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Abstract
Scenario optimization is an approach to data-driven decision-making that has been
introduced some fifteen years ago and has ever since then grown fast. Its most remark-
able feature is that it blends the heuristic nature of data-driven methods with a rigorous
theory that allows one to gain factual, reliable, insight in the solution. The usability
of the scenario theory, however, has been restrained thus far by the obstacle that most
results are standing on the assumption of convexity. With this paper, we aim to free
the theory from this limitation. Specifically, we focus on the body of results that are
known under the name of “wait-and-judge” and show that its fundamental achieve-
ments maintain their validity in a non-convex setup. While optimization is a major
center of attention, this paper travels beyond it and into data-driven decision making.
Adopting such a broad framework opens the door to building a new theory of truly
vast applicability.

Keywords Data-driven Optimization · Scenario approach · Non-convex
optimization · Probabilistic constraints · Statistical learning

Mathematics Subject Classification 90C15 · 90C26 · 62C05 · 91B06 · 68T05

1 Introduction

In a variety of applied fields that range from telecommunications to finance, from
medicine to various branches of engineering, the role of data is growingmore important
every day. Themain reason of this trend lies in the increasing complexity of the systems
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under consideration and the consequent inability of traditional modeling tools to keep
adequate control on all the attendant descriptive issues. Data are therefore used to tailor
otherwise general-purpose decision processes to the specific situation at hand. Along
this approach, however, a major concern is that traditional model-based approaches
leave way to more heuristic methods where data are often used without the necessary
theoretical insight. It is in this context that the scenario approach has affirmed itself
for its ability to address this concern thanks to a full-fledged theory able to rigorously
characterize the reliability of the ensuing solutions (generalization theory).

1.1 The scenario approach

Let x ∈ X be a vector of design variables. While in many problems X = R
d , the

Euclidean space with d components,1 in the scenario theory X can as well be infinite
dimensional and, evenmore generally, it is not required to exhibit any specific structure.
Hence, X can be just thought of as any set. Further, let δ be a parameter that describes
the environment to which the decision is applied.2 The interplay between x and δ is
formalized by the concept of appropriateness: we say that x is appropriate for δ if a
given user-chosen “satisfaction condition” is fulfilled. For example, in an investment
the satisfaction condition can be that the reward is more than a given threshold and, in
a medical application, that the patient is correctly classified as having, or not having,
a given disease. The set of the values of x that are appropriate for a given δ is denoted
by Xδ .3 The reader is referred to the book [1] and the survey paper [2] for a more
comprehensive description of these ingredients with reference to diverse practical
problems.

In the scenario approach, it is assumed that the user has at her/his disposal a
list δ1, . . . , δN of observations of the variable δ (each δi is called a scenario),4

which are used to make a design, i.e., to choose a value of x . Mathematically,
δ1, . . . , δN is described as an independent and identically distributed (i.i.d.) sample
from a probability space (�,D,P). The scenario approach recognizes that there is
a substantial difference between positing the existence of an underlying generative
mechanism given by (�,D,P) and assuming that such a mechanism is known. Cor-
respondingly, using the scenario method does not require any knowledge of (�,D,P)

(distribution-free perspective) and, yet, the existing generalization results by which
one can exert control on the probability of inappropriateness are quite tight and infor-
mative. Expressed in other words, the scenario approach lets the data δ1, . . . , δN speak

1 x can, e.g., be the d-dimensional vector that contains the parameters of a controller, or those of a regression
model or a predictor, or it may describe how the wealth is distributed on d assets (portfolio) in an investment
problem.
2 For example, in an investment problem, δ describes the evolution of the market in the investment period
and in a medical application it describes the clinical condition of a patient.
3 So, in an investment problem, Xδ contains the portfolios resulting in a reward above the threshold when
the market condition is δ and, in a medical application, Xδ is the set of parameters for which a predictor
correctly classifies a given patient δ as being sick or healthy on the ground of a clinical test.
4 We prefer to speak of “list” rather than “set” to emphasize the existence of a positional ordering (hence,
we can refer to the first, or the second, element in the list); the list can contain repeated elements, for instance
δ2 and δ3 can have the same value.
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in their double role of (i) building a decision; and (ii) ascertaining the ability of the
solution to act appropriately on unseen, out-of-sample, δ’s.

Before delving into the theory, it is also important to remind that the scenario
approach is not one single algorithm, rather it is an entire body ofmethods: themap that
goes from δ1, . . . , δN into the decision can, e.g., be built byworst-case optimization, as
well as by theminimization of various riskmeasures (for example, CVaR -Conditional
Value at Risk); moreover, outliers can be discarded for the purpose of improving the
optimization value and relaxed schemes are also part of the scenario approach. Among
these methods, one of the simplest is robust scenario optimization, which operates as
follows: given a cost function c(x), one is asked to perform its minimization under
the constraint that the solution is appropriate for all the scenarios δ1, . . . , δN , viz.,

min
x∈X c(x)

subject to: x ∈
⋂

i=1,...,N

Xδi . (1)

For example, in an investment problem one optimizes a given financial index under the
constraint that a minimum reward is attained in the market conditions that have been
observed in the past as δi ’s. Or, in a control problem, one minimizes, say, the settling
time when tracking given reference signals while enforcing suitable appropriateness
constraints (which express, e.g., that the closed-loop is stable) for the recorded list of
operating conditions. The reader is referred to [3–13] for applications of this scheme
to control design, to [14–20] for system identification problems and to [21–27] for
studies in the machine learning domain.

After the robust scenario problem (1) has been solved, one obtains a solution x∗
N

by which the cost c(x∗
N ) can be evaluated. On the other hand, the actual level of

appropriateness that the solution x∗
N achieves for new, out-of-sample, δ’s remains

unknown to the user.5 To better formalize this idea, let us define, for any given x ∈ X,
the risk of x as V (x) = P{δ ∈ � : x /∈ Xδ}.6 Hence, V (x) quantifies the probability of
drawing a new δ for which x is not appropriate. One is interested in the risk met by the
scenario solution x∗

N , that is, V (x∗
N ). However, this quantity is not directly computable,

for its computation would require the knowledge ofP, which is in general not available
or, perhaps, just partly available. The beauty of the scenario approach is that it comes
accompanied by a powerful generalization theory by which V (x∗

N ) can be estimated
without using any extra observations besides those employed to optimize.

The scenario risk theory has been developed – indeed not just for the robust scheme
(1) but, rather, for the entire body of methods the scenario approach encompasses
– by the work of many researchers in a series of publications, of which a selected
sample is [28–47]. However, all these papers assume convexity or a technical, limiting,
assumption called non-degeneracy, which applies broadly to convex problems only.
The goal of this paper is to overcome this limitation. In the following section, we

5 Despite that the solution is appropriate for all the scenarios, one cannot exclude that it is inappropriate
for other δ’s, possibly covering a set that has large probability to occur.
6 It is assumed that the set {δ ∈ � : x /∈ Xδ} is measurable. Measurability is also tacitly assumed elsewhere
throughout this paper.
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revise in particular the fundamental achievements obtained in [39] in relation to the
scheme in (1) because this study forms the starting line of the new exploration in this
paper.7 We anticipate, on the other hand, that the findings of this paper travel well
beyond the scheme in (1) and into a full-fledged decision theory that contains many
scenario algorithms as particular cases, see Sect. 1.4 for a complete overview of the
content of the present paper.

1.2 The results of [39] and their limitations

Consider problem (1) with N , the number of scenarios, replaced by m, which is a
generic index that takes any possible integer value, including zero (m = 0, 1, 2, . . .):

min
x∈X c(x)

subject to: x ∈
⋂

i=1,...,m

Xδi , (2)

where δ1, . . . , δm is an i.i.d. sample from (�,D,P).8 Hence, (2) is in fact a class of
problems indexed by m, which contains (1) as a particular case achieved for m = N .
In [39] it is assumed that a solution to (2) exists for every m and for every choice of
δ1, . . . , δm and, in case of multiple minimizers, a solution x∗

m is singled out by a rule
of preference in the domain X.9

The following notion of complexity is central in the analysis of [39].

Definition 1 (support list and complexity – robust optimization) Given a list of sce-
narios δ1, . . . , δm , a support list is a sub-list, say δi1 , . . . , δik with i1 < i2 < · · · < ik ,10

such that:

i. the solution to problem

min
x∈X c(x)

subject to: x ∈
⋂

j=1,...,k

Xδi j
(3)

is the same as the solution to (1) (in other words, removing all scenarios but those
in the sub-list does not change the solution);

ii. δi1 , . . . , δik is irreducible, that is, no element can be further removed from
δi1 , . . . , δik while leaving the solution unchanged.

7 The presentation of the results in [39] will somehow delay the description of the novel contribution of this
paper. However, we feel this line of narration is strictly needed for a precise comprehension of the content
of the present paper.
8 When m = 0, it is meant that (2) becomes minx∈X c(x), optimization without constraints.
9 This is just a total ordering in X.
10 k can as well be zero, in which case the support list is the empty list.
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For a given δ1, . . . , δm , there can be more than one selection of the indexes
i1, i2, . . . , ik , possiblywith different cardinality k, that give a support list. Theminimal
cardinality among all support lists is called the complexity and is denoted by s∗

m .

The theoretical achievements of [39] are deeply grounded on the following assumption
of non-degeneracy.

Assumption 1 (non-degeneracy - robust optimization) For any m, with probability 1,
there exists a unique choice of indexes i1 < i2 < · · · < ik such that δi1 , . . . , δik is a
support list for δ1, . . . , δm .

Remark 1 (rapprochement with the definitions of [39]) Assumption 1 in this paper is
stated differently from the non-degeneracy Assumption 2 in [39], but it is provably
equivalent to it. Under non-degeneracy, it is an easy exercise to show that the notion
of complexity as per Definition 1 of this paper coincides with that given in Definition
2 of [44]. This latter notion coincides with the concept in use in paper [39] without
explicitly calling it “complexity”.

Note now that x∗
N and s∗

N depend on the list δ1, . . . , δN and, as such, are random
elements defined over the product probability space (�N ,DN ,PN ) (the fact that the
probability is a product is because the scenarios are drawn independently). The main
result of [39] is then as follows.

Theorem 1 (Theorem 3 in [39]) Let ε(k), k = 0, 1, . . . , N, be any [0, 1]-valued
function. Under the non-degeneracy Assumption 1, it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ∗,

where (PN is the class of polynomials of order N and 1A is the indicator function of
set A)

γ ∗ = inf
ξ(·)∈PN

ξ(1)

subject to:
1

k!
dk

dtk
ξ(t) ≥

(
N

k

)
t N−k · 1t∈[0,1−ε(k)),

∀t ∈ [0, 1], ∀k = 0, 1, . . . , N . (4)

Theorem 1 sets a limit to the probability with which the risk V (x∗
N ) exceeds a user-

chosen function of the complexity. Even though this result provides a guarantee in
terms of the probability P (which appears as PN and, implicitly, in the definition of
V (x)), a practical use of the theoremdoes not require any knowledge ofP (distribution-
free result): one computes the complexity s∗

N , substitutes it in function ε(k) and obtains
an upper bound to V (x∗

N ) that holds with probability 1− γ ∗ (this latter probability is
called confidence).

In [39], an additional theorem is proven, which is a sort of converse to Theorem 1:
given a user-chosen level 1−β of the confidence (normally, chosen to be very close to
1), this additional theorem returns a function ε(k) that, when evaluated corresponding
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to the complexity, serves as a valid upper bound to the risk V (x∗
N ) with confidence

at least 1 − β. The function ε(k) is defined as follows. For any k = 0, 1, . . . , N − 1,
consider the polynomial equation in the t variable11

β

N

N−1∑

m=k

(
m

k

)
tm−k −

(
N

k

)
t N−k = 0. (5)

Equation (5) has one and only one solution t(k) in the interval (0, 1).12 The function
ε(k) is then defined as

ε(k) := 1 − t(k), k = 0, 1, . . . , N − 1, and ε(N ) = 1. (6)

Theorem 2 (Theorem 4 in [39]) With ε(k), k = 0, 1, . . . , N, as defined in (6), under
the non-degeneracy Assumption 1, it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ β.

Figure3 in Sect. 2.1 depicts the graph of function ε(k) given in (6). See also [39] for
more discussion and interpretation of these theorems.

1.3 The role of convexity

We have said above that much of the theory on the scenario approach is rooted in an
assumption of convexity. On the other hand, the results of [39] that we have revised in
the previous section do not contain such an assumption, at least explicitly stated. Can
we perhaps conclude from this that convexity is unimportant to the findings of [39]?
Certainly not: convexity lingers on [39] as well, even though from behind the curtains,
since non-degeneracy is a mild assumption in a convex setup only,13 To understand
this point, one has to note that, in a convex setup, a support list is associated to
constraints that are all active at the solution.As a consequence, degeneracy corresponds
to an anomalous accumulation of the constraints, see Fig. 1 for an example. On the
contrary, in a non-convex problem the constraints associated to the scenarios in a

11 The equation (32) in [39] (the equivalent to equation (5) here) is slightly different from (5) as it has
N + 1 at the denominator and the summation arrives at N ; however, it is not difficult to prove that Theorem
2 in [39] holds true with the equation (32) substituted by the equation (5) given here.
12 The fact that the solution is unique is readily seen because (5) is equivalent to

β

N

N−1∑

m=k

(m
k
)

(N
k
)

1

t N−m
= 1,

whose left-hand side is a continuous and strictly decreasing function that takes value no bigger than β for
t = 1 and goes to +∞ as t → 0.
13 This fact has been well recognized in [39, Section 8] to which the reader is referred for a more ample
discussion than that provided here.
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Fig. 1 An instance of a convex problem in which the support list is not unique: both sub-lists δ1, δ2 and
δ1, δ3 return the same solution as that obtainedwith all three constraints. This happens because the boundary
of the constraint corresponding to δ3 goes through the solution that is obtained by only considering δ1 and
δ2

Fig. 2 An instance of a non-convex problem. Sub-lists δ1, δ2 and δ1, δ3 return the same solution as that
obtained with all three constraints (note that one of the two between δ2 and δ3 has to be kept in addition to δ1
for, otherwise, the solution “falls” in x̄). Nonetheless, the boundaries of the constraints do not accumulate
at the solution
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support list need not be active, see Fig. 2, and degeneracy do not call for any anomalous
accumulation of the constraints. Indeed, non-degeneracy is almost the norm in non-
convex problems.14 The interested reader is referred to [39] for more discussion on
the concept of degeneracy.

1.4 The contribution of this paper

This paper aims at removing the assumption of non-degeneracy in the scenario
approach, with profound implications on its applicability to non-convex optimization
problems.

The next Sect. 2 presents two new theorems, Theorems 3 and 4, in the wake of
Theorems 1 and 2 in Sect. 1.2. As compared to Theorems 1 and 2, the new results
take two main departures: (i) they hold without non-degeneracy; (ii) they are stated
in a very general and unitary setup called “scenario decision-making” that was first
introduced in [44, Section 5]. Features (i) and (ii) open new doors to using the scenario
results in vast territories that were previously precluded and that are partially explored
in Sects. 3 and 4 of the present paper. Specifically, in Sect. 3, Theorems 3 and 4 are
applied to the robust optimization setup of Sect. 1.2 showing that Theorems 1 and
2 maintain their validity without the Assumption 1 of non-degeneracy. This delivers
results that naturally find their way into non-convex robust scenario optimization. The
versatility of the results of Sect. 2 are further demonstrated in Sect. 4 where they are
applied to schemes beyond robust optimization (more specifically, to optimization
with constraints relaxation and CVaR optimization) and also for introducing a general
approach able to cope with problems in which the solution may not exist.

