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Abstract
This paper revisits the theory of asymptotic behaviour of the well-known Gaussian 
Quasi-Maximum Likelihood estimator of parameters in mixed regressive, high-order 
autoregressive spatial models. We generalise the approach previously published in 
the econometric literature by weakening the assumptions imposed on the spatial 
weight matrix. This allows consideration of interaction patterns with a potentially 
larger degree of spatial dependence. Moreover, we broaden the class of admissible 
distributions of model residuals. As an example application of our new asymptotic 
analysis we also consider the large sample behaviour of a general group effects 
design.

Keywords  Spatial autoregression · Quasi-maximum likelihood estimation · High-
order SAR model · Asymptotic analysis · Non-summable matrices

JEL Classification  C21 · C23 · C51

1  Introduction

It is a broadly employed assumption in a wide range of theoretical studies on spatial 
econometrics that the spatial weight matrix is absolutely row and column summable. 
This restriction is mostly a result of the Central Limit Theorem (CLT) used in 
the derivation of the result on asymptotic behaviour. Historically, it can be traced 
to the works of Kelejian and Prucha, e.g. Kelejian and Prucha (2001), who were 
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first to formulate their assumptions as explicit requirements regarding the spatial 
weight matrix. Their CLT, which turned out to be a milestone in the development 
of asymptotic theories for spatial econometric models, relies on the absolute 
summability of the weight matrix involved. In our study we attempt to reconsider 
this approach, and we focus specifically on the Quasi Maximum Likelihood (QML) 
estimator for the spatial autoregressive model. By revisiting the classical argument 
of Lee (2004) and, importantly, introducing a generalised CLT for linear-quadratic 
forms, we are able to provide a theory for consistency and asymptotic normality 
of QML estimates for high-order spatial autoregressive models under relaxed 
conditions. In particular, our approach allows for spatial weight matrices that, even 
if row-standardised, may not be absolutely column summable.

The standard approach, with the absolute summability requirement on the 
weight matrix, undoubtedly has the appeal of a simple, self-contained theory. 
Although there might be a perception that the constraint is necessary for showing 
the desired asymptotic behaviour of various estimation schemes, it has already been 
recognised that this is not the case, see, e.g. Gupta and Robinson (2018). Indeed, 
the boundedness of row and column sums can be replaced with the less restrictive 
requirement of boundedness of spectral norms.1

Unfortunately, the standard analysis excludes some of the spatial interaction 
patterns in which the number of spatial units influenced by any given unit grows to 
infinity. In particular, under infill asymptotics, if spatial units are assumed to interact 
with other units within a given distance, then the number of nonzero elements in 
a row or column of the spatial weight matrix grows with the sample size, leaving 
the potential for either row or column non-summability. Similarly, under increasing 
domain asymptotics certain spatial weight matrices based on inverted distance also 
lead to non-summable interaction patterns.2

Theoretical considerations can also reveal another limitation of the standard 
analysis. For example, consider the cane of an initial model specification which 
is subjected to a transformation (e.g. linear filtering or demeaning) to obtain its 
final estimated form. Under the standard analysis, it is necessary to ensure that the 
applied transformation preserves the summability of rows and columns of the spatial 
weight matrix. As a result, the requirements of the standard analysis narrow the 
class of possible transformations of the model. A somewhat similar problem occurs 
if the so-called linear structure representation for model innovations is assumed.3 
Then, following the standard approach, the derivation of the asymptotic distribution 
requires additional restrictions on the class of possible linear relations involved.

This paper provides a positive solution to a problem left by Gupta and 
Robinson (2018), who have made the first attempt to replace the requirement 

1  In particular, Assumption 4 in this paper implies that the rows and columns of an admissible spatial 
weight matrix could be square summable rather than absolutely summable.
2  A number of more specific examples, in which standard asymptotic analysis does not yield a limiting 
distribution, are given in Sect. 2.1.
3  See, e.g. Robinson (2011) or Delegano and Robinson (2015).
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of uniform summability of the spatial weight matrix with boundedness in the 
spectral norm. In that earlier work, extending the scope of spatial weight matrices 
beyond the standard asymptotic analysis of Lee (2004) was found to be useful, and 
results analogous to our Theorem 1 on consistency were independently obtained. 
However, their derivation of the asymptotic distribution of the estimates still 
relies on the assumption of absolute summability. Whether a relevant asymptotic 
distribution theorem under relaxed conditions is possible has been left as an open 
question.

Therefore, the aim of this paper is to present a refinement to the asymptotic anal-
ysis of the Gaussian Quasi-Maximum Likelihood (QML) estimator for high-order, 
spatial autoregressive models, considering the assumptions imposed on the spatial 
weight matrix. We further present an example of a possible application of our the-
orems. To this end, we develop a general group effects, high-order Spatial Autore-
gresive (SAR) model. Our approach to eliminating the effects components from the 
spatial process generalises that of Lee and Yu (2010a, b) and Lee et al. (2010), as 
well as Olejnik and Olejnik (2017), to the high-order autoregressive case. Finally, we 
present statements on consistency and asymptotic normality of the resulting QML 
estimator, which would not be possible to obtain with the standard argument.

The paper is organized as follows. Section  2 describes the motivation for 
addressing the topic. Section  3 presents our statements on the consistency and 
asymptotic normality of the Gaussian QML estimator. Finally, Sect.  4 develops 
an estimator for a high-order, spatial autoregressive, general group effects model, 
together with an analysis of its large sample behaviour. Appendices contain some 
details of the proofs, as well as a set of Monte Carlo simulations that empirically 
demonstrate the validity of the theory under the relaxed conditions.

2 � Motivation for the refined asymptotic analysis

This section presents some basic examples of the application of our asymptotic 
analysis. First we present a class of spatial interaction schemes which cannot be 
handled by the standard asymptotic analysis of Lee (2004). Then, we describe a 
class of theoretical arguments for which the new analysis demonstrates a clear 
advantage over the standard approach. We also discuss the assumptions made in 
relation to the error term. We conclude the section with a brief discussion on 
whether our results may be considered optimal.

First, however, let us introduce the notation used in this paper when referring to 
norms. Unless stated otherwise, vectors, i.e. elements of ℝm , are column vectors. 
For an arbitrary row or column vector x the symbol ‖x‖ denotes the usual Euclidean 
vector norm, which will also be called the l2 norm. The quantity 

∑m

i=1
�xi� is referred 

to as the l1 norm. The same symbol, when used for matrices, denotes the induced 
spectral norm. That is, for a matrix A, the quantity ‖A‖ is the largest singular value of 
A. For square matrices A we will also use the Frobenius norm ‖A‖F  , the maximum 
absolute column sum norm ‖A‖1 , and the absolute row sum norm ‖A‖∞.
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2.1 � Elementary examples of non‑summable interaction patterns

One essential feature of an asymptotic theory for spatial econometric models is the 
set of assumptions imposed on the spatial weight matrix. These assumptions limit 
the amount of spatial interactions to a manageable degree, such that the statements 
on the large sample behaviour of the estimation scheme under question remain valid. 
It is a widely adopted standard in contemporary spatial econometrics to require that 
the spatial weight matrix is row and column summable. More precisely, with the 
conventional notation that Wn is the spatial weight matrix for the sample size n ∈ ℕ , 
it is required that the quantities ‖Wn‖1 and ‖Wn‖∞ are both uniformly bounded in 
n. These conditions turn out to be unnecessarily restrictive in limiting the scope of 
spatial interactions that can be incorporated in an econometric model.

Let us start with a theoretical remark. Notice that the row and column 
summability of Wn is equivalent to the rows and columns constituting a bounded set 
in l1 . However, a reader familiar with the ubiquitous nature of the theory of square-
summable functions and sequences in much of the mathematical econometrics 
and geostatistics literature4 might expect that the l2 norm would play a major role 
in the asymptotic theory—at least for some simple cases. In fact we find that the 
connection between the sharp boundedness condition for an asymptotic theory and 
square-summability is more nuanced. Instead of examining the properties of rows 
and columns of the spatial weight matrices, it is necessary to consider the sequence 
of the respective spectral norms ‖Wn‖ . The requirement then turns out to be the 
boundedness of the sequence.5 This will be discussed in subsequent sections.

The following motivating examples are connected to the class of Inverse Distance 
Weighting (IDW) interaction schemes, that find a wide range of uses in spatial 
econometrics, and other quantitative methods of geography. Let us assume that the 
strength of spatial interaction, represented by the spatial weights, is of the form 
wij =

1

dist(i,j)�
 , where 𝛼 > 0 is a parameter and dist(i, j) is a measure of the distance 

between units i and j. A question then arises: what are the values of � for which an 
individual row or column of the matrix W = [wij] satisfies the requirement of 
boundedness imposed by the standard analysis? That is, for which values of � is it 
absolutely summable?

The answer to this question will depend on the nature of the spatial domain 
and the type of asymptotic scheme employed. We focus our attention here on the 
increasing domain asymptotics, since that is the more natural asymptotic scheme 
in this context. Let us now consider a one-dimensional spatial domain in which the 
spatial units are more or less evenly spaced, or at least the distance between each 
pair of consecutive units does not exceed a constant distance D > 0 . Then, for an 

4  Square summability leads to ideas that are fundamental in those fields, such as orthogonality and pro-
jections.
5  That is to say the ultimate optimality of the boundedness condition for the asymptotic theory requires 
that the spatial weight matrix is regarded as a l2 space operator rather than a numerical table.
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arbitrary unit j the column sums (and, by symmetry, row sums as well) of such a 
matrix Wn = [wij]i,j≤n satisfy the bound

The right-hand side in Eq. (1) converges if and only if 𝛼 > 1 . Let us note that the 
condition on the j-th row/column square summability would, in turn, be satisfied if 
the series 2

D2�

∑∞

i=1

1

i2�
 converges, i.e. if 𝛼 >

1

2
.

