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Abstract
We study linear programming relaxations of nonconvex quadratic programs given by
the reformulation–linearization technique (RLT), referred to as RLT relaxations. We
investigate the relations between the polyhedral properties of the feasible regions of a
quadratic program and its RLT relaxation. We establish various connections between
recession directions, boundedness, and vertices of the two feasible regions. Using
these properties, we present a complete description of the set of instances that admit
an exact RLT relaxation. We then give a thorough discussion of how our results can
be converted into simple algorithmic procedures to construct instances of quadratic
programs with exact, inexact, or unbounded RLT relaxations.
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1 Introduction

A quadratic program involves minimizing a (possibly nonconvex) quadratic function
over a polyhedron:

(QP) �∗ = min
x∈Rn

{q(x) : x ∈ F} ,
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where q : Rn → R and F ⊆ R
n are given by

q(x) = 1
2 x

T Qx + cT x, (1)

F =
{
x ∈ R

n : GT x ≤ g, HT x = h
}

. (2)

Here, Q ∈ R
n×n , c ∈ R

n , G ∈ R
n×m , H ∈ R

n×p, g ∈ R
m , and h ∈ R

p constitute
the parameters, and x ∈ R

n denotes the decision variable. Without loss of generality,
we assume that Q is a symmetric matrix. We denote the optimal value of (QP) by
�∗ ∈ R ∪ {−∞} ∪ {+∞}, with the usual conventions for infeasible and unbounded
problems.

Quadratic programs constitute an important class of problems in global optimization
and they arise in a wide variety of applications, ranging from support vector machines
and portfolio optimization to various combinatorial optimization problems such as the
maximum stable set problem and the MAX-CUT problem. We refer the reader to [1]
and the references therein. In addition, quadratic programs also appear as subproblems
in sequential quadratic programming algorithms for solving more general classes of
nonlinear optimization problems (see, e.g., [2]).

It is well-known that quadratic programs, in general, are NP-hard (see, e.g., [3, 4]).
As such, global optimization algorithms for quadratic programs are generally based
on spatial branch-and-bound methods. Convex relaxations play the crucial role of
generating lower bounds in this framework.

In this paper, we focus on a linear programming relaxation of (QP) arising from the
reformulation-and-linearization technique (RLT), henceforth referred to as the RLT
relaxation [5]. The RLT relaxation is constructed in two stages. The reformulation
stage consists of generating quadratic constraints that are implied by the linear con-
straints in F . Such quadratic constraints are obtained either by multiplying two linear
inequality constraints, or by multiplying a linear equality constraint by a variable.
In the linearization stage, the resulting implied quadratic constraints are linearized
by introducing a new variable for each quadratic term. Finally, the substitution of
quadratic terms in the objective function of (QP) with the new variables gives rise to
the RLT relaxation, whose optimal value, denoted by �∗

R , yields a lower bound on �∗.
We say that the RLT relaxation is exact if �∗

R = �∗.
We investigate the relations between the polyhedral properties of the feasible region

F of (QP) given by (2) and that of its RLT relaxation, denoted by F . In particular, we
focus on the relations between recession directions, boundedness, and vertices of the
two feasible regions. As a byproduct of our analysis, we obtain a complete algebraic
description of the set of instances of (QP) that admit an exact RLT relaxation. We also
discuss how our results can be used to construct an instance of (QP) that admits an
exact, inexact, or unbounded RLT relaxation. Our contributions are as follows:

1. For a certain family of instances of (QP), we show that the RLT relaxation can be
simplified by identifying a set of redundant RLT constraints.

2. We show that various properties of F such as boundedness and existence of vertices
directly translate to F .

3. We present simple procedures for constructing recession directions and vertices of
F from their counterparts in F .
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4. For a certain subclass of quadratic programs, we obtain a complete description of
the set of all vertices ofF . By observing that every quadratic program can be equiv-
alently reformulated in this form, we discuss the implications of this observation
on RLT relaxations of general quadratic programs.

5. We present a complete description of the set of instances that admit an exact RLT
relaxation.

6. By using the aforementioned exactness characterization together with the optimal-
ity conditions of the RLT relaxation, we present simple algorithmic procedures to
construct an instance of (QP) with an exact, inexact, or unbounded RLT relaxation.

We consider the polyhedron F in the general form given by (2) as opposed to
a more convenient form such as the standard form for the following reasons. First,
many classes of problems such as quadratic programs with box constraints and stan-
dard quadratic programs have an associated natural formulation, and converting it
to another form generally requires the introduction of additional variables and/or
constraints. Such a conversion increases the dimension of the corresponding RLT
relaxation, which, in turn, increases the computational cost of solving the relaxation.
Second, such a conversion may change the polyhedral structure of the feasible region
of (QP). For instance, a nonempty polyhedron F given by (2)may not have any vertices
but any nonempty polyhedron in standard form necessarily has at least one vertex. On
the other hand, our goal in this paper is to identify the relations between the polyhedral
properties of the original feasible region F and those ofF . Third, as we shall illustrate
in Sect. 3.3.2, the RLT relaxations arising from two equivalent formulations may not
necessarily be equivalent. As such, we adopt the general description given by (2).

This paper is organized as follows. We review the literature in Sect. 1.1 and define
our notation in Sect. 1.2. We present basic results about polyhedra in Sect. 2. We
introduce the RLT relaxation and discuss its polyhedral properties in Sect. 3. Section4
is devoted to the discussion of duality and optimality conditions of the RLT relaxation.
We introduce the convex underestimators induced by the RLT relaxation and present
a complete description of the set of instances that admit an exact RLT relaxation in
Sect. 5. We discuss how our results can be used to efficiently construct instances of
(QP) with exact, inexact, or unbounded RLT relaxations in Sect. 6. Finally, Sect. 7
concludes the paper.

1.1 Literature review

In this section, we briefly review the relevant literature.
The ideas that led to theRLT relaxationwere developed by several authors in a series

of papers. To the best of our knowledge, the terminology first appears in [6], where
the authors develop a branch-and-bound method based on RLT relaxations for solving
bilinear quadratic programs, i.e., instances of (QP) for which all the diagonal entries
of Q are equal to zero. In [7], this approach is extended to general quadratic programs
and several properties of the RLT relaxation are established. The RLT relaxation
has been extended to more general classes of discrete and nonconvex optimization
problems (see, e.g., [5]).
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RLT relaxations of quadratic programs can be further strengthened by adding a set
of convex quadratic constraints [7] or by adding semidefinite constraints [8], referred to
as the SDP-RLT relaxation. The latter relaxation usually providesmuch tighter bounds
than theRLT relaxation at the expense of significantly higher computational effort. Fur-
thermore, a continuum of linear programming relaxations between the RLT relaxation
and the SDP-RLT relaxation can be obtained by viewing the semidefinite constraint
as an infinite number of linear constraints and adding these linear cuts in a cutting
plane framework [9]. Alternatively, by using another representation as an infinite
number of second-order conic constraints, one can obtain a sequence of second-order
conic relaxations that are provably tighter than their linear programming counter-
parts [10]. In terms of computational cost, second-order conic relaxations roughly
lie between cheaper linear programming relaxations and more expensive semidefinite
programming relaxations. Alternative convex relaxations can be obtained by relying
on the observation that every quadratic program can be equivalently formulated as an
instance of a copositive optimization problem [11], which is a convex but NP-hard
problem. Nevertheless, the copositive cone can be approximated by various sequences
of tractable convex cones, each of which gives rise to relaxation hierarchies that are
exact in the limit. We refer the reader to [12] for a unified treatment of a rather large
family of convex relaxations arising from the copositive formulation, and to [13–15]
for comparisons of various convex relaxations.

Despite the fact that there exist many convex relaxations that are provably at least
as tight as the RLT relaxation, the latter is used extensively in global optimization
algorithms (see, e.g., [5, 16, 17]) due to the fact that state-of-the-art linear programming
solvers can usually scale very well with the size of the problem. Furthermore, they are
generally much more numerically stable than second-order conic programming and
semidefinite programming solvers that are required for solving tighter relaxations. As
such, RLT relaxations play a central role in global solution algorithms for nonconvex
optimization problems, which motivates our focus on their polyhedral properties.

Recently, the authors of this paper studied RLT and SDP-RLT relaxations of
quadratic programs with box constraints, which is a special case of (QP) [18]. They
presented algebraic descriptions of instances that admit exact RLT relaxations as well
as those that admit exact SDP-RLT relaxations. Using these descriptions, they pro-
posed simple algorithmic procedures for constructing instances with exact or inexact
RLT and SDP-RLT relaxations. Some of our results in this paper can be viewed as
extensions of the corresponding results in [18] to general quadratic programs. In con-
trast with [18], where the focus is on the specific class of quadratic programs with
box constraints, our main focus in this paper is on the relations between the polyhe-
dral properties of general quadratic programs and their RLT relaxations as well as the
interplay between such properties and the quality of the RLT relaxation.

1.2 Notation

We use R
n , Rn+, Rm×n , Sn , and N n to denote the n-dimensional Euclidean space,

the nonnegative orthant, the set of m × n real matrices, the space of n × n real
symmetric matrices, and the cone of componentwise nonnegative n×n real symmetric
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matrices, respectively. We use 0 to denote the real number 0, the vector of all zeroes,
as well as the matrix of all zeroes, which should always be clear from the context.
We denote by e ∈ R

n the vector of all ones. All inequalities on vectors or matrices
are componentwise. The rank of a matrix A ∈ R

m×n is denoted by rank(A). We use
conv(·), cone(·), and span(·) to denote the convex hull, conic hull, and the collection
of all linear combinations of a set, respectively. For x ∈ R

n , B ∈ R
m×n , and two index

sets J ⊆ {1, . . . ,m} and K ⊆ {1, . . . , n}, we denote by xK ∈ R
|K| the subvector of x

restricted to the indices in K and by BJK ∈ R
|J|×|K| the submatrix of B whose rows

and columns are indexed by J and K, respectively, where | · | denotes the cardinality
of a finite set. We use x j and Qi j for singleton index sets. For any U ∈ R

m×n and
V ∈ R

m×n , the trace inner product is denoted by

〈U , V 〉 = trace(UT V ) =
m∑
i=1

n∑
j=1

Ui j Vi j .

2 Preliminaries

In this section, we review basic facts about polyhedra. We refer the reader to [19] for
proofs and further results.

Let F ⊆ R
n be a nonempty polyhedron given by (2). The recession cone of F ,

denoted by F∞ ⊆ R
n , is given by

F∞ =
{
d ∈ R

n : GT d ≤ 0, HT d = 0
}

. (3)

Note that F∞ is a polyhedral cone. By the Minkowski-Weyl Theorem, it is finitely
generated, i.e., there exists d j ∈ R

n, j = 1, . . . , t such that

F∞ = cone
({

d1, . . . , dt
})

=
⎧⎨
⎩

t∑
j=1

λ j d
j : λ j ≥ 0, j = 1, . . . , t

⎫⎬
⎭ . (4)

Recall that a hyperplane {x ∈ R
n : aT x = α}, where a ∈ R

n\{0} and α ∈ R, is a
supporting hyperplane of F if α = min{aT x : x ∈ F}. A set F0 ⊆ F is a nonempty
face of F if F0 = F or F0 is given by the intersection of F with a supporting
hyperplane. In particular, F0 ⊆ F is a face of F if and only if there exists a (possibly
empty) submatrix G0 ∈ R

n×m0 of G, where m0 ≤ m, such that

F0 = {x ∈ F : (G0)T x = g0}, (5)

where g0 ∈ R
m0 denotes the corresponding subvector of g. In particular, F0 is a

minimal face of F if and only if it is an affine subspace, i.e., if and only if there
exists a submatrix G0 ∈ R

n×m0 of G, where m0 ≤ m, and a corresponding subvector
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g0 ∈ R
m0 of g such that

F0 = {x ∈ R
n : (G0)T x = g0, HT x = h}. (6)

Let
ρ = rank

([
G H

]) ≤ n. (7)

The dimension of each minimal face F0 ⊆ F is equal to n − ρ. Note that every
polyhedron has a finite number of minimal faces. In particular, if ρ = n, then each
minimal face F0 ⊆ F consists of a single point called a vertex. This gives rise to the
following useful characterizations of vertices.