Before moving to the technical results, we also feel it is important to spend some
more words to say that the present paper is not meant to supersede the body of results
that are known in the non-degenerate case. As said, the new theorems in the next
section of this paper better the theorems of similar content in [39]. On the other
hand, [39] also contains a slightly stronger theorem (Theorem 1 in [39]) that holds
when the complexity is deterministically upper-bounded, which, in turn, implies the
famous “Beta-result” (this is stated as Corollary 1 in [39]), a finding first established
in [28]. Interestingly, the result in Theorem 1 of [39] ceases to be true without the
non-degeneracy condition, a fact that is discussed in Sect. 3.2 of this paper. We further
notice that also lower bounds to the risk hold when the problem is non-degenerate, so
that the risk is in sandwich between two bounds which, provably, meet asymptotically
for a number of data points that grows unbounded. This theory has been presented in
[44].Without the non-degeneracy assumption, the lower bounds become unattainable.
All this shows that previous studies of the risk under the assumption of non-degeneracy
have a value, and this value is well maintained after the findings of this paper.

14 The terminology non-degenerate was aptly coined in a convex setup; however, in a non-convex setup
“degeneracy” appears to be an inappropriate word to indicate a situation that is in fact the norm. We keep
this terminology here because this facilitates a comparison with other contributions.
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2 A theory of scenario decision-making without non-degeneracy
assumptions

To move towards a general theory of decision-making, we need first to introduce a
formal setup that is more general than, and strictly contains, the robust framework of
(1). Let Z be a generic set, which we interpret as the domain from which a decision
z has to be chosen.15 To each δ, there is associated a set Zδ ⊆ Z that contains the
decisions that are appropriate for δ (according to any given appropriateness criterion).
For anym = 0, 1, 2, . . ., given a sample of i.i.d. scenarios δ1, . . . , δm from (�,D,P),
we consider a map

Mm : �m → Z

that associates a decision to any list ofm scenarios. The interpretation of Mm depends
on the problem at hand; as we shall see, robust optimization defines one such map,
and so do many other schemes, some of which will be discussed in later sections.
The decision returned by Mm is normally denoted by z∗m , while, when we want to
emphasize that z∗m is selected by Mm corresponding to a sample δ1, . . . , δm , we also
use the notation Mm(δ1, . . . , δm). When m = 0, δ1, . . . , δm is meant to be the empty
list and M0 returns the decision that is made when no scenarios are available.16 The
following property, borrowed from [44, Section 5], will play a fundamental role in our
study.

Property 1 For any integers m ≥ 0 and n > 0 and for any choice17 of δ1, . . . , δm and
δm+1, . . . , δm+n , the following three conditions hold:

(i) if δi1 , . . . , δim is a permutation of δ1, . . . , δm , then it holds that Mm(δ1, . . . , δm) =
Mm(δi1 , . . . , δim );

(ii) if z∗m ∈ Zδm+i for all i = 1, . . . , n, then it holds that z∗m+n =Mm+n(δ1, . . . , δm+n)=
Mm(δ1, . . . , δm)= z∗m ;

(iii) if z∗m /∈ Zδm+i for one or more i ∈ {1, . . . , n}, then it holds that z∗m+n =
Mm+n(δ1, . . . , δm+n) 
= Mm(δ1, . . . , δm) = z∗m .

Condition (i) is called permutation-invariance; (ii) requires that the decision does not
change if additional scenarios are added for which the decision is already appropriate
(confirmation under appropriateness); finally (iii) imposes that the process of selection
reacts to getting exposed to additional scenarios for which the previous decision is
not appropriate (responsiveness to inappropriateness). Conditions (ii) and (iii) are
known as relations of consistency. In the following, we shall refer for short to the
whole Property 1 as the “consistency property”, even though, strictly speaking, it also
includes the additional condition of permutation invariance. It is easy to see that the

15 We use z instead of x because in various cases we have to recast an optimization problem into the
framework of decisions by adding new variables to the original optimization variable x ; in these cases, it is
convenient to have available two distinct symbols, x and z.
16 In the robust optimization setup, this corresponds to unconstrained optimization.
17 Conditions (i)-(iii) might be softened to requiring that they hold with probability 1 and all results would
maintain their validity. We do not pursue this straightforward generalization here.
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robust optimization scheme of Sect. 1.2 readily fits into the frame of Property 1 (see
Sect. 3 for details). On the other hand, we anticipate that (i)-(iii) do not imply that
z∗m ∈ Zδ1 ∩ · · · ∩ Zδm , an important feature that will allow us to later accommodate
optimization schemes where some constraints are possibly violated for the purpose of
improving the cost value (see Sect. 4 for details).

The following definition of risk generalizes the definition of risk that is in use for
robust optimization.

Definition 2 (risk) For a given z ∈ Z, the risk of z is defined as V (z) = P{δ ∈ � :
z /∈ Zδ}.
The notion of support list and that of complexity now become as follows.

Definition 3 (support list and complexity) Given a list of scenarios δ1, . . . , δm , a
support list is a sub-list, say δi1 , . . . , δik with i1 < i2 < · · · < ik ,18 such that:

i. Mm(δ1, . . . , δm) = Mk(δi1, . . . , δik );
ii. δi1 , . . . , δik is irreducible, that is, no element can be further removed from

δi1 , . . . , δik while leaving the decision unchanged.

For a given δ1, . . . , δm , there can be more than one selection of the indexes
i1, i2, . . . , ik , possiblywith different cardinality k, that give a support list. Theminimal
cardinality among all support lists is called the complexity and is denoted by s∗

m .
19

Let N be the actual number of scenarios onwhich the decision is based.Note that, given
δ1, . . . , δN , s∗

N can be computed from its definition without any additional information
on the mechanism by which scenarios are generated. In statistical terminology, s∗

N is a
statistic of the scenarios. The following two theorems – which are presented and fully
proved in this paper – are the main contributions of the present work.

Theorem 3 (decision theory) Assume that the maps Mm satisfy Property 1 and let
ε(k), k = 0, 1, . . . , N, be any [0, 1]-valued function. For any P, it holds that

P
N {V (z∗N ) > ε(s∗

N )} ≤ γ ∗,

where (PN is the class of polynomials of order N and 1A is the indicator function of
set A)

γ ∗ = inf
ξ(·)∈PN

ξ(1)

subject to:
1

k!
dk

dtk
ξ(t) ≥

(
N

k

)
t N−k · 1t∈[0,1−ε(k)),

∀t ∈ [0, 1], ∀k = 0, 1, . . . , N . (7)

Proof see Sect. 5.1.

18 k can as well be zero, in which case the support list is the empty list.
19 When the smallest support list is the empty list, then s∗m = 0. In view of condition (ii) of Property 1, this
happens when the decision with no scenarios is already appropriate for all the scenarios.
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Theorem 4 (decision theory – choice of function ε(k)) Assume that the maps Mm

satisfy Property 1. With ε(k), k = 0, 1, . . . , N, as defined in (6), for any P it holds
that

P
N {V (z∗N ) > ε(s∗

N )} ≤ β.

Proof see Sect. 5.2.

The interpretation of Theorems 3 and 4 is, mutatis mutandis, the same as that of
Theorems 1 and 2. In particular, the complexity s∗

N (observable variable) is shown
to carry fundamental information to estimate the risk V (z∗N ) (hidden variable). The
novelty of Theorems 3 and 4 rests on their sheer generality: they address decision
theory, not just optimization, and do not require any non-degeneracy assumption. The
power of these new results will be demonstrated in the next few sections: Sect. 3 on
non-convex robust optimization; Sect. 4.1 that presents optimization with constraint
relaxation; Sect. 4.3, where the optimization of CVaR - Conditional Value at Risk -
is discussed. It remains that this is only a partial and limited sample of problems to
which the new theory of this paper can be applied.

2.1 On the practical use of Theorems 3 and 4

In many ways, of the two theorems, the one that plays the most prominent role in
applications is Theorem 4, while Theorem 3 retains crucial theoretical value because
of its generality. This claim is elaborated upon in this section, in which we will also
clarify further practical facts that are not immediately obvious from a reading of the
theorems.

We start by providing in Fig. 3 a visual representation of function ε(k) given in (6)
for various value of N and β. It stands out that ε(k) exhibits a modest dependence on
the value of β. Indeed, function ε(k) takes a margin above the straight line k/N that
depends logarithmically on β and, provably, this margin goes to zero uniformly in k
as N increases, see [26]. Moreover, ε(k) is a monotonically increasing function of k,
so that over-bounding s∗

N (which is often easier than exactly computing it) and using
this bound in ε(k) leads to a valid, even though looser, evaluation of V (x∗

N ).20

As discussed in [39], while not fully optimized, function ε(k) in (6) has a very
little margin of improvement. Referring, e.g., to Figure 5 in [39], one observes that the
function ε̄(k) in red (which is pretty close to ε(k)) provides an impassable lower limit
for ε(k): any function ε(k) that is smaller than ε̄(k) even for just one value of k is not a
valid bound for the risk (in other words, counter-examples can be found that show that
the level of confidence with one such function ε(k) drops below 1−β). This fact high-
lights the tightness of the evaluations provided by Theorem 4. Interestingly enough,
one can look at this same result from a different point of view. Say that an individual
carries a particular interest for a given value k̄ and, in an attempt to improve ε(k̄),
s/he elevates the values of ε(k) for k 
= k̄ while trying simultaneously to considerably

20 When the problem is convex, a support list only contains δi ’s corresponding to active constraints and
the computation of a bound for the complexity is further simplified.
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Fig. 3 (a) Graph of ε(k), k = 0, 1, . . . , N , for N = 500, 1000, 2000 and β = 10−4 (black), 10−6 (dark
grey), 10−8 (light grey); (b) zoom for k = 0, 1, . . . , 250

reduce ε(k̄). Nonetheless, owing to the above mentioned insurmountable limits, the
computation of the confidence via Theorem 3 necessarily yields unsatisfactory results,
even when the values of ε(k) for k other than k̄ are significantly elevated (we express
this fact that no “waterbed effect” holds: increasing function ε(k) within a range of
values k does not result in a corresponding reduction elsewhere). Finally, we mention
in passing that these observations offer a practical approach to compute a valid upper
bound for γ ∗ in (7) (note that (7) is a semi-infinite optimization problem, an inher-
ently difficult problem to solve): rename ε̃(k) the function in use in Theorem 3; given
a value of β, compute function ε(k) according to Theorem 4; if ε(k) ≤ ε̃(k),∀k, than
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β is a guaranteed upper bound for γ ∗, in the opposite it is not; this fact offers an easy
approach to search for a suitable upper bound for γ ∗ through a bisection procedure
(interestingly, in view of the foregoing discussion on the waterbed effect, having at
convergence ε(k)≈ε̃(k) for only some values k does not indicate conservatism in the
evaluation).

2.2 A comparison with the results in [48]

Theproblemof evaluating the risk associated to scenario decisionswithout the assump-
tion of non-degeneracy has been previously considered along a different line in [48],
a paper whose authorship includes the two authors of the present contribution. Here,
we feel advisable to compare our achievements in this paper with those obtained in
[48].

The first observation is that the setup of [48] is definitely more stiff than the one of
the present paper in that it only addresses robust decision problems (the decision need
be appropriate for all scenarios). This clearly limits the applicability of the results in
[48]. On the other hand, the setup of [48] is also more general in another sense: the
consistency Property 1 of this paper is not assumed in [48]. Releasing this assumption
allows for extra freedom that licenses the use of the theory in problems beyond those
considered in the present contribution; for example, the problem in Appendix A of
[48] does not satisfy the consistency Property 1. In terms of the achieved bounds,
those in [48] are significantly looser than those presented in this paper. And, indeed,
the tight bounds of this paper are not attainable in the setup of [48], showing that
consistency embodies the relevant properties by which the most powerful risk theory
of this paper can be established.21 Considering that the consistency property holds
in many problems (e.g., in all optimization problems, convex and non-convex), one
sees that obtaining tight results under the condition of consistency is an important
achievement of vast applicability. A final notice is that the new theory of this paper
does not come for free and we anticipate that the derivations of the results are highly
technical and, certainly, significantly more complex than those in [48]. This is the
reason why we have preferred to postpone the derivations until Sect. 5.

3 Non-convex robust scenario optimization

Consider again the setup in Sect. 1.2. Letting Z = X, problem (2) defines a map
M ro

m (superscript “ro” stands for robust optimization) from δ1, . . . , δm to a decision
z∗m = x∗

m . DefineZδ = Xδ ,∀δ ∈ �.Wewant to prove thatM ro
m satisfies the consistency

Property 1.


 Consistency of M ro
m . Condition (i) is evidently true since the solution to (2) does

not depend on the ordering of the constraints. Turn to (ii) and (iii). Suppose that the
constraints x ∈ Xδm+i , i = 1, . . . , n, are added to the original group of constraints
x ∈ Xδi , i = 1, . . . ,m. If x∗

m ∈ Xδm+i for all i = 1, . . . , n, then x∗
m is feasible

21 See Sect. 3.1 for a numerical comparison between the bounds obtained here with those of [48].
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for the problem with m+n constraints. Hence, x∗
m remains optimal after adding the

new n constraints, which gives x∗
m+n = x∗

m .
22 This proves (ii). Suppose instead that

x∗
m /∈ Xδm+i for some i . Then, x∗

m is no longer feasible for the problem with m + n
constraints, leading to x∗

m+n 
= x∗
m because the solution to (2) needs to be a feasible

point. This shows the validity of (iii).

Let us further note that in the present context the notions of support list and that
of complexity s∗

m given in Definition 3 coincide with those of Definition 1. In short,
a support list corresponds to an irreducible sub-sample of constraints x ∈ Xδi j

, j =
1, . . . , k, that, alone, suffice to return the same solution x∗

m as with all the constraints
in place and the complexity is the cardinality of the smallest such support lists. Since
we did not mention any non-degeneracy condition at the time we verified that M ro

m
satisfies the consistency property, by applying Theorems 3 and 4 to M ro

m we are now
in a position to unveil the deep-seated fact that the results in Theorems 1 and 2 remain
valid even when the non-degeneracy Assumption 1 is dropped. This puts in our hands
a powerful tool by which the scenario theory can be applied at large to non-convex
robust scenario optimization. The resulting theorems are re-stated for easy reference.

Theorem 5 (robust optimization) Let ε(k), k = 0, 1, . . . , N, be any [0, 1]-valued
function. For any P, it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ∗,

where γ ∗ is given by (7).

Theorem 6 (robust optimization – choice of function ε(k)) With ε(k), k =
0, 1, . . . , N, as defined in (6), for any P it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ β.

3.1 An example

Consider the robust scenario problem

min
x1∈[0,1],x2∈R

x2

subject to: x2 − δ2,i + |x1 − δ1,i | ≥ 0, i = 1, . . . , N , (8)

where δi = (δ1,i , δ2,i ), i = 1, . . . , N , are independently drawn from [0, 1]×[0,+∞)

according to a probability distribution P given by the product of the uniform distri-
bution over [0, 1] (δ1 component) and the exponential distribution with mean equal
to 0.1 (δ2 component). In (8), each scenario constraint requires that the solution lies
above a function with the shape of a reversed V whose vertex is δi and the problem is
clearly non-convex. See Fig. 4 for a realization of problem (8) with N = 6.