Non-summable distance-related matrices were also investigated by Lee (2002) 
in the context of the Ordinary Least Squares (OLS) estimator. In that work, the 
complementary condition, that is � ≤

1

2
 , was derived as necessary and sufficient 

for consistency and asymptotic normality (at the rate 
√
n ) of the OLS estimator 

if the matrix of inverse distances is row-normalised prior to being used in the 
model. With � ≤

1

2
 the amount of spatial interaction (in each row) is intractable for 

Maximum Likelihood (ML) estimation. However, dividing elements of the weight 
matrix by the increasing row sums leads to maxi,j≤n wij → 0 and 1

n
tr(Gn) → 0 , with 

Gn = Wn(In − �0Wn)
−1 and �0 being the autoregressive parameter.6 According to Lee 

(2002), the dominant component of the bias for the OLS estimator is proportional to 
1

n
tr(Gn) . That is to say, the row-normalisation reduces the spatial dependence to the 

extent that the OLS estimator becomes consistent. It should be noted that the results 
of Lee (2002) still require the spatial weight matrix (after row-normalisation) to be 
summable in both rows and columns. Let us make clear that in our argument we do 
not assume that the procedure of row-normalisation is applied to the spatial weight 
matrix, for the reasons presented in Sect. 2.2.

Although the condition of summability 𝛼 > 1 derived from Eq. (1) is not too 
restrictive, it is also fair to say that such a linear domain is rarely encountered in 
practice. If we now extend this example to higher dimensions, the restriction on � 
also changes. To see this, let us assume that the spatial domain is, a two-dimensional 
plane, as it is in majority of economic applications.7 Now, the crucial observation 
is the following. Let us imagine a circle of radius � around a fixed spatial unit. The 
number of spatial units which are intersected by the circle is roughly proportional8 
to its circumference, 2�� . Similarly, for any given unit j on the plane, and any radius 
� , the number �(j, �) of units i for which 𝛿 − 1 < dist(i, j) ≤ 𝛿 is roughly proportional 
to � . Thus, we have

(1)sup
n∈ℕ

‖Wn‖∞ ≥ sup
n∈ℕ

n�
i=1

wij = sup
n∈ℕ

n�
i=1

1

dist(i, j)�
≥ lim

n→∞

2

D�

n�
i=1

1

i�
.

6  Since In + �0Gn = (In − �0Wn)
−1 , the value of �0

n
tr(Gn) may indicate the component of the average 

direct effect due to the feedback loop in spatial interactions, c.f. Le Sage and Pace (2009).
7  To maintain mathematical rigour, we may also have to assume that the distribution of the spatial units 
is neither pathologically dense nor sparse anywhere in the spatial domain. This is actually the case in 
all realistic settings. In particular, we might expect that the distances between nearby units are within 
a fixed range D1 ≤ dist(i, j) ≤ D2 or, alternatively, the units are regions with areas in a given range 
A1 ≤ area(i) ≤ A2 . For example, tessellations obtained by generating a Voronoi diagram of a randomly 
distributed set of points constitute an adequate framework.
8  The actual constants would possibly involve D1 , D2 , A1 , A2 , see footnote 7.
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Again, the series on the right hand side converges only if 𝛼 > 2 . Thus, in most cases 
for IDW spatial models, unless the exponent � is well greater than two, the standard 
asymptotic analysis fails as the spatial weight matrix is simply not summable. This 
fact is apparently not widely known as it is still common to see inverse distance 
decay parameters, either set a priori or estimated, lie in [0, 2], see Anselin (2002). 
In particular, this also applies to the case of � = 2 , which constitutes a popular 
econometric analogue of the Newtonian gravity model.9 In this planar case, an IDW 
row or column would be square summable if only 𝛼 > 1 . Going further, it might be 
argued that in the less common, but still relevant10, three-dimensional domain the 
summability restriction on alpha becomes 𝛼 > 3 , whereas row and column square-
summability requires 𝛼 >

3

2
.11

Limitations of the summability requirement of the standard asymptotic analysis 
are not only encountered in the case of increasing domain asymptotics. In fact, the 
situation is even worse, for infill asymptotics, as by definition, new neighbours are 
allowed to emerge within any radius about a given unit. Then, in an extreme case, 
even the simple common border spatial weight matrix may not be summable. Estab-
lishing asymptotics of a model based on such an interaction scheme is therefore 
highly problematic. Summability issues can also be found in interaction models of a 
non-geographical nature. As an example, consider a social networking model, where 
the relation of “friendship” in an online social networking service represents con-
tiguity, and the distance is measured in terms of the contiguity path between given 
pair of individuals. Then, the average distance �n between members an n element 
group is expected to grow slowly with n. This results in a behaviour similar to infill 
asymptotics. In other words, the quantity �(j, �) is expected to grow very rapidly (cf. 
Eq. (2)), similarly as it would be the case in a high dimensional space.

2.2 � Applicability of the new asymptotic analysis

This section explains the circumstances under which our new asymptotic analysis 
applies to a non-summable interactions scheme. As we noted in the previous 
section, a sharp condition on boundedness requires a nuanced approach. Although 
it can be shown that a matrix is bounded in spectral norm only if its rows and 
columns are square summable, those two classes of matrices are not necessarily 
coincident. Unfortunately, there is no straightforward test which could be applied 
to matrix entries to decide whether its spectral norm is bounded. Nevertheless, we 

(2)sup
n∈ℕ

‖Wn‖∞ ≥ sup
n∈ℕ

n�
i=1

wn,ij ≥

∞�
�=1

�(j, �)

��
≈

∞�
�=1

1

��−1
.

9  It is also common for statistical software to provide the functionality of generating and using such spa-
tial weight matrices without any warning.
10  One might consider autoregressive models of natural phenomena in environmental sciences, where an 
additional dimension may be present, e.g. depth, altitude etc.
11  In general, in an m dimensional domain �(j, �) is proportional to �m−1 , thus the two condition are 
𝛼 > m and 𝛼 >

m

2
 , respectively.
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formulate some general suggestions on the use of non-summable matrices in model 
specifications.

For a square-summable matrix to be bounded in spectral norm it is sufficient 
that one of the two additional conditions is met. The first condition is when the 
number of rows and columns which are not absolutely summable is finite. This 
case is relevant to models that distinguish a set of units, called economic “centres 
of gravity”, for which the amount of spatial interaction is possibly non-summable. 
Similarly, a social networking model might distinguish a set of “leader/influencer” 
individuals with non-summable impact on other members of a group. In those cases 
the resulting matrices are bounded in spectral norm.

If the number of non-summable rows and columns is infinite or, in particular, all 
of them are non-summable, then the matrix still can be bounded in spectral norm. It 
is the case if those non-summable rows and columns are in a sense asymptotically 
not strongly correlated or, in other words, the corresponding weightings are not 
too similar. Unfortunately, this formulation is not at all precise, and thus for such 
interaction schemes, we suggest applying a rescaling factor as described below. 
Importantly, this operation preserves the structure of the spatial interdependence 
expressed by relative magnitudes between all weights in the matrix, e.g. Elhorst 
(2001) or Vega and Elhorst (2015).

Although rescaling is similar to the familiar procedure of row-normalisation, 
there are important differences that need to be highlighted. We note that row-
normalisation is typically applied for the following three reasons. Firstly, almost by 
definition, it normalises the amount of spatial interaction received by each of the 
spatial units. This is believed to facilitate the interpretation of the autoregressive 
parameter. Secondly, together with non-negativity and a zero diagonal, the 
Greshgorin theorem12 implies that the space for the autoregressive parameter can 
contain any compact13 subset of (−1, 1) . Lastly, the procedure trivially assures 
summability of rows, which is a part of the boundedness assumption of the standard 
analysis.

Although, normalisation of rows is indeed beneficial for interpretation in a vari-
ety of contexts, e.g. common border or k-nearest neighbours schemes, it may also 
be harmful in certain interaction patterns. In particular, as emphasised in (Vega 
and Elhorst, 2015, pp. 355) after (Anselin, 1988, pp. 23-24), and Kelejian and Pru-
cha (2010),  “row-normalising a weights matrix based on inverse distance causes 
its economic interpretation in terms of distance decay to no longer be valid”. Sec-
ondly, as the maximal modulus of an eigenvalue does not exceed spectral norm, a 
matrix rescaled by ‖Wn‖−1 allows any value in (−1, 1) in its parameter space. Lastly, 
row-normalisation does not in general assure column summability required by the 
standard analysis, whereas rescaling by ‖Wn‖−1 produces a matrix with unit spectral 
norm.

12  The Greshgorin circle theorem states that for any matrix A = [aij]i,j≤n and any its eigenvalue v there is 
an i ≤ n such that �v − aii� ≤ ∑

j≠i �aij� . It follows that det(I − �Wn) = 0 only if v = 1

�
 is an eigenvalue of 

A = Wn , thus only if | 1
�
− 0| ≤ 1 , i.e. � ≥ 1.

13  It is prudent to recall that the parameter space for ML-type estimation should be compact.
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The merits of the rescaling procedure have long been recognised and applied in 
practice. For example Elhorst (2001) and Vega and Elhorst (2015) rescale weight 
matrices by their largest characteristic roots. Notice that in the case of a symmetric 
weight matrix the root is equal to the spectral norm. However, it is not true in 
general, not even for arbitrary symmetric matrices, that such rescaling assures row 
and column summability. This makes our asymptotic theory necessary to justify 
inferences from such a model.