Lemma 1 Let F ⊆ R
n be a nonempty polyhedron given by (2) and let x̂ ∈ F. Then,

the following statements are equivalent:

(i) x̂ is a vertex of F.
(ii) x̂ − d̂ ∈ F and x̂ + d̂ ∈ F if and only if d̂ = 0.
(iii) There exists a partition of G = [

G0 G1
]
and a corresponding partition of gT =[

(g0)T (g1)T
]
such that (G0)T x̂ = g0, (G1)T x̂ < g1, and the matrix

[
G0 H

]
has full row rank.

(iv) There exists a ∈ R
n such that x̂ is the unique optimal solution of min{aT x : x ∈

F}.

Next, we collect several results concerning the recession cone F∞ given by (3).

Lemma 2 Let F ⊆ R
n be a nonempty polyhedron given by (2). Then, the following

statements are equivalent:

(i) F has no vertices.
(ii) F contains a line.
(iii) ρ < n, where ρ is defined as in (7).
(iv) There exists d̂ ∈ R

n\{0} such that d̂ ∈ F∞ and −d̂ ∈ F∞ (i.e., F∞ contains a
line).

(v) F∞ has no vertices.

Recall that F is a polytope if it is bounded. In this case, F∞ = {0}. We next state
a useful characterization of polytopes.

Lemma 3 Let F ⊆ R
n be a nonempty polyhedron given by (2). Then, F is bounded if

and only if, for every z ∈ R
n, there exists (u, v) ∈ R

m × R
p such that

Gu + Hw = z, u ≥ 0. (8)

Proof Since F is nonempty, the boundedness of F is equivalent to

F∞ =
{
d ∈ R

n : GT d ≤ 0, HT d = 0
}

= {0}.
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Therefore, F is bounded if and only if, for every z ∈ R
n , the optimal value of the

linear programming problem

max{zT d : GT d ≤ 0, HT d = 0}

is equal to zero. The assertion follows from linear programming duality. �

Finally, we close this section with a useful decomposition result.

Lemma 4 Let F ⊆ R
n be a nonempty polyhedron given by (2), and let Fi ⊆ F, i =

1, . . . , s denote the set of minimal faces of F. Then,

F = conv
({

v1, . . . , vs
})

+ F∞, (9)

where vi ∈ Fi , i = 1, . . . , s, and F∞ is given by (3).

3 Polyhedral properties of RLT relaxations

In this section, given an instance of (QP), we introduce the corresponding RLT
(reformulation–linearization technique) relaxation and make some observations about
the RLT procedure. We then focus on the relations between the polyhedral properties
of the feasible region of (QP) and that of its RLT relaxation. We establish several con-
nections between recession directions, boundedness, and vertices of the two feasible
regions. For a specific class of quadratic programs, we give a complete characteri-
zation of the set of vertices of the feasible region of the RLT relaxation. We finally
discuss the implications of this observation on RLT relaxations of general quadratic
programs.

3.1 RLT relaxations

Recall that an instance of (QP) is completely specified by the objective function q(x)
and the feasible region F given by (1) and (2), respectively. The RLT relaxation of
(QP) is obtained by generating quadratic constraints implied by linear constraints.
Such quadratic constraints are obtained by multiplying each pair of linear inequality
constraints and bymultiplying each linear equality constraint by a variable. The result-
ing quadratic constraints and the objective function are then linearized by substituting
each quadratic term xi x j by a new variable Xi j , i = 1, . . . , n; j = 1, . . . , n.

For a given instance of (QP), the RLT relaxation of (QP) is therefore given by

(RLT) �∗
R = min

x∈Rn ,X∈Sn

{ 1
2 〈Q, X〉 + cT x : (x, X) ∈ F} ,
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where

F =

⎧
⎪⎪⎨
⎪⎪⎩

(x, X) ∈ R
n × Sn :

GT x ≤ g
HT x = h
HT X = hxT

GT XG − GT xgT − gxT G + ggT ≥ 0

⎫
⎪⎪⎬
⎪⎪⎭

. (10)

Note that (RLT) is a linear programming relaxation of (QP) since the objective
function and all constraints are linear functions of (x, X) ∈ R

n × Sn and, for each
x̂ ∈ F , we have (x̂, x̂ x̂ T ) ∈ F with the same objective function value. Therefore,

�∗
R ≤ �∗. (11)

We remark that every other quadratic constraint that canbegenerated by the pairwise
multiplication of linear constraints in F is already implied by F (see also [7, Remark
1]). Indeed, consider the RLT constraints obtained bymultiplying each pair of equality
constraints given by HT XH − HT xhT − hxT H + hhT = 0 as well as those arising
from the multiplication of each inequality and equality constraint given by hgT −
hxT G−HT xgT +HT XG = 0. It is easy to see that both are implied by the constraints
HT x = h and HT X = hxT .

An interesting question is whether all constraints in (10) are, in fact, necessary for
the RLT relaxation. Our next result identifies a family of instances of (QP) for which
F can be simplified without affecting the lower bound �∗

R .

Proposition 5 Suppose that F given by (2) is nonempty and that G ∈ R
n×m and

H ∈ R
n×p can be permuted into the following block diagonal form:

G =

⎡
⎢⎢⎢⎣

G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...

0 0 · · · Gk

⎤
⎥⎥⎥⎦ , H =

⎡
⎢⎢⎢⎣

H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...

0 0 · · · Hk

⎤
⎥⎥⎥⎦ , (12)

where Gi ∈ R
ni×mi and Hi ∈ R

ni×pi , i = 1, . . . , k. Suppose that Q ∈ Sn, g ∈ R
m,

h ∈ R
p, and x ∈ R

n are permuted accordingly so that

Q =

⎡
⎢⎢⎢⎣

Q11 Q12 · · · Q1k

Q21 Q22 · · · Q2k

...
...

. . .
...

Qk1 Qk2 · · · Qkk

⎤
⎥⎥⎥⎦ , g =

⎡
⎢⎢⎢⎣

g1

g2

...

gk

⎤
⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎣

h1

h2

...

hk

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣

x1

x2

...

xk

⎤
⎥⎥⎥⎦ ,

where Qii ∈ Sni , gi ∈ R
mi , hi ∈ R

pi , and xi ∈ R
ni for each i = 1, . . . , k, and

Qi j = (Q ji )T ∈ R
ni×n j for each 1 ≤ i < j ≤ k. For (x, X) ∈ F , suppose also that

Xi j denotes the submatrix of X corresponding to Qi j , i = 1, . . . , k; j = 1, . . . , k.
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(i) If Qii = 0 for some i = 1, . . . , k, then the RLT lower bound �∗
R remains unchanged

if the following RLT constraints are removed from F:

(Hi )T Xii = hi (xi )T

(Gi )T XiiGi − (Gi )T xi (gi )T − gi (xi )T Gi + gi (gi )T ≥ 0.

(ii) If Qi j = 0 for some 1 ≤ i < j ≤ k, then the RLT lower bound �∗
R remains

unchanged if the following RLT constraints are removed from F:

(Hi )T Xi j = hi (x j )T

(H j )T X ji = h j (xi )T

(Gi )T Xi jGi − (Gi )T xi (g j )T − gi (x j )T G j + gi (g j )T ≥ 0.

Proof We prove only (i) as the proof of (ii) is very similar. Let F̄ ⊆ R
n × Sn denote

the feasible region obtained from F by removing the two sets of constraints in (i)
and let �̄ denote the optimal value of the RLT relaxation over F̄ . Clearly, �̄ ≤ �∗

R
since F ⊆ F̄ . By (12) and the structure of the RLT constraints, note that Xii is
unrestricted in F̄ . Therefore, for any (x̄, X̄) ∈ F̄ , let us define x = x̄ , X = X̄ ,
and redefine Xii = x̄ i (x̄ i )T . It is easy to verify that (x, X) ∈ F as it satisfies the
two sets of constraints in (i). Furthermore, 1

2 〈Q, X̄〉 + cT x̄ = 1
2 〈Q, X〉 + cT x since

Qii = 0. Therefore, for each feasible solution in F̄ , there exists a corresponding
feasible solution in F with the same objective function value. It follows that �̄ = �∗

R ,
which completes the proof. �

Under the assumptions of Proposition 5, one can compute the same RLT lower
bound �∗

R by instead solving a linear programming problem of a smaller dimension,
whichmay considerably reduce the computational cost of solving (RLT). For instance,
if F = {x ∈ R

n : 0 ≤ x j ≤ 1, j = 1, . . . , n}, it follows from Proposition 5
that one only needs to introduce the RLT constraints Xii − xi ≤ 0, Xii ≥ 0, and
Xii − 2xi + 1 ≥ 0 whenever Qii �= 0, i = 1, . . . , n; and the RLT constraints
Xi j − xi ≤ 0, Xi j − x j ≤ 0, Xi j ≥ 0, and Xi j − xi − x j + 1 ≥ 0 whenever
Qi j �= 0, 1 ≤ i < j ≤ n.

Henceforth, we assume that F contains all the RLT constraints as given by (10)
since Proposition 5 implies that the RLT lower bound is independent of the exclusion
of unnecessary RLT constraints from F .

3.2 Recession cones and boundedness

In this section, we present several relations between the recession cones associated
with the polyhedral feasible regions F and F of (QP) and (RLT), respectively. We
also discuss the boundedness relation between F and F .
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Recall that the recession cone of F , denoted by F∞, is given by (3). Similarly, we
use F∞ to denote the recession cone of F , which is given by

F∞ =

⎧⎪⎪⎨
⎪⎪⎩

(d, D) ∈ R
n × Sn :

GT d ≤ 0
HT d = 0

HT D − hdT = 0
GT DG − GT dgT − gdT G ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

. (13)

Note that
(d̂, D̂) ∈ F∞ �⇒ d̂ ∈ F∞. (14)

Our next result gives a recipe for constructing recession directions of F from
recession directions and elements of F .

Proposition 6 Let F ⊆ R
n be a nonempty polyhedron given by (2) and let P =[

d1 · · · dt ] ∈ R
n×t , where d1, . . . , dt are defined as in (4). Then, for each d̂ ∈ F∞,

each x̂ ∈ F, and each K̂ ∈ N t , we have (d̂, D̂) ∈ F∞, where D̂ = x̂ d̂T + d̂ x̂ T +
P K̂ PT ∈ Sn.

Proof Since d̂ ∈ F∞, we have GT d̂ ≤ 0 and HT d̂ = 0 by (3). Furthermore, we have

HT D̂ − hd̂T = HT x̂d̂T + HT d̂ x̂T + HT P K̂ PT − hd̂T = hd̂T − hd̂T = 0,

where we used HT x̂ = h, HT d̂ = 0, and HT P = 0. Finally,

GT D̂G − GT d̂gT − gd̂T G

= (GT x̂)(GT d̂)T + (GT d̂)(GT x̂)T + GT P K̂ PT G − (GT d̂)gT − g(GT d̂)T

= (GT x̂ − g)(GT d̂)T + (GT d̂)(GT x̂ − g)T + (GT P)K̂ (GT P)T

≥ 0,

where the last inequality follows from GT x̂ ≤ g, GT d̂ ≤ 0, GT P ≤ 0, and K̂ ≥ 0.
Therefore, (d̂, D̂) ∈ F∞ by (13). �

An interesting question is whether, for each (d̂, D̂) ∈ F∞, there exist some x̂ ∈ F
and some K̂ ∈ N t such that D̂ can be expressed in the form given in Proposition 6.
The following example illustrates that this is not the case.