22 In case of multiple minimizers, x∗
m ranks first according to the rule of preference because it already

ranked first in the larger feasibility set before the new constraints were added.
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Fig. 4 A realization of problem (8) with N = 6. The dashed region at bottom is the unfeasible domain. x∗
N

violates the constraints whose vertex δ lies in the greyed region

As it can be easily recognized (see Fig. 4 again), the risk of x∗
N = (x∗

1,N , x∗
2,N )

is the probability that a new δ falls in the region above the function δ2 = x∗
2,N +

|x∗
1,N − δ1|, a probability that can be straightforwardly computed if one knows P.23

Instead, computing the complexity is a bit more cumbersome, but it can be done
exactly (without any approximation) by the following procedure. The first step is
to isolate all the constraints that form the boundary of the feasibility region and to
discard all the others. Indeed, a constraint set Xδi not involved in the boundary is
completely dominated by another constraint set that is part of the boundary, which
alone can replace Xδi . It is perhaps also worth noticing that the constraints forming
the boundary can be easily determined because they are those and only those whose
vertex is within the feasibility domain of all other constraints. Next, one starts from
x∗
N and scans all the remaining constraints (those forming the boundary) one by one,

in the order they are found first moving leftward and then rightward (if only one
constraint is active at x∗

N , then the scanning only proceeds in one direction). Each
time, one tries to remove the constraint under consideration and checks whether the
solution changes or not after its removal. If it changes, then the constraint is kept; if
instead the solution does not change, then the constraint is actually discarded and the
list of the remaining constraints is updated correspondingly before moving to consider
the next constraint. After completing the scanning of all constraints, one is left with a
support list (because, by the very selection criterion, none of the remaining constraints
can be further eliminated without changing the solution); provably, this support list
is also minimal. As a matter of fact, call this support list L and, for the sake of

23 This probability is given by
∫ 1
0
∫+∞
max{0,x∗

2,N+|δ1−x∗
1,N |} 10 e

−10δ2 dδ2 dδ1. In this simulation example,

we illustrate how the risk distributes as a function of the complexity and are therefore interested in computing
the risk using P. Obviously, this operation has no sense in real applications where P is unknown.
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Fig. 5 (s∗N , V (x∗
N )) in 500 runs of problem (8) (black dots), along with the bound of this paper (blue

squares) and that proposed in [48] (red diamonds)

contradiction, suppose that there is another support list L ′ with smaller cardinality;
we show that this is impossible. In fact, scan again one by one all the constraints
forming the boundary in the same order as before and continue until a discrepancy
between L and L ′ is found, that is, the currently inspected constraint is in one support
list but not in the other. Certainly, it cannot be that the constraint is in L but not in L ′
because this would generate a new solution, one that belongs to the infeasible domain
for the constraint under scrutiny. Then, suppose the other possibility, the constraint
is in L ′ but it is missing in L . If so, consider dropping this constraint from L ′ and
substituting it with the next constraint found in the boundary. This operation does not
increase the cardinality (either the cardinality remains the same or it drops by one, if
the next constraint was already in L ′) and preserves the solution (because the solution
is preserved by L , which already lacks the dropped constraint). We have therefore
proved that if L and L ′ agree till, say, the p-th constraint in the boundary, then they
can be made to agree till the (p + 1)-th constraint without increasing the cardinality.
Repeating the same process until all constraints have been considered, we re-generate
L without increasing the cardinality, which shows that the cardinality of L ′ could not
be lower than that of L .

In a computer-simulated experiment, we considered 500 instances of problem (8)
with N = 400, each time re-drawing the scenarios independently of those in the
other instances. For each instance, the solution x∗

N was recorded along with the risk
V (x∗

N ) and the complexity s∗
N . Figure5 displays the 500 pairs (s∗

N , V (x∗
N )) (black dots)

along with function ε(k) when β = 10−4 (blue squares). The values of s∗
N span the

range {1, 2, . . . , 9} and the black dots lie all below the curve given by ε(k). This is in
agreement with Theorem 6 according to which one might expect that V (x∗

N ) > ε(s∗
N )

only in one case out of 10,000, at most. The figure also shows the function ε(k)
proposed in [48] to bound the risk (red diamonds). One can notice the significant
improvement obtained by the bound of this paper.
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3.2 On the traces of a deeper result that holds when the complexity is bounded

In this section, we go back to [39] to isolate a deeper result that holds when the
complexity is upper bounded by a deterministic, known, quantity and see whether this
result carries over to the present context in which the hypothesis of non-degeneracy
is turned down. Although the impact on applications is minor because, quantitatively,
this additional result takes a modest margin over the previous one, still the outcome
of this investigation has a theoretical and conceptual value.

In [39], the following result – stronger than Theorem 3 in [39] (which is Theorem
1 in this paper) – is proven, still under the Assumption 1 of non-degeneracy.24

Theorem 7 (Theorem 1 in [39] revisited) Assume that, for some integer d, it holds that
s∗
m ≤ d with probability 1 for any m. Let ε(k), k = 0, 1, . . . , d, be any [0, 1]-valued
function. Under the non-degeneracy Assumption 1, for any N ≥ d it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ∗,

where (Cd [0, 1] is the class of d-times continuously differentiable functions over [0, 1])

γ ∗ = inf
ξ(·)∈Cd [0,1]

ξ(1)

subject to:
1

k!
dk

dtk
ξ(t) ≥

(
N

k

)
t N−k · 1t∈[0,1−ε(k)),

∀t ∈ [0, 1], ∀k = 0, 1, . . . , d. (9)

The reason why the thesis of this theorem is stronger than that in Theorem 3 in [39]
is that the optimization problem (9) used to define γ ∗ is less constrained than the
corresponding optimization problem in Theorem 3 (∀k = 0, 1, . . . , N is replaced
by ∀k = 0, 1, . . . , d) and, moreover, optimization is conducted over the class of
continuous functions Cd [0, 1], which strictly contains the class of polynomials PN .
As a consequence, the upper bound γ ∗ to the confidence provided by this theorem is
certainly not larger, and normally turns out to be strictly smaller, than that inTheorem3.

Exploiting the extra strength provided by this theorem, in [39] the following corol-
lary is further established.

Corollary 8 (Corollary 1 in [39]) Assume that, for some integer d, it holds that s∗
m ≤ d

with probability 1 for any m. Let ε ∈ [0, 1]. Under the non-degeneracy Assumption 1,
for N ≥ d it holds that

24 In [39], Theorem 1 is stated for the particular setup in which X = R
d , c(x) is convex and Xδ are convex

sets for any δ. In this convex setup, it is proven that the complexity is certainly bounded by d and only this
latter fact is used in the subsequent part of the proof; in other words, no mention is made in the proof of,
e.g., the fact that c(x) is convex or that X = R

d other than for establishing that the complexity is bounded
by d. As a consequence, the proof in [39] carries over to prove Theorem 7 in this section, in which the
complexity is explicitly assumed to be bounded by d, without any mention to convexity.
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P
N {V (x∗

N ) ≤ ε} ≥ 1 −
d−1∑

i=0

(
N

i

)
εi (1 − ε)N−i . (10)

The right-hand side of (10) is aBeta distributionwith degrees of freedom d and N−d+1,
written as B(d, N−d+1). Hence, Corollary 8 states that the distribution of V (x∗

N ) is
dominated by a B(d, N−d+1) distribution. This result is obtained from Theorem 7
by showing that quantity

∑d−1
i=0

(N
i

)
εi (1− ε)N−i attains the inf of (9) when ε(k) = ε

(constant) for all k = 0, 1, . . . , d. Moreover, this result is not improvable because the
distribution of V (x∗

N ) is exactly a B(d, N−d+1) for a full class of problems called
fully-supported, see [28].

We now pose the question: does this result continue to hold if the non-degeneracy
assumption is removed? Interestingly, the answer is negative: there are optimization
problems such that condition s∗

m ≤ d holds with probability 1 for any m for which
B(d, N−d+1) is not a valid bound to the distribution of V (x∗

N ). The next example
provides a counterexamples in the setting of non-convex optimization in R

d .

Example 1 (lyrebird tail example) Let X be the closed disk of radius 10 in R
2.25 The

scenarios δi are independently drawn from� = [−1, 0)∪(0, 1] according to a uniform
probability. Moreover, we let

Xδ =
{
x = (x1, x2) : x1 = sign(δ)

(√ |x2|
10

− x22
1 + |δ|

)
and x2 ∈ [−1, 0]

}

and c(x) = x2. Figure6 depicts a realization of problem (2) for m = 5. All sets Xδ

are curvy lines that have the origin in common and, as soon as there are at least two
δi with the same sign, the origin becomes the only feasible point and therefore it is
the solution to (2). For m ≥ 3, there must be at least two δi with the same sign and
these two δi form a support list of minimal cardinality (one constraint alone does not
suffice because it gives a solution that drops at level x2 = −1). Thus, s∗

m = 2 for any
m ≥ 3, while, obviously, s∗

m ≤ 2 for m ≤ 2. Hence, 2 is a deterministic upper bound
to the complexity. It is also readily seen that the non-degeneracy Assumption 1 does
not hold since multiple support lists do exist, for example there are certaily at least
two support lists form ≥ 4 since one can find at least two couples of scenarios having
the same sign.

We now show that the conclusion of Corollary 8 is false in the present example.
Take N = 2. In this case, two situations may occur: (a) δ1 and δ2 have opposite sign, in
which case the solution x∗

N is not the origin and V (x∗
N ) = 1 (because x∗

N is infeasible
for any other δ but δ1 and δ2); (b) δ1 and δ2 have the same sign, in which case the
solution is x∗

N = (0, 0) and V (x∗
N ) = 0 (because all constraints contain the origin).

Since (a) and (b) occurs with probability 1/2 each (with respect to the draws of δ1 and
δ2), then the cumulative distribution function of V (x∗

N ) is given by

25 The only reason for not just taking R
2 is to allow for the existence of a solution when a linear cost is

considered (as is done below) and there are no constraints (m = 0).
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Fig. 6 A realization of problem (2). Any δi sets a constraint having essential dimension 1 as represented
by the solid, curvy, lines and all these constraints meet at the origin. The overall figure is reminiscent of the
tail of a lyrebird

P
2{V (x∗

N ) ≤ ε} =
{

1
2 , ε ∈ [0, 1)
1, ε = 1,

(11)

On the other hand, should Corollary 8 hold, then P2{V (x∗
N ) ≤ ε}would approach 1 as

ε → 1 because a Beta distribution admits a density. Hence, the thesis of Corollary 8
is invalid in this case. (For a comparison of the cumulative distribution of a B(2, 1) –
note that in our example we have d = 2 and N−d+1 = 1 – and the actual cumulative
distribution function of V (x∗

N ), see Fig. 7).

Remark 2 (a digression into the convex setup) In this remark we show that even
in a convex setup the thesis of Corollary 8 (that is, the property that the cumulative
distribution function of the violation is lower-bounded by a B(d, N−d+1) distribution)
ceases to be correct if the problem is degenerate.Wemention this fact explicitly to burn
off a fallacious belief to the contrary that has circulated in some research environments.
This digression will also allow us to introduce open problems that we feel like sharing
with the community.

A counterexample to the thesis of Corollary 8 in a convex setup can be easily
derived from the lyrebird tail example by lifting the problem from R

2 into R
3. Let

x = (x1, x2, x3) be a generic point inR3. EachXδ has a triangular shape as follows. In
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Fig. 7 Actual cumulative
distribution function of V (x∗

N )

(P2{V (x∗
N ) ≤ ε}) vs. Beta

B(2, 1) cumulative distribution
(FB(2,1)(ε))

0 1
0

1

Fig. 8 A realization of the
scenario program described in
Remark 2

the plane of x1, x2 consider the squarewith vertexes (1, 0), (0, 1), (−1, 0), (0,−1) and,
in this square, draw the segments parallel to the edges of the square that are obtained by
intersecting the square with the +45-degree lines x2 − x1 = δ +1 for δ ∈ [−2, 0) and
with the−45-degree lines x2+x1 = δ−1 for δ ∈ (0, 2]. Hence,� = [−2, 0)∪(0, 2],
from which we assume that δ is drawn uniformly. To build the triangular-shaped Xδ ,
connect the end points of each segment with the point (0, 2,−1). The cost to be
minimized is c(x) = x2. See Fig. 8 for a visualization of this problem with m = 3.
Applying the same arguments as done in the lyrebird tail example, the reader will not
have difficulty in showing that also in the present case 2 is a deterministic upper bound
to the complexity, while the cumulative distribution function of V (x∗

N ) for N = 2 is
given by (11). Again, this is in violation of the thesis of Corollary 8.

An aspect we want to further discuss in relation to this example relates to the
existence of a nonempty interior of the feasibility domain. Let us start by observing
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that the treatment of [28] for convex problems assumes that the feasibility domain
of any realization of the scenario problem has a nonempty interior (Assumption 1 in
[28]). Under the existence of a nonempty interior (besides existence and uniqueness
of the solution), Theorem 1 in [28] claims that the cumulative distribution function
of V (x∗

N ) is always dominated (also in the degenerate case) by a Beta distribution
B(d̄, N−d̄+1) (d̄ is the dimension of the optimization domain). Whether this claim
preserves its validity without the assumption on the existence of a nonempty interior
is at present an open problem. In fact, no theoretical result confirms this claim, while
no counterexample is known that confutes its validity. In contrast, when the nonempty
interior assumption is dropped, the example in this remark sets a final negative word
on the possibility of dominating the cumulative distribution function of V (x∗

N ) with a
Beta distribution B(d, N−d+1), where d is an upper bound to the complexity strictly
smaller than d̄ .26 Whether this conclusion maintains its validity in the presence of a
nonempty interior of the feasibility domain is at present another open problem.27

3.3 Ridge regularization

We just touch upon in this short section a point that would call formuch closer attention
in future publications: the use of regularization. Consider again the problem in (2),
but this time with a two-norm regularization (ridge regularization) term

min
x∈X c(x) + ‖x − x0‖2Q

subject to: x ∈
⋂

i=1,...,m

Xδi . (12)

where ‖x‖2Q is short for xT Qx .28 Adding ‖x − x0‖2Q “attracts” the solution towards
x0, while matrix Q determines stregth and direction of this action.

It is well recognized that regularization helps generalization. This idea finds an
easy theoretical justification, and a ground for quantitative evaluation, within the the-
ory of this paper. Indeed, suppose that Q is chosen very very large. Then, assuming
x0 is an interior point of the feasibility region, the solution gets to a point close to
x0 still inside the feasibility region; this is a point that remains the minimizer even
in the absence of any scenarios. Hence, no matter how large the set of optimization
variables is, the complexity becomes zero. On the opposite extreme of no regular-
ization infinite Euclidean spaces, with a large amount of optimization variables it is

26 We say “when the nonempty interior assumption is dropped” because our counterexample does not
satisfy this assumption: any two Xδ’s corresponding to segments with the same inclination (either +45 or
−45 degrees) have only the point (0, 2, −1) in common, so violating the nonempty interior assumption.
27 Instead, the conclusion is certainly valid in a non-convex setup where the assumption on the existence
of a nonempty interior becomes void: just add to any constraint a ball corresponding to a large value of the
cost without altering the remaining part of the constraint. For example, in the lyrebird tail example, one can
add a small ball centered at point (0, 1).
28 While we refer to ridge regularization in finite Euclidean spaces for concreteness, nothing in the present
section depends crucially on this choice, and the same reasoning can be applied to any other type of
regularization process.
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common experience that the solution is supported by many constraints, resulting in a
large complexity. In between, when Q increases starting at Q = 0 and progressively
assumes larger and larger values, one can expect a gradual (even though not neces-
sarily monotonic) decrease of the complexity. By applying Theorems 5 and 6 to this
context (of course, there is nothing special in considering c(x) + ‖x − x0‖2Q instead
of c(x) as the cost function of interest and, hence, Theorems 5 and 6 can well be
applied), one can quantitatively ascertain the level of generalization achieved by the
regularization as it grows mightier. Interestingly, one can also conceive to try out a
(possibly large) number of Qi matrices and a posteriori select the choice that provides
the preferred balance in terms of quality of the minimizer (in any respect, as suggested
by the problem at hand) and the corresponding risk (as evaluated by the theorems).29

4 Other scenario optimization schemes

We first present an optimization scheme of wide applicability in which the constraints
are relaxed under the payment of a regret and then CVaR (Conditional Value at Risk)
optimization. This section contains also a discussion on the assumption of existence
of the solution, and suggests a way to release it.