Although the described procedure may be used to rescale an arbitrary matrix, 
this does not imply that estimation is possible with any spatial weight matrix. A 
cautionary example has been given in Lee (2004) of a matrix Wn =

1

n−1

(
�n�

T
n
− In

)
 , 

where �n = (1,… , 1)T is an n × 1 vector of ones and In is the identity matrix. In this 
case, the ML estimator may be inconsistent, even though Wn is absolutely summable 
in both rows and columns. This is explained by Mynbaev and Ullah (2008), who 
analyse a class of weight matrices, of which Wn is a member. For matrices in 
the class, the identification condition fails. It is not clear to us whether the OLS 
estimator would be consistent in this case, and nor do the results of Lee (2002) seem 
to provide the answer. A related matrix Wn,m = Im ⊗Wn has also been considered in, 
e.g. Case (2015a, b), Lee (2004), and Lee (2007b). However, in the case of Wn,m , if 
m grows at a sufficient rate, then favourable asymptotic properties can be assured.

Mynbaev and Ullah (2008), and Mynbaev and Ullah (2010) study a class of 
weight matrices which approximate a kernel of an integral operator on the space of 
square-integrable functions. These may be related to the class of square-summable 
matrices. However, their assumptions, in particular the absolute summability of 
operator eigenvalues, preclude the use of ML estimation. In particular, such weight 
matrices contain an insufficient amount of information for identification of the 
autoregressive parameter. Instead, the asymptotic behaviour of the OLS estimator is 
investigated.

2.3 � Applicability in theoretical arguments

In this section we argue that the consideration of a wider class of spatial weight 
matrices can also be beneficial in theoretical arguments when developing new 
model specifications. Let us start with a rather simplified description of one possible 
application. Let Tn be an operator on ℝn and let us assume that it is invertible 
(although in practice this is often not the case). Given a specification of a spatial 
model, for example the SAR specification Yn = �WnYn + Xn� + �n , we might be 
interested in its transformed form TnYn = �(TnWnT

−1
n
)TnYn + TnXn� + Tn�n . Then 

it is natural to ask what transformations Tn are known to preserve the required 
properties of the spatial weight matrix, so that the asymptotics of the transformed 
model could follow easily from the properties of the original specification. In the 
case of the standard asymptotic analysis of Lee (2004), this means that we want the 
matrix TnWnT

−1
n

 to be row and column summable whenever Wn is. Practically, this 
limits the class of possible matrices Tn to those which are themselves summable, i.e. 
whose entries we can and must finely control. In that respect, the standard analysis 
collapses, even in the simple case of Tn being an isometry, i.e. an orthogonal matrix.
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Our refined asymptotic analysis, on the other hand, calls for the operator norm of 
Tn to be bounded. In many cases this is easily satisfied as Tn is often a projection, and 
thus an operator of norm one, for which we have ‖TnWnT

+
n
‖ ≤ ‖Wn‖ . We note that, 

although projections are generally not invertible, in practice we may still be able to 
exploit the fact that the Moore-Penrose inverse T+

n
 is an isometry on the range of Tn.

A more concrete example can be derived from the work of Lee and Yu (2010a, 
b), where the incidental parameter problem is addressed in the context of a spatial 
autoregressive panel model and fixed spatial and temporal effects. In this case, the 
natural candidate for Tn is the demeaning operator, i.e. the projection on the space 
of zero-mean vectors within units and time periods. A similar idea is applied in Lee 
et  al. (2010) for group effects14 in social interaction models. With this technique, 
the expected multiplicative bias correction is derived for consistent estimates. Those 
results strongly rely on the summability of the demeaning operator Tn . However, 
incorporation of arbitrary group effects, where groups are not necessarily disjoint 
and the number of groups may increase with n, leads to a demeaning operator 
which does not have to be summable. We show in Sect. 4 that such generalisation is 
possible with the refined asymptotic analysis.

2.4 � On the distribution of innovations

A significant merit of the original paper of Lee (2004) is the consideration of the 
QML estimation scheme rather than the classical maximum likelihood estimator 
with the assumption of Gaussian errors. That is to say, the error term in the spatial 
autoregressive model is allowed to be an arbitrary random vector of independent 
and identically distributed components, as long as the shared distribution allows 
moments of order higher than four. This seemingly technical improvement has 
substantially changed how the validity of inference may be perceived, as it no longer 
has to rely on a belief in the joint normality of errors.

Similarly, with heterogeneous processes governing the underlying phenomena 
across spatial units, the expectation of identical distribution of disturbances does 
not appear to be well-founded. In our analysis, the components of the error term 
are, for purely technical reasons, assumed to be homogeneous in terms of variance. 
However, they are not required to follow the same probability law.

Lastly, we have found that the universally employed requirement that the 
distribution of the residuals should have finite moments higher than four is not 
necessary. In fact, integrability with the fourth power is sufficient to obtain the 
Gaussian asymptotics for QML estimates. This result opens the possibility of 
considering heavier tailed probability laws. For example, one might consider 
distribution functions with tails of order x−5 log−2 x , as x grows to infinity.

14  Notice that group and fixed effects are both algebraically equivalent to discriminating certain subsets 
of observations with respect to the constant term in the model.
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2.5 � Ultimate optimality

It can be argued that our boundedness condition with the spectral norm 
(Assumption 4) is already optimal. That is to say, the class of spatial weight matrices 
considered, in general, cannot be broadened. Indeed, if we consider a matrix Wn for 
which limn→∞ ‖Wn‖ = ∞ , invalidating our assumptions, then we arrive at the rather 
uninteresting case of the parameter space of Λ not containing any positive elements. 
To see this, consider the example of a symmetric spatial weight matrix Wn with non-
negative entries. Then, ‖Wn‖ is the maximum eigenvalue and, by a well-known 
argument, any interval [0, t) ⊂ Λ satisfies t ≤ 1

‖Wn‖ → 0.
Obtaining a Gaussian asymptotic distribution for the estimates requires the use 

of a CLT. Specifically, it is applied for a random variable Qn which is a linear-
quadratic form of the residual. If the fourth moments of �n were not finite, then the 
normalising factor for Qn , namely 

√
Var Qn , would also be infinite. This seriously 

compromises any effort to derive the limiting distribution. As a result, we believe 
that any substantial generalisation is unlikely.

3 � Revisiting asymptotic analysis of high‑order SAR models

Let Wn,1,… ,Wn,d be arbitrary n × n matrices.15 We consider the high-order SAR 
model described by the following equation

where 𝜆 = (𝜆r)
d
r=1

∈ Λ ⊂ ℝ
d and � ∈ ℝ

k . Furthermore, Yn is a vector of n 
observations on the dependent variable, Xn is the matrix of k non-stochastic 
explanatory variables and �n is the error term, for which the assumptions given 
below hold.

Assumption 1  The matrix XT
n
Xn is invertible, and both ‖‖‖

1

n
XT
n
Xn

‖‖‖ and ‖‖‖(
1

n
XT
n
Xn)

−1‖‖‖ 
are uniformly bounded in n ∈ ℕ.

Let us note that Assumption  1, used for the consistency argument, does not 
require the sequence 1

n
XT
n
Xn to be convergent. Instead, our reasoning stipulates 

that this sequence is merely bounded.16 The necessity of non-singularity of XT
n
Xn 

is straightforward, as regressors should not be linearly dependent for the slope 
parameter to be identifiable. Note that our assumption that ‖‖(XT

n
Xn)

−1‖‖ = O(
1

n
) is not 

(3)Yn =

d∑
r=1

�rWn,rYn + Xn� + �n,

15  In practice, the spatial weight matrices typically have non-negative elements and zero diagonals to 
facilitate interpretation of the autoregressive parameter. However, for the purpose of the argument of 
Sect. 4, we deliberately do not make this assumption.
16  This does not imply that elements of Xn should be bounded in absolute value, as is explicitly assumed 
in e.g. Lee (2004) or Lee and Yu (2010a).
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far from the well-known condition necessary for consistency of the OLS estimator 
for non-spatial regression, i.e. ‖(XT

n
Xn)

−1‖ = o(1).17

Assumption 2  One of the following holds18 

(a)	� �n = (�n,i)i≤n is a vector of independent random variables with zero mean, vari-
ance �2 and uniformly bounded fourth moments,

(b)	� �n is of the form 𝜀n = F𝜀̄m where F is an n × m matrix with orthogonal rows of 
norm one; the underlying 𝜀̄m is a vector of independent random variables with 
zero mean, variance �2 and uniformly bounded fourth moments.

Assumption 3  For every � in respective parameter space Λ ⊂ ℝ
d the matrix 

Δn(�) = In −
∑

r≤d �rWn,r is invertible.

We investigate the asymptotic behaviour of the widely applied Gaussian QML 
estimator, which maximises the log-likelihood of the observed sample as if the 
model innovations were Gaussian, namely the function

where � = (�T, �T, �2)T is the model parameter. It turns out that, under certain 
regularity conditions, this estimation scheme is consistent, even if the model 
residuals do not follow the normal distribution (c.f. Assumption 2). The estimator 
will be denoted (𝜆̂T

n
, 𝛽T

n
, 𝜎̂2

n
)T or 𝜃̂n . Our result on the asymptotic behaviour of 𝜃̂n 

requires the following boundedness assumption, which gives the essential condition 
imposed on a spatial weight matrix.