Example 1 Let

F = {x ∈ R
2 : x1 + x2 ≤ 1, x1 + x2 ≥ −1},

i.e., n = 2, m = 2, p = 0, and

G =
[
1 −1
1 −1

]
, g =

[
1
1

]
.
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Clearly,

F∞ =
{[

α

−α

]
: α ∈ R

}
= cone

{[
1

−1

]
,

[−1
1

]}
.

Let d̂ = 0 ∈ R
2 and

D̂ =
[
3 −2

−2 1

]
.

By (13), we have (d̂, D̂) ∈ F∞ since GT D̂G = 0 ∈ S2. On the other hand, for any
x̂ ∈ F and any K̂ ∈ N 2, we obtain

x̂ d̂T + d̂ x̂ T + P K̂ PT =
[
1 −1

−1 1

] [
K̂11 K̂12

K̂12 K̂22

] [
1 −1

−1 1

]

=
[
K̂11 − 2K̂12 + K̂22 −K̂11 + 2K̂12 − K̂22

−K̂11 + 2K̂12 − K̂22 K̂11 − 2K̂12 + K̂22

]
,

which implies that D̂ cannot be expressed in this form for any K̂ ∈ N 2.

Next, we discuss the boundedness relation between F and F .

Lemma 7 F is nonempty and bounded if and only if F is nonempty and bounded.

Proof Suppose that F is nonempty and bounded. Then, F∞ = {0}. Clearly, F is
nonempty since, for each x̂ ∈ F , we have (x̂, x̂ x̂ T ) ∈ F . Let (d̂, D̂) ∈ F∞. By (14),
we obtain d̂ ∈ F∞, which implies that d̂ = 0. By (13),

HT D̂ = 0, GT D̂G ≥ 0.

ByLemma 3, for every z1 ∈ R
n and z2 ∈ R

n , there exist u1 ∈ R
m+,w1 ∈ R

p, u2 ∈ R
m+,

andw2 ∈ R
p such that Gu1 + Hw1 = z1 and Gu2 + Hw2 = z2. Therefore, for every

z1 ∈ R
n and z2 ∈ R

n ,

(z1)T D̂z2 = (Gu1 + Hw1)T D̂(Gu2 + Hw2) = (u1)T GT D̂Gu2 ≥ 0,

where we used HT D̂ = 0, GT D̂G ≥ 0, u1 ≥ 0, and u2 ≥ 0. Since the inequality
above holds for every z1 ∈ R

n and z2 ∈ R
n , we obtain D̂ = 0. Therefore, (d̂, D̂) =

(0, 0), which implies that F∞ = {(0, 0)}. It follows that F is bounded.
Conversely, ifF is nonempty and bounded, then F is nonempty and bounded since

F is the projection of F onto the x-space. �

3.3 Vertices

In this section, we focus on the relations between the vertices of F and those of F .
First, we consider the case in which F has no vertices.
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Lemma 8 Suppose that F is nonempty. If F has no vertices, then F has no vertices.

Proof By Lemma 2 (iv), there exists a nonzero d̂ ∈ R
n\{0} such that d̂ ∈ F∞ and

−d̂ ∈ F∞. Let x̂ ∈ F and define D̂ = x̂ d̂T + d̂ x̂ T . By Proposition 6, we obtain
(d̂, D̂) ∈ F∞ and−(d̂, D̂) ∈ F∞, which implies thatF contains a line. By Lemma 2,
F has no vertices. �

Before we present the relations between the set of vertices of F and that of F , we
state a useful technical lemma that will be helpful in the remainder of this section.

Lemma 9 Let A ∈ R
n×k and Z ∈ Sk . Then, the system ATW A = Z has a solution

W ∈ Sn if and only if the range space of Z is contained in the range space of AT .
Furthermore, if A has full row rank, then the solution is unique.

Proof If ATW A = Z has a solution W ∈ Sn , then, for any y ∈ R
k , we have

Zy = AT (W Ay), which implies that the range space of Z is contained in the range
space of AT .

Conversely, let Z = ∑κ
j=1 λ j z j (z j )T denote the eigenvalue decomposition of Z ,

where κ ≤ k denotes the rank of Z and z j ∈ R
k, j = 1, . . . , κ . By the hypothesis,

the range space of Z , given by span{z1, . . . , zκ }, is contained in the range space of
AT . Therefore, for each j = 1, . . . , κ , there exists u j ∈ R

n such that z j = AT u j .
It follows that Z = ATU�UT A, where U = [

u1 · · · uκ
] ∈ R

n×κ and � ∈ Sκ is a
diagonal matrix whose entries are given by λ1, . . . , λκ . Therefore, W = U�UT is a
solution of ATW A = Z .

If A has full row rank, then the uniqueness of the solution W ∈ Sn follows from
the observation that the matrix U is uniquely determined. �

We are now in a position to present the first relation between the set of vertices of
F and that of F .

Proposition 10 Suppose that F is nonempty. Let x̂ ∈ F and X̂ = x̂ x̂ T ∈ Sn. Then,
(x̂, X̂) is a vertex of F if and only if x̂ is a vertex of F.

Proof For each x̂ ∈ F , we clearly have (x̂, X̂) ∈ F , where X̂ = x̂ x̂ T ∈ Sn .
First, suppose that x̂ ∈ R

n is a vertex of F . Let G0 ∈ R
n×m0 and G1 ∈ R

n×m1

denote the submatrices of G, where m0 + m1 = m, and let g0 ∈ R
m0 and g1 ∈ R

m1

denote the corresponding subvectors of g such that

(G0)T x̂ = g0, (G1)T x̂ < g1. (15)

First, we identify the set of active constraints of (RLT) at (x̂, X̂):

(G0)T x̂ = g0

(G1)T x̂ < g1

HT x̂ = h

HT x̂ x̂T = hx̂T
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[
(G0)T

(G1)T

]
x̂ x̂ T

[
(G0)T

(G1)T

]T
−
[
(G0)T

(G1)T

]
x̂

[
g0

g1

]T
−
[
g0

g1

]
x̂ T

[
(G0)T

(G1)T

]T
+
[
g0

g1

] [
g0

g1

]T

=
[
0 0
0 r1(r1)T

]
,

where r1 = g1 − (G1)T x̂ > 0. Therefore, r1(r1)T is componentwise strictly positive.
By Lemma 1 (iii), it suffices to show that the system

(G0)T d̂ = 0

HT d̂ = 0

HT D̂ = hd̂T

(G0)T D̂G0 − (G0)T d̂(g0)T − g0d̂T G0 = 0

(G0)T D̂G1 − (G0)T d̂(g1)T − g0d̂T G1 = 0,

where (d̂, D̂) ∈ R
n × Sn , has a unique solution (d̂, D̂) = (0, 0).

Since x̂ is a vertex of F , the matrix
[
G0 H

]
has full row rank by Lemma 1 (iii).

Therefore, we obtain d̂ = 0 from the first two equations. Substituting d̂ = 0 into the
third and fourth equations, we obtain

[
(G0)T

HT

]
D̂

[
(G0)T

HT

]T
=
[
0 0
0 0

]
,

where we used HT D̂ = 0 by the third equation. By Lemma 9, we obtain D̂ = 0,
which implies that (x̂, X̂) is a vertex of F .

Conversely, suppose that x̂ is not a vertex of F . By Lemma 1 (ii), there exists a
nonzero d̂ ∈ R

n such that each of d̂ and −d̂ is a feasible direction at x̂ ∈ F . Using
the same partition as in (15), we obtain

(G0)T d̂ = 0, HT d̂ = 0.

Let D̂ = d̂ x̂ T + x̂ d̂T ∈ Sn . We claim that each of (d̂, D̂) and −(d̂, D̂) is a feasible
direction at (x̂, X̂). Indeed,

HT (d̂ x̂ T + x̂ d̂T ) = hd̂T

(G0)T (d̂ x̂ T + x̂ d̂T )G0 − (G0)T d̂(g0)T − g0d̂T G0 = 0

(G0)T (d̂ x̂ T + x̂ d̂T )G1 − (G0)T d̂(g1)T − g0d̂T G1 = 0

Furthermore, since (G1)T x̂ < g1 and (G1)T X̂G1 − (G1)T x̂(g1)T − g1 x̂ T G1 +
g1(g1)T = r1(r1)T > 0, where r1 = g1 − (G1)T x̂ > 0, it follows that there exists a
real number ε > 0 such that (x̂, X̂)+ ε(d̂, D̂) ∈ F and (x̂, X̂)− ε(d̂, D̂) ∈ F , which
implies that (x̂, X̂) is not a vertex of F by Lemma 1 (ii). �

By Proposition 10, for each vertex x̂ ∈ F , there is a corresponding vertex (x̂, X̂) ∈
F , where X̂ = x̂ x̂ T . We therefore obtain the following result.
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Corollary 11 Suppose that F is nonempty. The set of vertices of F is nonempty if and
only if the set of vertices of F is nonempty.

Proof The result immediately follows from Lemma 8 and Proposition 10. �
Next, we identify another connection between the set of vertices of F and the set

of vertices of F .

Proposition 12 Let v1 ∈ F and v2 ∈ F be two vertices such that v1 �= v2. Let
x̂ = 1

2 (v
1 + v2) and X̂ = 1

2

(
v1(v2)T + v2(v1)T

)
. Then, (x̂, X̂) is a vertex of F .

Proof Let v1 ∈ F and v2 ∈ F be two vertices. Let x̂ = 1
2 (v

1 + v2) and X̂ =
1
2

(
v1(v2)T + v2(v1)T

)
. First, we verify that (x̂, X̂) ∈ F . Clearly, we have

GT x̂ = GT ( 1
2 (v

1 + v2)
) ≤ g

HT x̂ = HT ( 1
2 (v

1 + v2)
) = h

HT X̂ = HT ( 1
2

(
v1(v2)T + v2(v1)T

)) = h
( 1
2 (v

1 + v2)
)T = hx̂T .

Let us define
r (1) = g − GT v1 ≥ 0, r (2) = g − GT v2 ≥ 0. (16)

Then, we obtain

GT X̂G − GT x̂gT − gx̂T G + ggT = 1
2

(
r (1)(r (2))T + r (2)(r (1))T

) ≥ 0, (17)

where we used (16). Therefore, (x̂, X̂) ∈ F .
Next, we show that (x̂, X̂) is a vertex of F . We define the following submatrices of

G and the corresponding subvectors of g:

(G0)T x̂ = (G0)T v1 = (G0)T v2 = g0

(G1)T v1 = g1, (G1)T v2 < g1

(G2)T v1 < g2, (G2)T v2 = g2

(G3)T v1 < g3, (G3)T v2 < g3.