4.1 Scenario optimization with constraints relaxation

Robust optimization is a rigid scheme that often generates conservative solutions with
an unsatisfactory cost value. To allow for more flexibility, optimization with constraint
relaxation performs a trade-off between the cost and the satisfaction of the constraints.
It comes with a tuning knob and robust optimization is recovered in the limit when
the tuning knob goes to infinity.

Matters of convenience suggest that constraints are written in this section as
f (x, δ) ≤ 0, where, for any given δ, f (x, δ) is a real-valued function of x . In other
words,Xδ = {x : f (x, δ) ≤ 0}. The reason for this choice is that function f is used to
express the “regret” for violating a constraint: for a given δ, the regret for an infeasible
x (for which f (x, δ) > 0) is f (x, δ). In this set-up, we consider the following scenario
optimization problem with penalty-based constraint relaxation:

min
x∈X,ξi≥0

c(x) + ρ

m∑

i=1

ξi

subject to: f (x, δi ) ≤ ξi , i = 1, . . . ,m. (13)

Note that (13) has m additional optimization variables, namely, ξi , i = 1, . . . ,m. If
ξi > 0, the constraint f (x, δi ) ≤ 0 is relaxed to f (x, δi ) ≤ ξi and this generates the
regret ξi . Hence, if a constraint is satisfied at optimum, then the corresponding ξi is

29 In this process of multiple evaluations, the user has to pay attention to the fact that each single evaluation
may fail to be correct with probability β; hence, all evaluations, and thereby the evaluation for the selection
that has been made, are simultaneously guaranteed with confidence 1 − Mβ, where M is the total number
of evaluations. This is not a big concern since confidence is cheap.
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set to its floor value zero and there is no regret, while constraint violation generates
a regret that equals f (x∗

m, δi ). Parameter ρ is used to set a suitable trade-off between
the original cost function and the extra cost paid for violating some constraints. When
ρ → ∞, one goes back to the robust setup.

Because of the presence of the ξi , problem (13) is never infeasible (given a x ∈ X,
just take large enough values of the variables ξi to satisfy all inequalities f (x, δi ) ≤ ξi );
we further assume that, for every m and for every choice of δ1, . . . , δm , the min in
(13) is attained in at least one point of the feasibility domain.30 In case of multiple
minimizers, a solution x∗

m is singled out by a rule of preference in the domain X.31
Given N scenarios, solving (13) with m = N returns x∗

N and ξ∗
i,N , i = 1, . . . , N ,

from which one can empirically evaluate the probability of constraint violation by
formula (1/N )

∑N
i=1 1ξ∗

i,N>0 (1A is the indicator function of set A). This empirical
evaluation, however, is not a consistent estimate of the true probability of constraint
violation. Nevertheless, by an application of the general theory of Sect. 2, we show
here that the complexity can instead be used to accurately estimate the probability
of constraint violation. This result may also be used to select a suitable value for the
hyper-parameter ρ: one tries out a set of values for ρ and compares the corresponding
solutions in terms of cost (which is readily available as an outcome of the optimization
problem) and probability of constraint violation (as given by the theory) to make a
suitable selection. The same comment made in Footnote 29 applies to this context.

To apply the theory of Sect. 2, we have to frame the setup of this section into that
of scenario decision making. It turns out that a convenient formalization amounts to
consider as decision the value of x∗

m augmented with the number of variables ξ∗
m,i

that are positive (considering the actual value of ξ∗
m,i is redundant for the goal we

pursue here). Correspondingly, let Z = X × N, with N = {0, 1, . . .}, and define
z∗m = (x∗

m, q∗
m) where q∗

m := #[ξ∗
m,i > 0, i = 1, . . . ,m], the number of positive

ξ∗
m,i , i = 1, . . . ,m. The map from δ1, . . . , δm to z∗m is indicated with the symbol
Mocr

m (superscript “ocr” stands for optimization with contraint relaxation). Further, let
Zδ := {(x, q) ∈ Z : f (x, δ) ≤ 0}. With this definition we have V (z) = P{δ : z /∈
Zδ} = P{δ : f (x, δ) > 0}, where the last quantity is the probability of constraint
violation (in the following indicated with V (x)), which is what we want to estimate.
Hence, we shall apply the theory of scenario decision to upper bound V (z∗N ), which
is the same as V (x∗

N ).
We start with verifying that Mocr

m satisfies the consistency Property 1.


 Consistency of Mocr
m . Condition (i) follows from the fact that x∗

m and q∗
m in the

definition of z∗m do not depend on the ordering of the constraints. To verify (ii) and
(iii), add new scenarios δm+1, . . . , δm+n to the original sample δ1, . . . , δm and suppose
first that z∗m ∈ Zδm+i for all i = 1, . . . , n, which means that f (x∗

m, δm+i ) ≤ 0 for all
i = 1, . . . , n. Consider problem (13) withm+n in place ofm. Since f (x∗

m, δm+i ) ≤ 0
for all i = 1, . . . , n, augmenting the solution of (13) with ξi = 0, i = m+1, . . . ,m+n,
gives a point (x∗

m, ξ∗
m,1, . . . , ξ

∗
m,m, 0, . . . , 0) that is feasible for problem (13)withm+n

in place of m. It is claimed that this is indeed the optimal solution. As a matter of fact,

30 While feasible, the solution can still not exist because it “drifts” to infinity.
31 Note that it is enough to break the tie on x because, at optimum, it must be that f (x, δi ) = ξi so that,
once the tie on x is broken, then the ξi variables are unambiguously determined.
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if the optimal solution were a different one, say (x̄, ξ̄i , i = 1, . . . ,m+n), then one of
the following two cases would hold:

(a) c(x̄) + ρ
∑m+n

i=1 ξ̄i < c(x∗
m) + ρ

∑m
i=1 ξ∗

m,i . But then this would give c(x̄) +
ρ
∑m

i=1 ξ̄i < c(x∗
m) + ρ

∑m
i=1 ξ∗

m,i (because the dropped ξ̄i , i = m+1, . . . ,m+
n, are non-negative), showing that in problem (13) (x̄, ξ̄i , i = 1, . . . ,m) would
outperform the optimal solution (x∗

m, ξ∗
m,i , i = 1, . . . ,m), which is impossible;

(b) c(x̄) + ρ
∑m+n

i=1 ξ̄i = c(x∗
m) + ρ

∑m
i=1 ξ∗

m,i and x̄ ranks better than x∗
m according

to the tie-break rule. But then (x̄, ξ̄i , i = 1, . . . ,m) would be feasible for (13)
and would achieve c(x̄) + ρ

∑m
i=1 ξ̄i ≤ c(x∗

m) + ρ
∑m

i=1 ξ∗
m,i . Should this latter

equation hold with inequality, we would have a contradiction similarly to (a).
If instead equality holds, then (x̄, ξ̄i , i = 1, . . . ,m) would still be preferred to
(x∗

m, ξ∗
m,i , i = 1, . . . ,m) in problem (13) because x̄ ranks better than x∗

m , leading
again to a contradiction.

Therefore, it remains proven that x∗
m+n = x∗

m , ξ∗
m+n,i = ξ∗

m,i for i = 1, . . . ,m and
ξ∗
m+n,i = 0 for i = m+1, . . . ,m+n. This gives z∗m+n = (x∗

m+n, q∗
m+n) = (x∗

m, q∗
m) =

z∗m , which shows the validity of (ii).
Suppose instead that z∗m /∈ Zδm+i for some i , i.e., f (x∗

m, δm+i ) > 0 for some
i . Then, if it happens that x∗

m+n = x∗
m , then ξ∗

m+n,i = ξ∗
m,i for i = 1, . . . ,m and

ξ∗
m+n,m+i > 0 for some i . Whence, q∗

m+n > q∗
m , which implies that z∗m+n 
= z∗m . If

instead x∗
m+n 
= x∗

m , this gives straightforwardly z∗m+n 
= z∗m . This proves the validity
of (iii).

We want next to make more explicit what the complexity is for the present prob-
lem of optimization with constraint relaxation. We first note that all δi ’s for which
f (x∗

m, δi ) > 0 (corresponding to ξ∗
m,i > 0) must belong to any support list. Indeed, if

not, at x∗
m there would be a deficiency of violated constraints so giving a value of q

strictly lower than q∗
m . Therefore, a support list of minimal cardinality must contain

all δi ’s for which f (x∗
m, δi ) > 0 and, in addition, a minimal amount of other δi ’s such

that solving (13) with only the selected scenarios in place gives x∗
m as x component

of the solution. The cardinality of one such support list is the complexity.
We now have the following theorems that are obtained from Theorems 3 and 4

tailored to the present context.

Theorem 9 (optimization with constraint relaxation) Let ε(k), k = 0, 1, . . . , N, be
any [0, 1]-valued function. For any P, it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ∗,

where γ ∗ is given by (7) and s∗
N is the number of δi ’s for which f (x∗

N , δi ) > 0 (violated
constraints) plus the cardinality of a minimal amount of additional δi ’s that, used in
conjunction with those giving violation, returns x∗

N as x component of the solution.

Theorem 10 (optimization with constraint relaxation – choice of function ε(k)) With
ε(k), k = 0, 1, . . . , N, as defined in (6), for any P it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ β,
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where s∗
N is defined as in the previous theorem.

Remark 3 (a further look at the results of this section) Theorem9 allows one to evaluate
the violation of the minimizer x∗

N of an optimization problem with relaxation. Note
that, the general theory of Theorem 3 has not been directly applied to this context with
the position z∗N = x∗

N . Instead, the optimization problem with relaxation has been
lifted into a decision problem where z∗N accounts not only for x∗

N , but also for the
number of scenarios corresponding to violated constraints. As one can easily verify,
the technical reason for why x∗

N cannot be directly used as z∗N is that the map from
the scenarios to x∗

N is not consistent (think of how weird it would be if it were: then,
the violation of x∗

N could be estimated from the complexity of just constructing x∗
N ,

with no concern for how many scenarios are violated!). The last step in the derivation
of Theorem 9 is the rapprochement of the risk of the decision z∗N with the violation
of x∗

N . As a result of all this journey, the two main objects appearing in the statement
of Theorem 9, namely x∗

N and s∗
N , are not tied to each other by the same kinship that

links z∗N and s∗
N in Theorem 3. For this reason, looking at Theorem 9 as a particular

case of Theorem 3 is inappropriate, while it is true that Theorem 3 is the support on
which Theorem 9 builds.

4.2 Non-existence of the solution

Before moving to CVaR optimization, we revisit in this section the assumption that
the solution always exists and introduce a general scheme to waive this condition
while preserving the theoretical guarantees. This finds application not only when the
solution does not exist because the problem is infeasible, it is also significant in relation
to cases in which the optimization problem is tout court not defined for some value of
m (so that the solution does not exist because no procedure has been introduced for
its determination). As we shall see, one such case is in fact CVaR optimization, and
this is the reason for having this section coming before that of CVaR.

Since the subject matter at stake here is relevant to a multitude of problems
even beyond optimization, we prefer to address it at the most general level, that
of scenario decision-making as per Sect. 2. Hence, we assume that Mm may not
be defined for some choices of δ1, . . . , δm , in which case we say that the decision
does not exist. In this context, we assume that conditions (i)-(iii) in the consis-
tency Property 1 remain in force whenever the decision z∗m exists.32 Let Zaug =
Z ∪ [⋃∞

m=0{multisets containing m elements from �}] (for m = 0, the multiset is
just the empty multiset) and define z∗aug,m = z∗m whenever z∗m exists and z∗aug,m to be

the multiset {δ1, . . . , δm} otherwise.33 Moreover, let Zaug,δ = Zδ , which implies that

32 More explicitly, if Mm (δ1, . . . , δm ) = z∗m , and the arguments are permuted, then Mm again returns
z∗m . Moreover, if new scenarios are added for which z∗m is appropriate, then z∗m is confirmed, i.e.,
Mm+n(δ1, . . . , δm+n) = z∗m , whereas having one or more new scenarios for which z∗m is not appropriate
leads to a change, giving either a new decision or that the decision no longer exists.
33 A multiset is simply a set with repetitions, that is, it has no ordering but two elements in it can coincide.
The reason why z∗aug,m is not simply defined as the list (δ1, . . . , δm ) is that a list has an ordering, which
would lead to a definition of Maug,m that is not permutation invariant. Note also that, since we want to
distinguishwhether a z comes fromZ or from

⋃∞
m=0{multisets containing m elements from �}, we require
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any augmented decision of the type {δ1, . . . , δm} is inappropriate for any δ. These def-
initions give a map Maug,m that always return a decision in Zaug, along with a notion
of appropriateness. We want to show that Maug,m satisfies the consistency Property 1.


 Consistency of Maug,m . Permutation invariance of Maug,m easily follows from the
unordered structure of multisets and the fact that Mm is permutation invariant when-
ever a decision exists. When new scenarios δm+1, . . . , δm+n are added, if z∗aug,m = z∗m ,
then the two conditions (ii) and (iii) in Property 1 for Maug,m follows from the valid-
ity of the same conditions for Mm . Suppose instead that z∗aug,m = {δ1, . . . , δm}, in
which case, certainly, z∗aug,m is inappropriate for all δm+1, . . . , δm+n . Then, either
Mm+n(δ1, . . . , δm+n) exists, so that Maug,m+n(δ1, . . . , δm+n) is an element of Z (in
which case the augmented decision has changed), or Mm+n(δ1, . . . , δm+n) does not
exist, which gives: Maug,m+n(δ1, . . . , δm+n) = {δ1, . . . , δm+n} 
= z∗aug,m (and, again,
the augmented decision has changed). Since the augmented decision changes in both
cases, condition (iii) (the only relevant one when z∗aug,m = {δ1, . . . , δm}) is satisfied.

Having verified the consistency Property 1, Theorems 3 and 4 can be applied to
Maug,m to upper bound P

N {V (z∗aug,N ) > ε(s∗
aug,N )}, where we have that s∗

aug,N = s∗
N

if MN (δ1, . . . , δN ) exists and s∗
N = N otherwise. The ensuing result can be cast

back into an evaluation of the risk associated with the original decision z∗N by further
observing that

P
N {V (z∗aug,N ) > ε(s∗

aug,N )}
= P

N {z∗N exists ∧ V (z∗aug,N ) > ε(s∗
aug,N )}

+ P
N {z∗N does not exist ∧ V (z∗aug,N ) > ε(s∗

aug,N )}
≥ P

N {z∗N exists ∧ V (z∗N ) > ε(s∗
N )},

where the last equality is obtained by suppressing the second term and recalling that,
when z∗N exists, (a) it holds that z∗aug,N = z∗N and s∗

aug,N = s∗
N and (b) the two notions

of risks for the augmented and the original decision coincide. We have obtained the
following theorems.

Theorem 11 (decision theorywith no assumption of existence of the solution) Assume
that the maps Mm satisfy conditions (i)-(iii) in Property 1 whenever the decision z∗m
exists and let ε(k), k = 0, 1, . . . , N, be any [0, 1]-valued function. For any P, it holds
that

P
N {z∗N exists ∧ V (z∗N ) > ε(s∗

N )} ≤ γ ∗,

where γ ∗ is given by (7).