Assumption 4  The set Λ is compact in ℝd . There exists a universal constant KΛ such 
that for all n ∈ ℕ , � ∈ Λ , r = 1,… , d the matrix norms ‖Wn,r‖ and ‖Δn(�)

−1‖ do not 
exceed KΛ.

Notice that any matrix with absolutely summable rows and columns is also 
bounded in the spectral norm.19 That is to say, the asymptotic theory presented in 
this paper is indeed a generalisation of the theory initiated in Lee (2004). Moreover, 

(4)lnLn(�) = −
n

2
ln
(
2��2

)
+ ln ||detΔn(�)

|| − 1

2�2
‖‖Δn(�)Yn − Xn�

‖‖2,

18  In particular, elements of the error term do not need to be identically distributed. Also notice that 
trivially (a) implies (b) for F = In , m = n . Although condition (a) is simpler and sufficient in a standard 
setting, the relaxed condition (b) will be crucial in the argument of Sect. 4 when an independent vector 
of residuals will be transformed by such a matrix F . Note that (b) implies ��n = 0 and ��n�Tn = �2In , 
thus its components may be merely uncorrelated. We emphasise the distinction as the innovations are not 
assumed to be Gaussian.
19  This follows the fact that ‖A‖2 ≤ ‖A‖1‖A‖∞ , for an arbitrary matrix A.

17  For any non-negative sequences (an) , (bn) and (cn) such that an ≤ bncn , we write an = O(bn) when 
lim supn→∞ cn < ∞ , and an = o(bn) whenever lim supn→∞ cn = 0.
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it is also a proper generalisation, as there are non-summable interaction schemes 
bounded in the spectral norm. Remark 1 in the appendix describes an example of 
such a weight matrix, which is additionally row-standardised. This also shows that 
row-normalisation, in general, does not ensure absolute summability of columns.

The following identification assumption guarantees that the Gaussian 
QML estimator is able to asymptotically identify the true value of the spatial 
autoregressive parameter.

Assumption 5  For every �1, �2 ∈ Λ , such that �1 ≠ �2 , at least one of the statements 
(a) or (b) is satisfied: 

(a)	 lim infn→∞
1√

nDn(𝜆)
‖Δn(𝜆1)Δn(𝜆2)

−1‖F > 1,

(b)	 lim infn→∞
1√
n
‖MXn

Δn(𝜆1)Δn(𝜆2)
−1Xn𝛽‖ > 0 , for every � ∈ ℝ

k,

where Dn(�) =
|||det

(
Δn(�1)Δn(�2)

−1
)|||

1∕n
 , MXn

= In − Xn

(
XT
n
Xn

)−1
XT
n
.

Assumption 5 is typically called the identification condition. It ensures that there 
is enough information in the observed process to decrease uncertainty of 𝜆̂n , with 
increasing n. The distinction between the statements (a) and (b) reflects the fact that 
this information can come from either the spatial autocorrelation of Yn or via the 
accumulated spatial lag of regressors.

Theorem 1  Under Assumptions 1–5 the Gaussian QML estimator 𝜃̂n is consistent.

In order to establish the asymptotic distribution of 
√
n(𝜃̂n − 𝜃0) we need to adopt 

a number of additional assumptions. Let Ξ ⊂
∏∞

n=1
ℝ

n be the linear space20 of all 
sequences (xn)n∈ℕ , with xn = (xn,i)i≤n ∈ ℝ

n , n ∈ ℕ , for which maxi≤n x
2
n,i

= o(n) . 
Additionally, let us set Gn,r = Wn,rΔn(�0)

−1 for r ≤ d.

Assumption 1’  The earlier Assumption 1 on Xn is satisfied. Moreover, each column 
of the matrices Xn and Gn,rXn�0 , r ≤ d , is a member of the linear space Ξ.

The above is a technical assumption necessary for obtaining asymptotic normality 
of the deviation 

√
n
�
𝜃̂n − 𝜃0

�
 . Intuitively, the limiting distribution can be normal 

regardless of the original distribution of �n only when none of the observations 
within the regressor matrices makes an overwhelming contribution to the estimate 
of the corresponding slope coefficient. Let us emphasise that this assumption is 
also necessary in the simple case of non-spatial least squares regression. Although 
implicitly, it is also present in the standard analysis as a consequence of other 
assumptions adopted therein, in particular, the boundedness of elements of Xn.21

20  Naturally, the set 
∏∞

n=1
ℝ

n = ℝ ×ℝ
2 ×… is a vector space when endowed with element-wise addi-

tion. Then, Ξ is its linear subspace.
21  Under the assumption of boundedness of elements of Xn , as in Lee (2004) and Lee and Yu (2010a), 
Assumption 1’ is implied by the relation ‖Gn,r‖1 = o(n) or, if Wn,r is row-normalized, ‖Δn(�0)

−1‖1 = o(n).
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Assumption 2’  The error term satisfies (a) in Assumption 2. Moreover, the family of 
random variables �4

n,i
 , n ∈ ℕ , i ≤ n , is uniformly integrable.

Derivation of the asymptotic distribution requires strengthening of the 
Assumption 2. However, in Assumption 2’ the elements of the error term still do not 
need to follow the same distribution. Instead, we impose the requirement that those 
distributions have uniformly integrable tails in terms of the fourth moment.

Assumption 6  The true value of parameter � lies in the interior of the space Λ , that 
is �0 ∈ Int Λ.

Assumption 7  For the matrices ℑn = −��0

1

n

�2 ln Ln

����T
(�0) and ΣS,n = ��0

1

n
S
T
n
Sn , 

where Sn =
� ln Ln

��
(�0) , n ∈ ℕ , the following limits exist: ℑ = limn→∞ ℑn and 

ΣS = limn→∞ ΣS,n.22 Moreover, the matrix ℑ is non-singular.

Assumption 7 spells out the necessary conditions for the existence of the limiting 
distribution variance. Note that for consistency of 𝜃̂n the sequences (ℑn)n∈ℕ , 
(ΣS,n)n∈ℕ do not need to converge. A limiting distribution theorem could also be 
easily obtained under the mere assumption that the norms ‖ℑn‖ , ‖ℑ−1

n
‖ , ‖ΣS,n‖ 

exist and are uniformly bounded for sufficiently large n. However, its statement 
would be expressed in terms of a transformation of 

√
n(𝜃̂n − 𝜃0) , rather than the 

deviation itself, as is the case in, e.g. Gupta and Robinson (2018). The requirement 
of invertibility of the matrix ℑ could also be relaxed. However, using the present 
argument, it would only be possible to obtain partial results. An approach to the 
problem of the singularity of ℑ which considers various convergence rates has 
been described in Lee (2004). Finally, we obtain the following generalisation of 
Theorem 3.2 in Lee (2004).

Theorem  2  Under Assumptions 1’, 2’ and 3–6, the asymptotic distribution of √
n(𝜃̂n − 𝜃0) is multivariate normal with zero mean and variance ℑ−1ΣSℑ

−1 . Fur-
thermore, in the special case when the error term is normally distributed, the limit-
ing distribution is N

(
0,ℑ−1

)
.

4 � Application to a higher‑order general group effects model

This section provides an illustration of an application of our refined asymptotic 
analysis to a theoretical argument. We describe a new group effect elimination 
scheme for the high-order SAR model, and using arguments of Sect. 3, we derive the 
asymptotics of the corresponding QML estimator. In the simple case of a constant 
number of group-specific effect dummy variables a consistent, asymptotically 
normal QML estimator can be obtained quite straightforwardly. In general, however, 

22  We employ the Jacobian formulation of vector derivatives, as a result, Sn is treated as a row vector.
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a more careful approach is necessary. Firstly, the incidental parameter problem must 
be accounted for to assure consistency of estimates. Secondly, a certain degree of 
compatibility with the spatial weight matrix has to be assured.

Let us consider a modified version of the SAR model specification (c.f. Eq. (3)) 
in which an additional term associated with group-specific effects is introduced. The 
model specification then becomes

where � ∈ ℝ
� is the vector of group-specific effects, with � = �(n) possibly increas-

ing with n, and the columns of the corresponding matrix Φn are typically dummy 
variables distinguishing non-overlapping groups of observations.23 Importantly, we 
note that, as the number of columns in Φn may change with sample size, the theo-
rems of Sect. 3 cannot be applied directly.

In applied spatial econometrics it is common to eliminate fixed effects by means 
of the demeaning procedure, see e.g. Elhorst (2014), which can be understood as 
a simple projection on the space orthogonal to the columns of Φn . This is there-
fore closely related to the well-known Frisch-Waugh theorem, see Baltagi (2005). 
However, with an increasing number of groups, we must be concerned about sin-
gularity of the resulting variance, as expressed in e.g. Anselin et al. (2008) and the 
incidental parameter problem that can arise in such a setting. An effective method 
of dealing with those issues is developed in Lee and Yu (2010a), where a projection 
onto a lower dimensional space is applied to properly derive the asymptotic distribu-
tion of the resulting QML estimator. The technique presented in this paper extends 
this idea. Our approach consists in handling the group effect term together with its 
spatial lags, that is Wn,rΦn,W

2
n,r
Φn,… . At the same time, the transformed model is 

projected onto a lower dimensional space, following the idea of Lee and Yu (2010a).
Let Kn ⊂ ℝ

n be the linear subspace generated by iterating Wn,r on the columns of 
the matrix Φn . In other words, Kn is the smallest Wn,r-invariant subspace containing 
the columns of Φn . Indeed, any spatial lag of Φn (member of Kn ), when multiplied by 
Wn , is yet another spatial lag, thus it is a member of Kn . The same is true for all linear 
combinations of such spatial lags. Our idea is to filter out those vector components of 
both Yn and Xn which lie in Kn . Under the assumption that the orthogonal complement 
K

⟂
n
 is sufficiently rich, we can obtain a consistent QML estimator of � = (�T, �T, �2)T.
Let n∗ = n − dimKn and fix an n∗ × n matrix F whose rows form an orthonor-

mal basis of K⟂
n
 . It is easy to observe that MK = FTF is the projection onto K⟂

n
 and 

FFT = In∗.

(5)Yn =

d∑
r=1

�rWn,rYn + Xn� + Φn� + �n,

23  Groups are understood as subsets of observations within the sample to which the specific effect is 
attributed. As an example, this contains the individual fixed effects model as a special case. That is, for 
balanced panel data when a longitudinal sample of size n is indexed in a way that distinguishes N spatial 
units and T time periods, n = NT  , groups contain observations relevant to respective spatial units. Simi-
larly, when each group contains observations ascribed to the respective time periods, we arrive at the 
time-specific fixed effects specification. Let us also note that, formally, columns of Φn are allowed to be 
arbitrary vectors, as long as the relevant assumptions of this section hold.
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Denote Y∗
n
= FYn , X∗

n
= FXn , �∗n = F�n and W∗

n,r
= FWn,rF

T . As In − FTF projects 
onto Kn we have FWn,r

(
In − FTF

)
= 0 . Thus, transforming the specification of Eq. 

(5) with F , we obtain

since FWn,r = FWn,rF
TF and, by definition, FΦn = 0.

Let us observe that �∗
n
 satisfies Assumption  2 (b) if the original �n 

satisfies Assumption  2 (a) or (b). The crucial observation, however, is 
that Assumptions  3 and  4 are satisfied when W∗

n,r
 is substituted for Wn,r . 

Indeed, with Δ∗
n
(�) = In∗ −

∑
r≤d �rW

∗
n,r

= F(In −
∑

r≤d �rWn,r)F
T and 

Δ∗
n
(�)−1 = F(In −

∑
r≤d �rWn,r)

−1FT it is sufficient to note that ‖W∗
n,r
‖ ≤ ‖Wn,r‖ and 

‖Δ∗
n
(�)−1‖ ≤ ‖Δn(�)

−1‖ , as ‖F‖ = 1 , whenever n∗ > 0.

Assumption A  The earlier Assumptions 1 and 5 hold for the transformed specifica-
tion of Eq. (6), that is with X∗

n
 , W∗

n
 , n∗ substituted in place of Xn , Wn , n, respectively.

Assumption B  We have limn→∞ n∗ = ∞.

The following result is an immediate consequence of Theorem 1.

Theorem 3  Under Assumptions 2 (a), 3, 4 as well as the above Assumptions A and B 
he Gaussian QML estimator 𝜃̂∗

n
= (𝜆̂∗T

n
, 𝛽∗T

n
, 𝜎̂2∗

n
)T for Eq. (6) is consistent.

Let us note that the mere application of Theorem 2 is not sufficient to establish 
asymptotic normality of 

√
n∗
�
𝜃̂∗
n
− 𝜃0

�
 . The main difficulty is that the components 

of F�n do not have to be independent, even if the original �n is.24 However, with our 
asymptotic analysis, a valid argument is still possible.

Assumption A’  The earlier Assumption A holds and Assumptions 1’ is satisfied for 
FTX∗

n
 , FTG∗

n,r
X∗
n
�0 and n∗ . Moreover, Assumption 7 holds with Y∗

n
 , X∗

n
 , n∗ , ℑ∗

n
 etc. in 

the capacity of Yn , Xn , n , ℑn ....

Theorem  4  Under Assumptions 2’, 3, 4, 6, A’ and B he rescaled deviation √
n∗(𝜃̂

∗
n
− 𝜃0) is asymptotically normally distributed with zero mean and variance 

(ℑ∗)−1ΣS
∗ (ℑ∗)−1.

(6)

Y∗
n
= FYn =

∑
r≤d

�rFWn,rYn + FXn� + FΦn� + F�n

=
∑
r≤d

�rFWn,rF
TFYn + FXn� + F�n

=
∑
r≤d

�rW
∗
n,r
Y∗
n
+ X∗

n
� + �∗

n
,

24  Unless normality of �n is assumed, c.f. the proof of Theorem 2 in Lee and Yu (2010a).
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To capture the relationship between our group effect elimination technique and 
the classical demeaning operator, let us observe that, if specification of Eq. (6) is 
further transformed with FT , then we arrive at the proper Gaussian log-likelihood of 
� , given Y†

n
= FTFYn = MKYn and X†

n
= MKXn . Indeed, we obtain

where Δ†
n
(�) = MKΔn(�)MK and pdet denotes the pseudo-determinant, i.e. the 

product of all non-zero singular values.
One advantage of the log-likelihood in Eq. (7) is that it does not depend on a 

particular choice of matrix F . Moreover, given detΔn(�) the pseudo-determinant 
might be computed using the determinant formula for block matrices. If E is a 
matrix such that 

[
FT, ET

]
 is an orthogonal matrix, then we have the relation

For some specifications of the group or fixed effects, the determinant of 
EΔn(�)E

T can be found analytically. For example, in a panel setting, with 
n = mt , time-invariant matrices Wn,r = It ⊗ W̄m,r and a usual matrix Φn of 
spatial unit dummy variables, it can be shown that det

(
EΔn(�)E

T
)
 equals 

to det
�
Im −

∑
r≤d 𝜆rW̄m,r

�
 . If the matrices in Wm,r are additionally row-

normalised and the matrix Φn incorporates both temporal and spatial fixed 
effects, we have det

�
EΔn(𝜆)E

T
�
= (1 −

∑
r≤d 𝜆r)

t−1 det
�
Im −

∑
r≤d 𝜆rW̄m,r

�
 . 

Lastly, in the case of temporal fixed effects specification, it can be shown that 
det

�
EΔn(�)E

T
�
= (1 −

∑
r≤d �r)

t.

5 � Closing remarks

In this paper we have revisited the analysis of the asymptotic behaviour of the well-
known Gaussian QML estimator for higher-order SAR models. Our findings indi-
cate that the standard assumptions on row and column summability of the spatial 
weight matrix can be weakened to cover econometric models with a greater degree 
of spatial dependence. Additionally, it is possible to apply a broader class of model 
transformations in theoretical arguments, without violating the essential bounded-
ness requirement. Secondly, weaker conditions on the existence of moments of the 
error term can be imposed and its elements do not need to be identically distrib-
uted as long as their kurtosis is uniformly bounded. We expect that our results can 
be used to reconsider the asymptotic behaviour of QML estimation in more general 
specifications. Moreover, large sample theories for other estimators, in particular, 
General Method of Moments or Two-Stage Least Squares, can benefit from reappli-
cation of our arguments, especially our Theorem 5 in “Appendix C”. We should also 
mention that we have made the effort to avoid certain mathematical imprecision that 
can be found in the arguments of the standard analysis. For example, we properly 
derive the asymptotic distribution based on the Cramér-Wald theorem. Moreover, 

(7)log L†
n
(�) = −

n∗

2
ln
(
2��2

)
+ ln

|||pdet
(
Δ†

n
(�)

)||| −
1

2�2

‖‖‖Δ
†
n
(�)Y†

n
− X†

n
�
‖‖‖
2

,

detΔn(�) = det

([
F

E

]
Δn(�)

[
FT, ET

])
= pdet

(
Δ†

n
(�)

)
det

(
EΔn(�)E

T
)
.
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our proofs rely neither on the existence of the Lagrange remainder in the Taylor 
expansion nor on the mean value theorem.25

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

Appendix A: Monte Carlo experiments

We have conducted computer simulations to show that, under the relaxed bounded-
ness condition, the asymptotic theory is valid. We considered four different spatial 
interaction schemes in a linear setting. The first matrix considered, W1

n
 , is a com-

mon nearest neighbour matrix, with one distinguished central unit, whose interac-
tion with other units is defined by the IDW scheme with the power parameter � = 2 . 
This is a summable matrix and the results of Monte Carlo experiments may serve as 
a point of reference for non-summable settings.

The matrix W2
n
 is analogous to the matrix W1

n
 , with the crucial difference that the 

power parameter � = 1 . This leads to an interaction scheme which is no longer summa-
ble. The third matrix, W3

n
 , is yet another variation on the same idea. However, instead of 

using the IDW scheme, the non-summable interaction pattern is now uniform, with all 
its weights equal to 1∕

√
n . It is the largest possible square-summable, uniform pattern, 

with respect to size of the weights. Lastly, the matrix W4
n
 is obtained from the symmet-

ric non-summble IDW matrix, all elements of which are proportional to 1

|i−j| , with i, j 
being its indices (here we have � = 1 ). This matrix has been rescaled by its norm.

The Monte Carlo simulations for all of the matrices Wi
n
 , i = 1, 2, 3, 4 , were con-

ducted with a mixed regressive autoregressive specification, see Eq. (3), with a 
single autoregressive parameter �0 = 0.3 . The regressor matrix Xn contained a con-
stant term c0 = 2 and one regressor, uniformly distributed in an interval symmetric 
around zero, with the corresponding slope �0 = 3 . In all simulated models the inno-
vations were Gaussian with variance �2

0
= 1.

A constant number of Monte Carlo samples, m = 5000 , was used for all trials. 
Tables 1, 2, 3, 4 show the expectation estimate, the standard error for the estimator, and 
the Kolmogorov-Smirnov assessment of normality of the individual components of the 
scaled difference 

√
n
�
𝜃̂n − 𝜃0

�
 . For all matrices a clear tendency can be seen for the 

values of the bias and its standard deviation to diminish with increasing n. Moreover, in 
most cases the quotient of the absolute bias divided by the standard deviation does not 

25  Recall that the Lagrange remainder in the Taylor series expansion of a vector valued function is not 
available. The function f ∶ [0, 1] → ℂ , f (t) = e2�it , t ∈ [0, 1] , can serve as a counter-example, see also 
Feng et al. (2014). Instead, our technique makes use of an original bound (inequalities of Eq. (C.5) and 
Eq. (C.6) in “Appendix C”.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 1   Simulation results for the summable matrix W1

n
 of the Inverse Distance Weighting scheme with 

the power parameter � = 2

The Kolmogorov-Smirnov normality test significance levels are: *** for p > 0.5 , ** for p > 0.1 and * for 
the usual p > 0.05

n = 125 n = 250 n = 500 n = 750 n = 1000 n = 1500

�
0
= 0.3

 Estimate 0.2800 0.2905 0.2950 0.2965 0.2973 0.2982
 Standard error 0.0811 0.0575 0.0413 0.0339 0.0292 0.0241
 KS test figure 0.0152 0.0081 0.0142 0.0154 0.0112 0.0115
 Sign. level ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗

c
0
= 2

 Estimate 2.0555 2.0268 2.0134 2.0101 2.0080 2.0055
 Standard error 0.2436 0.1764 0.1252 0.1038 0.0881 0.0736
 KS test figure 0.0170 0.0103 0.0129 0.0139 0.0116 0.0140
 Sign. level ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗∗

�
0
= 3

 Estimate 3.0855 3.0407 3.0213 3.0152 3.0115 3.0078
 Standard error 0.3472 0.2467 0.1771 0.1456 0.1255 0.1036
 KS test figure 0.0167 0.0078 0.0128 0.0153 0.0107 0.0094
 Sign. level ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗

�2

0
= 1

 Estimate 0.9787 0.9879 0.9954 0.9970 0.9975 0.9982
 Standard error 0.1262 0.0917 0.0652 0.0528 0.0462 0.0373
 KS test figure 0.0228 0.0092 0.0130 0.0083 0.0185 0.0135
 Sign. level – ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗

Table 2   Simulation results for the non-summable matrix W2

n
 of the Inverse Distance Weighting scheme 

with the power parameter � = 1

n = 125 n = 250 n = 500 n = 750 n = 1000 n = 1500

�
0
= 0.3

Estimate 0.2805 0.2895 0.2955 0.2964 0.2975 0.2986
Standard error 0.0823 0.0574 0.0412 0.0329 0.0289 0.0237
KS test figure 0.0164 0.0195 0.0124 0.0098 0.0081 0.0139
Sign. level ∗∗ – ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

c
0
= 2

Estimate 2.0589 2.0314 2.0136 2.0105 2.0077 2.0041
Standard error 0.2580 0.1781 0.1269 0.1011 0.0893 0.0726
KS test figure 0.0234 0.0143 0.0120 0.0095 0.0083 0.0117
Sign. level – ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

�
0
= 3

Estimate 3.0834 3.0450 3.0193 3.0152 3.0109 3.0061
Standard error 0.3528 0.2463 0.1767 0.1411 0.1242 0.1015
KS test figure 0.0156 0.0185 0.0103 0.0093 0.0075 0.0134
Sign. level ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗
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The Kolmogorov-Smirnov normality test significance levels are: *** for p > 0.5 , ** for p > 0.1 and * for 
the usual p > 0.05

n = 125 n = 250 n = 500 n = 750 n = 1000 n = 1500

�
0
= 0.3

�2

0
= 1

Estimate 0.9771 0.9894 0.9953 0.9961 0.9978 0.9983
Standard error 0.1263 0.0909 0.0632 0.0522 0.0452 0.0373
KS test figure 0.0207 0.0153 0.0073 0.0111 0.0149 0.0093
Sign. level – ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

Table 2   (continued)

Table 3   Simulation results for the non-summable matrix W3

n
 of uniform interaction scheme at the rate 1√

n

The Kolmogorov-Smirnov normality test significance levels are: *** for p > 0.5 , ** for p > 0.1 and * for 
the usual p > 0.05

n = 125 n = 250 n = 500 n = 750 n = 1000 n = 1500

�
0
= 0.3

 Estimate 0.2967 0.2988 0.2992 0.2997 0.2996 0.2998
 Standard error 0.0245 0.0170 0.0121 0.0099 0.0086 0.0070
 KS test figure 0.0081 0.0114 0.0101 0.0073 0.0101 0.0071
 Sign. level ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

c
0
= 2

 Estimate 2.0133 2.0041 2.0027 2.0011 2.0019 2.0003
 Standard error 0.1543 0.1055 0.0723 0.0591 0.0507 0.0412
 KS test figure 0.0105 0.0124 0.0060 0.0074 0.0078 0.0098
 Sign. level ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

�
0
= 3

 Estimate 3.0144 3.0054 3.0033 3.0012 3.0018 3.0010
 Standard error 0.1059 0.0741 0.0523 0.0429 0.0371 0.0303
 KS test figure 0.0076 0.0125 0.0100 0.0104 0.0135 0.0090
 Sign. level ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

�2

0
= 1

 Estimate 0.9784 0.9903 0.9938 0.9956 0.9977 0.9986
 Standard error 0.1278 0.0885 0.0626 0.0520 0.0433 0.0362
 KS test figure 0.0227 0.0208 0.0143 0.0114 0.0159 0.0137
 Sign. level – – ∗∗ ∗ ∗ ∗ ∗∗ ∗∗
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exceed 0.1256, which implies that true values of parameters lie within 0.05 one-sided 
confidence intervals for the centre of the distribution of estimates. We have also exam-
ined the differences between the theoretical variance of the estimator (implied by the 
matrix �−1 ) and the values derived from the samples. The relative differences ranged 
from zero to four percent, with an average of roughly two percent, which is consistent 
with the relative standard deviation 

√
2∕m of the �2(m) distribution.

Appendix B: Additional facts

Remark 1  There is a row-normalised matrix Wn which is bounded in spectral norm, 
yet ‖Wn‖∞ is unbounded.

Proof  Set Dn = [dij]i,j≤n with non-zero entries d1,j = 1∕j , di,1 = 1∕i and 
di,i+1 = dj+1,j = 1 if i, j > 1 . As an illustration, we have

Table 4   Simulation results for the non-summable matrix W4

n
=
[|i − j|−�]

i≠j
 , with � = 1 , rescaled by its 

spectral norm

The Kolmogorov-Smirnov significance levels are: *** for p > 0.5 , ** for p > 0.1 and * for the usual 
p > 0.05

n = 125 n = 250 n = 500 n = 750 n = 1000 n = 1500

�
0
= 0.3

 Estimate 0.2972 0.2983 0.2988 0.2993 0.2990 0.2992
 Standard error 0.0325 0.0250 0.0191 0.0162 0.0145 0.0126
 KS test figure 0.0128 0.0075 0.0075 0.0141 0.0061 0.0108
 Sign. level ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗

c
0
= 2

 Estimate 2.0078 2.0036 2.0029 2.0016 2.0033 2.0023
 Standard error 0.1278 0.0954 0.0699 0.0577 0.0516 0.0444
 KS test figure 0.0134 0.0098 0.0122 0.0126 0.0091 0.0085
 Sign. level ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗

�
0
= 3

 Estimate 3.0073 3.0050 3.0034 3.0021 3.0032 3.0024
 Standard error 0.0868 0.0712 0.0574 0.0497 0.0451 0.0399
 KS test figure 0.0133 0.0083 0.0093 0.0136 0.0048 0.0091
 Sign. level ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗

�2

0
= 1

 Estimate 0.9768 0.9869 0.9934 0.9960 0.9974 0.9983
 Standard error 0.1235 0.0895 0.0632 0.0518 0.0436 0.0362
 KS test figure 0.0205 0.0133 0.0124 0.0134 0.0151 0.0101
 Sign. level – ∗∗ ∗∗ ∗∗ ∗∗ ∗ ∗ ∗



489

1 3

QML estimation with non‑summable weight matrices﻿	

Let Wn be the row-normalisation of Dn . Then ‖Wn‖∞ ≥
∑n

j=1
wj,1 ≥

1

1+
1

2

∑n

j=2

1

j
 

which escapes to infinity with n → ∞ . Let W̃n be equal to the matrix Wn with the val-
ues in the first column set to zero. Then ‖Wn‖ ≤ ‖W̃n‖ + ‖Wn − W̃n‖ . Lastly, 
‖Wn − W̃n‖ ≤

∑n

j=2

3

2j2
< ∞ and W̃n is outright summable.26 	�  ◻

Remark 2  If Wn,r , r ≤ d , and Λ satisfy Assumptions 3 and 4, then there exists a 
bounded open set UΛ ⊂ ℝ

d , UΛ ⊃ Λ , independent of n, such that Δn(�) is invertible 
for each � ∈ U and the norms ‖Δn(�)

−1‖ , ‖Δn(�)‖ do not exceed KΛ + 1.

Proof of this non-trivial fact can be found in the supplementary material.

Lemma 1  Let U ⊂ ℝ
d be an open set and A ⊂ U its compact subset. If F ∶ U → ℝ

m 
is differentiable and ‖F‖, ‖F�‖ ≤ M < ∞ for a constant M, then F is Lipschitz con-
tinuous on A with a constant KL = KL(M,A).

Lemma 2  Let �n = (�n,i)i≤n be an n × 1 random vector satisfying Assumption 2, and 
let (An)n∈ℕ and (Pn)n∈ℕ be sequences of n × n matrices satisfying

If xn ∈ ℝ
n , for n ∈ ℕ , is a non-random vector satisfying ‖xn‖2 = O(n) , then 

(a)	� for Za
n
=

1

n
xT
n
An�n we have Var Za

n
≤

�2

n
‖‖An

‖‖2 1n‖‖xn‖‖
2,

(b)	� for Zb
n
=

1

n
�T
n
An�n we have Var Zb

n
≤

3

n
‖‖An

‖‖2 supn,i �𝜀̄4n,i.

Proof of Lemma 2 is given in the supplementary material.

Appendix C: Theorems

Proof  of Theorem  1  Let �0 =
(
�T
0
, �T

0
, �2

0

)T be the true value of parameter � . Let 
Sn(�) = Δn(�)Δn(�0)

−1 , � ∈ Λ . It is a standard approach to use the first-order opti-
mality conditions for � and �2 , that is

D6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1

2

1

3

1

4

1

5

1

6
1

2
0 1 0 0 0

1

3
1 0 1 0 0

1

4
0 1 0 1 0

1

5
0 0 1 0 1

1

6
0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

sup
n∈ℕ

‖An‖ < ∞, sup
n∈ℕ

‖Pn‖ ≤ 1 and Pn = PT
n
Pn.

26  A considerably more intricate example is also possible with infinitely many non-summable columns.
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to obtain the concentrated log-likelihood lnLc
n
(𝜆) = −

n

2
ln
(
2𝜋𝜎̂2

n
(𝜆)

)
−

n

2
+ ln ||detΔn(𝜆)

|| , 
which is maximised by 𝜆̂n . Let us set Rn(�) =

1

n
ln Lc

n
(�) and note that each Rn is a 

random function.
The proof proceeds as follows. First, we obtain consistency of 𝜆̂n by the generic 

argument presented in Lemma 3.1 of Pötscher and Prucha (1997). Thus, we 
introduce a new, non-random function

which uniformly approximates Rn for large n.27 Then we show that �0 is an 
identifiably unique maximiser of each R̄n , as in Definition 3.1 of Pötscher and Prucha 
(1997) and, as a result, we obtain consistency of 𝜆̂n . Finally, we deduce consistency 
of 𝛽n and 𝜎̂2

n
.

Using Eq. (C.1) we expand 𝜎̂2
n
(𝜆) and obtain, with Sn(�) = Δn(�)Δn(�0)

−1,

where �𝜎̂2
n
(𝜆) =

1

n

‖‖‖MXn
Sn(𝜆)Xn𝛽0

‖‖‖
2

+
𝜎2
0

n

‖‖‖MXn
Sn(𝜆)

‖‖‖
2

F
 and the remaining random 

deviation �n(�) =
2

n

(
Sn(�)Xn�0

)T
MXn

Sn(�)�n +
1

n
�T
n
Sn(�)

TMXn
Sn(�)�n −

1

n
�2
0

‖‖‖MXn
Sn(�)

‖‖‖
2

F
 

converges to 0 in probability, uniformly in � ∈ Λ , as a consequence of Lemma 2, 
with the use of Assumptions 1 and 4.

Now, we will show that sup𝜆∈Λ ||Rn(𝜆) − R̄n(𝜆)
|| converges to zero in probability. 

With KΛ defined in Assumption 4 and k = rank(Xn) we have

Since ‖Sn(�)‖2F ≥ ‖Sn(�)−1‖−2 , the value of �𝜎̂2
n
(𝜆) is uniformly separated from 

zero. Finally, we obtain the uniform convergence in probability of

Since R̄n(𝜆0) =
1

n
ln ||detΔn(𝜆0)

|| − 1

2
ln

n−k

n
𝜎2
0
 (cf. Eq. (C.2)), we have

(C.1)𝛽n(𝜆) =
(
XT
n
Xn

)−1
XT
n
Δn(𝜆)Yn, 𝜎̂2

n
(𝜆) =

1

n

‖‖‖MXn
Δn(𝜆)Yn

‖‖‖
2

,

(C.2)R̄n(𝜆) =
1

2
ln� exp(2Rn) = ln

√
2𝜋�𝜎̂2

n
(𝜆) +

1

2
+

ln ||detΔn(𝜆)
||

n
,

𝜎̂2
n
(𝜆) =

1

n

‖‖‖MXn
Sn(𝜆)Xn𝛽0 +MXn

Sn(𝜆)𝜀n
‖‖‖
2

= �𝜎̂2
n
(𝜆) + 𝜉n(𝜆),

‖MXn
Sn(�)‖2F = ‖Sn(�)‖2F +

�‖MXn
Sn(�)‖F − ‖Sn(�)‖F

��‖MXn
Sn(�)‖F + ‖Sn(�)‖F

�

≥ ‖Sn(�)‖2F − 2‖Sn(�)‖F‖PXn
Sn(�)‖F ≥ ‖Sn(�)‖2F − 2kK2

Λ

√
n.

R̄n(𝜆) − Rn(𝜆) =
1

2
ln

𝜎̂2
n
(𝜆)

�𝜎̂2
n
(𝜆)

=
1

2
ln

(
1 +

𝜉n(𝜆)

�𝜎̂2
n
(𝜆)

)
.

27  Note that the value of R̄n represents a log-root-mean-square of n
√
Lc
n
(�) with Lc

n
(�) being the concen-

trated likelihood of � . Although simply choosing R̄�
n
= �Rn instead of current R̄n =

1

2
ln�e2Rn might seem 

more natural, the use of R̄n results in simpler computations and the difference between R̄′
n
 and R̄n dimin-

ishes as the randomness of Rn decreases with n → ∞.
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with a constant C such that C ≥ ||det Sn(�)||−2∕n . Furthermore, Assumption 5 implies 
that for any � ∈ Λ we have lim infn→∞ R̄n(𝜆0) − R̄n(𝜆) > 0.

We will show that (�0)n∈ℕ is an identifiably unique sequence of maximisers of R̄n . 
To this end, let us begin by assuming the contrary. Then, there is a number 𝜖 > 0 for 
which, for some increasing sequence {k(n)}n∈ℕ ⊂ ℕ and some sequence 
{𝜆̃n}n∈ℕ ⊂ C𝜖 = {𝜆 ∈ Λ ∶ ‖𝜆 − 𝜆0‖ ≥ 𝜖} , we have limn→∞ R̄k(n)(𝜆0) − R̄k(n)(𝜆̃n) ≤ 0. 
Since C� is closed in compact Λ , the sequences {𝜆̃n}n∈ℕ and {k(n)}n∈ℕ ⊂ ℕ can be 
chosen in such a way that 𝜆̃n → 𝜆̃ , for some 𝜆̃ ≠ 𝜆0 . Let 
𝛿 = lim infn→∞ R̄n(𝜆0) − R̄n(𝜆̃) > 0 . Using Assumption  4 it can be verified28 that 
both Rn and its derivative are bounded, thus Lemma  1 implies that all R̄n are 
Lipschitz continuous on Λ with a uniform constant KL . We can choose n0 ∈ ℕ such 
that ‖𝜆̃m − 𝜆̃‖ <

𝛿

3KL

 for all m ≥ n0 . The contradiction then follows from the 
inequality

Lastly, the convergence ‖𝜆̂n − 𝜆0‖ = o
ℙ
(1) , follows from Lemma 3.1 in Pötscher and 

Prucha (1997) as, by definition, for each n ∈ ℕ , 𝜆̂n is a maximiser of Rn.
Notice that, by Eq. (C.1), we have 𝛽n(𝜆̂n) = 𝛽0 − 𝜁 (1)

n
+ 𝜁 (2)

n
− 𝜁 (3)

n
 , where

From Assumptions 1 and 4 we have ‖𝜁 (1)
n
‖ = O(‖𝜆̂n − 𝜆0‖) = o

ℙ
(1).

The convergence ‖� (3)
n
‖ = o

ℙ
(1) can be deduced from the Chebyshev inequality, 

as, for a constant C′ , we have (�𝜃0
‖𝜁 (3)

n
‖)2 ≤ C�𝜎2

0
�𝜃0

‖𝜆̂n − 𝜆0‖2 , by the Schwartz 
inequality. Lastly, by Assumption  1 we have ‖Var� � (2)n

‖ = O(1∕n) . Thus, 𝛽n is 
consistent.

Again, using Eq. (C.1) and the consistency of 𝜆̂n and 𝛽n , we have

2
�
R̄n(𝜆0) − R̄n(𝜆)

�
= ln

1

(n−k)𝜎2
0

���MXn
Sn(𝜆)Xn𝛽0

���
2

+
1

n−k

���MXn
Sn(𝜆)

���
2

F

��det Sn(𝜆)��2∕n

≥ ln

⎛
⎜⎜⎝
C

n𝜎2
0

���MXn
Sn(𝜆)Xn𝛽0

���
2

+

1

n
��Sn(𝜆)��2F

��det Sn(𝜆)��2∕n
−

2CkK2
Λ

√
n

n − k

⎞
⎟⎟⎠
,

𝛿 ≤ lim inf
n→∞

(
R̄k(n)(𝜆0) − R̄k(n)(𝜆̃n) + |R̄k(n)(𝜆̃n) − R̄k(n)(𝜆̃)|

)
≤

𝛿

3
.