We remark that G1 and G2 are nonempty submatrices of G since v1 �= v2. By (16)
and (17), we can identify the set of active constraints of (RLT) at (x̂, X̂):

(G0)T x̂ = g0

(G j )T x̂ < g j , j = 1, 2, 3

HT x̂ = h

HT X̂ = hx̂T

GT X̂G − GT x̂gT − gx̂T G + ggT =

⎡
⎢⎢⎣

0 0 0 0
0 0 + +
0 + 0 +
0 + + +

⎤
⎥⎥⎦ ,
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where, in the last equation, we assume without loss of generality that G =[
G0 G1 G2 G3

]
and g is partitioned accordingly, and + denotes a submatrix with

strictly positive entries.
Therefore, by Lemma 1 (iii), it suffices to show that the system

(G0)T d̂ = 0

HT d̂ = 0

HT D̂ = hd̂T

(Gi )T D̂G j − (Gi )T d̂(g j )T − gi d̂T G j = 0,

(i, j) ∈ {(0, 0), (0, 1), (0, 2), (0, 3) , (1, 1), (2, 2)},

where (d̂, D̂) ∈ R
n × Sn , has a unique solution (d̂, D̂) = (0, 0).

Therefore, (d̂, D̂) should simultaneously solve the following two systems:

⎡
⎣

(G0)T

(G1)T

HT

⎤
⎦ D̂

⎡
⎣

(G0)T

(G1)T

HT

⎤
⎦
T

=
⎡
⎢⎣

0 g0d̂T G1 0

(G1)T d̂(g0)T (G1)T d̂(g1)T + g1d̂T G1 (G1)T d̂hT

0 hd̂T G1 0

⎤
⎥⎦ ,

⎡
⎣

(G0)T

(G2)T

HT

⎤
⎦ D̂

⎡
⎣

(G0)T

(G2)T

HT

⎤
⎦
T

=
⎡
⎢⎣

0 g0d̂T G2 0

(G2)T d̂(g0)T (G2)T d̂(g2)T + g2d̂T G2 (G2)T d̂hT

0 hd̂T G2 0

⎤
⎥⎦ .

Substituting (G0)T v1 = g0 and HT v1 = h into the first equation, and (G0)T v2 = g0

and HT v2 = h into the second one, we obtain

⎡
⎣

(G0)T

(G1)T

HT

⎤
⎦ D̂

⎡
⎣

(G0)T

(G1)T

HT

⎤
⎦
T

=
⎡
⎣

(G0)T

(G1)T

HT

⎤
⎦(v1d̂T + d̂(v1)T

)
⎡
⎣

(G0)T

(G1)T

HT

⎤
⎦
T

⎡
⎣

(G0)T

(G2)T

HT

⎤
⎦ D̂

⎡
⎣

(G0)T

(G2)T

HT

⎤
⎦
T

=
⎡
⎣

(G0)T

(G2)T

HT

⎤
⎦(v2d̂T + d̂(v2)T

)⎡⎣
(G0)T

(G2)T

HT

⎤
⎦
T

.

Since v1 and v2 are vertices of F , Lemma 1 (iii) implies that each of the two matrices[
G0 G1 H

]
and

[
G0 G2 H

]
has full row rank. By Lemma 9, we obtain

D̂ = v1d̂T + d̂(v1)T = v2d̂T + d̂(v2)T ,

which implies that (v1 − v2)d̂T + d̂(v1 − v2)T = 0. Since v1 �= v2, we obtain d̂ = 0.
Substituting this into the matrix equations above, we obtain D̂ = 0 by Lemma 9,
which proves the assertion. �

Propositions 10 and 12 identify two sets of vertices of F under the assumption that
F contains at least one vertex. An interesting question is whether every vertex of F
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belongs to one of these two sets. The following example illustrates that this is not
necessarily true even when F is a polytope.

Example 2 Let n = 2 and

F =
{
x ∈ R

2 : 0 ≤ x j ≤ 1, j = 1, 2
}

,

i.e., we have p = 0, m = 4, G = [
I −I

]
, and gT = [

eT 0T
]
, where e ∈ R

2, 0 ∈ R
2,

and I ∈ S2 denotes the identity matrix. F has four vertices given by

v1 =
[
0
0

]
, v2 =

[
0
1

]
, v3 =

[
1
0

]
, v4 =

[
1
1

]
. (18)

The feasible region of the RLT relaxation is given by

F =

⎧⎪⎪⎨
⎪⎪⎩

(x, X) ∈ R
2 × S2 :

x ≤ e
x ≥ 0[

X − xeT − exT + eeT exT − X
xeT − X X

]
≥ 0

⎫⎪⎪⎬
⎪⎪⎭

.

By Proposition 10, there are four vertices of F in the form of (v j , v j (v j )T ), j =
1, . . . , 4. Similarly, by Proposition 12,F has another set of six vertices in the form of

( 1
2 (v

i + v j ), 1
2 (v

i (v j )T + v j (vi )T )
)
, 1 ≤ i < j ≤ 4.

We now claim that F has at least one other vertex that does not belong to these two
sets. Consider (x̂, X̂) ∈ R

2 × S2 given by

x̂ =
[
1
2
1
2

]
, X̂ =

[
1
2 0

0 0

]
. (19)

It is easy to verify that (x̂, X̂) ∈ F and that (x̂, X̂) does not belong to either of the two
sets of vertices identified by Proposition 10 and Proposition 12. It is an easy exercise to
show that (x̂, X̂)± (d̂, D̂) ∈ F if and only if (d̂, D̂) = (0, 0). Therefore, we conclude
that (x̂, X̂) is a vertex of F by Lemma 1 (ii).

By Example 2, the two sets of vertices identified in Propositions 10 and 12 do not
necessarily encompass all vertices of F in general even if F is a polytope. In the next
section, we identify a subclass of quadratic programs for which all vertices of F are
completely characterized by Propositions 10 and 12. We then discuss the implications
of this observation on general quadratic programs.
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3.3.1 A specific class of quadratic programs

In this section, we present a specific class of quadratic programs with the property that
all vertices of the feasible region F of the RLT relaxation are precisely given by the
union of the two sets identified in Propositions 10 and 12.

Consider the class of instances of (QP), where Q ∈ Sn , c ∈ R
n , and

H = a ∈ R
n+\{0}, h = 1, G = −I ∈ Sn, g = 0 ∈ R

n . (20)

Therefore, the feasible region is given by

F =
{
x ∈ R

n : aT x = 1, x ≥ 0
}

. (21)

Let us define the following index sets:

P = {
j ∈ {1, . . . , n} : a j > 0

}
, (22)

Z = {
j ∈ {1, . . . , n} : a j = 0

}
. (23)

It is straightforward to verify that the set of vertices of F is

V =
{(

1
a j

)
e j : a j > 0

}
=
{(

1
a j

)
e j : j ∈ P

}
. (24)

The feasible region F of the corresponding RLT relaxation is given by

F =
{
(x, X) ∈ R

n × Sn : Xa = x, aT x = 1, x ≥ 0, X ≥ 0
}

. (25)

We next present our main result in this section.

Proposition 13 Suppose that F is given by (25), where a ∈ R
n+\{0}. Then, (x̂, X̂) is

a vertex of F if and only if (x̂, X̂) = (v, vvT ) for some v ∈ V , where V is given by

(24), or (x̂, X̂) =
(
1
2 (v

1 + v2), 1
2 (v

1(v2)T + v2 (v1)T )
)
for some v1 ∈ V , v2 ∈ V ,

and v1 �= v2.

Proof By Propositions 10 and 12, it suffices to prove the forward implication.
Let us first define

wk =
(

1
ak

)
ek, k ∈ P, (26)

Wk = wk(wk)T =
(

1
a2k

)
ek(ek)T , k ∈ P, (27)

zi j = 1
2

(
wi + w j

) =
(

1
2ai

)
ei +

(
1
2a j

)
e j , i ∈ P, j ∈ P, i �= j, (28)

Zi j = 1
2

(
wi (w j )T + w j (wi )T

) =
(

1
2ai a j

) (
ei (e j )T + e j (ei )T

)
.

i ∈ P, j ∈ P, i �= j, (29)
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where P is given by (22). By (24) and Propositions 10 and 12, it follows that each of
(wk,Wk), k ∈ P, and (zi j , Zi j ), i ∈ P, j ∈ P, i �= j , is a vertex of F .

Let (x̂, X̂) be a vertex of F . By (25) and (22), we obtain

X̂PP aP = x̂P, aTP x̂P = 1, x̂ ≥ 0, X̂ ≥ 0. (30)

First, we claim that x̂Z = 0, X̂PZ = 0, X̂ZP = 0, and X̂ZZ = 0. Indeed, by (30), if any
of these conditions is not satisfied, it is easy to construct a nonzero (d̂, D̂) ∈ R

n ×Sn

such that (x̂, X̂) ± (d̂, D̂) ∈ F , which would contradict that (x̂, X̂) is a vertex of F
by Lemma 1 (ii). Therefore,

X̂ =
∑
k∈P

X̂kke
k(ek)T + 1

2

∑
i∈P

∑
j∈P: j �=i

X̂i j
(
ei (e j )T + e j (ei )T

)

=
∑
k∈P

μkW
k +

∑
i∈P

∑
j∈P: j �=i

λi j Z
i j ,

where μk = X̂kk a2k ≥ 0, k ∈ P; λi j = X̂i j ai a j ≥ 0, i ∈ P, j ∈ P, i �= j ; Wk

and Zi j are defined as in (27) and (29), respectively. By using Wka = wk, k ∈ P;
Zi j a = zi j , i ∈ P, j ∈ P, i �= j ; and (25), the previous equality implies that

x̂ = X̂a =
∑
k∈P

μkw
k +

∑
i∈P

∑
j∈P: j �=i

λi j z
i j .

By (30), we obtain

aTP X̂PP aP =
∑
k∈P

X̂kk a
2
k +

∑
i∈P

∑
j∈P: j �=i

X̂i j ai a j =
∑
k∈P

μk +
∑
i∈P

∑
j∈P: j �=i

λi j = 1.

Therefore, (x̂, X̂) is given by a convex combination of (wk,Wk), k ∈ P, and
(zi j , Zi j ), i ∈ P, j ∈ P, i �= j . By Propositions 10 and 12, we conclude that either
(x̂, X̂) = (wk,Wk) for some k ∈ P, or (x̂, X̂) = (zi j , Zi j ) for some i ∈ P, j ∈
P, i �= j . This completes the proof. �

Our next result gives a closed-form expression of the lower bound �∗
R for an instance

of (QP) in this specific class.

Corollary 14 Consider an instance of (QP), where F is given by (21) and a ∈ R
n+\{0}.

If �∗
R is finite, then

�∗
R =min

{
min
v∈V

{ 1
2v

T Qv + cT v
}
, min
v1∈V , v2∈V , v1 �=v2

1
2

(
(v1)T Qv2+cT (v1+v2)

)}
,

(31)

where V is given by (24).
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Proof If �∗
R is finite, the relation (31) follows from Proposition 13 since (RLT) is a

linear programming problem and the optimal value is attained at a vertex. �
Weclose this sectionwith a discussion of awell-studied class of quadratic programs

that belong to the specific class of quadratic programs identified in this section. An
instance of (QP) is referred to as a standard quadratic program (see, e.g., [20]) if

H = e ∈ R
n, h = 1, G = −I ∈ Sn, g = 0 ∈ R

n . (32)

Therefore, the feasible region of a standard quadratic program is the unit simplex given
by

F =
{
x ∈ R

n : eT x = 1, x ≥ 0
}

. (33)

Similarly, the feasible region of the RLT relaxation of a standard quadratic program
is given by

F =
{
(x, X) ∈ R

n × Sn : Xe = x, eT x = 1, x ≥ 0, X ≥ 0
}

. (34)

Proposition 13 gives rise to the following result on standard quadratic programs.