Footnote 33 continued
that Z and

⋃∞
m=0{multisets containing m elements from �} do not have any element in common. If this is

not the case (for example Z = R and � = R so that Z and the {multisets containing m elements from �}
coincide for m = 1), we simply add an identification flag (the same for all elements) to all elements in �.
Zaug is called the “augmented” decision domain.
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Theorem 12 (decision theory with no assumption of existence of the solution – choice
of function ε(k)) Assume that the maps Mm satisfy conditions (i)-(iii) in Property 1
whenever the decision z∗m exists. With ε(k), k = 0, 1, . . . , N, as defined in (6), for any
P it holds that

P
N {z∗N exists ∧ V (z∗N ) > ε(s∗

N )} ≤ β.

4.3 Scenario conditional value at risk (CVaR)

Certain design problems come with no constraints and a cost function that depends on
the uncertainty parameter δ, which we write c(x, δ). For example, c(x, δ) can be the
return of a portfolio (with negative sign in front tomake it a cost), in which case x is the
vector containing the percentages of capital invested on various financial instruments
and δ describes the evolution of their value over the period of investment.34

One way to deal with uncertain cost functions is by worst-case optimization, a
well-known approach that plays a prominent role in various disciplines. In the scenario
framework, worst-case optimization amounts to solve the following problem

min
x∈X max

i=1,...,m
c(x, δi ) (14)

and rewriting (14) in epigraphic form reveals that this is nothing but a special case of
the robust approach dealt with in Sect. 3:

min
x∈X,h∈R h

subject to: c(x, δi ) ≤ h, i = 1, . . . ,m, (15)

where h is an auxiliary optimization variable. In this context, the theory of Sect. 3
allows one to evaluate the probability of exceeding the largest empirical cost, that is,
the probability with which c(x∗

N , δ) > h∗
N , where x

∗
N and h∗

N = maxi=1,...,N c(x∗
N , δi )

are obtained from (15) with N in place of m.35

Worst-case optimization is often undesirably conservative. Hence, one may want
to move to Conditional Value at Risk (CVaR), which amounts to minimize the average
cost over a worst-case tail (shortfall cases): for any given x , re-order the indexes
1, . . . ,m according to the value taken by c(x, δi ), from largest to smallest (in case of
ties, maintain the initial order), and let 1m(x) be the first index, 2m(x) the second, etc..
Given an integer q (q is a user-chosen parameter that defines how many scenarios are
included in the tail and averaged upon), for m ≥ q, CVaR consists in the following

34 Portfolio scenario optimization under a non-degeneracy condition has been studied in [49, 50].
35 In [35], the problem of estimating the probability of exceeding any empirical cost (not just the largest) is
studied under a non-degeneracy condition. The results of [35] can be carried over to the present framework
in which the non-degeneracy assumption is dropped, but we do not pursue this generalization here.
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minimization problem

min
x∈X

1

q

q∑

j=1

c(x, δ jm (x)), (16)

where we conveniently assume that a solution exists and, in case of ties, a minimizer
x∗,q
m is selected according to a rule of preference in the domain X. When m < q,
CVaR is instead not defined. Note that problem (16) comes down to (14) when q = 1;
selecting larger values of q mitigates the conservatism inherent in the worst-case
approach by the effect of averaging over q scenarios. Value h∗,q

m := c(x∗,q
m , δqm (x∗,q

m ))

is theq-th largest empirical cost incurredby x∗,q
m and it is the tippingpoint that separates

shortfalls from other cases. In what follows, we derive distribution-free results on the
probability with which a new δ incurs a cost in the shortfall range.

Start by defining MCVaR,q
m , m ≥ q, as the map from the scenarios to the decision

z∗,q
m = (x∗,q

m , h∗,q
m , v

∗,q
m ), where v

∗,q
m := 1

q

∑q
j=1 c(x

∗,q
m , δ jm (x∗,q

m )) is the CVaR value

(hence, Z = X × R × R). It is then easy to verify that MCVaR,q
m satisfies conditions

(i)-(iii) in the consistency Property 1 with Zδ = {(x, h, v) : c(x, δ) ≤ h} whenever
m ≥ q, an exercise that we pursue in the following.


 MCVaR,q
m satisfies (i)-(iii) in Property 1 for m ≥ q. MCVaR,q

m is clearly permutation
invariant, so that (i) is satisfied. When n new scenarios δm+1, . . . , δm+n are added to
the original sample δ1, . . . , δm , condition z∗,q

m ∈ Zδm+i , i = 1, . . . , n, implies that
1
q

∑q
j=1 c(x

∗,q
m , δ jm+n(x

∗,q
m )) = 1

q

∑q
j=1 c(x

∗,q
m , δ jm (x∗,q

m )) (that is, the average of the

top q values at x = x∗,q
m remains unchanged). Since for any other x it holds that

1
q

∑q
j=1 c(x, δ jm+n(x)) ≥ 1

q

∑q
j=1 c(x, δ jm (x)) (strict inequality holds when, for an x

other than the minimizer x∗,q
m , it happens that a new δm+i incurs a cost in the shortfall

range), then x∗,q
m remains the optimal solution, and also h∗,q

m and v
∗,q
m do not change

(condition (ii)). If instead z∗,q
m /∈ Zδm+i for some i , then either the minimizer changes:

x∗,q
m 
= x∗,q

m+n (and, therefore, the decision changes), or (if x∗,q
m = x∗,q

m+n), we have:
v

∗,q
m+n = 1

q

∑q
j=1 c(x

∗,q
m+n, δ jm+n(x

∗,q
m+n)

) = 1
q

∑q
j=1 c(x

∗,q
m , δ jm+n(x

∗,q
m )) > v

∗,q
m (and the

decision changes in the v part). This shows the validity of condition (iii).

Since CVaR is not defined for m ≤ q, we want to apply Theorems 11 and 12.
Under the assumption that N ≥ q, CVaR certainly gives a solution, so that in the
reformulation of Theorems 11 and 12 the specification “z∗N exists” can be dropped.
This gives the following theorems.

Theorem 13 (CVaR) Assume N ≥ q and let ε(k), k = 0, 1, . . . , N, be any [0, 1]-
valued function. For any P, it holds that

P
N {V (x∗,q

N , h∗,q
N , v

∗,q
N ) > ε(s∗,q

N )} ≤ γ ∗,
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whereγ ∗ is given by (7), s∗,q
N is the complexity associatedwith MCVaR,q

N (δ1, . . . , δN ),36

and V (x, h, v) = P{c(x, δ) > h}.

Theorem 14 (CVaR – choice of function ε(k)) Assume N ≥ q. With ε(k), k =
0, 1, . . . , N, as defined in (6), for any P it holds that

P
N {V (x∗,q

N , h∗,q
N , v

∗,q
N ) > ε(s∗,q

N )} ≤ β,

where s∗,q
N is the complexity associated with MCVaR,q

N (δ1, . . . , δN ) and V (x, h, v) =
P{c(x, δ) > h}.

Remark 4 (“virtual” maps) We make here a remark that can be applied broadly to
scenario decision making and not just to CVaR; our referring to CVaR is for the sake
of concreteness. Say that, in CVaR, q is set at the value 10 and N is 100 and that,
by this choice, the user means to regard as shortfalls the 10% worst cases. Later, as
new observations come along, the user would like to increase q; for example, with
110 data points, s/he would like to take q = 11 to keep the ratio q/(no. of data points)
constant. This leads to a CVaR scheme in which q changes with m. However, as it is
easily verified, this infringes the rules of consistency (for, increasing m by one unit
may cause q to also increase and, thereby, the solution may change even when the
solution withm observations is appropriate for the (m+1)-th observation). Dowe have
to conclude that the theory of this paper does not apply to this setup with a changing q?
The answer to this question is indeednegative, for the reason explained in the following.
The first thing to note is that, for any given N , the only “real” map is MCVaR,q

N , it is
this map that sets the decision and, thereby, determines the risk that is associated with
it. All other maps MCVaR,q

m for m 
= N simply have no active role. What does the
consistency property (which introduces dependencies across maps Mm for different
values of m) enforce then? The answer is that it introduces an interrelation among
objects of which one, map MN , is the only one that really operates, while all others,
Mm for m 
= N to which MN is linked by consistency, enforce additional constraints
on MN . It is precisely these constraints that limit the behavior of map MN so as to
make the results of this paper valid. But now we see clearly that, given MN , to apply
the theory it is enough that there exist “virtual” maps M̃0, M̃1, . . . , M̃N−1, M̃N+1, . . .

that, augmentedwithMN , form a list M̃0, M̃1, . . . , M̃N−1, MN , M̃N+1, . . . that satisfy
the consistency property. This is, e.g., well true in our CVaR context because any given
N has associated a value of q and this value of q can be kept constant when defining
M̃CVaR,q

m for m 
= N .

36 The complexity cannot be smaller than q. Generally, s∗,q
N > q because more that q scenarios are needed

for the solution x∗,q
N to remain in its initial location; this is not dissimilar from worst-case optimization,

which is a particular case of CVaR obtained for q = 1. Moreover, in case functions c(x, δ) are convex in x
for any δ, then it is easily seen that the search for scenarios to be included in a support list can be restricted
to the δi ’s for which c(x, δi ) takes value h

∗,q
N or higher at x∗,q

N .
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5 Proofs

5.1 Proof of Theorem 3

A comparison with [39]. Before delving into the proof, following a suggestion of
a referee, we highlight its main differences with the proof of Theorem 3 in [39].
Similarly to Theorem 3 in [39], the initial step involves reformulating the probability
P
N {V (z∗N ) > ε(s∗

N )} in integral form, utilizing appropriate generalized distribution
functions that are shown to satisfy certain conditions. The crucial difference rests in
the fact that allowing for degeneracy introduces in the conditions more freedom to
transfer probabilistic masses from one of these generalized distribution functions to
another when increasing by 1 the number of data points. In technical terms this is
captured by equation (21), which asserts that the difference distribution function that
appears in the equation that follows (21) belongs to the negative cone. In contrast,
under non-degeneracy as in [39], this difference distribution function is null, implying
that one can work with generalized distribution functions that are singled-indexed by
k. By this initial change the rest of the proof takes a major departure from that of
Theorem 3 in [39] and in the present proof one needs to work with a Lagrangian that
incorporates specific functionals tailored to the problem at hand.

In the derivations, it is convenient to associate to any list δ1, . . . , δm a minimal
support list which is defined by a unique choice of indexes i1, i2, . . . , ik . Such an
association may become impossible if two or more δi ’s have the same value, which
happens with non zero probability whenever P has concentrated mass. This difficulty,
however, can be easily circumvented by augmenting the original δ with a real number
η drawn independently of δ and according to the uniform distribution U over [0, 1].
Precisely, define �̃ = � × [0, 1], D̃ = D ⊗ B[0,1] (B[0,1] is the σ -algebra of Borel
sets in [0, 1]), P̃ = P × U, and let δ̃ = (δ, η) be an outcome from the probability
space (�̃, D̃, P̃). For any m, let δ̃i = (δi , ηi ), i = 1, . . . ,m, be i.i.d. draws from
(�̃, D̃, P̃). Note that, owing to the ηi ’s, the δ̃i ’s are all distinct with probability 1,
so that any rule that selects a minimal support list satisfies the requirement that this
support list is defined by a unique choice of the indexes with probability 1. In the
following, we consider the map Sm : �̃m → ⋃m

k=0 �̃k that selects from δ̃1, . . . , δ̃m

the sub-list δ̃i1 , . . . , δ̃ik , with i1 < · · · < ik , by the following rule: the first components
δi1 , . . . , δik form a support list for δ1, . . . , δm of minimal cardinality and, among the
sub-lists that have this property, the rule favors the sub-list whose second compo-
nents ηi1 , . . . , ηik minimize

∑k
�=1 ηi� . Since the choice with minimal sum

∑k
�=1 ηi�

is unique with probability 1, Sm(δ̃1, . . . , δ̃m) is univocally defined except for a zero-
probability set. This zero-probability set plays no role in the following derivations
and, hence, Sm(δ̃1, . . . , δ̃m) can be arbitrarily specified over it.

With Sm in our hands, we shall be able to prove the assertion of the theorem with

P̃ in place of P, viz. P̃
N {V (z∗N ) > ε(s∗

N )} ≤ γ ∗. On the other hand,

P
N {V (z∗N ) > ε(s∗

N )} = P̃
N {V (z∗N ) > ε(s∗

N )} (17)
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because the event in curly brackets does not depend on the second components of the
δ̃i ’s, and therefore the theorem will remain proven.

Start by noting that

P̃
N
{
V (z∗N ) > ε(s∗

N )
}

= P̃
N
{
V (z∗N ) > ε(|SN (δ̃1, . . . , δ̃N )|)

}

(where | · | is cardinality and it holds that |SN (δ̃1, . . . , δ̃N )| = s∗
N )

=
N∑

k=0

P̃
N
{
|SN (δ̃1, . . . , δ̃N )| = k and V (z∗N ) > ε(k)

}

=
N∑

k=0

P̃
N

⎛

⎜⎜⎜⎜⎝

⋃

i1<i2<···<ik :{i1,...,ik }⊆{1,...,N }

{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik and V (z∗N ) > ε(k)

}

⎞

⎟⎟⎟⎟⎠

=
N∑

k=0

∑

i1<i2<···<ik :{i1,...,ik }⊆{1,...,N }

P̃
N
{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik and V (z∗N ) > ε(k)

}
,

(18)

where the last equality is true because η1 
= η2 
= · · · 
= ηN holds with probability 1,
which implies that sub-lists δ̃i1 , . . . , δ̃ik are all different from each other with probabil-
ity 1 and, therefore, SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik holds for one and only one choice
of the indexes with probability 1.

Now, for any fixed k, all the probabilities in the inner summation of (18) are equal.
To see this, consider two choices of indexes i ′1, i ′2, . . . , i ′k and i ′′1 , i ′′2 , . . . , i ′′k and let

E ′ = {SN (δ̃1, . . . , δ̃N ) = δ̃i ′1 , . . . , δ̃i ′k and V (z∗N ) > ε(k)}

and

E ′′ = {SN (δ̃1, . . . , δ̃N ) = δ̃i ′′1 , . . . , δ̃i ′′k and V (z∗N ) > ε(k)}.

We show that E ′′ is obtained from E ′ by the permutation of δ̃1, . . . , δ̃N defined as
follows: i ′1 → i ′′1 , i ′2 → i ′′2 , …, i ′k → i ′′k , and the other elements fill the holes while
keeping the same order. Indeed, after permutation, z∗N does not change because MN

is permutation invariant so that condition V (z∗N ) > ε(k) for a point in E ′ implies
V (z∗N ) > ε(k) for the permuted point; moreover, SN selects a sub-list depending
on the values of the δ̃i ’s and not on their positions so that, when SN (δ̃1, . . . , δ̃N ) =
δ̃i ′1 , . . . , δ̃i ′k , after permutation SN returns δ̃i ′′1 , . . . , δ̃i ′′k . Hence, a point of E

′ gives, after
permutation, a point of E ′′ and, since the opposite holds with the inverse permutation,

123



S. Garatti, M. C. Campi

it turns out that E ′′ is a permutation of E ′. The fact that P̃
N
(E ′) = P̃

N
(E ′′) now

follows because the δ̃i ’s are i.i.d. draws.
Since all terms in the inner summation of (18) are equal, we can write

N∑

k=0

∑

i1<i2<···<ik :{i1,...,ik }⊆{1,...,N }

P̃
N
{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik and V (z∗N ) > ε(k)

}

=
N∑

k=0

(
N

k

)
P̃
N
{
SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k and V (z∗N ) > ε(k)

}

=
N∑

k=0

(
N

k

)
P̃
N
{
SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k and V (z∗k ) > ε(k)

}

(
this is because z∗N = z∗k when SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k by definition

of support list
)

=
N∑

k=0

(
N

k

)∫

(ε(k),1]
dFk,N , (19)

where Fk,N is a generalized distribution function37 defined as follows (for future use
we introduce a definition that holds for a generic m, and not just for m = N ): for all
m = 0, 1, . . . and k = 0, . . . ,m, let

Fk,m(v) = P̃
m
{
Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k and V (z∗k ) ≤ v

}
, v ∈ R.

