further, risks for firm innovativeness and worker satisfaction 
need to be considered (OECD 2020).

The importance of gaining continuous insights into the effectiveness and effi-
ciency of public interventions surely calls for more research on this matter in order 
to fully assess the right dose of public actions to fight the spread of COVID-19 
through non-pharmaceutical interventions. For policy makers, our findings stress 
that commuting-to-work linkages should closely monitored and considered in pol-
icy strategies that target to suppress the spread of COVID-19. Promising avenues 
for future research on the spatiotemporal dynamics of COVID-19 should consider 
the use of multiple data sources (including real- or near-time data) on interregional 
mobility to better surveil the spatiotemporal dynamics of local hot spots and foci 
of infection (Peixoto et al. 2020) and analyze policy effectiveness of public health 
measures (Vinceti et al. 2020).
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