Corollary 15 Consider an instance of a standard quadratic program and let F denote
the feasible region of the RLT relaxation given by (34). Then, (x̂, X̂) is a vertex
of F if and only if (x̂, X̂) = (e j , e j (e j )T ) for some j = 1, . . . , n, or (x̂, X̂) =( 1
2 (e

i + e j ), 1
2

(
ei (e j )T + e j (ei )T

))
for some 1 ≤ i < j ≤ n. Furthermore,

�∗
R = min

{
min

k=1,...,n

{ 1
2Qkk + ck

}
, min
i=1,...,n; j=1,...,n; i �= j

1
2

(
Qi j + ci + c j

)}
.

Proof The first assertion follows from Proposition 13 and (24) by using a = e ∈
R
n+\{0}, and the second one from Lemma 7 and Corollary 14 since F is bounded. �
In [21], using an alternative copositive formulation of standard quadratic programs

in [22], a hierarchy of linear programming relaxations arising from the sequence of
polyhedral approximations of the copositive cone proposed by [23] was considered
and the same lower bound given by Corollary 15 was established for the first level
of the hierarchy. Therefore, it is worth noting that the relaxation arising from the
copositive formulation turns out to be equivalent to the RLT relaxation arising from
the usual formulation of standard quadratic programs as an instance of (QP).

3.3.2 Implications on general quadratic programs

In Sect. 3.3.1, we identified a specific class of quadratic programswith the property that
Propositions 10 and 12 completely characterize the set of all vertices of the feasible
region of the corresponding RLT relaxation. In this section, we first observe that every
quadratic program can be equivalently formulated as an instance of (QP) in this class.
We then discuss the implications of this observation on RLT relaxations of general
quadratic programs.
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Consider a general quadratic program, where F given by (2) is nonempty. By
Lemma 4 and (4),

F = conv
({

v1, . . . , vs
})

+ cone
({

d1, . . . , dt
})

, (35)

where vi ∈ Fi , i = 1, . . . , s, and each Fi ⊆ F, i = 1, . . . , s, denotes a minimal face
of F , and d1, . . . , dt are the generators of F∞. Let us define

M = [
v1 · · · vs

] ∈ R
n×s, P = [

d1 · · · dt ] ∈ R
n×t . (36)

By (35) and (36), x̂ ∈ F if and only if there exists y ∈ R
s+ and z ∈ R

t+ such
that eT y = 1 and x̂ = My + Pz. Therefore, (QP) admits the following alternative
formulation:

(QPA) min
y∈Rs ,z∈Rt

⎧⎨
⎩

1
2

(
(My + Pz)T Q (My + Pz)

)+ cT (My + Pz) :
eT y = 1

y ≥ 0
z ≥ 0

⎫⎬
⎭ .

We conclude that every quadratic program admits an equivalent reformulation as an
instance in the specific class identified in Sect. 3.3.1. However, we remark that this
equivalence is mainly of theoretical interest since such a reformulation requires the
enumeration of all minimal faces of F and all generators of F∞, each of which may
have an exponential size.

Nevertheless, in this section, we will discuss the relations between the RLT relax-
ation of (QP) and that of the alternative formulation (QPA) and draw some conclusions.

Let us introduce the following notations:

nA = s + t (37)

QA =
[
MT QM MT QP
PT QM PT QP

]
∈ SnA (38)

cA =
[
MT c
PT c

]
∈ R

nA (39)

aA =
[
e
0

]
∈ R

nA (40)

xA =
[
y
z

]
∈ R

nA (41)

Therefore, (QPA) can be expressed by

(QPA) min
xA∈RnA

{ 1
2 (xA)T QAxA + (cA)T xA : xA ∈ FA

}
,

where
FA =

{
xA ∈ R

nA : (aA)T xA = 1, xA ≥ 0
}

. (42)
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Similarly, the RLT relaxation of (QPA) is given by

(RLTA) �∗
RA = min

xA∈RnA ,XA∈SnA

{
1

2
〈QA, XA〉 + (cA)T xA : (xA, XA) ∈ FA

}
,

where

FA=
{
(xA, XA)∈R

nA × SnA : XA aA= xA, (aA)T xA=1, xA≥0, XA≥0
}

.

(43)

We now present the first relation between the RLT relaxations of (QP) and (QPA)
given by (RLT) and (RLTA), respectively.

Proposition 16 Consider a general quadratic program, where F given by (2) is
nonempty. Then, �∗

R ≤ �∗
RA ≤ �∗.

Proof Let (x̂ A, X̂ A) ∈ FA be an arbitrary feasible solution of (RLTA). We will con-
struct a corresponding feasible solution (x̂, X̂) ∈ F of (RLT) with the same objective
function value. Let

x̂ = [
M P

]
x̂ A ∈ R

n, X̂ = [
M P

]
X̂ A

[
M P

]T ∈ Sn, (44)

where M and P are defined as in (36). By (35) and (40), we conclude that x̂ ∈ F , i.e.,
GT x̂ ≤ g and HT x̂ = h.

Since GT vi ≤ g for each i = 1, . . . , s, and GT d j ≤ 0 for each j = 1, . . . , t , we
obtain

GT [M P
]− g(aA)T ≤ 0,

where we used (36) and (40). Since X̂ A ≥ 0, we have

0 ≤
(
GT [M P

]− g(aA)T
)
X̂ A

(
GT [M P

]− g(aA)T
)T

= GT X̂G − GT x̂gT − gx̂T G + ggT ,

where we used (43) and (44) in the second line.
Since HT vi = h for each i = 1, . . . , s, and HT d j = 0 for each j = 1, . . . , t , we

obtain

HT [M P
] = h(aA)T ,

where we used (36) and (40). Therefore,

HT X̂ = HT [M P
]
X̂ A

[
M P

]T

= h(aA)T X̂ A
[
M P

]T
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= h(x̂ A)T
[
M P

]T
= hx̂T ,

where we used (43) and (44) in the third line. Therefore, (x̂, X̂) ∈ F . Furthermore,

1
2 〈Q, X̂〉 + cT x̂ = 1

2

〈
Q,

[
M P

]
X̂ A

[
M P

]T 〉+ cT
[
M P

]
x̂ A

= 1
2

〈
QA, X̂ A

〉
+ (cA)T x̂A,

where we used (44) in the first line, and (38) and (39) in the second line. Therefore,
for each (x̂ A, X̂ A) ∈ FA, there exists a corresponding solution (x̂, X̂) ∈ F with the
same objective function value. We conclude that �∗

R ≤ �∗
RA ≤ �∗. �

By Proposition 16, the RLT relaxation (RLTA) of the alternative formulation (QPA)
is at least as tight as the RLT relaxation (RLT) of the original formulation (QP). An
interesting question is whether the lower bounds arising from the two relaxations are
in fact equal (i.e., �∗

R = �∗
RA). Our next example illustrates that this is, in general, not

true.

Example 3 Consider the following instance of (QP) for n = 2, where

Q =
[−2 2
2 2

]
, c =

[
0

−2

]
,

and

F =
{
x ∈ R

2 : 0 ≤ x j ≤ 1, j = 1, 2
}

,

i.e., we have p = 0, m = 4, G = [
I −I

]
, and gT = [

eT 0T
]
, where e ∈ R

2,
0 ∈ R

2, and I ∈ S2 denotes the identity matrix. For the RLT relaxation of the original
formulation, we obtain �∗

R = − 3
2 , and an optimal solution is given by (19). By (18),

we have F = conv
({v1, . . . , v4}). Defining M = [

v1 · · · v4] ∈ R
2×4 and using (38),

(39), and (40), we obtain

QA = MT QM =

⎡
⎢⎢⎣

0 0 0 0
0 2 2 4
0 −2 2 0
0 4 0 4

⎤
⎥⎥⎦ , cA = MT c =

⎡
⎢⎢⎣

0
−2
0

−2

⎤
⎥⎥⎦ , aA =

⎡
⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ .

Therefore, (QP) can be equivalently formulated as (QPA), which is an instance of a
standard quadratic program. By Corollary 15, we have �∗

RA = −1 and an optimal
solution is

x̂ A =

⎡
⎢⎢⎣

0
0
1
2
1
2

⎤
⎥⎥⎦ , X̂ A =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1

2
0 0 1

2 0

⎤
⎥⎥⎦ .
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Therefore, we obtain �∗
R = − 3

2 < −1 = �∗
RA. In fact, for this instance of (QP),

we have �∗ = −1, which is attained at x∗ = [
1 0

]T . Therefore, the RLT relaxation
(RLTA) of the alternative formulation (QPA) is not only tighter than that of the original
formulation but is, in fact, an exact relaxation.

As illustrated by Example 3, despite the fact that (QP) and (QPA) are equivalent
formulations, (RLTA) may lead to a strictly tighter relaxation of (QP) than (RLT).
Therefore, we conclude that the quality of the RLT relaxation may depend on the
particular formulation. Recall, however, that the alternative formulation (QPA) may,
in general, have an exponential size. We close this section with the following result
on the RLT relaxation of the original formulation.

Corollary 17 Consider ageneral quadratic program,where F givenby (2) is nonempty.
Let vi ∈ Fi , i = 1, . . . , s, where each Fi ⊆ F, i = 1, . . . , s, denotes a minimal face
of F. Then,

�∗
R ≤ min

{
min

k=1,...,s

{ 1
2 (v

k)T Qvk + cT vk
}
, min
1≤i< j≤s

1
2

(
(vi )T Qv j + cT (vi + v j )

)}
.

Proof If F contains at least one vertex, then the assertion follows from Propositions 10
and 12 since each vi , i = 1, . . . , s, is a vertex. Otherwise, by (24), the vertices of
FA given by (42) are e j ∈ R

nA , j = 1, . . . , s. The assertion follows directly from
Proposition 16 and Corollary 14 by observing that (ei )T QAe j = (vi )T Qv j for each
i = 1, . . . , s and each j = 1, . . . , s by (36) and (38). �

4 Duality and optimality conditions

In this section, we focus on the dual problem of (RLT) and discuss optimality condi-
tions.

By defining the dual variables (u, w, R, S) ∈ R
m×R

p×R
p×n×Sm corresponding

to the four sets of constraints in (10), respectively, the dual of (RLT) is given by

(RLT-D) max
u∈Rm ,w∈Rp,R∈Rp×n ,S∈Sm

−uT g + wT h − 1

2
gT Sg

s.t.
−Gu + Hw − RT h − GSg = c

RT HT + HR + GSGT = Q
S ≥ 0
u ≥ 0.

Note that the variable S ∈ Sm is scaled by a factor of 1
2 in (RLT-D). We first review

the optimality conditions.

Lemma 18 Suppose that (QP) has a nonempty feasible region. Then, (x̂, X̂) ∈ F is
an optimal solution of (RLT) if and only if there exists (û, ŵ, R̂, Ŝ) ∈ R

m+ × R
p ×
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R
p×n × Nm such that

c = −Gû + Hŵ − R̂T h − GŜg, (45)

Q = R̂T HT + H R̂ + GŜGT , (46)

ûT r̂ = 0, (47)〈
Ŝ,GT X̂G + r̂ gT + gr̂ T − ggT

〉
= 0, (48)

where r̂ = g − GT x̂ ∈ R
m+.

Proof Since (x̂, X̂) ∈ F , we have

GT X̂G − GT x̂gT − gx̂T G + ggT = GT X̂G + r̂ gT + gr̂ T − ggT ≥ 0,

where we used r̂ = g − GT x̂ . The claim now follows from the optimality conditions
for (RLT) and (RLT-D). �

We remark that Lemma 18 gives a recipe for constructing instances of (QP) with a
known optimal solution of (RLT) and a finite RLT lower bound on the optimal value.
We will discuss this further in Sect. 6.

By Lemma 7, if F is nonempty and bounded, then F is nonempty and bounded,
which implies that (RLT) has a finite optimal value. By Lemma 18, we conclude that
the (RLT-D) always has a nonempty feasible region under this assumption.

For the first set of vertices ofF given by Proposition 10, we next establish necessary
and sufficient optimality conditions.

Proposition 19 Suppose that v ∈ F is a vertex. Suppose that G = [G0 G1] so that
(G0)T v = g0 and (G1)T v < g1, where G0 ∈ R

n×m0 , G1 ∈ R
n×m1 , g0 ∈ R

m0 , and
g1 ∈ R

m1 . Then, (v, vvT ) ∈ F is an optimal solution of (RLT) if and only if there
exists (û, ŵ, R̂, Ŝ) ∈ R

m × R
p × R

p×n × Sm, where û ∈ R
m and Ŝ ∈ Sm can be

accordingly partitioned as

û =
[
û0

0

]
∈ R

m+, Ŝ =
[

Ŝ00 Ŝ01

(Ŝ01)T 0

]
∈ Nm . (49)

where û0 ∈ R
m0 , Ŝ00 ∈ Sm0 , and Ŝ01 ∈ R

m0×m1 , such that (45) and (46) are satisfied.
Furthermore, if Ŝ00 ∈ Sm0 is strictly positive and û0 ∈ R

m0 is strictly positive, then
(v, vvT ) ∈ F is the unique optimal solution of (RLT).

Proof Suppose that v ∈ R
n is a vertex of F . By Proposition 10, (v, vvT ) is a vertex

of F . Following a similar argument as in the proof of Proposition 10, we obtain

[
(G0)T

(G1)T

]
vvT

[
(G0)T

(G1)T

]T
−
[
(G0)T

(G1)T

]
v

[
g0

g1

]T
−
[
g0

g1

]
vT

[
(G0)T

(G1)T

]T
+ggT =

[
0 0
0 +

]
,

where + denotes a submatrix with strictly positive entries. The first assertion now
follows from Lemma 18.
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For the second part, suppose further that Ŝ00 ∈ Sm0 is strictly positive and û0 ∈ R
m0

is strictly positive. Let (x̂, X̂) ∈ F be an arbitrary feasible solution of (RLT). Then,
using the same partitions of G and g as before, we have

(G0)T x̂ = g0 − r0

(G1)T x̂ = g1 − r1

HT x̂ = h

HT X̂ = hx̂T

(Gi )T X̂G j ≥ −r i (g j )T − gi (r j )T + gi (g j )T , (i, j) ∈ {(0, 0), (0, 1), (1, 1)},

where r0 ∈ R
m0+ and r1 ∈ R

m1+ . By Lemma 18, (x̂, X̂) ∈ F is an optimal solution if
and only if r0 = 0 and (G0)T X̂G0 − g0(g0)T = 0. Note that any (x̂, X̂) ∈ F with
this property should satisfy the following equation:

[
(G0)T

HT

]
X̂

[
(G0)T

HT

]T
=
[
g0

h

] [
g0

h

]T
.

By Lemma 9, it follows that X̂ = vvT is the only solution to this system since
[
G0 H

]
has full row rank by Lemma 1 (iii). By Lemma 18, (v, vvT ) ∈ F is the unique optimal
solution of (RLT). �

Next, we present necessary and sufficient optimality conditions for the second set
of vertices of F given by Proposition 12.

Proposition 20 Let v1 ∈ F and v2 ∈ F be two vertices such that v1 �= v2. Suppose
that G = [G0 G1 G2 G3] so that (G0)T v1 = (G0)T v2 = g0; (G1)T v1 = g1 and
(G1)T v2 < g2; (G2)T v1 < g1 and (G2)T v2 = g2; (G3)T v1 < g3 and (G3)T v2 <

g3, where G0 ∈ R
n×m0 , G1 ∈ R

n×m1 , G2 ∈ R
n×m2 , G3 ∈ R

n×m3 , g0 ∈ R
m0 ,

g1 ∈ R
m1 , g2 ∈ R

m2 , and g3 ∈ R
m3 . Then, ( 12 (v

1 + v2), 1
2 (v

1(v2)T + v2(v1)T )) ∈ F
is an optimal solution of (RLT) if and only if there exists (û, ŵ, R̂, Ŝ) ∈ R

m × R
p ×

R
p×n × Sm, where û ∈ R

m and Ŝ ∈ Sm can be accordingly partitioned as

û =

⎡
⎢⎢⎣
û0

0
0
0

⎤
⎥⎥⎦ ∈ R

m+, Ŝ =

⎡
⎢⎢⎣

Ŝ00 Ŝ01 Ŝ02 Ŝ03

(Ŝ01)T Ŝ11 0 0
(Ŝ02)T 0 Ŝ22 0
(Ŝ03)T 0 0 0

⎤
⎥⎥⎦ ∈ Nm, (50)

where û0 ∈ R
m0 , Ŝkk ∈ Smk , k = 0, 1, 2, Ŝ0 j ∈ R

m0×m j , j = 1, 2, 3, such that
(45) and (46) are satisfied. Furthermore, if each of Ŝ00 ∈ Sm0 , Ŝ01 ∈ R

m0×m1 ,
Ŝ02 ∈ R

m0×m2 , Ŝ11 ∈ Sm1 , Ŝ22 ∈ Sm2 , and û0 ∈ R
m0 is strictly positive, then

( 12 (v
1 + v2), 1

2 (v
1(v2)T + v2(v1)T )) ∈ F is the unique optimal solution of (RLT).

Proof By Proposition 12, ( 12 (v
1 + v2), 1

2 (v
1(v2)T + v2(v1)T )) is a vertex of F . The

proof is similar to the proof of Proposition 19. By a similar argument as in the proof
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of Proposition 12, we have

GT X̂G − GT x̂gT − gx̂T G + ggT =

⎡
⎢⎢⎣
0 0 0 0
0 0 + +
0 + 0 +
0 + + +

⎤
⎥⎥⎦ ,

where we assume that G = [
G0 G1 G2 G3

]
and g is partitioned accordingly, and

+ denotes a submatrix with strictly positive entries. The first claim follows from
Lemma 18.

For the second assertion, suppose further that each of Ŝ00 ∈ Sm0 , Ŝ01 ∈ R
m0×m1 ,

Ŝ02 ∈ R
m0×m2 , Ŝ11 ∈ Sm1 , Ŝ22 ∈ Sm2 , and û0 ∈ R

m0 is strictly positive. Let
(x̂, X̂) ∈ F be an arbitrary solution. Then, using the same partition of G and g, we
have

(Gi )T x̂ = gi − r i , i = 0, 1, 2, 3

HT x̂ = h

HT X̂ = hx̂T

(Gi )T X̂G j ≥ −r i (g j )T − gi (r j )T + gi (g j )T , 0 ≤ i ≤ j ≤ 3,

where r i ∈ R
mi+ , i = 0, 1, 2, 3, and the last set of inequalities is componentwise. By

Lemma 18, (x̂, X̂) ∈ F is an optimal solution if and only if

r0 = 0

(G0)T X̂G0 = g0(g0)T

(G0)T X̂G1 = −g0(r1)T + g0(g1)T

(G0)T X̂G2 = −g0(r2)T + g0(g2)T

(G1)T X̂G1 = −r1(g1)T − g1(r1)T + g1(g1)T

(G2)T X̂G2 = −r2(g2)T − g2(r2)T + g2(g2)T .

Note that ( 12 (v
1 +v2), 1

2 (v
1(v2)T +v2(v1)T )) ∈ F with r1 = g1 − 1

2 (G
1)T (v1 +v2)

and r2 = g2 − 1
2 (G

2)T (v1 + v2) satisfies this system. Using a similar argument as in
the proof of Proposition 12, one can show that this solution is unique. By Lemma 18,
we conclude that ( 12 (v

1 + v2), 1
2 (v

1(v2)T + v2(v1)T )) ∈ F is the unique optimal
solution of (RLT). �

5 Exact RLT relaxations

In this section, we present necessary and sufficient conditions in order for an instance
of (QP) to admit an exact RLT relaxation.

First, following [12], we define the convex underestimator arising from RLT relax-
ations. To that end, let
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F(x̂) = {(x, X) ∈ F : x = x̂}, x̂ ∈ F . (51)

We next define the following function:

�R(x̂) = min
x∈Rn ,X∈Sn

{ 1
2 〈Q, X〉 + cT x : (x, X) ∈ F(x̂)

}
, x̂ ∈ F . (52)

By [12], �R(·) is a convex underestimator of q(·) over F , i.e., �R(x̂) ≤ q(x̂) for
each x̂ ∈ F , and

�∗
R = min

x∈F �R(x). (53)

By (52),
�R(x̂) = cT x̂ + �0R(x̂), (54)

where

(RLT)(x̂) �0R(x̂) = min
X∈Sn

1
2 〈Q, X〉
s.t.

HT X = hx̂T

GT XG − GT x̂gT − gx̂T G + ggT ≥ 0.

Note that (RLT)(x̂) has a nonempty feasible region for each x̂ ∈ F since X̂ = x̂ x̂ T is a
feasible solution. By defining the dual variables (R, S) ∈ R

p×n×Sm corresponding to
the first and second sets of constraints in (RLT)(x̂), respectively, the dual of (RLT)(x̂)
is given by

(RLT-D)(x̂) max
R∈Rp×n ,S∈Sm

hT Rx̂ + gT SGT x̂ − 1
2g

T Sg

s.t.
RT HT + HR + GSGT = Q

S ≥ 0.

We start with a useful result on the convex underestimator �R(·).
Lemma 21 Suppose that F is nonempty. If there exists x̂ ∈ F such that �R(x̂) = −∞,
then �R(x̃) = −∞ for each x̃ ∈ F. Therefore, �∗

R = −∞.

Proof Suppose that there exists x̂ ∈ F such that �R(x̂) = −∞. By linear programming
duality, (RLT-D)(x̂) is infeasible. Therefore, (RLT-D)(x̃) is infeasible for each x̃ ∈ F
since the feasible region of (RLT-D)(x̂) does not depend on x̂ ∈ F . Since (RLT)(x̃)
has a nonempty feasible region for each x̃ ∈ F , (RLT)(x̃) is unbounded below. By
(54), �R(x̃) = −∞ for each x̃ ∈ F . The last assertion simply follows from (53). �

We next establish another property of �R(·).
Lemma 22 Suppose that F is nonempty and there exists x̂ ∈ F such that �R(x̂) > −∞.
Then, �R(·) is a piecewise linear convex function.
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Proof Suppose that F is nonempty and there exists x̂ ∈ F such that �R(x̂) > −∞. By
using a similar argument as in the proof of Lemma 21, we conclude that �R(x̃) > −∞
for each x̃ ∈ F . By linear programming duality, for each x̂ ∈ F the optimal value
of (RLT-D)(x̂) equals �0R(x̂). By Lemma 4, there exist feasible solutions (Ri , Si ) ∈
R

p×n×Sm, i = 1, . . . , s, of (RLT-D)(x̂) and a polyhedral cone C ⊆ R
p×n × Sm such

that the feasible region of (RLT-D)(x̂) is given by conv{(Ri , Si ) : i = 1, . . . , s} + C.
Since the optimal value of (RLT-D)(x̂) is finite, it follows that

�0R(x̂) = max
i=1,...,s

{
hT Ri x̂ + gT SiGT x̂ − 1

2g
T Si g

}
.

The assertion follows from (54). �

Weremark that a similar resultwas established in [18] for the convex underestimator
�R(·) arising from the RLT relaxation of quadratic programs with box constraints. For
this class of problems, the hypothesis of Lemma 22 is vacuous. Therefore, Lemma 22
extends this result to RLT relaxations of all quadratic programs under a mild assump-
tion.

