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Abstract
In this paper we study the well-known Chvátal–Gomory (CG) procedure for the class
of integer semidefinite programs (ISDPs). We prove several results regarding the hier-
archy of relaxations obtained by iterating this procedure. We also study different
formulations of the elementary closure of spectrahedra. A polyhedral description of
the elementary closure for a specific type of spectrahedra is derived by exploiting
total dual integrality for SDPs. Moreover, we show how to exploit (strengthened) CG
cuts in a branch-and-cut framework for ISDPs. Different from existing algorithms in
the literature, the separation routine in our approach exploits both the semidefinite
and the integrality constraints. We provide separation routines for several common
classes of binary SDPs resulting from combinatorial optimization problems. In the
second part of the paper we present a comprehensive application of our approach to
the quadratic traveling salesman problem (QTSP). Based on the algebraic connectivity
of the directed Hamiltonian cycle, two ISDPs that model theQTSP are introduced.We
show that the CG cuts resulting from these formulations contain several well-known
families of cutting planes. Numerical results illustrate the practical strength of the CG
cuts in our branch-and-cut algorithm, which outperforms alternative ISDP solvers and
is able to solve large QTSP instances to optimality.
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1 Introduction

Convex integer nonlinear programs (CINLPs) are optimization problems in which the
objective function is convex and the continuous relaxation of the feasible region is a
convex set. Nonlinearities in CINLPs can appear in both the objective function and/or
the constraints.Motivated by their numerous applications and their ability to generalize
several well-known problem classes, CINLPs have been studied for decades. In this
paper we focus on a specific class of CINLPs: the integer semidefinite programs
(ISDPs). These problems can be formulated as:

sup b�x s.t. C−
m∑

i=1
Ai xi � 0, x ∈ Z

m, (1)

with b ∈ R
m , C,Ai ∈ Sn , where Sn denotes the cone of symmetric matrices of order

n. Note that C−∑m
i=1 Ai xi � 0 is referred to as a linear matrix inequality (LMI) and

it is the SDP analogue of a system of linear inequalities defining a polyhedron. Since
integer linear programs belong to the family of ISDPs, problems of the form (1) are
generally NP-hard to solve.

Although CINLPs have been studied extensively, see e.g., the survey of Bonami et
al. [11], the special case of ISDPs has received attention only very recently. This is
remarkable, as the mixture of positive semidefiniteness and integrality leads naturally
to a broad range of applications, e.g., in architecture [16, 71], signal processing [39, 55]
and combinatorial optimization [40, 60]. For a more detailed overview of applications
of ISDPs, we refer the reader to [40, 46].

Only a few solution approaches for solving SDPs with integrality constraints have
been considered. Gally et al. [40] propose a general framework called SCIP-SDP
for solving mixed integer semidefinite programs (MISDPs) using a branch-and-bound
(B&B) procedure with continuous SDPs as subproblems. They show that strict duality
of the relaxations is maintained in the B&B tree and study several solver components.
Alternatively, Kobayashi and Takano [46] propose a cutting-plane algorithm that ini-
tially relaxes the positive semidefinite (PSD) constraint and solves a mixed integer
linear programming problem, where the PSD constraint is imposed dynamically via
cutting planes. This leads to a general branch-and-cut (B&C) algorithm for solving
MISDPs. A third project that encounters general ISDPs is YALMIP [49]. However, it
is noted by the authors of [40, 46] that the branch-and-bound ISDP solver in YALMIP
is not yet competitive to the performance of the other two methods. Recently, Matter
and Pfetsch [50] study different presolving strategies for MISDPs for both the B&B
and B&C approach.

Apart from solution methods for solving general ISDPs or MISDPs, there are sev-
eral other approaches in the literature that aim to solve integer problems by utilizing
SDP relaxations in a B&B framework. Although these approaches are very related to
problemsof the form (1) in the sense that they also combine semidefinite programswith
a branching strategy, they differ in the sense that the problem at hand is not necessarily
formulated as a MISDP. Examples are the BiqCrunch solver for constrained binary
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quadratic problems [47] and the Biq Mac solver for unconstrained binary quadratic
problems [60].

In the light of improving the performance of theB&Calgorithmof [46], we consider
the exploitation of cutting planes for ISDPs. Practical algorithms for CINLPs have
benefited a lot from the addition of strong cutting planes, see e.g., [4, 5, 8, 65], where
many of these cutting plane frameworks are based on generalizations from integer
linear programming. Among the most well-known cutting planes for integer linear
programs (ILPs) are the Chvátal–Gomory (CG) cuts [17, 43]. Gomory [43] introduced
these cuts to design the first finite cutting plane algorithm for ILPs. Chvátal [17]
later generalized this notion and introduced the closure of all such cuts that leads
to a hierarchy of relaxations of the ILP with increasing strength. Chvátal [17] and
Schrijver [62] prove that this hierarchy is finite for bounded real polyhedra and rational
polyhedra, respectively. Later on, the CG procedure is introduced for more general
convex sets, see e.g., [12, 21, 22, 25, 26]. In particular, Çezik and Iyengar [15] show
how to generate CG cuts for CINLPs where the continuous relaxation of the feasible
region is conic representable.

A leading application in this work is a combinatorial optimization problem that
can be modelled as an ISDP: the quadratic traveling salesman problem (QTSP). Jäger
and Molitor [45] introduce the QTSP as the problem of finding a Hamiltonian cycle
in a graph that minimizes the total interaction costs among consecutive arcs. The
problem is motivated by an important application in bioinformatics [35, 45], but has
also applications in telecommunication, precision farming and robotics, see e.g., [1,
30, 68]. The QTSP isNP-hard in the strong sense and is currently considered as one
of the hardest combinatorial optimization problems to solve in practice.

Several papers have studied the QTSP. In [33, 34, 37] the polyhedral structure of
the asymmetric and symmetricQTSP—polytope is discussed. Rostami et al. [61] pro-
vide several lower bounding procedures for the QTSP, including a column generation
approach. Woods and Punnen [69] provide different classes of neighbourhoods for the
QTSP, while Staněk et al. [63] discuss several heuristics for the quadratic traveling
salesman problem in the plane. The linearization problem for the QTSP is studied
in [56]. Fischer et al. [35, 36] introduce several exact algorithms and heuristics for the
asymmetricQTSP, while Aichholzer et al. [2] consider exact solution methods for the
minimization and maximization version of the symmetric QTSP.

1.1 Main results and outline

In this paper we consider the Chvátal–Gomory procedure for ISDPs from a theoretical
as well as a practical point of view. On the theoretical side, we derive several results on
the elementary closure of all CG cuts for spectrahedra. On the practical side, we show
how to apply these cuts in a generic branch-and-cut algorithm for ISDPs that exploits
both the positive semidefiniteness and the integrality of the problem. We extensively
study the application of this new approach to the QTSP, which confirms the practical
strength of the proposed method.

We start by reformulating aCGcut for a spectrahedron in termsof its datamatrices in
combinationwith the elements from the dual cone. This leads to a constructive descrip-
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tion of the elementary closure of spectrahedra rather than the implicit description that
is known for general convex sets. Equivalent to the case of polyhedra, the elementary
closure operation can be repeated, leading to a hierarchy of stronger approximations
of the integer hull of the spectrahedron. For the case of bounded spectrahedra, we
provide a compact proof of a homogeneity property for the elementary closure opera-
tion that is based on a theorem of alternatives and Dirichlet’s approximation theorem.
We prove this property for halfspaces that are sufficient to describe any compact con-
vex set. Homogeneity is the cornerstone in showing that the elementary closure of a
bounded spectrahedron is polyhedral. Although the latter result is known in the liter-
ature, our proof significantly simplifies compared to the general proofs given in [12,
22]. Finally, we exploit the recently introduced notion of total dual integrality for
SDPs [13] to derive a closed-form expression for the elementary closure of spectrahe-
dra defined by a totally dual integral linearmatrix inequality.We additionally provide a
characterization of bounded spectrahedra with this property and several more general
sufficient conditions.

It is known that the practical strength of CG cuts in integer linear programming is
mainly due to their application in branch-and-bound methods. In this vein, we propose
a generic branch-and-cut (B&C) framework for ISDPs. Our algorithm initially relaxes
the PSD constraint and solves a mixed integer linear program (MILP), where the
PSD constraint is imposed iteratively via CG and/or strengthened CG cuts. To derive
strengthened CG cuts, we use a similar approach to the one for rational polyhedra by
Dash et al. [24]. Our B&C algorithm is an extension of the algorithm of [46], in which
separation is only based on positive semidefiniteness without taking into account the
integrality of the variables. Our approach also builds up on the work by Çezik and
Iyengar [15], in which the authors leave the separation of CG cuts for conic problems
as an open problem and do not include these cuts in their computational study. We
provide an example of our approach for a common class of binary SDPs that frequently
appears in combinatorial optimization.

In the third part of this paper we apply our results to a difficult-to-solve combi-
natorial optimization problem: the quadratic traveling salesman problem. We derive
two ISDP formulations of this problem based on the notion of algebaic connectivity.
To solve these models using our B&C algorithm, we propose several CG separation
routines and show that various of these routines lead to well-known cuts for theQTSP.
Computational results on a large set of benchmark QTSP instances show that the prac-
tical potential of our new method is twofold. The method significantly outperforms
the ISDP solvers from the literature, whereas it also provides competitive results to
the state-of-the-art QTSP solution method of [35].

The paper is organized as follows. In Sect. 2 we study the Chvátal–Gomory pro-
cedure for spectrahedra. Section3 provides a CG-based B&C framework for general
ISDPs and provides specific CG separation routines for two classes of binary SDPs.
In Sect. 4 we formally define the QTSP and present two ISDP formulations of this
problem. Numerical results are given in Sect. 5.
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1.2 Notation

A directed graph is given by G = (N , A), where N is a set of nodes and A ⊆ N × N
is a set of arcs. We use Kn to denote the complete directed graph on n nodes, i.e., a
directed graph in which every pair of nodes is connected by a bidirectional edge.

We denote by 0n ∈ R
n the vector of all zeros, and by 1n ∈ R

n the vector of all
ones. The identity matrix and the matrix of ones of order n are denoted by In and
Jn, respectively. We omit the subscripts of these matrices when there is no confusion
about the order. The i-th elementary vector is denoted by ei and we defineEij := eie�j .
For any two matrices A and B, the direct sum is defined as A⊕ B = [ A 0

0 B

]
.

The set of integer numbers and non-negative integer numbers is denoted by Z and
Z+, respectively. For any integer vector c ∈ Z

m , we let gcd(c) denote the greatest
common divisor of the entries in c. We define the floor (resp. ceil) operator �·� (resp.
	·
) as the largest (resp. smallest) integer smaller (resp. larger) than or equal to the
input number. For n ∈ Z+, we define the set [n] := {1, . . . , n}. Also, for any S ⊆ [n],
we let 1S be the binary indicator vector of S.

We let Sn be the set of all n × n real symmetric matrices and denote by X � 0
that a symmetric matrix X is positive semidefinite. We use X � 0 to denote that X is
positive semidefinite, but not equal to the zero matrix. The cone of symmetric positive
semidefinite matrices is defined as Sn+ := {X ∈ Sn : X � 0}. The trace of a square
matrix X = (xi j ) is given by tr(X) = ∑

i xii . For any X,Y ∈ R
n×n the trace inner

product is defined as 〈X,Y〉 := tr(X�Y) =∑n
i=1

∑n
j=1 xi j yi j .

The operator diag : Rn×n → R
n maps a square matrix to a vector consisting of its

diagonal elements. We denote by Diag : Rn → R
n×n its adjoint operator.

2 The Chvátal–Gomory procedure for ISDPs

In this section we study the extension of the cutting-plane procedure by Chvátal [17]
and Gomory [43] for integer linear programs to the class of integer semidefinite pro-
grams. We show that several concepts, such as the Chvátal–Gomory closure and the
Chvátal rank, can be generalized to ISDPs. We start by recollecting the procedure for
general convex sets.

2.1 The Chvátal–Gomory procedure

Let C ⊆ R
m be a non-empty closed convex set and let CI be its integer hull, i.e.,

CI := Conv(C ∩ Z
m). The Chvátal–Gomory cutting-plane procedure is introduced

by Chvátal [17] and Gomory [43] and is regarded to be among the most celebrated
results in integer programming. The CG procedure aims at systematically identifying
valid inequalities for C that cut off non-integer solutions. By adding these new cuts to
the relaxation and repeating this process, one obtains a hierarchyof stronger relaxations
that converges to CI .

The CG procedure relies on the notion of rational halfspaces. A rational halfspace
is of the form H = {x ∈ R

m : c�x ≤ d} for some c ∈ Q
m, d ∈ Q. It is known
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that all such halfspaces can be represented by c ∈ Z
m such that the entries of c are

relatively prime. If H = {x ∈ R
m : c�x ≤ d} with c ∈ Z

m , gcd(c) = 1, then
HI = {x ∈ R

m : c�x ≤ �d�}.
Definition 1 The elementary closure of a closed convex set C is the set

clCG(C) :=
⋂

(c,d)∈Qm×Q
C⊆H={x : c�x≤d}

HI . (2)

Equivalently, the elementary closure of C can be written as:

clCG(C) =
⋂

(c,d)∈Zm×R
C⊆{x : c�x≤d}

{
x ∈ R

m : c�x ≤ �d�
}

, (3)

and we will primarily use this form in this work. The inequalities that define clCG(C)

in (3) are known as CG cuts [43]. One can verify that CI ⊆ clCG(C). When C is
compact, we can exploit the following proposition due to Dadush et al. [21] and De
Carli Silva and Tunçel [13].

Proposition 1 If C ⊆ R
m is a compact convex set, then

C =
⋂

(c,d)∈Zm×R
C⊆{x : c�x≤d}

{
x ∈ R

m : c�x ≤ d
}

.

It follows from Proposition 1 that for compact convex sets C we have clCG(C) ⊆ C .
We can now repeat the procedure by definingC (0) := C andC (k+1) := clCG(C (k)) for
all integer k ≥ 0, whereC (k) is referred to as the kth CG closure ofC . For any compact
convex setC this leads to the hierarchyCI ⊆ . . . ⊆ C (k+1) ⊆ C (k) ⊆ . . . ⊆ C (0) = C .
The smallest k for which CI = C (k) is known as the Chvátal rank of C . In the same
vein, the Chvátal rank of an inequality c�x ≤ d valid for CI is defined as the smallest
k such that C (k) ⊆ {x ∈ R

m : c�x ≤ d}.
Remark 1 Observe that for an unbounded closed convex set C , clCG(C) ⊆ C does
not have to hold. For instance, the irrational halfspace {x ∈ R

2 : x1 +
√
2x2 ≤ 0}

is not contained in any halfspace of the form {x ∈ R
2 : c�x ≤ d} with c ∈ Z

2.
Therefore, clCG(C) is the intersection over an empty set of halfspaces, resulting in
clCG(C) = R

2.

The finiteness of the Chvátal rank is proven in the literature for bounded real
polyhedra [17], unbounded rational polyhedra [62] and conic representable sets in
the 0/1-cube [15]. However, the Chvátal rank for unbounded real polyhedra can be
infinite as shown by Schrijver [62]. Schrijver also shows that the elementary closure
of a rational polyhedron is a rational polyhedron. This result is later generalized to
irrational polytopes [26], bounded rational ellipsoids [25], strictly convex bodies [21]
and general compact convex sets [12, 22]. As a consequence, the Chvátal rank of these
sets is also known to be finite.
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2.2 The elementary closure of spectrahedra

Wenowapply the notions fromSect. 2.1 to integer semidefinite programmingproblems
in standard primal and dual forms.On top of the general definition given in the previous
section, we derive alternative formulations of the elementary closure of spectrahedra.

Let b ∈ R
m ,C ∈ Sn andAi ∈ Sn for all i ∈ [m]. An ISDP in standard primal form

is given by:

(PI SD P )

{
inf 〈C,X〉
s.t. 〈Ai,X〉 = bi ∀i ∈ [m], X � 0, X ∈ Z

n×n,
(4)

while an ISDP in standard dual form is given by:

(DI SD P )

⎧
⎪⎪⎨

⎪⎪⎩

sup b�x

s.t. C−
m∑

i=1
Aixi � 0, x ∈ Z

m .
(5)

Using standard techniques, one can syntactically rewrite an integer SDP from primal
form to dual form and vice versa. Consistent with most of the literature, we mainly
consider, but not restrict ourselves to, ISDPs in dual form.

The continuous relaxation of the feasible set of (5) is defined as follows:

P :=
{
x ∈ R

m : C−
m∑

i=1
Aixi � 0

}
. (6)

The set P is a spectrahedron that is closed, semialgebraic and convex,whichwe assume
to be non-empty. Throughout the paper,wemake the following non-restrictive assump-
tion on the linear matrix inequality defining P . In case P is not full-dimensional, i.e.,
the subspace L := Aff(P)⊥ is nontrivial, we extend C and Ai, i ∈ [m], to

C⊕ Diag(Lx0)⊕−Diag(Lx0) and Ai ⊕ Diag(�i)⊕−Diag(�i) for all i ∈ [m]

where L := [�1 . . . �m] ∈ R
dim(L)×m is a matrix whose rows form a basis for L and

x0 ∈ P . Observe that the resulting extended map has no effect on the spectrahedron P
itself.We only include it to obtain a more proper algebraic representation, see also [51,
57]. We define the integer hull of P to be PI := Conv(P∩Z

m), i.e., the convex hull of
the integral points in P .We briefly consider some illustrative examples of spectrahedra
and their integer hulls.

Example 1 (Examples in R
2) Let C = [

0 3
3 3

]
,A1 =

[−3 1
1 1

]
and A2 =

[
1
2 1
1 0

]
. Then,

the induced spectrahedron P in the dual form (6) is the semialgebraic set of points in
R
2 described by the quadratic inequality 4x21 + x22 ≤ 15x1+41

2 x2−11
2 x1x2−9. This

spectrahedron is bounded and given in Fig. 1a.
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Fig. 1 Spectrahedra P and Q defined in Example 1. Their corresponding integer hulls are given by the dark
gradient areas

Let Q be described by (6) with C = [
1 0
0 0

]
,A1 =

[ 0 −1
−1 0

]
and A2 =

[
0 0
0 −2

]
. The

spectrahedron Q is the unbounded semialgebraic set {x ∈ R
2 : x2 ≥ 1

2 x21 }, see
Fig. 1b.

Example 2 (Example in R
3) Let C = [

1 2
2 2

] ⊕ [
5 0
0 5

]
,A1 =

[
−1 1

2
1
2 1

]
⊕ [

0 0
0 0

]
,A2 =

[
− 3

5
3
10

3
10 0

]
⊕ [ 1 0

0 −1
]
and A3 =

[
1
2 2
2 −3

]
⊕ [ 0 0

0 0

]
and let P be the induced spectrahedron

of the form (6). Then, P is the semialgebraic set in R
3 described by the inequalities

5
4 x21 + 9

100 x22 + 11
2 x23 ≤ −2 + 3x1 + 12

5 x2 + 10x3 − 9
10 x1x2 + 3

5 x2x3 + 3
2 x1x3,

1+ x1 + 3
5 x2 − 1

2 x3 ≥ 0, 2− x1 + 3x3 ≥ 0, −5 ≤ x2 and x2 ≤ 5, see Fig. 2.

In the remaining part of this section we study the elementary closure, see Defini-
tion 1, of spectrahedra in primal and dual standard forms.

Using the fact that a matrix C −∑m
i=1 Aixi is positive semidefinite if and only if

〈C−∑m
i=1 Aixi ,U〉 ≥ 0 for all U ∈ Sn+, we can rewrite P as follows:

P =
{
x ∈ R

m : 〈C−
m∑

i=1
Aixi ,U〉 ≥ 0, U ∈ Sn+

}

=
⋂

U∈Sn+

{
x ∈ R

m :
m∑

i=1
xi 〈Ai,U〉 ≤ 〈C,U〉

}
. (7)

Moreover, since P is a closed convex set, we can write P as the intersection of the
halfspaces that contain it:

P =
⋂

(c,d)∈Rm+1
P⊆{x : c�x≤d}

{
x ∈ R

m : c�x ≤ d
}

. (8)
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Fig. 2 Spectrahedron P in R
3 defined in Example 2

It is clear that all halfspaces in the intersection of (7) are contained in the intersection
(8). The converse statement is also true, as stated by the following theorem. This
theorem is proven in [51] and the result is related to the algebraic polar studied in [57].

Theorem 1 [51, 57] Let P = {x ∈ R
m : C −∑m

i=1 Aixi � 0} be a non-empty
spectrahedron. Let (c, d) ∈ R

m+1 be such that P ⊆ {x ∈ R
m : c�x ≤ d}. Then

there exists a matrix U ∈ Sn+ such that 〈Ai,U〉 = ci for all i ∈ [m] and 〈C,U〉 ≤ d.

Using the representation of P given by (7) and the result of Theorem 1, we now
provide an alternative formulation of the elementary closure for spectrahedra of the
form P . We have,

clCG(P) =
⋂

U∈Sn+ s.t.
〈Ai,U〉∈Z, i∈[m]

{
x ∈ R

m :
m∑

i=1
xi 〈Ai,U〉 ≤ �〈C,U〉�

}
. (9)

Hence, any possible CG cut for a spectrahedron is constructed by a matrix U ∈ Sn+
such that 〈Ai,U〉 ∈ Z for i ∈ [m].

A similar alternative definition of the elementary closure of spectrahedra in standard
primal form can be obtained. Let Q ⊆ Sn denote the continuous relaxation of the
feasible set of (4), i.e.,
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Q = {X ∈ Sn : 〈Ai,X〉 = bi , i ∈ [m], X � 0
}

= {X ∈ Sn : 〈Ai,X〉 = bi , i ∈ [m], 〈X,U〉 ≥ 0, U ∈ Sn+
}

=
{
X ∈ Sn :

〈
X,U+

m∑

i=1
Aiλi

〉
≥

m∑

i=1
biλi , U ∈ Sn+, λ ∈ R

m

}
,

where the last equality follows from the fact that the choices (U,λ) = (0, ei ) and
(U,λ) = (0,−ei ) lead to the cuts 〈Ai,X〉 ≥ bi and 〈Ai,X〉 ≤ bi , respectively. Now,
the elementary closure of Q can be described by the following intersection of CG cuts:

clCG(Q) =
⋂

(U,λ)∈Sn+×Rm s.t.
U+∑m

i=1 Aiλi∈Zn×n

{
X ∈ Sn :

〈
X,U+

m∑

i=1
Aiλi

〉
≥
⌈ m∑

i=1
biλi

⌉}
.

(10)

For many SDPs resulting from applications the spectrahedra that define the feasible
sets are contained in the cone of non-negative vectors or matrices. When P ⊆ R

m+ or
Q ⊆ {X ∈ R

n×n : X ≥ 0}, alternative equivalent formulations of the elementary
closure can be given, see also [15].

Theorem 2 Let P = {
x ∈ R

m+ : C−∑m
i=1 Aixi � 0

}
be a non-empty spectrahe-

dron. Then clCG(P) can equivalently be written as

clCG(P) =
⋂

U∈Sn+

{
x ∈ R

m :
m∑

i=1
xi�〈Ai,U〉� ≤ �〈C,U〉�

}
. (11)

Similarly, let Q = {X ∈ Sn : 〈Ai,X〉 = bi , i ∈ [m],X � 0,X ≥ 0}. Then clCG(Q)

can equivalently be written as

clCG(Q) =
⋂

(U,λ)∈Sn+×Rm

{
X ∈ Sn :

〈
X,

⌈
U+

m∑

i=1
Aiλi

⌉〉
≥
⌈ m∑

i=1
biλi

⌉}
. (12)

Proof We prove the statement for the dual form (11). The proof for the primal form
is similar.

Let clCG(P) := ⋂
U∈Sn+

{
x ∈ R

m : ∑m
i=1 xi�〈Ai,U〉� ≤ �〈C,U〉�} and let

clCG(P) be as given in (9). The inclusion clCG(P) ⊆ clCG(P) is obvious, as any half-
space in the intersection defining clCG(P) is also in the intersection defining clCG(P).
Now, consider a halfspace H̄ = {x ∈ R

m : ∑m
i=1 xi�〈Ai,U〉� ≤ �〈C,U〉�} for some

U ∈ Sn+, that is included in the intersection defining clCG(P). Since P ⊆ R
n+, we

know
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Fig. 3 Spectrahedron P , its integer hull PI and its elementary closure clCG (P)

P ⊆
{
x ∈ R

m+ :
m∑

i=1
xi 〈Ai,U〉 ≤ 〈C,U〉

}
⊆
{
x ∈ R

m+ :
m∑

i=1
xi�〈Ai,U〉� ≤ 〈C,U〉

}

⊆
{
x ∈ R

m :
m∑

i=1
xi�〈Ai,U〉� ≤ 〈C,U〉

}
.

Now we apply Theorem 1 to the latter halfspace. It follows that there exists a matrix
V ∈ Sn+ such that

〈Ai,V〉 = �〈Ai,U〉� for all i ∈ [m], and 〈C,V〉 ≤ 〈C,U〉.

We define the halfspace H := {x ∈ R
m : ∑m

i=1 xi 〈Ai,V〉 ≤ �〈C,V〉�}. Since
�〈C,V〉� ≤ �〈C,U〉�, it follows that the halfspace H̄ contains the halfspace H , while
H is contained in the intersection of clCG(P) given in (9). Since this construction can
be repeated for all halfspaces in the intersection (11) defining clCG(P), it follows that
clCG(P) ⊆ clCG(P). ��
Example 3 Let us reconsider the bounded spectrahedron P defined in Example 1. The
elementary closure clCG(P) of this spectrahedron is the intersection of six rational
halfspaces, represented by the dashed lines in Fig. 3. Each such halfspace is obtained
from a rational halfspace {x ∈ R

2 : c�x ≤ d} containing P , where d is shifted
towards PI until the corresponding hyperplane hits an integral point. The integer
hull PI is the intersection of only five halfspaces. Thus, for this example we have
PI � clCG(P) � P .

In Sect. 2.4 we provide a polyhedral description of the elementary closure of spec-
trahedra that satisfy the notion of total dual integrality.
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2.3 The Chvátal rank of bounded spectrahedra

In this section we derive several results on the sequence of relaxations resulting from
the Chvátal–Gomory procedure. Although some of these results are already known
for general compact convex sets, we provide simplified proofs for the case of bounded
spectrahedra. Throughout this section we assume P to be a spectrahedron of the
form (6) that is bounded. For unbounded sets it is in general not even clear whether
C (k+1) ⊆ C (k).

It is known that the Chvátal rank of a compact convex set is finite, including the
special case of bounded spectrahedra. This result follows from the polyhedrality result
of Dadush et al. [22] and the folklore that the Chvátal rank of a rational polytope is
finite due to Chvátal [17].

Proposition 2 [17, 22]) Let P = {x ∈ R
m : C−∑m

i=1 Aixi � 0
}

be bounded. Then,
P(k) = PI for some finite k.

Next, we aim to prove a homogeneity property of the CG procedure for bounded
spectrahedra, which states that the elementary closure operation commuteswith taking
the intersectionwith supporting hyperplanes. This property plays a key role in showing
that the elementary closure of P is a rational polytope, following the proof ofBraun and
Pokutta [12]. We provide a simplified proof of this property for bounded spectrahedra,
which can be seen as the conic analogue to a polyhedral result of Schrijver [62]. In
the proof we restrict ourselves to halfspaces of the form {x ∈ R

m : w�x ≤ d} where
w ∈ Z

m and d ∈ R. It follows from Proposition 1 that these halfspaces are sufficient
to describe a compact convex set.

Before we show the main theorem, we need a chain of intermediate results, starting
with a proposition regarding the condition of Proposition 7.

Proposition 3 Let P = {
x ∈ R

m : C−∑m
i=1 Aixi � 0

}
be a non-empty and

bounded spectrahedron. Then there does not exist anx ∈ R
m such that

∑m
i=1 Aixi � 0.

Proof See “Appendix 1”. ��
We also need Dirichlet’s approximation theorem and its weakened version.

Proposition 4 (Dirichlet’s Approximation Theorem) Let d ∈ R and N ≥ 2 be a
positive integer. Then there exist integers p and q with 1 ≤ p ≤ N such that |pd−q| ≤
1
N .

We now derive its one-sided variant below.

Corollary 1 (One-sided Approximation Theorem) Let d ∈ R and N ≥ 2 be a positive
integer number. Then there exists an integer p ∈ Z+ such that d − �pd� ≤ 1

N .

Proof See “Appendix 1”. ��
We are now ready to present a simplified proof of Braun and Pokutta [12] for the

homogeneity property of the elementary closure of bounded spectrahedra, see also
Proposition 1 in [22].
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Theorem 3 (Homogeneity property of elementary closure) Let P = {x ∈ R
m :

C −∑m
i=1 Aixi � 0} be a bounded spectrahedron that is contained in a halfspace

{x ∈ R
m : w�x ≤ d} with w ∈ Z

m and d ∈ R. Let K := {x ∈ R
m : w�x = d}. Then

clCG(P) ∩ K = clCG(P ∩ K ).

Proof See “Appendix 1”. ��

The result of Theorem 3 holds for any halfspace {x ∈ R
m : w�x ≤ d} with

w ∈ Z
m containing P . In particular, it holds for all such halfspaces that support P ,

meaning that P ∩ K �= ∅, where K is the corresponding hyperplane. In such case,
the set P ∩ K defines a face of the spectrahedron. It is known that all proper faces
of spectrahedra are exposed, meaning that they can be obtained as the intersection of
P with a supporting hyperplane. Note, however, that for the faces of bounded spec-
trahedra these hyperplanes are not necessarily such that the entries in w are integral,
even if the data matrices describing the spectrahedron are rational (as is the case for
polyhedra).

Homogeneity plays a key role in Braun and Pokutta’s [12] proof for the polyhedral-
ity of the elementary closure of compact convex sets. For the sake of completeness,
we include this result here for the case of bounded spectrahedra.

Theorem 4 (Dadush et al. [22], Braun and Pokutta [12]) The elementary closure
clCG(P) of a bounded spectrahedron P is a rational polytope.

From Theorem 4 and the fact that the elementary closure of a rational polytope is
again a rational polytope [62], it follows that the finite sequence P = P(0) ⊇ P(1) ⊇
. . . ⊇ P(k) ⊇ P(k+1) ⊇ . . . ⊇ PI , consists of rational polyhedra from the first closure
onwards. Observe that the boundedness assumption cannot be relaxed. Indeed, if P is
unbounded, it is not even clear whether PI is a polyhedron, as the following example
suggests.

Example 4 Consider the spectrahedron Q in Example 1. The integer hull QI is the
convex hull of the integer points in the epigraph of f (x1) = 1

2 x21 . This convex hull
is not polyhedral. To verify this, observe that the recession cone of QI is contained
in the recession cone of Q, which is rec(Q) := {x ∈ R

2 : x2 ≥ 0, x1 = 0}. Since
QI is unbounded and rec(Q) has only one ray, the recession cone of QI must also be
rec(Q). If QI would be polyhedral, this implies that the halfspace x1 ≤ N supports
QI for some finite value of N . However, this cannot be true as QI contains integral
points (x1, x2) ∈ Z

2 for arbitrarily large x1.
One can verify that clCG(Q) = QI . Namely, each facet of QI is induced by a line

between the points (2k, 2k2), (2(k − 1), 2(k − 1)2) ∈ Z
2 for any k ∈ Z. Let such line

for a fixed k be described by x2 = cx1+ d with c, d ∈ Z. Then, the parallel line x2 =
cx1+d−1 lies strictly below Q. This implies that the halfspace x2 ≥ cx1+d−1+ ε

for any ε > 0 contains Q and that its integer hull is x2 ≥ cx1 + d. Therefore, all
facet-defining inequalities of QI have Chvátal rank one and clCG(Q) = QI . This
shows that clCG(Q) is not a polyhedron.

123



F. de Meijer, R. Sotirov

2.4 The elementary closure of spectrahedra and total dual integrality

In this section we derive a class of spectrahedra for which we can find an explicit
expression for the elementary closure. For rational polyhedra such an expression can
be derived from a totally dual integral representation of the linear system [62]. It is
therefore not surprising that a similar construction can be applied for bounded spec-
trahedra, albeit with a bit more technicalities. After connecting total dual integrality
for SDPs to the elementary closure, we derive a characterization and several sufficient
conditions for a linear matrix inequality to be totally dual integral.

Recently, DeCarli Silva and Tunçel [13] introduced a notion of total dual integrality
for SDPs. The authors of [13] argue that the term integrality in SDPs should be defined
with care. For instance, the rank-one property that is sometimes used in the literature as
the notion of SDP integrality is proven to be primal-dual asymmetric and therefore not
the favoured choice. Instead, the authors of [13] propose a notion of SDP integrality
that is based on a set of integer generating matrices.

Definition 2 (Property (PZ)V ) Let V := {V1, . . . ,Vk} ⊆ Sn+ be a finite set of integer
PSD matrices. A matrix X ∈ S+n satisfies integrality property (PZ)V if

X =
∑

j∈[k]
y jVj for some y ∈ Z

k+. ((PZ)V )

The authors of [13] restricted to the set V = {1S1
�
S : S ⊆ [n]}, which could

be seen as a natural embedding for the combinatorial problems that are considered
in [13]. One could argue, however, that this embedding is rather arbitrary. For that
reason, we consider a general set of generating matrices. Note that the matrices X
that satisfy property (PZ)V are also integral in the sense that X ∈ Z

n×n . To overcome
confusion between these definitions, we will always explicitly refer to property (PZ)V
if that notion is meant.

Now we present the definition of total dual integrality for SDPs, see also [13].

Definition 3 (Total dual integrality) Let Z ⊆ Z
m . A linear matrix inequality

C −∑m
i=1 Aixi � 0 is called totally dual integral (TDI) on Z if there exists some

finite set of integer PSD matrices V such that, for every b ∈ Z , the SDP dual to
sup

{
b�x : C−∑m

i=1 Aixi � 0
}
has an optimal solution satisfying property (PZ)V

whenever it has an optimal solution.

A main difference with the original definition of total dual integrality for polyhe-
dra, see e.g. [28], is that we restrict the objective vectors for which dual integrality
should hold to a subset Z of Z

m . As explained in [13], this follows from the fact that
semidefinite programs often follow from lifted formulations. For instance, Z could be
the range of a linear lifting map, e.g., Z = {0⊕ b′ : b′ ∈ Z

m−1}.
Based on this restriction to vectors in Z , it makes sense to consider a relaxed version

of theCGclosure inwhichwe take the intersection of halfspaces induced by coefficient
vectors in Z . More precisely, we define the CG closure with respect to Z as
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clCG(P, Z) :=
⋂

(c,d)∈Z×R
P⊆{x : c�x≤d}

{
x ∈ R

m : c�x ≤ �d�
}

. (13)

This relaxation of the CG closure is also considered in the literature, see e.g., [21, 22].
The standard CG closure clCG(P) that we considered so far equals clCG(P, Z

m).
The following theorem shows that if a spectrahedron is defined by an LMI that is

TDI on Z , its (relaxed) CG closure clCG(P, Z) can be explicitly defined.

Theorem 5 Let P = {
x ∈ R

m : C−∑m
i=1 Aixi � 0

}
be such that the LMI C −∑m

i=1 Aixi � 0 is TDI on Z and satisfies Slater’s condition. Let V = {V1, . . . ,Vk}
denote the corresponding generating set of integer PSD matrices and suppose[〈Vj,A1〉 · · · 〈Vj,Am〉

]� ∈ Z for all j ∈ [k]. Define B ∈ Z
k×m and d ∈ Z

k

such that: B j,i :=
〈
Ai,Vj

〉
and d j :=

⌊〈
C,Vj

〉⌋
, for all j ∈ [k] and i ∈ [m]. Then,

clCG(P, Z) = Q := {x ∈ R
m : Bx ≤ d} .

Proof To prove that clCG(P, Z) ⊆ Q, observe that Vj � 0 with[〈Vj,A1〉 · · · 〈Vj,Am〉
]� ∈ Z for all j ∈ [k]. Consequently, we know that P ⊆{

x ∈ R
m : ∑m

i=1 xi 〈Ai,Vj〉 ≤ 〈C,Vj〉
}
. It follows from (13) that clCG(P, Z) ⊆

{x ∈ R
m : ∑m

i=1 xi 〈Ai,Vj〉 ≤
⌊〈C,Vj〉

⌋}. Since all inequalities in Bx ≤ d are
of this form, it follows that clCG(P, Z) ⊆ Q.

To prove the reverse direction, let H := {
x ∈ R

m : b�x ≤ q
}
be a halfspace

containing P with b ∈ Z . Since P ⊆ H , we have

q ≥ sup
x

{
b�x : C−

m∑

i=1
Aixi � 0

}

= inf
X
{〈C,X〉 : 〈Ai,X〉 = bi , i ∈ [m], X � 0} , (14)

where strong duality in (14) holds since the former problem has a Slater feasible
point. By the same argument, we know that the infimum in (14) is attained. SinceC−∑m

i=1 Aixi � 0 is TDI on Z , it follows that there exists an optimal solution X̂ satisfying
property (PZ)V . In other words, there exists an ŷ ∈ Z

k+ such that X̂ =∑ j∈[k] ŷ jVj,

〈Ai, X̂〉 = bi for all i ∈ [m], X̂ � 0.

Consequently, we have �q� ≥ �〈C, X̂〉� =
⌊∑

j∈[k] ŷ j
〈
C,Vj

〉⌋ ≥ ∑
j∈[k]

ŷ j
⌊〈
C,Vj

〉⌋ = d�ŷ. Now, consider the following linear optimization problem and
its corresponding dual:

max{b�x : Bx ≤ d} = min{d�y : y ≥ 0, y�B = b�}.

Since ŷ ≥ 0 and (ŷ�B)i = ∑
j∈[k] ŷ j 〈Ai,Vj〉 = 〈Ai, X̂〉 = bi , the solution ŷ is

feasible for the minimization problem above. This yields max{b�x : Bx ≤ d} ≤
d�ŷ ≤ �q�. Hence, Q ⊆ {x ∈ R

m : b�x ≤ �q�}. Since this holds for all halfspaces
H induced by coefficient vectors in Z , it follows that Q ⊆ clCG(P, Z). ��
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For the special case where Z = Z
m , Theorem 5 provides a closed-form

expression for clCG(P). Observe that for that special case the condition that[〈Vj,A1〉 · · · 〈Vj,Am〉
]� ∈ Z for all j ∈ [k] can be simplified to 〈Ai,Vj〉 ∈ Z

for all i ∈ [m] and j ∈ [k].
Besides providing a closed-form expression for clCG(P), Theorem 5 can be used

to identify bounded spectrahedra for which P = PI . Namely, if the matrix C is such
that 〈C,Vj〉 ∈ Z for all j ∈ [k], then P ⊆ Q. For spectrahedra that are bounded,
this implies that the chain Q = clCG(P) ⊆ P ⊆ Q holds with equality, hence
clCG(P) = P . As P(k) = PI for some finite k for all bounded spectrahedra, we must
have P = PI . De Carli Silva and Tunçel [13] show that this, for example, happens
for the SDP formulation of the Lovász theta function when the underlying graph is
perfect.

A natural question is under which conditions a linear matrix inequality is TDI on a
certain set Z . Below we first derive a full characterization of LMIs that are totally dual
integral on the full setZm . The characterization relates to the faces of the spectrahedron
induced by the LMI. It is well-known that the faces of Sn+ are associated with linear
subspaces of R

n , see e.g., [7]. In the same vein, the facial structure of a spectrahedron
can be characterized as follows.

Lemma 1 (Ramana and Goldman [57]) Let P = {x ∈ R
m : C−∑m

i=1 Aixi � 0} be
a spectrahedron and let F ⊆ P be a nonempty face of P. Then, there exists a subspace
RF ⊆ R

n such that

F =
{
x ∈ P : RF ⊆ Nul

(
C−

m∑

i=1
Aixi

)}
,

where any point x in the relative interior of F satisfies Nul
(
C−∑m

i=1 Aixi
) = RF .

Lemma 1 implies that in the particular case where the face F of P is an extreme
point x̄, we have Rx̄ = Nul(C −∑m

i=1 Ai x̄i ). For any nonempty face F of P , we
define the cone of objective vectors b for which the elements in F maximize b�x over
P , i.e.,

K (F) :=
{
b ∈ R

m : b�y = max{b�x : x ∈ P} for all y ∈ F
}

. (15)

For any proper face F ⊆ P , the cone K (F) is nonempty and equals the intersection
over all normal cones of P at the points in F .

Next, we recall the definition of a so-called Hilbert basis.

Definition 4 A set {v1, . . . , vk} ⊆ Z
m is a Hilbert basis if every integral vector x ∈

cone({v1, . . . , vk}) can be written as x =∑k
j=1 α jv j , α j ≥ 0, α j ∈ Z, for all j ∈ [k].

By abuse of terminology, we will refer to an LMI whose solution set is bounded as
a bounded LMI. The following theorem provides a full characterization of bounded
LMIs that are TDI on the full set of integer vectors.

123



The CG procedure for ISDPs with applications in CO

Theorem 6 Let the linear matrix inequality C −∑m
i=1 Aixi � 0 be bounded and

assume Slater’s condition holds. Then, C−∑m
i=1 Aixi � 0 is totally dual integral on

Z
m if and only if there exists some finite set of integer PSD matricesV = {V1, . . . ,Vk}

such that for each extreme point x̄ of the induced spectrahedron P = {x ∈ R
m :

C−∑m
i=1 Aixi � 0} with K (x̄) ∩ Z

m �= ∅, the vectors

gj :=
[〈A1,Vj〉 . . . 〈Am,Vj〉

]�
for j ∈ J := { j ∈ [k] : Col(Vj) ⊆ Rx̄}

form a Hilbert basis of K (x̄).

Proof Let b ∈ Z
m . Since P is bounded, the maximum of b�x over x ∈ P is attained at

a face of P . Thus, there exists an extreme point x̄ of P with b ∈ K (x̄). As P contains
a Slater feasible point, we have

max
x

{
b�x : x ