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Abstract
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1 Introduction

In this paper1 we consider the linearization problem for nonlinear generalizations of
the Shortest Path Problem (SPP), a classic combinatorial optimization problem. An
instance of the SPP consists of a digraph G = (V , A), a source vertex s ∈ V , a sink
vertex t ∈ V , and a cost function c : A → R, which maps each arc a ∈ A to its cost
c(a). The cost of a simple directed s-t-path P , is given by2

SPP(P, c) :=
∑

a∈P

c(a) . (1)

The goal is to find a simple directed s-t-path in G which minimizes the objective (1).
In general it is assumed that there are no circuits of negative weight in G.

Consider now a number d ∈ N. The Order-d Shortest Path Problem (SPPd) takes
as input a digraph G = (V , A), a source vertex s ∈ V , a sink vertex t ∈ V , and an
order-d arc interaction cost function qd : {B ⊆ A : |B| ≤ d} → R. Thus qd assigns a
weight to every subset of arcs of cardinality at most d. The cost of a simple directed
s-t-path P is given by

SPPd(P, qd) :=
∑

S⊆P:|S|≤d

qd(S) . (2)

The goal is to find a simple directed s-t-path in G which minimizes the objective
function (2). For d = 2 we obtain the Quadratic Shortest Path Problem (QSPP)
which has already been studied in the literature [3, 11, 12, 20].

The QSPP arises in network optimization problems where costs are associated
with both single arcs and pairs of arcs. This includes variants of stochastic and time-
dependent route planning problems [17, 22, 23] and network design problems [10,
16]. For an overview on applications of the QSPP see [12, 20]. We are not aware of
any publications for the case d > 2.

While the SPP can be solved in polynomial time, the QSPP is an NP-hard problem,
even for the special case of the adjacent QSPP where the costs of all pairs of non-
consecutive arcs are zero [20]. The QSPP is an extremely difficult problem also from
the practical point of view. Hu and Sotirov [12] report that a state-of-the-art quadratic
solver can solve QSPP instances with up to 365 arcs, while their tailor-made B&B
algorithm can solve instances with up to 1300 arcs to optimality within one hour. In
contrast, instances of the SPP can be solved in a fraction of a second for graphs with
millions of vertices and arcs.

Given the hardness of the QSPP, a research line on this problem has focussed on
polynomially solvable special cases which arise if the input graph and/or the cost
coefficients have certain specific properties. Rostami et al. [21] have presented a poly-
nomial time algorithm for the adjacent QSPP in acyclic digraphs and in series–parallel
graphs. Hu and Sotirov [11] have shown that the QSPP can be solved in polynomial

1 An extended abstract of this paper appeared in the proceedings of IPCO 2023 [4].
2 We use the same notation for the path P and the set of its arcs.
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time if the quadratic costs build a nonnegative symmetric product matrix, or if the
quadratic costs build a sum matrix and all s-t-paths in G have the same number of
arcs. These two polynomially solvable special cases of the QSPP belong to the larger
class of the linearizable SPPd instances. Loosely speaking a SPPd instance is lineariz-
able if there exists a linear cost function c (a so called linearizing cost function) such
that replacing the old cost function with the new linear cost function c does not alter
the cost of any source-sink-path, i.e. SPPd(P, qd) = SPP(P, c) holds for any such
path. A precise definition is given in Sect. 2.

The recognition of linearizable QSPP (SPPd ) instances arises as a natural question.
In this problem the task consists of deciding whether a given instance of the QSPP
(SPPd ) is linearizable and in finding the linearizing cost function in the positive case.
The notion of linearizable special cases of hard combinatorial optimization problems
goes back to Bookhold [1] who introduced it for the quadratic assignment problem
(QAP). For symmetric linearizable QAP instances a full characterization has been
obtained while only partial results are available for the linearizability of the general
QAP, see [2, 7–9, 14, 18, 25]. The linearization problem has been studied for several
other quadratic combinatorial optimization problems, see [5, 24] for the quadratic
minimum spanning tree problem, [19] for the quadratic TSP, [6] for the quadratic
cycle cover problem and [13] for general binary quadratic programs. Linearizable
instances of a quadratic problem can be used to generate lower bounds needed in
B&B algorithms. For example, Hu and Sotirov introduce the family of the so-called
linearization-based bounds [13] for the binary quadratic problem. Each specific bound
of this family is based on a set of linearizable instances of the problem. The authors
show that well-known bounds from the literature are special cases of the newly intro-
duced bounds. Clearly, fast algorithms for the linearization problem are important in
this context.

While the linearization for the SPPd , d ≥ 3, has not been investigated in the
literature so far (to the best of our knowledge), the LinQSPP has been subject of
investigation in some recent papers. In Çela et al. [3] proved that it is coNP-complete
to decide whether a QSPP instance on an input graph containing a directed cycle is
linearizable. Thus, a nice characterization of linearizable QSPP instances for such
graphs seems to be unlikely. In the acyclic case, Hu and Sotirov first described a
polynomial-time algorithm for the LinQSPP on directed two-dimensional grid graphs
[11]. Recently, in [13] they generalized this result to all acyclic digraphs and proposed
an algorithm which solves the problem in O(nm3), where n and m denote the number
of vertices and arcs in G.

Finally, let us mention a related concept, the so-called universal linearizability,
studied in [3, 11]. A digraph G together with a fixed choice of source s and sink t
is called universally linearizable with respect to the QSPP iff every instance of the
QSPP on the input graph G is linearizable for every choice of the cost function q.
In [11] it is shown that a particular class of grid graphs is universally linearizable.
In [3] a characterization of universally linearizable grid graphs in terms of structural
properties of the set of s-t-paths is given. Moreoever, for acyclic digraphs a forbidden
subgraphs characterization of the universal linearizability is given in [3].

Contribution and organization of the paper In this paper we provide a novel and
simple characterization of linearizable QSPP instances on acyclic digraphs. Our char-
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acterization shows that the linearizability can be seen as a local property. In particular,
we show that an instance of the QSPP on an acyclic digraph G is linearizable if and
only if each subinstance obtained by considering a subdigraph of G consisting of two
s-t-paths in G is linearizable. Our simple characterization also works for the SPPd and
even for completely arbitrary cost functions, which assign some cost f (P) to every
s-t-path P without any further restrictions. The latter problem is referred to as the
Generic Shortest Path Problem (GSPP) and is formally introduced in Sect. 2. Indeed,
the characterization of the linearizable instances of the SPPd follows from the char-
acterization of the linearizable instances of the GSPP, both on acyclic digraphs. We
remark that in parallel and independent to our work, Matuschke proved an equivalent
result [15, Theorem 6].

Further, we propose a linear time algorithm which can check the local condition
mentioned above for the QSPP and the SPPd . We note that this is not straightforward,
because the number of the subinstances for which the condition needs to be checked is
in general exponential. As a side result our approach reveals an interesting connection
between the LinQSPP and the problem of deciding whether all s-t-paths in a digraph
have the same length. As a result, we obtain an algorithm which solves the LinQSPP
in O(m2) time, thus improving the best previously known running time of O(nm3)

obtained in [13]. Our approach yields an O(d2md) time algorithm for the LinSPPd on
acyclic graphs, thus providing the first (polynomial time) algorithm for this problem.
Note that the running time of the proposed algorithms is linear in the input size for
both problems, LinQSPP and LinSPPd , respectively. (The costs of all �(m2) pairs
of arcs, in the case of the QSPP, and the costs of all �(md/d!) subsets of arcs of
cardinality d, in the case of the SPPd , need to be encoded in the input.)

Finally, we also obtain a polynomial time algorithm that given an acyclic digraph
G computes a basis of the subspace of all linearizable order-d cost functions on G.
Such a basis can be used to obtain better linearization-based bounds usable in B&B
algorithms.

The paper is organized as follows. After introducing some notations and prelimi-
naries in Sect. 2 we present the result on the characterization of the linearizable QSPP
and SPPd instances on acyclic input digraphs in Sect. 3. The algorithms for the lin-
earization problems LinQSPP and LinSPPd are presented in Sect. 4. Section 5 deals
with computing a basis of the subspace of all linearizable order-d cost functions on
an acyclic digraph G.

2 Notations and preliminaries

The following notations related to paths in digraphs will be used throughout the paper.
Given a digraph G = (V , A), a simple directed s-t-path P in G is specified as a
sequence of arcs P = (a1, a2, . . . , ap) such that a1 starts at s, ap ends at t , non-
consecutive arcs do not share a vertex and the end vertex of ai coincides with the start
vertex of ai+1 for any i ∈ {1, . . . , p − 1}. The number p of arcs in P is called the
length of the path. We sometimes use the same notation for a path P and the set of its
arcs. We consider a single arc (x, y) as an x-y-path of length 1 and a single vertex x as
a trivial x-x-path of length 0. Given an x-y-path P1 and a y-z-path P2, we denote the

123



A linear time algorithm for linearizing quadratic...

concatenation of P1 and P2 by P1 · P2. We also consider concatenations of paths and
arcs, that is, terms of the form P · a for some x-y-path P and some arc a = (y, z).

Definition 1 An instance of the SPPd with an input digraph G = (V , A), a source
node s, a sink node t and a cost function qd is called linearizable if there exists a cost
function c : A → R such that for any simple directed s-t-path P in G the equality
SPP(P, c) = SPPd(P, qd) holds.

A linearizable instance of the QSPP is a linearizable instance of the SPP2.

In the linearization problem, we are concerned with digraphs G = (V , A) with a
source vertex s and a sink vertex t . We denote by Pst the set of all simple directed
s-t-paths.

We often assume that G is Pst -covered, that is, every arc in G is traversed by at
least one path in Pst . Note that we can make this assumption without loss of generality
for acyclic graphs: If some arc is not traversed by at least one s-t-path (which can be
decided in linear time for acyclic graphs), then it has no effect on the linearizability
of the instance, and so we can delete that arc.

Let d ≥ 2 be a natural number. The Order-d interaction costs are given by a
mapping qd : {B ⊆ A : |B| ≤ d} → R, assigning a (potentially negative) interaction
cost to every subset of at most d arcs. The cost SPPd(P, qd) of some path P under
interaction costs qd is defined as in equation (2). If d is unambiguously clear from
the context, we use the more compact notation fq(P) := SPPd(P, qd). In this paper
we explicitly allow the case q(∅) �= 0, because this simplifies the calculations. The
linearization problem for the Order-d Shortest Path Problem (LinSPPd ) is formally
defined as follows.

Problem: The linearization problem for the SPPd (LinSPPd )

Instance: A Pst -covered directed graph G = (V , A) with s, t ∈ V , s �= t ; an
integer d ≥ 2; an order-d arc interaction cost function qd : {B ⊆ A : |B| ≤ d} →
R.

Question: Find a linearizing cost function c : A → R such that SPPd(P, qd) =
SPP(P, c) for all P ∈ Pst or decide that such a linearizing cost function does not
exist.

In the special cased = 2, we obtain the linearization problem for the QSPP (LinQSPP).
Finally, let us consider the Generic Shortest Path Problem (GSPP) which takes as

input a digraph G = (V , A) with a source vertex s, a sink vertex t , s �= t , and a
generic cost function f : Pst → R assigning a cost f (P) to every path P ∈ Pst .3

The goal is to find an s-t-path which minimizes the objective function f (P) over
Pst . A linearizable instance of the GSPP and the linearization problem for the GSPP
(LinGSPP) are defined analogously as in the respective definitions for SPPd .

We note that in our Definition 1 we allow the linearizing function c : A → R to take
negative values. For graphs with negative cycles, this could create an issue. Cycles
are excluded however in acyclic graphs to which the results in this paper apply to.

3 We assume that f is specified by an oracle.
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Fig. 1 A two-path system

Note that for acyclic graphs the decicion problem about the existence of a nonnegative
linearizing function can be reduced to the decision problem about the existence of a
real-valued linearizing function, as shown by the following lemma.

Lemma 1 If (G, s, t, f ) is an instance of the GSPP such that G = (V , A) is an acyclic
digraph, then there is a nonnegative linearizing function c′ : A → R+ if and only if
f (P) ≥ 0 for all s-t-paths P and there is a linearizing function c : A → R.

Proof If there is no linearizing function c : A → R, then there is also no linearizing
function c′ : A → R+.

Assume now that there exists a linearizing function c : A → R. Clearly, if there
is an s-t-path P with f (P) < 0, then no nonnegative linearizing function exists. If
f (P) ≥ 0 for all s-t-paths, a nonnegative linearizing function c′ can be constructed by
using the reduced costs cπ (u, v) := π(u)−π(v)+c(u, v), for (u, v) ∈ A, where π(v)

denotes the cost of a shortest s-v-path with respect to c, for v ∈ V . We set c′(a) :=
cπ (a) + π(t) for all arcs incident to the source and c′(a) := cπ (a) otherwise. Since
π(t) ≥ 0 (due to the assumption that f (P) ≥ 0 for all s-t-paths) and cπ (u, v) ≥ 0, for
all (u, v) ∈ A (due to the acyclicity ofG), c′ takes only nonnegative values. Moreoever,
for all s-t-paths P the equalities cπ (P) = c(P) + π(s) − π(t) = c(P) − π(t) and
c′(P) = cπ (P) + π(t) hold, implying c′(P) = c(P) = f (P). 
�

3 A characterization of linearizable instances of the GSPP on acyclic
digraphs

The main result of this section is Theorem 1, our novel characterization of linearizable
instances of the GSPP on acyclic digraphs defined as in Sect. 2.

Definition 2 Let G = (V , A) be a Pst -covered acyclic digraph. For some ver-
tex v, let P1, P2 be two s-v-paths, and let Q1, Q2 be two v-t-paths. The 5-tuple
(v, P1, P2, Q1, Q2) is called a two-path system contained in G. The system is called
linearizable with respect to the function f : Pst → R, if there exists a cost function
c : A → R such that for all four paths P ∈ {P1 · Q1, P1 · Q2, P2 · Q1, P2 · Q2} the
equality f (P) = SPP(P, c) holds. Such a c is called a linearizing cost function for
(v, P1, P2, Q1, Q2) with respect to f .

See Fig. 1 for an illustration of a two-path system. Note that P1 and P2 (as well as
Q1 and Q2) can have common inner vertices and that the cases P1 = P2, Q1 = Q2,
v = s and v = t are allowed. However, due to the acyclicity of G, the paths Pi
and Q j have only the vertex v in common for i, j ∈ {1, 2}. Further, observe that the
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linearizability of a two-path system is a local property, in the sense that it only depends
on the four paths P1 · Q1, P1 · Q2, P2 · Q1 and P2 · Q2. Indeed, the following simple
characterization holds.

Proposition 1 A two-path system (v, P1, P2, Q1, Q2) is linearizable with respect to
some function f : Pst → R iff

f (P1 · Q1) + f (P2 · Q2) = f (P1 · Q2) + f (P2 · Q1). (3)

Proof First, assume that (v, P1, P2, Q1, Q2) is linearizable and let c be the correspond-
ing linearizing cost function. Let M1 (M2) be the multiset resulting from the union of
the sets of the arcs of the paths P1 · Q1 and P2 · Q2 (P1 · Q2 and P2 · Q1). Since M1
and M2 coincide we get c(P1 · Q1) + c(P2 · Q2) = ∑

a∈M1
c(a) = ∑

a∈M2
c(a) =

c(P1 · Q2) + c(P2 · Q1). Then, (3) follows from the definition of the linearizability of
(v, P1, P2, Q1, Q2).