We next focus on the description of the set of instances of (QP) that admit an exact
RLT relaxation. To that end, let us start with a simple observation.

Lemma 23 Suppose that F is nonempty and �∗ is finite. Then, the RLT relaxation
given by (RLT) is exact, i.e., �∗

R = �∗, if and only if there exists an optimal solution
(x̂, x̂ x̂ T ) ∈ F of (RLT). Furthermore, in this case, x̂ ∈ F is an optimal solution of
(QP).

Proof Suppose that the RLT relaxation given by (RLT) is exact, i.e., �∗
R = �∗ > −∞.

Then, the set of optimal solutions of (QP) is nonempty by the Frank-Wolfe theorem
[24]. Therefore, for any optimal solution x̂ ∈ F of (QP), (x̂, x̂ x̂ T ) ∈ F is an optimal
solution of (RLT) since �∗ = q(x̂) = 1

2 〈Q, x̂ x̂ T 〉 + cT x̂ = �∗
R .

Conversely, if there exists an optimal solution (x̂, x̂ x̂ T ) ∈ F of (RLT), then �∗
R =

1
2 〈Q, x̂ x̂ T 〉+cT x̂ = q(x̂) ≥ �∗ since x̂ ∈ F . Then, �∗

R = �∗ by (11). The last assertion
follows from these arguments. This completes the proof. �

Let F be nonempty and let x̂ ∈ F . Let us define the submatrices G0, G1, and the
subvectors g0, g1 such that (15) holds. Consider (x̂, x̂ x̂ T ) ∈ F and assume without
loss of generality that G = [

G0 G1
]
. Therefore,

GT x̂ x̂T G − GT x̂gT − gx̂T G + ggT =
[
0 0
0 r1(r1)T

]
,
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where r1 = g1 − (G1)T x̂ > 0. By Lemma 18, (x̂, x̂ x̂ T ) ∈ F is an optimal solution
of (RLT) if and only if (Q, c) ∈ E(x̂), where

E(x̂)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Q, c)∈Sn×R
n :

∃ (û, ŵ, R̂, Ŝ) ∈ R
m+×R

p×R
p×n×Nm such that

û =
[
û0

0

]
∈ R

m+

Ŝ =
[

Ŝ00 Ŝ01

(Ŝ01)T 0

]
∈ Nm

c = −Gû + Hŵ − R̂T h − GŜg

Q = R̂T HT + H R̂ + GŜGT

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(55)

where û0 ∈ R
m0 , Ŝ00 ∈ Sm0 , and Ŝ01 ∈ R

m0×m1 .
For each x̂ ∈ F , it is easy to see that E(x̂) is a polyhedral cone in Sn × R

n . By
Lemma 23,

− ∞ < �∗
R = �R < +∞ ⇐⇒ (Q, c) ∈

⋃
x∈F

E(x). (56)

We next show that the description of instances of (QP) that admit an exact relaxation
given by (56) can be considerably simplified.

Proposition 24 Suppose that F is nonempty and �∗ is finite. Let Fi ⊆ F, i = 1, . . . , s
denote the minimal faces of F and let vi ∈ Fi , i = 1, . . . , s be an arbitrary point on
each minimal face. Then, the RLT relaxation given by (RLT) is exact, i.e., �∗

R = �∗, if
and only if

(Q, c) ∈
⋃

i∈{1,...,s}
E(vi ). (57)

Furthermore, if (Q, c) ∈ E(vi ) for some i = 1, . . . , s, then any x̂ ∈ Fi is an optimal
solution of (QP).

Proof By (56), it suffices to show that

⋃
i∈{1,...,s}

E(vi ) =
⋃
x∈F

E(x).

Clearly, the set on the left-hand side is a subset of the one on the right-hand side.

For the reverse inclusion, let (Q, c) ∈ E(x̂), where x̂ ∈ F\
(⋃

i∈{1,...,s} Fi
)
. Let us

define the submatrices G0, G1 and the subvectors g0, g1 such that (15) holds and let
F0 ⊆ F denote the smallest face of F that contains x̂ . Then, there exists a minimal
face Fi ⊆ F0. Let v = vi ∈ Fi . Assuming that G = [

G0 G1
]
, we therefore obtain

(G0)T v = g0,
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(G1)T v ≤ g1,

GT vvT G − GT vgT − gvT G + ggT =
[
0 0
0 r1v (r1v )T

]
,

where r1v = g1 − (G1)T v ≥ 0 so that r1v (r1v )T ∈ Nm1 . By (55) and Lemma 18, it
follows that (v, vvT ) = (vi , vi (vi )T ) ∈ F is an optimal solution of (RLT). Therefore,
(Q, c) ∈ E(vi ). The last assertion follows from the observation that the argument is
independent of the choice of v ∈ Fi and Lemma 23. �

Proposition 24 presents a complete description of the set of instances of (QP) that
admit an exact RLT relaxation and reveals that this property holds if and only if (Q, c)
lies in the union of a finite number of polyhedral cones. This result is a generalization
of the corresponding result established for RLT relaxations of quadratic programswith
box constraints [18]. If �∗ is finite, it is worth noticing that the exactness of the RLT
relaxation implies that the set of optimal solutions of (QP) either contains a vertex of
F or an entire minimal face of F if F has no vertices.

We close this section by establishing a necessary condition for having a finite lower
bound from the RLT relaxation whenever F has no vertices.

Proposition 25 Suppose that F given by (2) is nonempty but contains no vertices. Let

L = F∞ ∩ −F∞ =
{
d ∈ R

n : GT d = 0, HT d = 0
}

denote the lineality space of F, where F∞ is defined as in (3). Let B1 ∈ R
n×(n−ρ)

be a matrix whose columns form a basis for L (or, equivalently, the null space of[
G H

]T
), where ρ is defined as in (7), and let B2 ∈ R

n×τ be a matrix whose columns
are the extreme directions of F∞ ∩ L⊥, where L⊥ ⊂ R

n denotes the orthogonal
complement of L. Let Fi ⊆ F, i = 1, . . . , s, denote the minimal faces of F and let
vi ∈ Fi , i = 1, . . . , s, be an arbitrary point on each minimal face. If �∗

R > −∞, then

(B1)T QB1 = 0, (58)

(B1)T QB2 = 0, (59)

(B1)T (Qvi + c) = 0, i = 1, . . . , s. (60)

Furthermore,

q(x + αd) = q(x), for all x ∈ F, d ∈ L, α ∈ R, (61)

where q(x) is defined as in (1).

Proof Note that L is a nontrivial subspace since the dimension of L given by n−ρ > 0
by Lemma 2 (iii). Furthermore, F∞ ∩ L⊥ ⊆ R

n is a pointed polyhedral cone (possibly
equal to {0}). Suppose that �∗

R > −∞ and let (x̂, X̂) ∈ F be an optimal solution of
(RLT). By Lemma 18, there exists (û, ŵ, R̂, Ŝ) ∈ R

m+ ×R
p ×R

p×n ×Nm such that
(45)–(48) are satisfied. Let d1 ∈ L and d2 ∈ F∞. Since GT d1 = 0 and HT d1 =
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HT d2 = 0, it follows from (46) that (d1)T Qd2 = 0. Since F∞ = L+(F∞ ∩L⊥), we
conclude that (B1 b)T Q(B1 b1 + B2 b2) = bT (B1)T QB1b1 + bT (B1)T QB2b2 = 0
for each b ∈ R

n−ρ, b1 ∈ R
n−ρ , and b2 ∈ R

τ+. We therefore obtain (58) and (59).
Next, for each vi , i = 1, . . . , s, and each d ∈ L , we obtain dT (Qvi +c) = dT R̂T h−
dT R̂T h = 0 by (45) and (46). Therefore, Qvi + c ∈ L⊥ for each i = 1, . . . , s, which
yields (60). Finally, let x ∈ F and d ∈ L . By Lemma 4, there exist λi ≥ 0, i =
1, . . . , s, and d2 ∈ F∞ such that

∑s
i=1 λi = 1 and x = ∑s

i=1 λiv
i + d2. Therefore,

dT (Qx + c) = ∑s
i=1 λi dT

(
Qvi + c

) + dT Qd2 = 0 since Qvi + c ∈ L⊥ for each
i = 1, . . . , s by (60) and dT Qd2 = 0 by the first part of the proof. Therefore, by (58),
we obtain q(x +αd) = q(x)+αdT (Qx +c)+ 1

2α
2dT Qd = q(x), which establishes

the last assertion. This completes the proof. �

Under the hypotheses of Proposition 25, the objective function of (QP) is constant
along each line in F . Note, however, that the conditions (58), (59), and (60) are not
sufficient for a finite RLT lower bound. For instance, if there exists d̂ ∈ F∞ ∩ L⊥ such
that d̂T Qd̂ < 0, then (QP) is unbounded along the ray x + λd̂ for any x ∈ F , where
λ ≥ 0, which would imply that �∗ = �∗

R = −∞.
In the next section, we discuss the implications of our results on the algorithmic

construction of instances of (QP) with exact, inexact, or unbounded RLT relaxations.

6 Implications on algorithmic constructions of instances

In this section, we discuss how our results can be utilized to design algorithms for
constructing an instance of (QP) such that the lower bound from the RLT relaxation
and the optimal value of (QP) will have a predetermined relation. In particular, our
discussions on instances with exact and inexact RLT relaxations in this section can
be viewed as generalizations of the algorithmic constructions discussed in [18] for
quadratic programs with box constraints.

To that end, we will assume that the nonempty feasible region F is fixed and given
by (2). We will discuss how to construct an objective function in such a way that the
resulting instance of (QP) will have an exact, inexact, or unbounded RLT relaxation.

6.1 Instances with an unbounded RLT relaxation

By Lemma 7, if F is nonempty and bounded, then the RLT relaxation cannot be
unbounded. Therefore, a necessary condition to have an unbounded RLT relaxation
is that F is unbounded. In this case, the recession cone F∞ given by (13) contains a
nonzero (d̂, D̂) ∈ R

n ×Sn by Proposition 6. By linear programming duality, the RLT
relaxation (RLT) is unbounded if and only if

1
2 〈Q, D̂〉 + cT d̂ < 0, for some (d̂, D̂) ∈ F∞. (62)
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Let x̂ ∈ F and d̂ ∈ F∞\{0} be arbitrary. Let D̂ = x̂ d̂T + d̂ x̂ T ∈ Sn . By Proposi-
tion 6, (d̂, D̂) ∈ F∞. By (62), it suffices to choose (Q, c) ∈ Sn × R

n such that

1
2 〈Q, D̂〉 + cT d̂ = d̂T (Qx̂ + c) < 0,

which would ensure that the RLT relaxation is unbounded.
While this simple procedure can be used to construct an instance of (QP) with an

unbounded RLT relaxation, we remark that the resulting instance of (QP) itself may
also be unbounded. In particular, if d̂T Qd̂ ≤ 0 in the aforementioned procedure, then
(QP) will be unbounded along the ray x̂ + λd̂, where λ ≥ 0. One possible approach
to construct an instance of (QP) with a finite optimal value but an unbounded RLT
relaxation is to generate (Q, c) ∈ Sn ×R

n in such a way that (62) holds while a tighter
relaxation of (QP) such as the RLT relaxation strengthened by semidefinite constraints
has a finite lower bound. This property can be satisfied by ensuring the feasibility of
(Q, c) with respect to the dual problem of the tighter relaxation. Such an approach
would require the solution of a semidefinite feasibility problem.