𝜁 (1)
n

=
(
XT
n
Xn

)−1
XT
n

∑
r≤d

(𝜆̂n,r − 𝜆0
r
)Wn,rΔn(𝜆0)

−1Xn𝛽0,

𝜁 (2)
n

=
(
XT
n
Xn

)−1
XT
n
𝜀n,

𝜁 (3)
n

=
(
XT
n
Xn

)−1
XT
n

∑
r≤d

(𝜆̂n,r − 𝜆0
r
)Wn,rΔn(𝜆0)

−1𝜀n.

28  See Remark S.5 in the supplementary material.
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Similar arguments imply that 1
n

���
∑

r≤d oℙ(1)Wn,rYn + Xno
k×1
ℙ

(1)
���
2

= o
ℙ
(1) . Finally, 

as �2
0
= plimn→∞

1

n
‖�n‖2 , by statement (b) of Lemma  2, we also have 

plimn→∞𝜎̂
2
n
= 𝜎2

0
 . 	�  ◻

Theorem 5  Let (�n)n∈ℕ satisfy Assumption 2’ and let xn = (xn,i)i≤n , n ∈ ℕ , be column 
vectors. Denote Qn = �T

n

(
xn + An�n

)
 and assume that Var Qn > 0 for sufficiently 

large n ∈ ℕ . If ‖xn‖2 + ‖An‖2F = O(Var Qn) , ‖An‖2 = o(Var Qn) and 
maxi≤n x

2
n,i

= o(Var Qn) , then Qn−�Qn√
Var Qn

 converges in distribution to a standardised nor-
mal variable N(0, 1).

Proof of Theorem 5 is given in the supplementary material. The argument is based 
on bounds originally developed in Bhansali et al. (2007), where a CLT for quadratic 
forms of i.i.d. vectors is shown.

Corollary 1  Let (�n)n∈ℕ satisfy Assumption 2’ and let xn = (xn,i)i≤n , n ∈ ℕ , be column 
vectors. Denote Qn = �T

n

(
xn + An�n

)
 . If limn→∞ Var Qn exists and is positive, 

‖xn‖2 + ‖An‖2F = O(1) and ‖An‖2 +maxi≤n x
2
n,i

= o(1) , then Qn−�Qn√
Var Qn

 converges in dis-
tribution to a standard normal variable N(0, 1).

Proof  of Theorem  2  With Sn defined in Assumption 7 and Gn,r = Wn,rΔn(�0)
−1 , a 

straightforward calculation29 shows that the consecutive entries of 1√
n
Sn are

We will show that 1√
n
S
T
n
 converges in distribution to N

(
0,ΣS

)
.30

𝜎̂2
n
(𝜆̂n) =

1

n

‖‖‖Δn

(
𝜆0 + od×1

ℙ
(1)

)
Yn − Xn

(
𝛽0 + ok×1

ℙ
(1)

)‖‖‖
2

=
1

n

‖‖‖‖‖
Δn(𝜆0)Yn − Xn𝛽0 −

∑
r≤d

o
ℙ
(1)Wn,rYn − Xno

k×1
ℙ

(1)
‖‖‖‖‖

2

.

1√
n

� ln Ln

��

�
�0
�
=

1√
n�2

0

�T
n
Xn,

1√
n

� ln Ln

��

�
�0
�
=

1√
n�2

0

��
�T
n
Gn,r

�T
r≤d

+
�
�T
n
Gn,r�n − �2

0
tr
�
Gn,r

��T
r≤d

�
,

1√
n

� ln Ln

��2

�
�0
�
=

1

2
√
n�4

0

�
�T
n
�n − n�2

0

�
.

29  c.f. Remark S.1 in the supplementary material.
30  Naturally, it is not sufficient to establish asymptotic normality of the above formulae, c.f. Lee (2004). 
Our argument follows by considering two cases and makes use of the standard Cramér-Wald theorem 
(see e.g. Billingsley (1995)).
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Let � =
(
aT, bT, c

)
 , where (ar) ∈ ℝ

d , b ∈ ℝ
k and c ∈ ℝ . First, assume that 

�TΣS� ≠ 0 . Then, we can observe that 1√
n
�TS

T
n
 is a centred linear-quadratic form of 

the residual �n . That is, 1√
n
�TS

T
n
= Qn − �Qn , with Qn = xT

n
�n + �T

n
An�n , where

Note that by Assumptions 1’ and 7 we have maxi≤n x
2
n,i

= o(1) , ‖An‖2 = O(1∕n) , 
‖xn‖2 + ‖An‖2F = O(1) ; and, using Assumption 7, we have limn→∞ Var

1√
n
𝛼TS

T
n
> 0 . 

Thus, Corollary 1 can be used to deduce that 1√
n
�TS

T
n
 converges in distribution to 

N
(
0, �TΣS�

)
 . In the case of �TΣS� = 0 the convergence holds trivially.

Let (Ω,F,ℙ) be the probability space on which �n , n ∈ ℕ , are defined. Let � be an 
open bounded subset of Λ ×ℝ

k × (0,+∞) and let B�0 be an open ball centred at �0 
contained entirely in Λ . Set U�0

= � ∩
(
B�0 ×ℝ

k+1
)
 . Also denote ℑ̃n = −

1

n

𝜕2 ln Ln

𝜕𝜃𝜕𝜃T
(𝜃0) 

and M𝜏
n
= sup𝜃∈𝜏

‖‖‖
1

n

𝜕3 ln Ln

𝜕𝜃⊗𝜕𝜃⊗𝜕𝜃
(𝜃)

‖‖‖ . Evaluation of the third derivative reveals that 
�M�

n
 is uniformly bounded.31 It can be verified32 that ℑ̃n converges in probability to 

ℑ as n → ∞ , hence ℙ({det ℑ̃n = 0}) = o(1) and ‖ℑ̃−1
n
‖ = O

ℙ
(1) . By Theorem 1 we 

have ‖𝜃̂n − 𝜃0‖ = o
ℙ
(1) and Remark S.3 yields supn∈ℕ 𝔼𝜃0

M𝜏
n
< ∞ . Thus, it follows 

that for the sets Ωn =
�
𝜃̂n ∈ U𝜃0

�
∩
�
det ℑ̃n ≠ 0

�
∩
�
M𝜏

n
‖ℑ̃−1

n
‖‖𝜃̂n − 𝜃0‖ < 1

�
 we 

have limn→∞ ℙ(Ωn) = 1.
For any � ∈ Ωn , by the Taylor expansion theorem, see e.g. Theorem 107 in Hájek 

and Johanis (2014), applied for the function f�,n(�) =
1√
n

� ln Ln

��
(�,�)T in � = �0 we 

have f𝜔,n(𝜃) =
1√
n
S
T
n
− ℑ̃n

�√
n(𝜃 − 𝜃0)

�
+Rn(𝜃) , � ∈ U�0

 , where Rn is the expan-
sion remainder satisfying ‖Rn(𝜃)‖ ≤

1

2
sup𝜃∈U𝜃0

‖f ��
𝜔,n

(𝜃)‖‖𝜃 − 𝜃0‖2 . Substituting 
𝜃 = 𝜃̂n(𝜔) we obtain

and

With an = ℑ̃n

√
n
�
𝜃̂n − 𝜃0

�
 and bn =

1√
n
S
T
n
 , the crucial observation is that 

‖‖an‖‖ < 2‖‖bn‖‖ on the sets Ωn . Indeed, otherwise we would have

Using Eq. (C.4) and the fact that sup�∈�
����

1√
n

� ln Ln

��

���� = O
ℙ
(1) we conclude that

xn =
1√
n�2

0

�
Xnb +

�
r≤d

arGn,rXn�0

�
and An =

1√
n�2

0

�
c

2�2
0

In +
�
r≤d

arGn,r

�
.

(C.3)ℑ̃n

�√
n(𝜃̂n − 𝜃0)

�
=

1√
n
S
T
n
+Rn(𝜃̂n)

(C.4)‖Rn(𝜃̂n)‖ ≤

√
n

2
M𝜏

n
‖𝜃̂n − 𝜃0‖2.

(C.5)��an�� ≤ 2‖an − bn‖ = 2‖Rn(𝜃̂n)‖ ≤ M𝜏
n
‖ℑ̃−1

n
‖‖𝜃̂n − 𝜃0‖‖an‖ < ‖an‖.

31  See also Remark S.3 in the supplementary material.
32  See Remark S.2 in the supplementary material.
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Finally, by combining Eq. (C.3) with Eq. (C.6) the desired convergence in 
distribution follows. 	�  ◻

Proof  of Theorem  4  The proof relies on the same argument as the proof of Theo-
rem 2, up to the point where our CLT is used to deduce asymptotic normality of the 
linear-quadratic form 1√

n∗
S
∗� , with � as previously. Then it can be seen that, for 

arbitrary xn and An we have xT
n
�∗
n
+ (�∗

n
)TAn�

∗
n
= xT

n
F�n + (�n)

TFTAnF�n , hence a lin-
ear quadratic form of �∗

n
 is, in fact, a linear-quadratic form of �n . Finally, it is suffi-

cient to note that, in the case of 1√
n∗
S
∗� , by Assumptions A’ and 4 we have 

(
√
n∗F

Txn)n∈ℕ ∈ Ξ∗ , ‖FTAnF‖2 = O
�
1∕n∗

�
 , ‖FTxn‖2 = O(1) , ‖FTAnF‖2F = O(1) and 

limn→∞ Var
1√
n∗
S
∗� = �TΣS

∗� . Thus, Corollary 1 can be used to deduce that 1√
n∗
S
∗� 

converges in distribution to N
(
0, �TΣS

∗�
)
.

Again, the remainder of the proof proceeds accordingly to the proof of Theo-
rem 2.	�  ◻
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