Assume now that Equation (3) is true. We show the linearizability of the two-path
system with respect to f by constructing a linearizing cost function c. It is easy to find
a suitable c if P1 = P2 or Q1 = Q2. (Indeed, if both P1 = P2 and Q1 = Q2, then
the four paths collapse to a single path, which is clearly linearizable. If exactly one of
the two equations P1 = P2 and Q1 = Q2 holds, then the four paths collapse to two
paths. The two paths together can be linearized by giving appropriate costs to the arcs
unique to each path.)

So let us consider the more general case where P1 �= P2 and Q1 �= Q2. In this case,
for each P ∈ {P1, P2, Q1, Q2} there exists a (not necessarily unique) representative
arc a ∈ P such that a is not contained in any other path Q ∈ {P1, P2, Q1, Q2},
Q �= P . Let a1, a2, e1, e2 be the representative arcs of P1, P2, Q1 and Q2, respectively.
Consider now a cost function c : A → R, such that c(a) = 0 if a /∈ {a1, a2, e1, e2},
and c(a1), c(a2), c(e1), c(e2) fulfill the following linear equations:

c(a1) + c(e1) = f (P1 · Q1)

c(a1) + c(e2) = f (P1 · Q2)

c(a2) + c(e1) = f (P2 · Q1)

c(a2) + c(e2) = f (P2 · Q2)

Using basic linear algebra, one can see that this system indeed has a solution whenever
Equation (3) holds (there is even a solution with c(e2) = 0). Thus, c constructed as
above is a linearizing cost function for (v, P1, P2, Q1, Q2) with respect to f . 
�

Now, consider an instance of the GSPP with a Pst -covered acyclic digraph G, with
a source vertex s, a sink vertex t and a generic cost function f : Pst → R. When is this
instance (G, s, t, f ) linearizable? Obviously, if G contains a two-path system which
is not linearizable with respect to f , then the instance (G, s, t, f ) as a whole is also
not linearizable. Interestingly, this necessary condition turns out to be also sufficient.

Theorem 1 Let G be a Pst -covered acyclic digraph with a source vertex s and a sink
vertex t and let f : Pst → R be a generic cost function. Then the instance (G, s, t, f )
of the GSPP is linearizable if and only if every two-path system contained in G is
linearizable with respect to f .

123



E. Çela et al.

Before proving the theorem, we need some preparation. Let G = (V , A) be a
Pst -covered acyclic digraph with source vertex s and sink vertex t .

We use the concept of a topological arc order defined as a total order � on A which
has the following property: for any pair of arcs a, a′ in A, if there exists a path P
containing both a and a′ such that a comes before a′ in P , then a � a′.

It is easy to see that any acyclic digraph has a (in general non-unique) topological
arc order. Moreover, a topological arc order can be obtained from a topological vertex
order.

Further, we recall the definition of a system of nonbasic arcs introduced by Sotirov
and Hu [13].

Definition 3 Let G be a Pst -covered acyclic digraph with a source vertex s and a
sink vertex t . A set N ⊆ A is called a system of nonbasic arcs, iff for every vertex
v ∈ V \ {s, t} exactly one of the arcs starting at v is contained in N . The latter arc is
called the nonbasic arc of v. An arc a ∈ A \ N is called basic.

Obviously, the system of nonbasic arcs is not unique. Any such system forms an in-tree
rooted at t containing all the vertices in V except for s. For some system of nonbasic
arcs N and some vertex v ∈ V \ {s}, we let Nv denote the unique v-t-path consisting
of nonbasic arcs (where Nt is the trivial path). A cost function c : A → R is called
in reduced form with respect to N , if c(a) = 0 for all nonbasic arcs a ∈ N . The
following lemma is an easy adaption from [13], where an analogous statement was
proven for the less general case of the QSPP instead of the GSPP.

Lemma 2 (adapted from [13, Prop. 4]) Let G be a Pst -covered acyclic digraph with
a source vertex s and a sink vertex t . Let f : Pst → R be a generic cost function and
let N ⊆ A be a fixed system of nonbasic arcs. If (G, s, t, f ) is a linearizable instance
of the GSPP, then there exists one and only one linear cost function c : A → R which
is both a linearizing cost function and in reduced form.

Proof We have to prove both existence and uniqueness. For the existence, by assump-
tion we have that (G, s, t, f ) is a linearizable instance. Hence there exists a linearizing
function c : A → R, not necessarily in reduced form. Consider some vertex
v ∈ V \{s, t} and its nonbasic arc av . Consider the following modification of the
function c: Let β = c(av), then reduce the cost of each outgoing arc of v by β, and
increase the cost of each incoming arc of v by β. This operation sets the cost of av

to 0 and does not change the linear cost of any s-t-path. Now let v1, . . . , vn be a
topological vertex order with v1 = s and vn = t . We repeat the described operation
for every vertex vn−1, vn−2, . . . , v2 in this order. It is easily verified that the obtained
cost function is a linearization of (G, f ) and is in reduced form.

For the uniqueness, assume that there are two distinct linearizing functions c, c′ :
A → R with the property that all nonbasic arcs have value 0. Consider some topolog-
ical arc order � and let a = (u, v) be the first arc in the order such that c(a) �= c′(a).
There exists an s-u-path P , because G is Pst -covered. The path R := P · a · Nv is an
s-t-path. By assumption, we have c(P) = c′(P) and c(Nv) = c′(Nv) = 0. But then
c(R) �= c′(R), a contradiction. 
�

Let (G, s, t, f ) be a linearizable instance of the GSPP with G = (V , A) and N ⊆ A
be a fixed system of nonbasic arcs. For a linearizing cost function c : A → R, we
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denote by reduced(c) the unique linearizing cost function in reduced form (which
exists due to Lemma 2). It follows from the arguments in the proof of Lemma 2 that
for given c one can compute reduced(c) in O(n+m) time. We are now ready to prove
our main theorem.

Proof of Theorem 1 The necessity of the conditions for linearizability is trivial. To
prove the sufficiency we assume that every two-path system is linearizable with respect
to f and show that (G, s, t, f ) is linearizable. Let N be a system of nonbasic arcs. We
consider a topological arc order � on the set A of arcs in G and inductively define a
linearizing cost function c : A → R as follows. For any arc a = (u, v) consider some
arbitrary s-u-path P and set

c(a) :=
{
f (P · a · Nv) − ∑

a′∈P c(a′) if a /∈ N

0 otherwise
(4)

The main idea behind this definition is the following: Due to Lemma 2, whenever
we look for a linearizing function, we can w.l.o.g. look for one in reduced form. So
imagine we have a linearizing function c′ such that already c′(a) = 0 for all nonbasic
arcs. It is not hard to see that Equation (4) is a necessary condition on c′ that must be
true for every s-u-path P (since all arcs after a on the path P · a · Nv have cost 0).
This gives us an initial idea to define c. Now consider the following claim.

Claim If all two-path systems in G are linearizable with respect to f , then

(i) Function c in Equation (4) is well-defined and independent of the concrete choice
of P .

(ii) The following equation holds for all arcs (u, v) ∈ A and all s-u-paths P:

f (P · a · Nv) = c(a) +
∑

a′∈P

c(a′) = c(P · a · Nv) (5)

Observe that the claim immediately implies that (G, s, t, f ) is linearizable. Indeed,
let c be the cost function defined in Equation (4) and let Q be some s-t-path. Choose
a = (x, t) to be the last arc on Q. Then Nt is the trivial path from t to t , so by applying
Equation (5) to the arc a, we have f (Q) = c(Q).

Proof of the claim. We use induction over �. For each arc a = (u, v) in A, we
distinguish between three cases. A sketch of the situation is provided in Fig. 2.

Case 1 u = s. This is the base case of the induction. If a is incident to the source
vertex, then statement (i) holds, because the only s-u-path is the trivial path. Statement
(ii) holds by the definition of c(a), and because all nonbasic arcs a′ have c(a′) = 0.