6.2 Instances with an exact RLT relaxation

By Proposition 24, the RLT relaxation is exact if and only if there exists v ∈ F that
lies on a minimal face of F such that (Q, c) ∈ E(v), where E(v) is defined as in (55).
This result can be used to easily construct an instance of (QP) with an exact RLT
relaxation.

The first step requires the computation of a point v ∈ F that lies on a minimal face
of F . Then, it suffices to choose û ∈ R

m+ and Ŝ ∈ N n as in (55). Finally, choosing
an arbitrary (ŵ, R̂) ∈ R

p × R
p×n and defining Q and c using (55), we ensure that

(Q, c) ∈ E(v). It follows from Proposition 24 that the RLT relaxation is exact and that
v ∈ F is an optimal solution of (QP). We remark that this procedure not only ensures
an exact RLT relaxation but also yields an instance of (QP) with a predetermined
optimal solution v ∈ F .

6.3 Instances with an inexact and finite RLT relaxation

First, we assume that F has at least two distinct vertices v1 ∈ F and v2 ∈ F . In
this case, one can choose û ∈ R

m+ and Ŝ ∈ Nm such that the assumptions of the
second part of Proposition 20 are satisfied. Then, by choosing an arbitrary (ŵ, R̂) ∈
R

p × R
p×n and defining Q and c using (46) and (45), respectively, we obtain that

( 12 (v
1 + v2), 1

2 (v
1(v2)T + v2(v1)T )) ∈ F is the unique optimal solution of (RLT).

Therefore, the RLT relaxation has a finite lower bound �∗
R . By Lemma 23, we conclude

that the RLT relaxation is inexact, i.e., −∞ < �∗
R < �∗.

We next consider the case in which F has no vertices. In this case, F∞ also has no
vertices by Lemma 8. Therefore, the RLT relaxation can never have a unique optimal
solution. However, our next result shows that we can extend the procedure above to
construct an instance of (QP) with an inexact but finite RLT lower bound under a
certain assumption on F .
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Lemma 26 Suppose that F given by (2) has no vertices but it has two distinct min-
imal faces F1 ⊆ F and F2 ⊆ F. Let v1 ∈ F1 and v2 ∈ F2. Suppose that
G = [G0 G1 G2 G3] is defined as in Proposition 20. Let û ∈ R

m+ and Ŝ ∈ Nm

be such that the assumptions of the second part of Proposition 20 are satisfied. Let
(ŵ, R̂) ∈ R

p × R
p×n be arbitrary. If Q and c are defined by (46) and (45), respec-

tively, then the RLT relaxation of the resulting instance of (QP) is inexact and satisfies
−∞ < �∗

R < �∗.
Proof Arguing similarly to the first part of the proof of Proposition 20, we conclude
that ( 12 (v

1 + v2), 1
2 (v

1(v2)T + v2(v1)T )) ∈ F is an optimal solution of the RLT
relaxation of the resulting instance of (QP). Therefore, −∞ < �∗

R .
Next, we argue that the RLT relaxation is inexact. First, since each of F1 and F2

are minimal faces, they are affine subspaces given by

F1 = {x ∈ R
n : (G0)T x = g0, (G1)T x = g1, HT x = h},

F2 = {x ∈ R
n : (G0)T x = g0, (G2)T x = g2, HT x = h}.

Suppose, for a contradiction, that the RLT relaxation is exact. Then, by Proposition 24,
there exists v ∈ F0, where F0 ⊆ F is a minimal face of F , such that (v, vvT ) is an
optimal solution of (RLT). Let us define r = g−GT v ≥ 0 and partition r accordingly
as

(Gi )T v = gi − r i , i = 0, 1, 2, 3,

where r i ∈ R
mi+ , i = 0, 1, 2, 3. By Lemma 18, (v, vvT ) and (û, ŵ, R̂, Ŝ) ∈ R

m ×
R

p × R
p×n × Sm satisfy the optimality conditions (45)–(48). By (47) and û0 > 0,

we conclude that r0 = 0. On the other hand,

GT vvT G − GT vgT − gvT G + ggT = GT vvT G + rgT + grT − ggT = rrT .

By (48), we obtain r1 = 0 and r2 = 0 since Ŝ11 ∈ Sm1 and Ŝ22 ∈ Sm2 are strictly
positive. It follows that v ∈ F0 satisfies

(G0)T v = g0, (G1)T v = g1, (G2)T v = g2, HT v = h,

i.e., v lies on a face whose dimension is strictly smaller than each of F1 or F2. This
contradicts our assumption that each of F1 and F2 is a minimal face of F . We therefore
conclude that (RLT) cannot have an optimal solution of the form (v, vvT ), where v

lies on a minimal face of F , or equivalently (Q, c) /∈ E(v) for any v that lies on a
minimal face of F , where E(v) is defined as in (55). By Proposition 24, we conclude
that the RLT relaxation is inexact, i.e., −∞ < �∗

R < �∗. �
The next example illustrates the algorithmic construction of Lemma 26.

Example 4 Suppose that F is given as in Example 1. Note that F has no vertices since
it contains the line {x ∈ R

2 : x1 + x2 = 0}. F has two minimal faces given by

F1 = {x ∈ R
2 : x1 + x2 = 1},
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F2 = {x ∈ R
2 : x1 + x2 = −1}.

Therefore, F satisfies the assumptions of Lemma 26. Let us choose v1 = [1 0]T ∈ F1
and v2 = [0 − 1]T ∈ F2. We obtain

x̂ = 1
2 (v

1 + v2) =
[ 1

2− 1
2

]
, X̂ = 1

2 (v
1(v2)T + v2(v1)T ) =

[
0 − 1

2− 1
2 0

]
.

Since g − GT x̂ > 0, we choose û = 0 ∈ R
2. Using the partition given in Proposi-

tion 20, we obtain that G0 is an empty matrix, G1 = [1 1]T , G2 = [−1 − 1]T , and
G3 is an empty matrix. By the second part of Proposition 20, we choose

Ŝ =
[
1 0
0 2

]
.

Therefore, by (46) and (45), we obtain

Q =
[
3 3
3 3

]
, c =

[
1
1

]
.

By Proposition 20, �∗
R = 1

2 〈Q, X̂〉 + cT x̂ = − 3
2 . Note that L = F∞ as given in

Example 1. In view of Proposition 25, it is worth noticing that (58) and (60) are
satisfied whereas (59) is vacuous in this example. Furthermore, for each x ∈ F such
that x1 + x2 = β, where β ∈ [−1, 1], we have q(x) = 3

2β
2 + β. Therefore, the

minimum value is attained at β∗ = − 1
3 . It follows that �

∗ = − 1
6 and the set of optimal

solutions of (QP) is given by
{
x ∈ R

2 : x1 + x2 = − 1
3

}
. Therefore, −∞ < �∗

R < �∗.

6.4 Implications of oneminimal face

Wefinally consider the case in which F has exactly oneminimal face. For any instance
of (QP)with this property,we show that theRLT relaxation is either exact or unbounded
below.

Lemma 27 Consider an instance of (QP), where F given by (2) is nonempty and has
exactly oneminimal face. Then, the RLT relaxation is either exact or unbounded below.

Proof Suppose that F has one minimal face F0 ⊆ F and let v ∈ F0. Suppose that
G = [G0 G1] so that (G0)T v = g0 and (G1)T v < g1, where G0 ∈ R

n×m0 ,
G1 ∈ R

n×m1 , g0 ∈ R
m0 , and g1 ∈ R

m1 . First, we claim that the set of inequalities
(G1)T x ≤ g1 is redundant for F . Let x̂ ∈ F be arbitrary. By Lemma 4,

F = {v} + F∞,

where F∞ is given by (3). Therefore, there exists d̂ ∈ F∞ such that x̂ = v + d̂.
Therefore, (G1)T x̂ = (G1)T v + (G1)T d̂ < g1 since (G1)T v < g1 and (G1)T d̂ ≤ 0
by (3). Therefore, (G1)T x ≤ g1 is implied by (G0)T x ≤ g0 and HT x = h. By [7,
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Proposition 2], all of the RLT constraints obtained from (G1)T x ≤ g1 are implied by
the RLT constraints obtained from (G0)T x ≤ g0 and HT x = h. Therefore, we have
(x̂, X̂) ∈ F if and only if (G0)T x̂ ≤ g0, HT x̂ = h, HT X̂ = hx̂T , and

(G0)T X̂G0 − (G0)T x̂(g0)T − g0 x̂ T G0 + g0(g0)T ≥ 0.

Note that all of the inequality constraints of F are active at (v, vvT ) (or at any
(v′, v′(v′)T ), where v′ ∈ F0, if v is not a vertex of F). If the feasible region of the
dual problem given by (RLT-D) is nonempty, then any (v, vvT ) ∈ F , where v ∈ F0,
satisfies the optimality conditions of Lemma 18 together with any feasible solution
of (RLT-D). It follows that any such (v, vvT ) ∈ F is an optimal solution of (RLT).
By Lemma 23, we conclude that the RLT relaxation is exact. On the other hand, if
(RLT-D) is infeasible, then (RLT) is unbounded below by linear programming duality.
The assertion follows. �

We conclude this section with the following corollary.

Corollary 28 Suppose that F given by (2) has exactly one vertex v ∈ F. Then,F given
by (10) has exactly one vertex (v, vvT ). Furthermore, if F = {v}, thenF = {(v, vvT )}.
Proof Suppose that F has one vertex v ∈ F . By Proposition 10, (v, vvT ) is a vertex
of F . By Proposition 24 and Lemma 27, we either have (Q, c) ∈ E(v), where E(v) is
defined as in (55), in which case, the RLT relaxation is exact and (v, vvT ) is an optimal
solution of (RLT), or (Q, c) /∈ E(v) and the RLT relaxation is unbounded below. By
Lemma 1 (iv), we conclude that (v, vvT ) is the unique vertex of F . If F = {v}, then
F is bounded by Lemma 7 and contains a unique vertex (v, vvT ) by the first part.
Therefore, by Lemma 4, we conclude that F = {(v, vvT )}. �

Corollary 28 reveals that the description of F is independent of the particular
representation of F if F consists of a single point. We remark that, in general, this is
not the case. For instance, let F1 = {x ∈ R

n : eT x = 1}, where e ∈ R
n denotes the

vector of all ones. Then, the RLT procedure yields F1 = {(x, X) ∈ R
n × Sn : eT x =

1, Xe = x}. On the other hand, consider F2 = {x ∈ R
n : eT x ≤ 1, −eT x ≤ −1}.

Clearly, F1 = F2. However, the feasible region of the RLT relaxation is now given by
F2 = {(x, X) ∈ R

n ×Sn : eT x = 1, 1− 2eT x + eT Xe = 0} = {(x, X) ∈ R
n ×Sn :

eT x = 1, eT Xe = 1}. It is easy to see that F1 ⊂ F2 for each n ≥ 2.

7 Concluding remarks

In this paper, we studied various relations between the polyhedral properties of the
feasible region of a quadratic program and its RLT relaxation. We presented a com-
plete description of the set of instances of quadratic programs that admit exact RLT
relaxations. We then discussed how our results can be used to construct quadratic
programs with an exact, inexact, and unbounded RLT relaxation.

For RLT relaxations of general quadratic programs, we are able to establish a partial
characterization of the set of vertices of the feasible region of the RLT relaxation. We
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intend to work on a complete characterization of this set in the near future. Such a
characterization may have further algorithmic implications for constructing a larger
set of instances with inexact but finite RLT relaxations.

Our results in this paper establish several properties of RLT relaxations of quadratic
programs. Another interesting question is how the structural properties change for
higher-level RLT relaxations.
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