Note that Fk,m(v) = 0 for v < 0 and Fk,m(v) is constant for v ≥ 1.
Next we show that Property 1 implies that the Fk,m’s satisfy conditions (a) and (b)

below. Later, these conditions will be enforced when maximizing the right-hand side

of (19) with the goal of finding an upper bound to P̃
N {V (z∗N ) > ε(s∗

N )}.
(a) For m = 0, 1, . . ., it holds that

m∑

k=0

(
m

k

)∫

[0,1]
dFk,m = 1; (20)

(b) For m = 0, 1, . . . and k = 0, . . . ,m, it holds that

∫

B
dFk,m+1 −

∫

B
(1 − v) dFk,m ≤ 0, (21)

for any Borel set B ⊆ [0, 1].
37 That is, Fk,N is non-decreasing and right continuous, but does not necessarily end up in 1.
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For any given B, the left-hand side of (21) returns a numerical value and, when B
ranges over the Borel sets in [0, 1], the left-hand side of (21) defines a signed measure.
Condition (21) means that this measure is in fact negative. Letting F (1−v)

k,m (v) :=∫
(−∞,v](1 − w) dFk,m(w), condition (b) can also be rewritten as

Fk,m+1 − F (1−v)
k,m ∈ C−,

where C− is the cone of negative generalized distribution functions (i.e., functions that
are non-increasing and right continuous) with value zero for v < 0 and constant value
for v ≥ 1.

Proof of (a): Along the same lines as in (18) and (19), we obtain

1 =
m∑

k=0

P̃
m
{
|Sm(δ̃1, . . . , δ̃m)| = k

}

=
m∑

k=0

P̃
m

⎛

⎜⎜⎝
⋃

i1<i2<···<ik :{i1,...,ik }⊆{1,...,m}

{
Sm(δ̃1, . . . , δ̃m) = δ̃i1 , . . . , δ̃ik

}
⎞

⎟⎟⎠

=
m∑

k=0

∑

i1<i2<···<ik :{i1,...,ik }⊆{1,...,m}

P̃
m
{
Sm(δ̃1, . . . , δ̃m) = δ̃i1 , . . . , δ̃ik

}

=
m∑

k=0

(
m

k

)
P̃
m
{
Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k

}

=
m∑

k=0

(
m

k

)∫

[0,1]
dFk,m .

��

Proof of (b): for any given Borel set B in [0, 1], we have that
∫

B
dFk,m+1 = P̃

m+1
{
Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k and V (z∗k ) ∈ B

}
.

(22)

Over the set where Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k (which is part of the condi-
tion defining the set on the right-hand side of (22)), it must hold that z∗k ∈ Zδm+1 .
As a matter of fact, if z∗k /∈ Zδm+1 , then, by (iii) in Property 1, we would have
z∗k := Mk(δ1, . . . , δk) 
= Mm+1(δ1, . . . , δk, δk+1, . . . , δm+1) =: z∗m+1. This
implies that δ1, . . . , δk is not a support list for δ1, . . . , δm+1 and, therefore, that
Sm+1(δ̃1, . . . , δ̃m+1) 
= δ̃1, . . . , δ̃k , which is a contradiction.38

38 To be precise, we should have specified that the last argument holds with probability 1. The specification
“with probability 1” is needed because, as pointed out at the time when Sm was introduced, Sm can be
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Over the set where Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k it must also hold that
Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k . To show this, note first that it is not possible that
z∗m 
= z∗k . Indeed, by (ii) in Property 1, Mm(δ1, . . . , δk, δk+1, . . . , δm) =: z∗m 
=
z∗k := Mk(δ1, . . . , δk) implies that z∗k /∈ Zδ j for some j ∈ {k + 1, . . . ,m} and, by
(iii) in Property 1, this gives z∗m+1 := Mm+1(δ1, . . . , δk, δk+1, . . . , δm, δm+1) 
=
Mk(δ1, . . . , δk) =: z∗k , which is not possible given that Sm+1(δ̃1, . . . , δ̃m+1) =
δ̃1, . . . , δ̃k . Hence, it must be that z∗m = z∗k and this implies that δ1, . . . , δk is a
support list for δ1, . . . , δm (note that the irreducibility of δ1, . . . , δk – which is in
the definition of support list – follows from the fact that δ1, . . . , δk is a support list
for δ1, . . . , δm+1). To close the proof that Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k , suppose
for the sake of contradiction that Sm(δ̃1, . . . , δ̃m) = δ̃i1 , . . . , δ̃ih 
= δ̃1, . . . , δ̃k .
This means that δi1 , . . . , δih is another support list for δ1, . . . , δm and that
δ̃i1 , . . . , δ̃ih is preferred by Sm either because δ̃i1 , . . . , δ̃ih has smaller cardinal-
ity than δ̃1, . . . , δ̃k or because δ̃i1, . . . , δ̃ih ranks better according to the ηi ’s. If
so, however, we would have Mh(δi1 , . . . , δih ) = z∗m = z∗k = z∗m+1, which means
that δi1, . . . , δih would be a support list for δ1, . . . , δm+1 too. This gives a con-
tradiction because δ̃i1 , . . . , δ̃ih would be preferred to δ̃1, . . . , δ̃k while, instead,
Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k .39

Summarizing, we have proven that Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k implies that
z∗k ∈ Zδm+1 and that Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k , which yields

P̃
m+1

{
Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k and V (z∗k ) ∈ B

}

≤ P̃
m+1

{
z∗k ∈ Zδm+1 and Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k and V (z∗k ) ∈ B

}
,

(23)

because the set on the left-hand side is included in the set on the right-hand side.
Using (23) in (22) now gives (1A is the indicator function of set A)

∫

B
dFk,m+1

≤ P̃
m+1

{
z∗k ∈ Zδm+1 and Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k and V (z∗k ) ∈ B

}

=
∫

�̃m+1
1z∗k∈Zδm+1

·1Sm (δ̃1,...,δ̃m )=δ̃1,...,δ̃k
· 1V (z∗k )∈B dP̃

m+1
(δ̃1, . . . , δ̃m, δ̃m+1)

arbitrarily defined when
∑k

�=1 ηi� is minimized by more than one choice of the indexes, an event that
occurs with probability zero. Since specifying the exception of probability zero sets is immaterial in so far
as a probability is computed, we shall omit to explicitly indicate such exceptions in later junctures.
39 The reader may have noticed that the specific rule by which Sm selects a sub-list (i.e., by minimizing∑k

�=1 ηi� ) does not play any role in the derivation. However, what indeedmatters is that this rule only refers
to the object to be selected and not to the list fromwhich the object is selected. If, for example, the rule were:
“if m is odd, then do this; and if m is even, then do that”, then the last sentence “This gives a contradiction
because δ̃i1 , . . . , δ̃ih would be preferred to δ̃1, . . . , δ̃k while, instead, Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k”
would not be correct owing to the fact that the selection rule changes when moving from m to m + 1.
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=
∫

�̃m

(∫

�̃

1z∗k∈Zδm+1
dP̃(δ̃m+1)

)

·1Sm (δ̃1,...,δ̃m )=δ̃1,...,δ̃k
· 1V (z∗k )∈B dP̃

m
(δ̃1, . . . , δ̃m)

=
∫

�̃m

(
1 − V (z∗k )

) · 1V (z∗k )∈B · 1Sm (δ̃1,...,δ̃m )=δ̃1,...,δ̃k
dP̃

m
(δ̃1, . . . , δ̃m)

=
∫

�̃m

(
1 − V (z∗k )

) · 1V (z∗k )∈B dQ̃
m
(δ̃1, . . . , δ̃m), (24)

where measure Q̃
m
is defined through relation

Q̃
m
(A) =

∫

A
1Sm (δ̃1,...,δ̃m )=δ̃1,...,δ̃k

dP̃
m
(δ̃1, . . . , δ̃m), A ∈ D̃m

,

and the last equality in (24) is justified in view of [51, Theorem 1.29]. By a change
of variables, the right-hand side of (24) can finally be rewritten as

∫

R

(1 − v) · 1v∈B dFk,m =
∫

B
(1 − v) dFk,m .

This concludes the proof of (b). ��
We are now ready to upper-bound P̃

N {
V (z∗N ) > ε(s∗

N )
}
by taking the sup of the right-

hand side of (19) under conditions (a) and (b) (in addition to the fact that the Fk,m’s
belong to the cone C+ of generalized distribution functions with value zero for v < 0
and constant value for v ≥ 1). This gives

P̃
N {

V (z∗N ) > ε(s∗
N )
} ≤ γ, (25)

where γ is defined as the value of the optimization problem

γ = sup
Fk,m∈C+

m=0,1,..., k=0,...,m

N∑

k=0

(
N

k

)∫

(ε(k),1]
dFk,N (26a)

subject to:
m∑

k=0

(
m

k

)∫

[0,1]
dFk,m = 1, m = 0, 1, . . . (26b)

Fk,m+1 − F (1−v)
k,m ∈ C−,

m = 0, 1, . . . ; k = 0, . . . ,m. (26c)

Problem (26) involves infinitely many constraints. On the other hand, as explained
below, it is a fact that all constraints (26b) with m > N and all constraints (26c) with
m > N − 1 are superfluous and can be removed without changing the optimal value
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of the problem. In formulas, this gives

γ = sup
Fk,m∈C+

m=0,...,N , k=0,...,m

N∑

k=0

(
N

k

)∫

(ε(k),1]
dFk,N (27a)

subject to:
m∑

k=0

(
m

k

)∫

[0,1]
dFk,m = 1, m = 0, . . . , N (27b)

Fk,m+1 − F (1−v)
k,m ∈ C−,

m = 0, . . . , N − 1; k = 0, . . . ,m. (27c)

To see this, first notice that the optimal value of (26) cannot be bigger than the optimal
value of (27) because (26) has more constraints than (27). On the other hand, for any
feasible point of (27), say F̄k,m for m = 0, . . . , N and k = 0, . . . ,m, we obtain a
feasible point of (26) by letting: Fk,m = F̄k,m for m = 0, . . . , N and k = 0, . . . ,m;
Fk,m = 0 for m = N + 1, N + 2, . . . and k = 0, . . . ,m − 1; and Fm,m be any
generalized distribution function with unitary mass (e.g., a unitary concentrated mass
in v = 1) for m = N + 1, N + 2, . . .. This feasible point of (26) achieves the same
cost value as F̄k,m in (27). Hence, it is also true that the optimal value of (26) cannot
be smaller than that of (27), and therefore the two optimal values must coincide.

To evaluate γ , we proceed by dualizing (27). To this purpose, consider the
Lagrangian:

L =
N∑

k=0

(
N

k

)∫

(ε(k),1]
dFk,N −

N∑

m=0

λm

(
m∑

k=0

(
m

k

)∫

[0,1]
dFk,m − 1

)

−
N−1∑

m=0

m∑

k=0

∫

[0,1]
μ+
k,m(v) d[Fk,m+1 − F (1−v)

k,m ], (28)

which is a function of

• Fk,m ∈ C+, m = 0, . . . , N , k = 0, . . . ,m,

and the Lagrange multipliers

• λm ∈ R, m = 0, . . . , N ,
• μ+

k,m ∈ C0+[0, 1], m = 0, . . . , N − 1, k = 0, . . . ,m,

where C0+[0, 1] is the set of positive and continuous functions over [0, 1].
We show below that40

γ
(A)= sup

{Fk,m }
inf{λm }

{μ+
k,m }

L
(B)= inf{λm }

{μ+
k,m }

sup
{Fk,m }

L
(C)= γ ∗, (29)

40 In various parts of this paper from here onward, the set of generalized distribution functions Fk,m ∈
C+, m = 0, . . . , N , k = 0, . . . ,m, is indicated by the notation {Fk,m }, where the range of variability for
m and k and the fact that Fk,m ∈ C+ are suppressed for brevity. Similar notations apply to λm , μ

+
k,m and

other collections alike.
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where γ ∗ is the value of the dual of problem (27):

γ ∗ = inf
λm , m=0,...,N
μ+
k,m∈C0+[0,1],

m=0,...,N−1, k=0,...,m

N∑

m=0

λm (30a)

subject to:

(
m

k

)
1v∈(ε(k),1]1m=N + (1−v)μ+

k,m(v)1m 
=N

≤ λm

(
m

k

)
+ μ+

k,m−1(v)1m 
=k, ∀v ∈ [0, 1]
k = 0, . . . , N , m = k, . . . , N (30b)

(note that, to keep the notation compact, in (30b) there appear various functions, for
instance μ+

0,−1, that are not listed as optimization variables; however, these functions
are allmultiplied by an indicator function that is zero and they are therefore “phantoms”
that play no role).

Proof of (A) in (29): The goal is to show that the class of linear functionals
introduced in the Lagrangian is rich enough to enforce the constraints in problem
(27) and, from this, that the conclusion follows. If the generalized distribution
functions Fk,m do not satisfy the constraints in (27b) and (27c), then inf{λm },{μ+

k,m } L
is equal to −∞. This is plainly true for (27b) because, if for some m the term

(
m∑

k=0

(
m

k

)∫

[0,1]
dFk,m − 1

)

in the right-hand side of (28) is not null, then λm can be taken any large with
sign equal to that of that term, bringing L down to arbitrary large negative values.
Likewise, if (27c) is not satisfied for a given pair (k,m), then the last term in
the right-hand side of (28) can be made any large negative by selecting a suit-
able positive large continuous function μ+

k,m .
41 Hence, the search for sup{Fk,m } of

41 For a formal proof of this intuitive fact, suppose that Fk,m+1 − F(1−v)
k,m /∈ C−. Then, there are reals

a < b such that Fk,m+1(b) − F(1−v)
k,m (b) > Fk,m+1(a) − F(1−v)

k,m (a) with b ∈ [0, 1] (note that when

b = 0, a will be negative; this accommodates a positive jump at 0 of Fk,m+1 − F(1−v)
k,m ). This gives

∫
R
1v∈(a,b] d[Fk,m+1 − F(1−v)

k,m ] > 0. Now, approximate 1v∈(a,b] with continuous, positive, functions fn

which equals 1 on [a + 1
n , b], 0 on (−∞, a] ∪ [b + 1

n , +∞) and with linear slopes connecting 0 to 1 on
both sides. When n → +∞, fn → 1v∈(a,b] pointwise, and

∫

R

fn(v) d[Fk,m+1 − F(1−v)
k,m ] →

∫

R

1v∈(a,b] d[Fk,m+1 − F(1−v)
k,m ]

bydominated convergence.Whence, there exists a n̄ large enough such that
∫
R

fn̄(v) d[Fk,m+1−F(1−v)
k,m ] >

0, which yields
∫
[0,1] fn̄(v) d[Fk,m+1 − F(1−v)

k,m ] > 0, because integration is with respect to a measure that

has no mass outside [0, 1]. Function μ+
k,m is now defined as the restriction of fn̄ to [0, 1] with an arbitrary

re-scaling to make the integral arbitrarily large.
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inf{λm },{μ+
k,m } L can be restricted to the Fk,m’s in C+ that satisfy (27b) and (27c)

and, once (27b) and (27c) hold, inf{λm },{μ+
k,m } L is achieved by setting the second

and third terms in the right-hand side of (28) to zero (e.g. by choosing λm = 0 and
μ+
k,m = 0 for allm and k). This leads to the conclusion that sup{Fk,m } inf{λm },{μ+

k,m } L
equals γ of problem (27). ��
Proof of (B) in (29): Let τ > 0 be a number smaller than 1 − ε(k) for all k’s for
which ε(k) 
= 1 ad smaller than ε(k) for all k’s for which ε(k) 
= 0. Matters of
convenience (as shown later) suggest to introduce a modified Lagrangian

Lτ =
N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τ (v) dFk,N −

N∑

m=0

λm

(
m∑

k=0

(
m

k

)∫

[0,1]
dFk,m − 1

)

−
N−1∑

m=0

m∑

k=0

∫

[0,1]
μ+
k,m(v) d[Fk,m+1 − F (1−v)

k,m ],

where ϕk,τ is a continuous function over [0, 1] defined as follows: for all k for
which ε(k) 
= 1 and ε(k) 
= 0, ϕk,τ (v) is equal to 0 for v ∈ [0, ε(k) − τ ],42
equal to 1 for v ∈ [ε(k), 1], and with a linear slope connecting 0 to 1 in between;
while ϕk,τ (v) is identically zero when ε(k) = 1 and identically equal to 1 when
ε(k) = 0. We show below the validity of the following relations:

sup
{Fk,m }

inf{λm }
{μ+

k,m }
Lτ = inf{λm }

{μ+
k,m }

sup
{Fk,m }

Lτ

↓τ↓0 ≤

sup
{Fk,m }

inf{λm }
{μ+

k,m }
L ≤ inf{λm }

{μ+
k,m }

sup
{Fk,m }

L.