Case 2 u �= s and a /∈ N . Let a be basic and not incident to the source. By the
induction hypothesis, c(a′) is well-defined for all arcs a′ preceding a. Hence for the
proof of statement (i), it remains to show that c(a) is independent of the choice of P .
Let Q be a second s-u-path besides P , we have to show that

f (P · a · Nv) −
∑

a′∈P

c(a′) = f (Q · a · Nv) −
∑

a′∈Q
c(a′).
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Fig. 2 An illustration for the proof of the claim in Theorem 1. The dashed lines represent paths. The arc
(u, v) and the two-path system (u, P, Q, Nu , a · Nv) play a vital role

To see this, let (uP , u) be the last arc on the path P , and let (uQ, u) be the last arc on
the path Q, see Fig. 2.

By the induction hypothesis (ii) applied to (uP , u), we have that f (P · Nu) =
c(P ·Nu) = c(P), analogously we have f (Q ·Nu) = c(Q ·Nu) = c(Q). Furthermore,
as the two-path system (u, P, Q, Nu, a · Nv) is linearizable, Proposition 1 implies
f (P · Nu) + f (Q · a · Nv) = f (P · a · Nv) + f (Q · Nu). Putting everything together,
we have

f (P · a · Nv) − c(P) = f (Q · a · Nv) + f (P · Nu) − f (Q · Nu) − c(P)

= f (Q · a · Nv) + c(P) − c(Q) − c(P)

= f (Q · a · Nv) − c(Q),

which proves statement (i). Statement (ii) immediately follows from (i), the definition
of c(a) and the fact that all nonbasic arcs a′ have cost c(a′) = 0.

Case 3: u �= s and a ∈ N . Finally, if e is nonbasic, then (i) is trivial. Furthermore,
let (uP , u) be the last arc on the path P and let P ′ be the subpath of P without the last
arc. Because a ∈ N , the two paths P ′ · (uP , u) · Nu and P · a · Nv are equal, so (ii)
follows by induction applied to the arc (uP , u). 
�

Since in general a graph contains exponentially many different two-path systems,
Theorem 1 does not seem to lead to an efficient algorithm for the linearization problem
LinGSPP at a first glance. However, we show in the next section that this is indeed the
case. The arguments are based on a more technical version of Theorem 1 and involve
the concept of so-called strongly basic arcs and their property (π) defined below.

Definition 4 Let G = (V , A) be an acyclic Pst -covered digraph with source vertex s
and sink vertex t . Let f : Pst → R be a generic cost function and let N ⊆ A be a
system of nonbasic arcs in G. A basic arc (u, v) is called strongly basic, if it is not
incident to the source vertex, that is if u �= s.
A strongly basic arc a = (u, v) has the property (π), if for any s-u-path P the value
val(a, P) := f (P · a · Nv) − f (P · Nu) does not depend on the choice of P .

Thus, if a strongly basic arc a = (u, v) has the property (π), we have val(a, P) =
val(a, Q) for any two s-u-paths P, Q and this implies the existence of a value val(a) :=
val(a, P) for each s-u-path P and val(a) is well defined for each strongly basic arc
which has the property (π).

Finally, note that by definition, the arc set A is partitioned into the three disjoint
sets of strongly basic arcs, nonbasic arcs, and arcs incident to s.
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Lemma 3 Let G = (V , A) be an acyclic Pst -covered digraph with source vertex s
and sink vertex t . Let f : Pst → R be a generic cost function and let N ⊆ A be
a system of nonbasic arcs in G. Then (G, s, t, f ) is linearizable if and only if every
strongly basic arc has the property (π). In this case, the mapping c : A → R given
by

c(a) =

⎧
⎪⎨

⎪⎩

val(a) a is strongly basic

f (a · Nv) a = (s, v) is incident to s

0 a is nonbasic

is a linearizing cost function in reduced form.

Proof Let a = (u, v) be a strongly basic arc. We claim that a has the property (π) iff
for any two s-u-paths P , Q the two-path system (u, P, Q, Nu, a · Nv) is linearizable
with respect to f . Indeed, note that by Proposition 1, the two-path system above is
linearizable with respect to f iff f (P ·a ·Nv)+ f (Q ·Nu) = f (P ·Nu)+ f (Q ·a ·Nv).
The latter equation is equivalent to val(a, Q) = val(a, P). Recalling that the latter
equality holds for every pair of P, Q iff a has the property (π) completes the proof
of the claim.

Now, assume that some strongly basic arc (u, v) does not have the property (π).
Then, there exist two s-u-paths P , Q such that val(a, Q) �= val(a, P), implying that

the two-path system (u, P, Q, Nu, a · Nv) is not linearizable with respect to f .
Therefore, (G, s, t, f ) is not linearizable.

Finally, assume that every strongly basic arc has the property (π).
In the proof of Theorem 1 we use the linearizability assumption only for specific

two-path systems of the form (u, P, Q, Nu, a ·Nv), where a = (u, v) is some strongly
basic arc. Thus, if the property (π) holds for all strongly basic arcs, then each such
specific two-path system is linearizable with respect to f and the linearizability of
(G, s, t, f ) follows. Furthermore, the value c(a) of the linearizing cost function in
Equation (4) equals val(a) for any arc a which is strongly basic, equals f (a · Nv) for
any arc (s, v) incident to s, and equals 0 for any nonbasic arc a. 
�

4 A linear time algorithm for the LINSPPd

In this section, we describe an algorithm which solves the linearization problem for
SPPd (LinSPPd ) in O(md) time, i.e., in linear time with respect ot the input size. The
algorithm uses the relationship between the LinSPPd and the All-Paths-Equal-Cost
Problem (APECP) which we introduce in Sect. 4.1. In Sect. 4.2 we describe the SPPd

algorithm and discuss its running time.

4.1 The all paths equal cost problem of order-d (APECPd)

The All Paths Equal Cost Problem of Order-d (APECPd ) is defined as follows.
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Problem: ALL PATHS EQUAL COST of Order-d (APECPd )

Instance: An acyclic Pst -covered directed graph G = (V , A) with a source
vertex s and a sink vertex t , an integer d ≥ 1; an order-d cost function qd :
{B ⊆ A : |B| ≤ d} → R.

Question: Do all s-t-paths have the same cost, i.e. is there some β ∈ R such that
SPPd(P, qd) = β for every path P in Pst?

In the following we establish a connection between theLinSPPd and the APECPd−1
for d ≥ 2. More precisely, we show in Lemma 4 that an instance (G, s, t, qd) of the
LinSPPd with an acyclic Pst -covered digraph G = (V , A) can be reduced to O(m)

instances of APECPd−1, each of them corresponding to exactly one strongly basic
arc with respect to some fixed system of nonbasic arcs (see Definitions 3 and 4). The
APECPd−1 instance corresponding to a strongly basic arc a = (u, v) is defined as
follows.

Definition 5 Let d ≥ 2 and let (G, s, t, qd) be an instance of the LinSPPd with an
acyclic Pst -covered digraph G = (V , A) and a fixed system of nonbasic arcs N . Let
a = (u, v) be a strongly basic arc. Denote by Vu ⊆ V the set of vertices lying on at
least one s-u-path and by Au ⊆ A the set of arcs lying on at least one s-u-path. Set
G(a) := (Vu, Eu). The instance I (a) of the APECPd−1 corresponding to the strongly
basic arc a is specified by the digraph G(a), the source vertex s(a) := s, the sink vertex
t(a) := u and the order-(d − 1) cost function q(a)

d−1 : {B ⊆ Au : |B| ≤ d − 1} → R

defined by means of the function qd as follows:

q(a)
d−1(B) :=

⎛

⎜⎜⎝
∑

C⊆Nu|C|≤d−|B|

qd(B ∪ C)

⎞

⎟⎟⎠ −

⎛

⎜⎜⎝
∑

C⊆a·Nv|C|≤d−|B|

qd(B ∪ C)

⎞

⎟⎟⎠ . (6)

Lemma 4 Let d ≥ 2 and let (G, s, t, qd) be an instance of the LinSPPd with an
acyclic Pst -covered digraph G = (V , A) and a fixed system of nonbasic arcs N.
The APECPd−1 instance I (a) corresponding to some strongly basic arc a is a YES-
instance iff the arc a has the property (π) with respect to f : Pst → R given by
f (P) = SPPd(P, qd) for P ∈ Pst . In this case, val(a) = βa, where βa is the
common cost of all source-sink-paths in the APECPd−1 instance I (a).

Proof Let a = (u, v) ∈ A be a strongly basic arc and let P be some s-u-path inG. Then
P is contained in the graph G(a) = (Vu, Au). Denote f (a)(P) := SPPd−1(P, q(a)

d−1)

for any s-u-path P in G. We have that

val(a, P) = fq(P · Nu) − fq(P · a · Nv)

=
∑

F⊆P·Nu|F |≤d

qd(F) −
∑

F⊆P·a·Nv|F |≤d

qd(F)
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=
d∑

k=0

∑

B⊆P
|B|=k

∑

C⊆Nu|C|≤d−k

qd(B ∪ C) −
d∑

k=0

∑

B⊆P
|B|=k

∑

C⊆a·Nv|C|≤d−k

qd(B ∪ C)

=
d−1∑

k=0

∑

B⊆P
|B|=k

∑

C⊆Nu|C|≤d−k

qd(B ∪ C)

−
d−1∑

k=0

∑

B⊆P
|B|=k

∑

C⊆a·Nv|C|≤d−k

qd(B ∪ C) + (1 − 1)
∑

B⊆P
|B|=d

qd(B)

=
d−1∑

k=0

∑

B⊆P
|B|=k

⎛

⎜⎜⎝
∑

C⊆Nu|C|≤d−k

qd(B ∪ C) −
∑

C⊆a·Nv|C|≤d−k

qd(B ∪ C)

⎞

⎟⎟⎠

=
∑

B⊆P
|B|≤d−1

q(a)
d−1(B) = f (a)(P).

We conclude that the value val(a, P) is independent of P , if and only if for every
path the quantity f (a)(P) does not depend on P . The latter condition is equivalent
to I (a) being a YES-instance of the APECPd−1. Furthermore, if this is the case, then
val(a) = βa = f (a)(P) for any s-u-path P . 
�
Lemmas 3 and 4 imply that an instance (G, s, t, qd) of the SPPd with an acyclic
digraph G is linearizable iff each instance I (a) of the APECPd−1 corresponding to
some strongly basic arc a (with respect to some fixed system of nonbasic arcs) is a
YES-instance. Furthermore, the same lemmas imply that in this case a linearizing cost
function in reduced form is obtained by letting c(a) = βa for all strongly basic arcs,
c(a) = 0 for all nonbasic arcs, and c(a) = SPPd(a ·Nv) for all arcs a = (s, v) incident
to the source.

Thus, we have shown that an instance of the LinSPPd can be reduced to O(m)

instances of the APECPd−1. Next, in Lemma 5 we show that each instance of the
APECPd−1 can be reduced to an instance of the LinSPPd−1. First, we define a specific
cost function as follows. Let G = (V , A) be a Pst -covered acyclic digraph and β ∈ R.
The function sourceβ : A → R assigns cost β to every arc incident to the source s,
and 0 to all other arcs.

Lemma 5 Let G = (V , A) be a Pst -covered acyclic digraph with source vertex s and
sink vertex t and let N ⊆ A a fixed system of nonbasic arcs. Let qd be an order-d
cost function. The instance (G, s, t, qd) of the APECPd problem is a YES-instance iff
the instance (G, s, t, qd) of SPPd is linearizable and sourceβ is its unique linearizing
function in reduced form (with respect to N).

Proof Clearly, sourceβ is a linearizing function iff all paths have the same cost β.
Furthermore, observe that all arcs incident to the source do not belong to N . Therefore
sourceβ is in reduced form with respect to N . In fact, by Lemma 2 sourceβ is the
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unique linearizing functions in reduced form, and reduced(c′) = sourceβ for all other
linearizing functions c′. 
�

Finally, we show in Lemma 6

Lemma 6 The APECP1 can be solved in linear time O(m).

Proof This is an easy exercise in dynamic programming. The algorithm uses the fact
that in a Pst -covered acyclic digraph all s-t-paths have the same cost if and only for
every vertex w all s-w-paths have the same cost. Hence we can introduce a variable
yw ∈ R for every vertex w. We let ys = 0 and then check in topological vertex order
for every vertex w, whether the value yu +q1({(u, w)}) is the same for every incoming
edge (u, w). Finally, if this is the case, the common cost of all source-sink paths is
given by yt + q1(∅). 
�
We remark that attention to the case q1(∅) �= 0 is crucial. This is because by definition,
the term q1(∅) is always included in SPP1(P, q1) for every possible path P . Indeed,
Equation (6) may produce instances with the property q1(∅) �= 0.

4.2 The linear time LINSPPd algorithm

Our LinSPPd algorithm A works as follows. Consider an instance (G, s, t, qd) of the
LinSPPd with an acyclic Pst -covered digraph G, with source vertex s, sink vertex t
and order-d cost function qd . We first fix some system of nonbasic arcs N and construct
the instance I (a) of the APECPd−1 problem given in Definition 5 for each strongly
basic arc a. Then, we check each instance I (a) for being a YES-instance and do this
by reducing I (a) to an instance of LinSPPd−1 according to Lemma 5. By iterating this
process we eventually end up with instances of APECP1 which can be easily solved
by dynamic programming, as demonstrated in Lemma 6. A summary in pseudocode
is provided in Algorithm 1. The correctness of the algorithm follows from Lemmas 3
to 6.

It is not hard to implement the algorithm described above inO(d2md+1) time. With
a careful implementation it is possible to achieve a better result as stated in Theorem 2.

Theorem 2 The LinSPPd on acyclic digraphs can be solved in O(d2md) time.

Note that the input size required to encode the cost function qd equals
∑d

k=0

(m
k

) ≥
md/d!. Thus, O(d2md) is linear in the input size and hence optimal if d is considered a
constant, like for example in the QSPP. The remainder of the section is devoted to the
proof of Theorem 2. The main bottleneck we have to get rid of is the computation of
the instances I (a) corresponding to the strongly basic arcs a in line 3 of Algorithm 1.
If one simply uses the definition of q(a)

d−1 from Equation (6), then one can see that for

each a one can compute q(a)
d−1 in O(dmd) time. As this needs to be repeated for each

strongly basic arc a, in total this would take O(dmd+1) time. A similar bottleneck
arises in line 8 when computing fq(a · Nv). We get rid of these two bottlenecks by
calculating some auxiliary values.
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Algorithm 1: An algorithm to solve the LinSPPd .
1 Function Linearizable(G,s,t ,q,d):

Input: acylic Pst -covered G; source s; sink t ; integer d ≥ 2; order-d interaction costs qd .
Output: False if is not linearizable, otherwise a tuple (True, c) such that c is a linearizing cost

function in reduced form.
2 N ← some system of nonbasic arcs;

3 Calculate {(G(a), q(a)
d−1) : a strongly basic} ; // using Lemma 7.

4 if APECP(G(a),s(a),t(a),q(a)
d−1,d − 1) = False for some strongly basic a then

5 return False;
6 else

7 APECP(G(a),s(a),t(a),q(a)
d−1, d − 1)=(True, βa) for all strongly basic a

8 c(a) ←

⎧
⎪⎨

⎪⎩

βa a strongly basic.

fq (a · Nv) a = (u, v) incident to source; // using Lemma 7.

0 a nonbasic.

;

9 return (True, c);
10 Function APECP(G,s,t ,q,d):

Input: acylic Pst -covered G; source s; sink t ; integer d ≥ 1; order-d interaction costs qd .
Output: False if not all s-t-paths in (G, qd ) have the same cost, otherwise a tuple (True, β)

such that all paths have cost β.
11 if d = 1 then
12 solve by applying Lemma 6
13 else if Linearizable(G,qd ,d) = False then
14 return False;
15 else
16 Linearizable(G,qd ,d) = (True, c) for some c;
17 if c = sourceβ for some β then
18 return (True, β);
19 else
20 return False;

For all sets B ⊆ A of arcs with |B| ≤ d − 1 and all vertices x ∈ V \ {s}, we define
the value

γ (B, x) :=
∑

C⊆Nx|C|≤d−|B|

qd(B ∪ C). (7)

Lemma 7 The line 3 and the line 8 of Algorithm 1 can be implemented such that their
execution takes at most cdmd steps for some constant c ≥ 0, independent of both m
and d.