(31)

Notice that the above relations imply the sought result that

sup
{Fk,m }

inf{λm }
{μ+

k,m }
L = inf{λm }

{μ+
k,m }

sup
{Fk,m }

L

because inf {λm }
{μ+

k,m }
sup{Fk,m } L is in sandwich between sup{Fk,m } inf {λm }

{μ+
k,m }

L and

inf {λm }
{μ+

k,m }
sup{Fk,m } Lτ , two quantities that converge one onto the other as τ ↓ 0.

The two inequalities in (31) are justified as follows: the “≤” at the bottom of (31)
is valid because relation “sup inf ≤ inf sup” is always true, while the “ ≤ ” on the
right follows from the fact that ϕk,τ (v) in Lτ is greater than or equal to 1v∈(ε(k),1]
in L.

42 Note that interval [0, ε(k) − τ ] is non-empty owing to condition τ < ε(k); condition τ < 1− ε(k) will
be used in a subsequent juncture.
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What remains to show is thus the “=” at the top of (31) and the convergence
“↓τ↓0” on the left.

We first show that

sup
{Fk,m }

inf{λm }
{μ+

k,m }
Lτ = inf{λm }

{μ+
k,m }

sup
{Fk,m }

Lτ , (32)

for which purpose we need to introduce a proper topological vector space, [52],
as specified in the following.

Consider the vector space BV of functions FBV of bounded variation, [51],
that are right continuous with value zero for v < 0 and constant value for
v ≥ 1. Moreover, let LF be the vector space of linear functionals on BV of the
form

∫
[0,1] μ(v) dFBV, where μ is a continuous function (μ ∈ C0[0, 1]). In

BV, introduce the weak topology induced by LF, see [52, Section 3.8]. This
weak topology makesBV into a locally convex topological vector space whose
dual space coincides with LF, see [52, Theorem 3.10].43 By also considering
the standard topology of R generated by open intervals, the ambient space
in which we are going to work is the topological vector space given by R ×
R

N+1 × BV (N+1)N
2 =: S equipped with the product topology.

The interpretation of S is that it is the codomain of an operator that maps Fk,m ,
m = 0, 1, . . . , N , k =, 0, . . . ,m into an element of S according to the rule:

{
Fk,m

}
m=0,1,...,N
k=0,...,m

−→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑N
k=0

(N
k

) ∫
[0,1] ϕk,τ (v) dFk,N (∈ R){∑m

k=0

(m
k

) ∫
[0,1] dFk,m − 1

}

m=0,1,...,N
(∈ R

N+1)

{
Fk,m+1 − F (1−v)

k,m

}
m=0,1,...,N−1
k=0,...,m

(∈ BV (N+1)N
2 )

(note that this operator returns various terms that are found in Lτ ). We next
consider the image of this operator, that is, the range of points in S that are

reached as {Fk,m} varies in its domain
(C+) (N+2)(N+1)

2 . This image is further

enlarged by adding to each term Fk,m+1 − F (1−v)
k,m an arbitrary Pk,m ∈ C+

(the reason for this will become clear shortly). The final set that is obtained as
{Fk,m} and {Pk,m} vary over their domains is denoted by H :

H :=
{
(w, {rm}, {QBV

k,m

}
) ∈ R × R

N+1 × BV (N+1)N
2 :

w =
N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τ (v) dFk,N ,

43 For the applicability of Theorem 3.10, one needs that LF “separates” BV, a fact that follows from
Footnote 41.
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{rm} =
{

m∑

k=0

(
m

k

)∫

[0,1]
dFk,m − 1

}
,

{
QBV

k,m

} = {Fk,m+1 − F (1−v)
k,m + Pk,m

}
,

where, for all m and k, Fk,m ∈ C+, Pk,m ∈ C+}. (33)

The closure of H in the topology of S is denoted by H̄ .44 The following
definitions refer to the restrictions of H and H̄ to the line where all rm , m =
0, 1, . . . , N , and QBV

k,m , m = 0, 1, . . . , N − 1, k = 0, . . . ,m, are set to 0 (i.e.,
the zero element in R and BV, respectively): quantities

W := sup
{
v : (v, {rm = 0}, {QBV

k,m = 0
}
) ∈ H

}

W̄ := sup
{
v : (v, {rm = 0}, {QBV

k,m = 0
}
) ∈ H̄

}

are called value and supervalue, respectively.45 With this notation, we have

sup
{Fk,m }

inf{λm }
{μ+

k,m }
Lτ = W

(this fact easily follows from an argument similar to the proof of equality (A)
in (29) after noting that W in the present context plays the same role as γ in
left-hand side of (29)). On the other hand, we also have

inf{λm }
{μ+

k,m }
sup

{Fk,m }
Lτ = W̄ , (34)

a fact that can be proven by the Hahn-Banach theorem as shown below. After
this, the proof of (32) will be closed by proving that W = W̄ .

The argument to prove (34) is inspired by [53]. Note that H̄ is convex and
closed and, for any ε > 0, point sε := (W̄ + ε, {rm = 0}, {QBV

k,m = 0}) /∈
H̄ . By an application of Hahn-Banach theorem (see [52, Theorem 3.4]),
one can therefore find a linear continuous functional defined over S that
“separates” H̄ from sε in such a way that the functional computed at any
point of H̄ is strictly smaller than the functional computed at sε.

44 The closure H̄ is formed by all contact points of H , where a point is of contact if any neighborhood of
the point contains at least one point in H ; clearly, any point h ∈ H also belongs to H̄ .
45 Note that, in the definition ofW , sup is taken over a nonempty set. As a matter of fact, owing to (20) and
(21), the maps Mm that satisfy Property 1 give rise to generalized distribution functions Fk,m for which

one obtaines rm = 0 for all m and QBV
k,m = 0 for all m and k by the choice Pk,m = −(Fk,m+1 − F(1−v)

k,m ).

It is also worth noticing that W̄ (and henceW too) is finite and no bigger than 1. In fact, by the definition of
H , every point in H satisfies w ≤ rN + 1. On the other hand, if it were that W̄ > 1, then there would exist
a contact point of H such that w > 1 and rN = 0, which is in contradiction with the fact that w ≤ rN + 1
for all points in H .
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A generic linear continuous functional defined over S is written as

a · w −
N∑

m=0

λmrm −
N−1∑

m=0

m∑

k=0

∫

[0,1]
μk,m(v) dQBV

k,m, (35)

where a, λm ∈ R andμk,m ∈ C0[0, 1], and hence the separation condition
yields

aε · w −
N∑

m=0

λε
mrm −

N−1∑

m=0

m∑

k=0

∫

[0,1]
με
k,m(v) dQBV

k,m

< aε · (W̄ + ε), ∀(w, {rm}, {QBV
k,m}) ∈ H̄ , (36)

where aε, λε
m, με

k,m are specific choices of a, λm, μk,m in (35). Spe-

cializing (36) to a point (w, {rm = 0}, {QBV
k,m = 0}) in H̄ yields

aε · w < aε · (W̄ + ε), which implies aε > 0. Moreover, noting that
QBV

k,m contains Pk,m , which is in C+ (and, therefore, corresponds to a
positive measure) and arbitrarily large, one concludes that με

k,m must be

non-negative for inequality (36) to hold over the whole H̄ . To take notice
of this fact, we write μ

ε,+
k,m in place of με

k,m . Dividing by aε, inequality
(36) now gives

w −
N∑

m=0

λε
m

aε
rm −

N−1∑

m=0

m∑

k=0

∫

[0,1]
μ

ε,+
k,m(v)

aε
dQBV

k,m

< W̄ + ε, ∀(w, {rm}, {QBV
k,m}) ∈ H̄ .

Given the arbitrariness of ε and restricting attention to H ⊆ H̄ , one
concludes that

inf{λm }
{μ+

k,m }
sup

(w,{rm },{QBV
k,m })∈H

{
w −

N∑

m=0

λmrm

−
N−1∑

m=0

m∑

k=0

∫

[0,1]
μ+
k,m(v) dQBV

k,m

}
≤ W̄ . (37)

On the other hand, recalling the expression ofw, rm , QBV
k,m in the definition

of H given in (33), the left-hand side of (37) can be rewritten as

inf{λm }
{μ+

k,m }
sup

{Fk,m },{Pk,m }

{
Lτ −

N−1∑

m=0

m∑

k=0

∫

[0,1]
μ+
k,m(v) dPk,m

}
,
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which further becomes

inf{λm }
{μ+

k,m }

{
sup

{Fk,m }
Lτ + sup

{Pk,m }

{
−

N−1∑

m=0

m∑

k=0

∫

[0,1]
μ+
k,m(v) dPk,m

}}

= inf{λm }
{μ+

k,m }
sup

{Fk,m }
Lτ , (38)

where in the last equality the second term has been suppressed because
sup{Pk,m } is taken over non-positive quantities and Pk,m = 0 is admissible.
Altogether, (37) and (38) give the relation

inf{λm }
{μ+

k,m }
sup

{Fk,m }
Lτ ≤ W̄ . (39)

To close the proof of (34), we show that strict inequality in (39) cannot
hold. Indeed, in the opposite, there would exist a linear continuous func-
tional of the form (35) that separates H from p̄ := (W̄ , {rm = 0}, {QBV

k,m =
0}) in such a way that the value at p̄ is strictly larger than the value at
any point of H . If we now consider the open set A obtained as counter-
image of the reals greater than the value taken by this functional at p̄
minus a small enough margin, then A contains p̄, while A leaves out all
H , contradicting the fact that p̄ is a contact point of H .46

We now show that W = W̄ , so closing the proof of (32). We start by con-
structing a sequence of neighborhoods of p̄ = (W̄ , {rm = 0}, {QBV

k,m = 0})
that exhibit asymptotic properties of interest. Consider a countable set of con-
tinuous functions g1, g2, . . . dense in C0[0, 1] with respect to the sup norm
(e.g., polynomials with rational coefficients, see [54, Theorem 7.26]). For
i = 1, 2, . . ., the neighborhoods of p̄ are defined as follows:

Oi :=
{
(w, {rm}, {QBV

k,m}) with |w − W̄ | < 1/i; |rm | < 1/i,

m = 0, 1, . . . , N ; and max
j=1,...,i

∣∣∣∣
∫

[0,1]
g j (v) dQBV

k,m

∣∣∣∣ < 1/i,

m = 0, 1, . . . , N − 1 and k = 0, . . . ,m
}
.

Further, for any m = 0, 1, . . . , N and k = 0, 1, . . . ,m consider sequences
Fi
k,m ∈ C+ and Pi

k,m ∈ C+ indexed in i such that, for each i = 1, 2, . . ., the

pair ({Fi
k,m}, {Pi

k,m}) maps into a point of H that is also in Oi (such sequences
certainly exist since p̄ is a contact point of H , see Footnote 46). For these

46 p̄ is a contact point of H because W̄ is defined via a sup operation over contact points and, therefore,
any neighborhood of p̄ is also a neighborhood of a contact point (w, {rm = 0}{QBV

k,m = 0
}
) with w close

enough to W̄ , so that the neighborhood must contain a point of H .
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sequences we have

lim
i→∞

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τ (v) dFi

k,N = W̄ ; (40)

lim
i→∞

[
m∑

k=0

(
m

k

)∫

[0,1]
dFi

k,m − 1

]
= 0, m = 0, 1, . . . , N ; (41)

lim
i→∞

∫

[0,1]
g j (v) d[Fi

k,m+1 − F (1−v),i
k,m + Pi

k,m] = 0,

∀g j , j = 1, 2, . . . , m = 0, 1, . . . , N − 1, k = 0, . . . ,m. (42)

For given m and k, each Fi
k,m ∈ C+ corresponds to a measure with all its mass

in [0, 1]. Moreover, in view of (41), the Fi
k,m’s are uniformly bounded in i

(i.e., Fi
k,m(v) ≤ C , ∀v, for all i , for some positive constant C < +∞). Hence,

by Helly’s theorem, [55, Theorem 2, Section 2, Chapter III], we conclude
that there exists a sub-sequence of indexes ih such that Fih

k,m has weak limit

F̄k,m ∈ C+. By repeating the same reasoning in a nestedmanner, we can further
find a sub-sequence of the indexes ih such that weak convergence also holds
for another choice of m and k. Proceeding the same way for all choices of m
and k, we conclude that there exists a sub-sequence of indexes (which, with a
little abuse of notation, we still indicate as ih) such that Fih

k,m has weak limit

F̄k,m ∈ C+, ∀ m, k. This gives

∫

[0,1]
f (v) dF̄k,m = lim

ih→∞

∫

[0,1]
f (v) dFih

k,m, ∀ m, k, (43)

for any continuous function f ∈ C0[0, 1].
Since ϕk,τ , as well as the constant function equal to 1, are continuous, (43)
together with (40) and (41) yield

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τ (v) dF̄k,N = W̄ (44)

and

m∑

k=0

(
m

k

)∫

[0,1]
dF̄k,m − 1 = 0, m = 0, 1, . . . , N . (45)

Turn now to consider (42), from which we have

lim
ih→∞

∫

[0,1]
g j (v) d[Fih

k,m+1 − F (1−v),ih
k,m ] = − lim

ih→∞

∫

[0,1]
g j (v) dPih

k,m,
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(46)

where the limit in (42) restricted to the sub-sequence ih can be broken up in
the two limits in (46) because the left-hand side of (46) exists due to the weak
convergence of generalized distribution functions Fih

k,m .
47 For the functions g j

that are non-negative (i.e., g j (v) ≥ 0, ∀v), which we henceforth write as g+
j

to help interpretation, (46) gives

lim
ih→∞

∫

[0,1]
g+
j (v) d[Fih

k,m+1 − F (1−v),ih
k,m ] ≤ 0. (47)

Taking now any non-negative function f + in C0[0, 1] and noting that f +
can be arbitrarily approximated in the sup norm by a function g+

j ,
48 weak

convergence of Fih
k,m to F̄k,m used in (47) yields

∫

[0,1]
f +(v) d[F̄k,m+1 − F̄ (1−v)

k,m ] ≤ 0,

from which F̄k,m+1 − F̄ (1−v)
k,m is in C− (recall Footnote 41).

If we now choose P̄k,m = −[F̄k,m+1 − F̄ (1−v)
k,m ] (which is in C+), then, also in

the light of (44) and (45), one sees that ({F̄k,m}, {P̄k,m}) maps into the point
(W̄ , {rm = 0}, {QBV

k,m = 0
}
), which proves that this point is in H . Hence, it

holds that W = W̄ and equation (32) remains proven.

We next show that

lim
τ↓0 sup

{Fk,m }
inf{λm }

{μ+
k,m }

Lτ = sup
{Fk,m }

inf{λm }
{μ+

k,m }
L (48)

(in the sense that the limit on the left exists and it equals the expression on the
right), which is the only relation in (31) that is still unproven, so concluding the
proof of (B) in (29).

Notice that, in both sides of (48), the inf operator sends the value to −∞
whenever the constraints in (27b) or (27c) are not satisfied by {Fk,m}: hence,
(27b) and (27c) must be satisfied and are always assumed from now on. Under
(27b) and (27c), inf is attained for λm = 0 and μ+

k,m = 0 for all m and k, and

47 Indeed,
∫
[0,1] g j (v) d[Fih

k,m+1−F
(1−v),ih
k,m ] can be rewritten as ∫[0,1] g j (v) dF

ih
k,m+1−∫[0,1] g j (v)(1−

v) dF
ih
k,m and the two terms have limits because g j (v) and g j (v)(1 − v) are continuous functions.

48 Note that function f +(v) can be zero for some v, so that an approximant, however close, might as well
take negative values, against the requirement that the approximant is a non-negative g+

j . Nonetheless, any

ε-close approximant of f +(v) + ε is non-negative and it is also a 2ε-close approximant of f +(v).
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(48) is therefore rewritten as

lim
τ↓0 sup

{Fk,m }

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τ (v) dFk,N

= sup
{Fk,m }

N∑

k=0

(
N

k

)∫

[0,1]
1v∈(ε(k),1] dFk,N . (49)

Note that limτ↓0 on the left certainly exists because, by the very definition
of ϕk,τ , the quantity under the sign of limit is decreasing as τ ↓ 0 and is
lower bounded by 0. To show the validity of (49), we discretize τ into τi ,
i = 1, 2, . . ., τi ↓ 0, and consider a sequence {F̆ i

k,m}, i = 1, 2, . . . (with

F̆ i
k,m ∈ C+ satisfying (27b) and (27c) for any i), such that

lim
i→∞

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τi (v) dF̆ i

k,N

equals the left-hand side of (49) (for this to hold, F̆ i
k,m must achieve a pro-

gressively closer and closer approximation of sup{Fk,m } in the left-hand side of
(49) as i increases); then, we construct from {F̆ i

k,m} a new sequence {F̃ i
k,m},

i = 1, 2, . . . (still in C+ and satisfying (27b) and (27c)), such that,49

lim
i→∞

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τi (v) dF̆ i

k,N

≤ lim inf
i→∞

N∑

k=0

(
N

k

)∫

[0,1]
1v∈(ε(k),1] dF̃ i

k,N . (50)

This shows that the left-hand side of (49) (which is equal to the left-hand
side of (50)) has value no bigger than the right-hand side of (49) (because the
right-hand side of (50) is clearly no bigger than the right-hand side of (49)).
Since, on the other hand, the left-hand side of (49) cannot be smaller than the
right-hand side of (49) because ϕk,τ (v) ≥ 1v∈(ε(k),1], ∀v, relation (49) remains
proven.
The construction of {F̃ i

k,m} is in three steps:
Step 1. [construction of {F̌ i

k,m}] For all k for which ε(k) 
= 1 and for all m,

move the mass of F̆ i
k,m contained in the interval (ε(k) − τi , ε(k)] into a

49 On the right-hand side of (50) we wrote lim inf and not lim because, a-priori, we do not know if such
a limit exists and, indeed, lim inf suffices to close the argument. On the other hand, after proving (49) the
reader may want to verify that this limit actually exists.
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concentratedmass in point ε(k)+τi
50; let F̌ i

k,m be the resulting generalized
distribution functions.

Step 2. [construction of {F̂ i
k,m}] The mass shift in Step 1 can lead to generalized

distribution functions F̌ i
k,m that violate condition (27c) in ε(k) + τi ; the

new generalized distribution functions F̂ i
k,m restore the validity of this

condition. For all k for which ε(k) = 1 (so that no mass shift has been
performed in Step 1), let F̂ i

k,m = F̌ i
k,m , for all m = k, . . . , N . For all

other k’s, let F̂ i
k,k = F̌ i

k,k ; then, verify sequentially for m = k, . . . , N − 1
whether the condition

�F̌ i
k,m+1(ε(k) + τi ) − (1 − (ε(k) + τi )) �F̂ i

k,m(ε(k) + τi ) ≤ 0

is satisfied (�F(v̄) stands for the jump in v̄, i.e., F(v̄) − limv↑v̄ F(v)); if
yes, let F̂ i

k,m+1 = F̌ i
k,m+1, otherwise trim the jump �F̌ i

k,m+1(ε(k) + τi )

to the value (1− (ε(k) + τi )) �F̂ i
k,m(ε(k) + τi ) and define F̂ i

k,m+1 as the

trimmed version of F̌ i
k,m+1.

Step 3. [construction of {F̃ i
k,m}] The trimming operation in Step 2may have unbal-

anced some equalities in (27b), i.e., it may be that

m∑

k=0

(
m

k

)∫

[0,1]
dF̂ i

k,m < 1

for somem. If so, re-gain balance by adding to F̂ i
m,m a suitable mass (e.g.,

concentrated in v = 1), while leaving all other F̂ i
k,m , k 
= m, unaltered.

The so-obtained generalized distribution functions are F̃ i
k,m . Note that this

operation preserves the validity of condition F̃ i
m,m+1 − F̃ (1−v),i

m,m ∈ C−, so
that {F̃ i

k,m} satisfies (27c) besides (27b).
Since ϕk,τi (v) is non-decreasing in v, the mass shift in Step 1 can only increase∑N

k=0

(N
k

) ∫
[0,1] ϕk,τi (v) dF̆ i

k,N ; moreover, as τi ↓ 0, any trimming and re-
balancing in Steps 2 and 3 involve vanishing masses. Therefore,

lim
i→∞

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τi (v) dF̆ i

k,N

≤ lim inf
i→∞

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τi (v) dF̃ i

k,N . (51)

On the other hand, by construction, ϕk,τi (v) = 1v∈(ε(k),1] if ε(k) = 1, while,
for ε(k) 
= 1, ϕk,τi (v) 
= 1v∈(ε(k),1] only occurs on the interval (ε(k)−τi , ε(k)]

50 This is to say that F̆ i
k,m is flattened on (ε(k) − τi , ε(k)] and a jump F̆ i

k,m (ε(k)) − F̆ i
k,m (ε(k) − τi ) is

added in ε(k) + τi . Note also that ε(k) + τi ∈ [0, 1] because τi < 1 − ε(k) (see the very beginning of the
proof of (B) in (29)).
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where F̃ i
k,N has no mass by construction. Hence,

N∑

k=0

(
N

k

)∫

[0,1]
ϕk,τi (v) dF̃ i

k,N =
N∑

k=0

(
N

k

)∫

[0,1]
1v∈(ε(k),1] dF̃ i

k,N ,

which, substituted in (51), gives (50).

This concludes the proof of (B) in (29). ��
Proof of (C) in (29): First note that the Lagrangian can be rewritten as follows (in
the second last term we have used the change of running index j = m+1)

L =
N∑

m=0

m∑

k=0

∫

[0,1]

(
m

k

)
1v∈(ε(k),1]1m=N dFk,m

−
N∑

m=0

m∑

k=0

∫

[0,1]
λm

(
m

k

)
dFk,m

+
N∑

m=0

λm −
N∑

j=0

j∑

k=0

∫

[0,1]
μ+
k, j−1(v)1 j 
=k dFk, j

+
N∑

m=0

m∑

k=0

∫

[0,1]
μ+
k,m(v) · (1 − v)1m 
=N dFk,m .

By renaming j as m in the second last term and re-arranging the summations∑N
m=0

∑m
k=0 as

∑N
k=0
∑N

m=k , we then obtain:

L =
N∑

m=0

λm +
N∑

k=0

N∑

m=k

∫

[0,1]

[(
m

k

)
1v∈(ε(k),1]1m=N + (1 − v)μ+

k,m(v)1m 
=N

−λm

(
m

k

)
− μ+

k,m−1(v)1m 
=k

]
dFk,m . (52)

Now, if for some pair (k,m) the constraint in (30b) is not satisfied for a given
v = v̄, then sup{Fk,m } L can be sent to+∞ by choosing Fk,m that has an arbitrarily
large mass concentrated in v̄. Hence, the inf{λm },{μ+

k,m } of sup{Fk,m } L is attained at

λm’s and μ+
k,m’s satisfying (30b) and, once (30b) holds, sup{Fk,m } L is achieved by

setting the second term in the right-hand side of (52) to zero (e.g., choose Fk,m = 0,
for all k and m). This leads to the conclusion that inf{λm },{μ+

k,m } sup{Fk,m } L equals

γ ∗ of problem (30). ��
Next we want to evaluate γ ∗ of problem (30). For a better visualization of the con-
straints in (30b), we write them more explicitly in groups indexed by k as follows:
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k = 0, . . . , N−1

(1−v)μ+
k,k(v) ≤ λk

(k
k

)
m=k

(1−v)μ+
k,k+1(v) ≤ λk+1

(k+1
k

)+ μ+
k,k(v) m=k+1

...
...

(1−v)μ+
k,N−1(v) ≤ λN−1

(N−1
k

)+ μ+
k,N−2(v) m=N−1(N

k

)
1v∈(ε(k),1] ≤ λN

(N
k

)+ μ+
k,N−1(v) m=N

k = N

(N
N

)
1v∈(ε(N ),1] ≤ λN

(N
N

)
m=N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(53)

For any given k ∈ {0, . . . , N }, consider the corresponding set of inequalities and mul-
tiply both sides of the first inequality by (1− v)0, both sides of the second inequality
by (1 − v)1, and so on till the last inequality, which is multiplied by (1 − v)N−k .
Then, summing side-by-side the so-obtained inequalities, and noting that all func-
tions μ+

k,m(v) cancel out, one obtains that the constraints in (53) imply the following
inequalities:

k = 0, . . . , N

(N
k

)
(1 − v)N−k1v∈(ε(k),1] ≤

N∑
m=k

λm
(m
k

)
(1 − v)m−k, ∀v ∈ [0, 1].

(54)

We next show that the optimal value of problem (30) equals the optimal value of an
optimization problem with the same cost function as problem (30) and the constraints
(54), viz.

γ ∗ = inf
λm , m=0,...,N

N∑

m=0

λm (55a)

subject to:

(
N

k

)
(1 − v)N−k1v∈(ε(k),1] ≤

N∑

m=k

λm

(
m

k

)
(1 − v)m−k,

∀v ∈ [0, 1], k = 0, . . . , N . (55b)

Since the constraints in (55) are implied by those present in (30) (as shown before),
the optimal value of (55) is not bigger than the optimal value of (30). The opposite
inequality that the optimal value of (30) is not bigger than the optimal value of (55)
is proven by showing that for any feasible point of (55) one can find a feasible point
of (30) that attains the same value. This requires the following derivation.

Consider a feasible point λ0, . . . , λN of (55). Evaluating the constraints (55b) for
k = 0, . . . , N at v = 1, one sees that λm ≥ 0 form = 0, . . . , N . To find the sought
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feasible point of (30), consider the same λm as those for the feasible point of (55)
and complement them with the following functions μ+

k,m for k = 0, . . . , N − 1

and m = k, . . . , N − 1. The functions μ+
k,m are first defined over [0, 1) and

then extended to the closed interval [0, 1]. Over [0, 1), consider the inequalities
in (53) for k = 0, . . . , N − 1, m = k, . . . , N − 1 and take μ+

k,m(v) such that
these inequalities are satisfied with equality, starting from top and then proceeding
downwards. This gives

μ+
k,k(v) = λk

(k
k

)

1 − v
,

μ+
k,k+1(v) = λk+1

(k+1
k

)

1 − v
+ λk

(k
k

)

(1 − v)2

... (56)

μ+
k,N−1(v) =

N−1∑

j=k

λ j
( j
k

)

(1 − v)N− j
.

Sinceλm ≥ 0, the obtainedμ+
m,k(v)’s are all positive and,moreover, are continuous

over [0, 1).We show that choice (56) satisfies over [0, 1) the remaining inequalities
(those in (53) for k = 0, . . . , N and m = N ). For k = 0, . . . , N − 1 and m = N ,

substituting μ+
k,N−1(v) =∑N−1

j=k
λ j(

j
k)

(1−v)N− j gives

(
N

k

)
1v∈(ε(k),1] ≤

N∑

j=k

λ j

(
j

k

)
1

(1 − v)N− j
, (57)

while for k = N and m = N , we have

(
N

N

)
1v∈(ε(N ),1] ≤ λN

(
N

N

)
. (58)

Equations (57) and (58) are satisfied because they coincide with (55b). As for
v = 1, note that functions μ+

m,k defined in (56) tend to infinity when v → 1.
This poses a problem of existence for v = 1, which, however, can be easily
circumvented by truncating the functionsμ+

m,k in the interval v ∈ [1−ρ, 1] at their
value μ+

k,m(1−ρ) to obtain

μ
+,ρ
k,m (v) =

{
μ+
k,m(v) v < 1 − ρ

μ+
k,m(1−ρ) v ≥ 1 − ρ,

and noting that all the inequalities are satisfied over [0, 1] if ρ is chosen small
enough.
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Summarizing the results so far achieved, we have

P
N {V (z∗N ) > ε(s∗

N )
} (17)= P̃

N {
V (z∗N ) > ε(s∗

N )
} (25)≤ γ

(29)= γ ∗,

where γ ∗ is given by (55). The proof of the theorem is concluded by recognizing that
(55) is equivalent to (7) by defining t := 1 − v and ξ(t) := ∑N

m=0 λmtm (which for
different values of the λm’s spans the whole class PN of polynomials of order N ) and

noticing that ξ(1) =∑N
m=0 λm and that 1

k!
dk

dtk
ξ(t) =∑N

m=k λm
(m
k

)
tm−k . ��

5.2 Proof of Theorem 4

The proof is obtained from Theorem 3 by showing that the specific choice of ε(k)
given in the statement of Theorem 4 yields γ ∗ ≤ β. Consider thus (7) and take ξ(t) =
β
N

∑N−1
m=0 t

m . This gives 1
k!

dk

dtk
ξ(t) = β

N

∑N−1
m=k

(m
k

)
tm−k for k = 0, 1, . . . , N − 1 and

1
N !

dN

dt N
ξ(t) = 0. This choice of ξ(t) is feasible for (7) because the constraint for k = N

becomes 0 ≤ 0 (recall that ε(N ) = 1 so that the indicator function is 1 over an empty
set), while the constraints for k = 0, . . . , N − 1 are satisfied in view of the definition
of ε(k) in (5) and (6): for t = 1 − ε(k), equation (5) implies that the constraints
hold with equality, while the monotonicity property noted in Footnote 12 implies the
satisfaction of the constraints for all other values of t ∈ [0, 1]. Given the feasibility of
ξ(t), we then have γ ∗ ≤ ξ(1) = β and this concludes the proof. ��
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