Proof Consider the auxiliary values γ (B, x) from Equation (7). We show how to
compute all the values of γ for B ⊆ A, |B| ≤ d − 1, x ∈ V \{s} in O(dmd) time.
We begin by showing how to compute the value γ (B, x) for all vertices x ∈ V \ {s}
and for some fixed set B ⊆ A with |B| ≤ d − 1. Let k = |B| be the size of
B, k ∈ {0, . . . , d − 1}. Assume that γ (B, v) has already been computed for some
nonbasic arc a = (u, v) ∈ N . Then, γ (B, u) can be computed as follows. Since
a ∈ N , we have Nu = a · Nv . Moreover, the following equalities hold
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γ (B, u) =
∑

C⊆a·Nv|C|≤d−|B|

qd(B ∪ C)

=
∑

C⊆Nv|C|≤d−|B|−1

qd(B ∪ {a} ∪ C) +
∑

C⊆Nv|C|≤d−|B|

qd(B ∪ C)

= γ (B, v) +
∑

C⊆Nv|C|≤d−|B|−1

qd(B ∪ {a} ∪ C). (8)

This formula can be evaluated in
( m
d−k−1

)
time. We can now traverse the tree of nonbasic

arcs, starting at the root t , where γ (B, t) = q(B), and iteratively apply the formula (8)
to compute all values γ (B, x) for the vertices x ∈ V \{s}. Thus, it takes n

( m
d−k−1

)
time

to compute all values γ (B, x) for a fixed set B of size k. For each k = 0, . . . , d − 1,
there are

(m
k

)
subsets of size k. Therefore, the total time to compute all values of γ is

d−1∑

k=0

n

(
m

d − k − 1

)(
m

k

)
≤

d∑

k=0

n
md−k−1

(d − k − 1)!
mk

k! ≤ (d + 1)nmd−1.

(Note that here we used the very rough estimation t ! ≥ 1.) As the digraph is
Pst -covered, we can assume w.l.o.g. that it is connected, implying n ≤ 2m and con-
sequently, (d + 1)nmd−1 ≤ 4dmd . Thus, there exists a constant c1 ≥ 0, independent
on n and d, such that all needed values of γ can be computed in c1dmd time.

Now assume that all the values γ (B, x) have been computed. For every strongly
basic arc a = (u, v), and each set B ⊆ Au with |B| ≤ d − 1, the order-d − 1 cost
function in the corresponding APECPd−1 instance fulfills

q(a)
d−1(B) = γ (B, u) − γ (B, v) −

∑

C⊆Nv|C|≤d−|B|−1

qd(B ∪ {a} ∪ C).

This can be seen by plugging the definition of γ into Equation (6). This equation can be
evaluated in

( m
d−k−1

)
time if k = 0, . . . , d−1 is the size of B. In order to obtain all the

desired values for q(a)
d−1(B) for all the APECPd−1 instances, we need to consider every

choice of the set B (again there are at most
(m
k

)
sets of size k) and every of the at most

O(m) choices of the arc a. The same analysis as before shows that given the computed
values of γ , all required values of q(a)

d−1(B) can be computed in at most c3dmd steps
for some constant c3 ≥ 0. Finally, computing the vertex set Vu and arc set Au of the
APECPd−1 instance clearly can be done in linear time O(m) for each strongly basic
arc a = (u, v). We conclude that computing the set {(G(a), q(a)

d−1) : a strongly basic )}
of digraphs for all APECPd−1 instances can be done in at most c4dmd steps for some
constant c4 ≥ 0.
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Finally consider line 8 of Algorithm 1 and assume that all auxiliary values γ (B, x)
have been computed. Let a = (s, v) be an arc incident to the source. We have that

fq(a · Nv) = γ (∅, v) +
∑

C⊆Nv|C|≤d−1

q({a} ∪ C).

This formula can be evaluated in O(md−1) time for each arc a. We conclude that the
set of all values fq(a · Nv) in line 8 of Algorithm 1 can be computed in at most c5md

steps for some constant c5 ≥ 0, thus completing the proof of the lemma. 
�
Proof of Theorem 2 It follows from Lemmas 3 to 6 that Algorithm 1 correctly solves
the LinSPPd . It follows from Lemma 7 that lines 3 and 8 can be implemented to
take at most c0dmd steps each for some constant c0 ≥ 0. The running time of all
the remaining lines is asymptotically dominated by md . Now let f (m, d) denote the
worst-case running time of Linearizable() on an instance with m arcs and an
order-d cost function. Let g(m, d) be the corresponding function forAPECP(). By the
preceding arguments, there exists a constant c ≥ 0 such that the following inequalities
hold:

f (m, d) ≤ cdmd + mg(m, d − 1); d ≥ 2

g(m, d) ≤ cm + f (m, d); d ≥ 2

g(m, 1) ≤ cm.

By induction over d it is easy to see that f (m, d) ≤ cd(2d − 2)md and g(m, d) ≤
cd(2d − 1)md . Indeed, in the base case d = 1 we have g(m, 1) ≤ cm. For d ≥ 2 we
have

f (m, d) ≤ cdmd + mc(d − 1)(2d − 3)md−1 ≤ cd(2d − 2)md

g(m, d) ≤ cm + cd(2d − 2)md ≤ cd(2d − 1)md .

This implies that f = O(d2md), which was to show. 
�

5 The subspace of linearizable instances

Let d ∈ N, d ≥ 2, and an acyclic, Pst -covered digraph G = (V , A) with source vertex
s and sink vertex t be fixed. Let H (d) := {B ⊆ H | |B| ≤ d} be the set of all subsets
of at most d arcs in arc set H ⊆ A. Every order-d cost function qd : A(d) → R can
be uniquely represented by a vector x ∈ R

A(d)
with qd(F) = xF for all F ∈ A(d), and

vice-versa. Thus, each instance (G, s, t, qd) can be identified with the corresponding
vector x ∈ R

A(d)
and we will say that x ∈ R

A(d)
is an instance of the SPPd . In

this context, an instance x ∈ R
A(d)

of the SPPd is linearizable iff there exists an
x̄ = (xa)a∈A ∈ R

A(1)
such that

∑
S⊆P:|S|≤d xS = ∑

a∈P x̄a for all s-t-paths P . (Note

that sometimes we will slightly abuse the notation and use A instead of A(1).) Thus,
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clearly, if x, y ∈ R
A(d)

are linearizable instances of the SPPd , then μx + νy is also
a linearizable instance, for all scalars μ, ν ∈ R. Therefore, the set of linearizable
instances of the SPPd on the fixed digraph G forms a linear subspace Ld of RA(d)

.
Methods to compute this subspace are useful in B&B algorithms for the SPPd as

they can be applied to compute better lower bounds along the lines of what Hu and
Sotirov [13] did for general quadratic binary programs. Hu and Sotirov showed that
for d = 2 a basis of Ld can be computed in polynomial time [13, Prop. 5]. We extend
their result to the case d > 2.

Theorem 3 Let G = (V , A) be an acyclic, Pst -covered digraph with source vertex
s and sink vertex t and let d ∈ N be a constant. A basis of the subspace Ld of the
linearizable instances of the SPPd on G can be computed in polynomial time.

The goal of this section is to prove Theorem 3. The main idea of the proof is that
each line, and subsequently each block of Algorithm 1 can be interpreted as a linear
function f , that maps the input variables linearly to some output vector, such that
f outputs the 0-vector iff the input to f is a YES-instance. Hence if we are able to
show how to compute f for all basis vectors e1, . . . ek , then we can compute a matrix
M describing the function f . By computing the kernel of this matrix, we obtain the
desired linear subspace.

More formally, in our proof we specify an integer k ∈ N bounded by a polynomial
in the size of the input of the SSPd on G = (V , A) and a matrix M ∈ R

k×|A(d)| such
that for f : RA(d) → R

k with f (x) = Mx , we have: f (x) = 0 iff x is a linearizable
instance of the SPPd onG. Thus, the linearizable instances x of the SPPd onG form the
kernel of M , which can be efficiently computed. If there are no contextual ambiguities
we briefly say that the integer k as above is polynomially bounded.

The function f will be composed of smaller building blocks, mimicking the way that
our algorithm from Sect. 4.2 reduces the SPPd to smaller instances of the APECPd−1,
which in turn are reduced to instances of the SPPd−1. There are four different kinds of
building blocks, which we denote by fu,d , f ′

u,d , gu,d , and g′
u,d . Formally, for a vertex

u let Vu (Au) be the set of vertices (arcs) lying on at least one s-u-path, as specified
in Definition 5. An instance of the SPPd on the smaller digraph (Vu, Au) with source

s and sink u can be interpreted as a vector x ∈ R
A(d)
u . Likewise, an instance of the

APECPd on the smaller digraph (Vu, Au) can be interpreted as a vector x ∈ R
A(d)
u .

In the following, we show that for all vertices u ∈ V and every d ∈ N, d ≥ 2, there
exists some polynomially bounded k ∈ N and a linear function

fu,d : RA(d)
u → R

k

such that fu,d(x) = 0 if and only if x is a YES-instance of the linSPPd on the digraph

(Vu, Au). Furthermore, if an instance x ∈ R
A(d)
u is linearizable, we would like to

use its linearizing function as a new building block. Hence we prove the existence
of a linear function f ′

u,d , such that whenever fu,d(x) = 0 for some instance x , then

f ′
u,d(x) ∈ R

Au is a linearizing function of the instance x .
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Likewise, we show that for all vertices u ∈ V and every d ∈ N, d ≥ 1, there exists
some polynomially bounded k ∈ N and a linear function

gu,d : RA(d)
u → R

k

such that gu,d(x) = 0 if and only if x is a YES-instance of the APECPd on the digraph
(Vu, Au). Similar to above, we prove the existence of a linear function g′

u,d , such that
whenever gu,d(x) = 0 for some instance x , then g′

u,d(x) ∈ R is the common cost of
all paths in the instance x .

We prove the two claims stated above by induction. The base case of the induction
is concerned with the APECP1. For the remainder of this section, we consider a fixed
acyclic and Pst -covered digraph G = (V , A) with source vertex s and sink vertex t
with n vertices and m arcs.

Lemma 8 Consider the APECP1 on the digraph (Vu, Au) with source s and sink u for
some vertex u ∈ V . The following statements hold:

(i) There exists k ∈ N and a linear function gu,1 : RA(1)
u → R

k , such that k = O(m)

and such that gu,1(x) = 0 iff x is a YES-instance of the APECP1.

(ii) There exists a linear function g′
u,1 : RA(1)

u → R, such that for all x with gu,1(x) =
0, we have that g′

u,1(x) is the common cost of all s-u-paths in the APECP1
instance x.

(iii) The functions gu,1, g′
u,1 can be evaluated inO(m) time, given an input x ∈ R

A(1)
u .

Proof Assume we are given an instance x ∈ R
A(1)
u . The vector x represents a function

x : A(1)
u → R. Sometimes we use the equivalent notation x(F) instead of xF , for

F ∈ A(1)
u . We consider the same dynamic program as in Lemma 6. For every vertex

w ∈ Vu , we fix some s-w-path Pw. Furthermore, we make sure that the set of all paths
Pw chosen forms an out-tree rooted at s, that is,

⋃
w∈Vu Pw forms a tree. We introduce

an auxiliary variable yw for every vertex w ∈ Vu by making use of Pw:

yw :=
∑

a∈Pw

x({a}) . (9)

Clearly, yw depends linearly on x . By the same argumentation as in Lemma 6, the
dynamic program correctly concludes that the APECP1 instance is a YES-instance iff

∀a = (w, z) ∈ Au : yz = yw + x({a}).

Further, if x is a YES-instance, then the common cost of all s-u-paths equals yu+x(∅).
(Note that the case x(∅) �= 0 can appear.)

Now we construct the functions gu,1, g′
u,1 in the following way. gu,1 maps to R

k

with k = |Au | and is given by

gu,1(x) = (yw + x({a}) − yz)a=(w,z)∈Au , for all x ∈ R
A(1)
u .
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The real-valued function g′
u,1 is given by g′

u,1(x) = yu + x(∅), for all x ∈ R
A(1)
u .

Since yw depends linearly on x , for any w ∈ Vu , both functions gu,1, g′
u,1 are

linear. The properties stated in (i) and (ii) are fulfilled by construction. Further, it

is straightforward to see that given an input x ∈ R
A(1)
u , the value g′

u,1(x) can be
computed in O(m) time. Finally, note that the vector gu,1(x) can be computed in
O(m) time. In order to achieve this, we can make use of the simple recursive formula
yw = yz +x({(z, w)}), where (z, w) is the last arc on path Pw. This formula is correct,
because the paths Pw form a tree. 
�

Lemma 9 Let d ≥ 2. Consider the SPPd and the APECPd on the digraph (Vu, Au)

with source s and sink u for some vertex u ∈ V . The following statements hold:

(i) There exists k ∈ N, k = O(md), and a linear function fu,d : RA(d)
u → R

k , such
that fu,d(x) = 0 iff x is a linearizable instance of the SPPd.

(ii) There exists a linear function f ′
u,d : R

A(d)
u → R

Au , such that for all x with

fu,d(x) = 0, f ′
u,d(x) ∈ R

Au is a linearizing cost function in reduced form for
the SPPd instance x.

(iii) There exists k ∈ N, k = O(md), and a linear function gu,d : RA(d)
u → R

k , such
that gu,d(x) = 0 iff x is a YES-instance of the APECPd.

(iv) There exists a linear function g′
u,d : R

A(d)
u → R, such that for all x with

gu,d(x) = 0, g′
u,d(x) is the common cost of all s-u-paths in the APECPd instance

x.
(v) The functions fu,d , f ′

u,d , gu,d , g′
u,d can be evaluated in O(md) time, given an

input x ∈ R
A(d)
u .

Proof We prove the lemma by induction. Lemma 8 shows that the statements in (iii)
and (iv) hold for d = 1. For the inductive step with d ≥ 2 assume that the statements
in (iii) and (iv) hold for the value d−1. Thus, the functions gu,d−1 and g′

u,d−1 fulfilling
the properties in (iii) and (iv) exist. We now proceed to show that the statements in (i) –
(iv) hold for the value d, in particular, we construct the functions fu,d , f ′

u,d , gu,d , g′
u,d

with the corresponding properties.

Consider the order-d cost function qd ∈ R
A(d)
u of an SPPd instance (APECPd

instance) on the graph (Vu, Au) with source s and sink u. For a fixed vertex u such
instances of the SPPd (APECPd ) are fully determined by qd . Hence, unless other
specified, we will identify SPPd instances (APECPd instances) as above with the
corresponding order-d cost function qd . Fix some system N ⊆ Au of nonbasic arcs
with respect to (Vu, Au). Let F ⊆ Au be the set of strongly basic arcs with respect to
N , and let F ′ be the set of arcs which are incident to the source (hence Au = N ∪̇F∪̇F ′
is a partition by the definition of basic/strongly basic arcs). Lemmas 3 and 4 imply
that qd is a YES-instance of LinSPPd iff q(a)

d−1 is a YES-instance of APECPd−1, for
every arc a = (w, z) ∈ F . By the inductive assumption, the latter is the case iff

gw,d−1(q
(a)
d−1) = 0. Observe that the function which maps qd ∈ R

A(d)
u to q(a)

d−1 ∈
R

A(d−1)
w , a ∈ F , is a linear function (this follows from the definition, i.e. Equation (6)).

123



A linear time algorithm for linearizing quadratic...

Therefore, the composition fu,d defined by

fu,d(qd) = (gw,d−1(q
(a)
d−1))a=(w,z)∈F ,

is linear.
The inductive assumption implies that gw,d−1(q

(a)
d−1) ∈ R

k′
with k′ = O(md−1),

for each a = (w, z) ∈ F . Since |F | = O(m), the composition fu,d maps to R
k

with k = O(mk′) = O(md). Since the instance qd of the SPPd is linearizable iff
gw,d−1(q

(a)
d−1) = 0, for all a ∈ F , property (i) is satisfied. Further, we define f ′

u,d :
R

A(d)
u → R

Au by setting f ′
u,d(qd) = (xa)a∈Au ∈ R

Au with

xa =

⎧
⎪⎨

⎪⎩

g′
w,d−1(q

(a)
d−1) a = (w, z) ∈ F

0 a ∈ N

SPPd(a · Nz, qd) a = (w, z) ∈ F ′ .

Then f ′
u,d(qd) is a mapping of Au to R and it is a linearizing cost function for the qd

instance of the SPPd whenever fu,d(qd) = 0. Moreover, this linearizing function is in
reduced form. These facts follows from the arguments in Lemmas 3 and 4 (see also the
description right after the proof of Lemma 4) and the inductive assumption on g′

w,d−1.

Further, observe that the function f ′
u,d is linear by construction, since q(a)

d−1 and g′
w,d−1

are linear for all a = (w, z) ∈ F . By applying the speedup technique from Sect. 4.2 the
sequence of values (q(a)

d−1)a∈F , as well as the sequence (SPPd(a · Nz; qd))a∈F can be
computed in O(md) time for any given qd . Combined with the inductive assumption
that both gw,d−1, g′

w,d−1 can be computed in O(md−1) time for each vertex w, we

obtain that both fu,d , f ′
u,d can be computed in O(md) time. Hence we have shown (i)

and (ii).
Finally, we show how to construct gu,d , g′

u,d while assuming that the the functions
fu,d , f ′

u,d described in (i) and (ii) exists and have the corresponding properties. Let

qd ∈ R
A(d)
u be an instance of the APECPd . It follows by the arguments from Lemma 5

thatqd is a YES-instance with all s-u-paths having costβ iffqd is a linearizable instance
of SPPd . Moreover, in the linearizable case, the equality reduced(c) = sourceβ holds
for the linearizing function c. Then, the inductive assumption and the uniqueness of
the reduced form (see Lemma 2) imply that qd is a YES-instance of the APECPd iff
the following equalities hold

fu,d(qd) = 0

and ∀a, a′ ∈ F ′ : ( f ′
u,d(qd))(a) = ( f ′

u,d(qd))(a
′)

and ∀a ∈ Au \ F ′ : ( f ′
u,d(qd))(a) = 0. (10)

Then, we construct gu,d : RA(d)
u → R

k′
with k′ = k+ p+q, p := |F ′|(|F ′|−1)/2

and q := |A(d)
u | − |F ′| as follows. We denote gu,d(qd) = (xi )i=1,2,...,k′ and specify
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the first k entries of x by (xi )i=1,2,...,k := fu,d(qd). If p �= 0, the next p entries of x
are specified by means of an arbitrary but fixed ordering of the two-element subsets
{a, a′} ⊆ F ′: xk+i = ( f ′

u,d(qd))(ai )− ( f ′
u,d(qd))(a

′
i ), i = 1, 2, . . . , p, where {ai , a′

i }
is the i-th subset with respect to the above ordering. Finally, if q �= 0, the entries xi ,
i = k + p + 1, . . . , k′ are specified by means of an arbitrary but fixed ordering of
the arcs in Au\F ′: set xk+p+i = ( f ′

u,d(qd))(ai ), i = 1, 2, . . . , q, where ai is the i-th
arc with respect to the above ordering. Trivially, gu,d = 0 iff all three of the above
conditions in Equation (10) are satisfied, thus iff qd is a YES-instance of the APECPd .
Moreover, we have k′ = O(md), since p = O(md), p = O(md) and k = O(md)

due to the inductive assumption on fu,d . Thus gu,d fulfills the properties stated in (iii).
Further, we define g′

u,d(qd) := ( f ′
u,d(qd))(a), for some arbitrary arc a ∈ F ′. Then,

the equality reduced(c) = sourceβ implies that the property stated in (iv) is fulfilled.
Finally, by the inductive assumption, we can compute fu,d(qd), f ′

u,d(qd) in O(md)

time. It follows that the functions gu,d(qd), g′
u,d(qd) can be computed in O(md) time.

Hence we have shown (iii), (iv) and (v). 
�
Proof of Theorem 3 Consider the sink vertex t . By Lemma 9, the function ft,d has the

property that some instance qd ∈ R
A(d)
u is linearizable iff ft,d(qd) = 0. For the proof

of the theorem it is enough to show how to efficiently compute a matrix representation

of ft,d , i.e. a matrix M ∈ R
k×|A(d)

u | with k = O(md), such that ft,d(x) = Mx for all

x ∈ R
A(d)
u . ThenLd is equal to the kernel of M , thus it can be computed in a time which

is polynomial with respect to |A(d)
u | and k. Since k = O(md) and |A(d)

u | = O(md)

this computation time is polynomial in O(md), hence also polynomial with respect to
the size of the input of the instance qd of the SPPd .

Now we turn to the efficient computation of M . Consider the set e1, . . . , ek of all

standard basis vectors of RA(d)
u . Clearly, k = O(md). By Lemma 9, we can compute

the vector ft,d(e j ) in O(md) time for every j = 1, . . . , k. Basic linear algebra tells
us that these vectors constitute the columns of M . We can hence compute the matrix
M and a basis of its kernel in O(m2d) time, which is polynomial with respect to the
input of the qd instance of the SPPd . 
�

6 Conclusion

In this paper, we showed that the linearization problem for the QSPP on acyclic
digraphs can be solved in time linear in the size of the input. Our algorithm sig-
nificantly outperforms earlier algorithms and can also be generalized to the order-d
linearization problem for all d > 2. The main insight behind our algorithm is a new
characterization of linearizability, which reduces a global property to a local prop-
erty. We showed that an instance of the generic shortest path problem (GSPP) on an
acyclic digraph is linearizable if and only if every two-path system is linearizable.
Hence it suffices to check all two-path systems for linearizability. Even though there
is in general an exponential number of such systems, we introduced a polynomial-
time algorithm which can check all of these systems simultaneously. Furthermore, we
demonstrated how the runtime of the algorithm can be brought down to linear time
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using the idea of precomputed auxiliary values. We also showed how our ideas can be
used to compute the linear subspace of all linearizable instances of the order-d SPP
for a given fixed acyclic digraph. An anonymous referee pointed out that there might
be a connection between the latter result and the Slater condition of a semidefinite
programming formulation for the linearisation bound of the QSPP in the vein of the
work of Hu and Sotirov [13]. This could be an interesting question subject to further
research.

We remark that the linear runtime O(md) of our algorithm depends on the �(md)

input cost coefficients to be dense (i.e. in the case d = 2, they form a dense matrix).
In the case of sparsely encoded input cost coefficients, it is an open question how to
obtain a linear time algorithm.

Another open question related to the algorithm is its implementation for the practical
relevant case of d = 2, and the comparison of its perfomance on linearizable instances
to a generic blackbox quadratic solver, which may not be aware that the input instance
is linearizable.

At a theoretical level it would be interesting to investigate whether linearizable
instances of SPPd can be characterized by using reformulation–linearization tech-
niques similar to those which have been successfully used for the characterization of
linearizable QAP instances in [25].
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8. Erdoğan, G., Tansel, B.: A branch-and-cut algorithm for quadratic assignment problems based on
linearizations. Comput. Oper. Res. 34(4), 1085–1106 (2007)
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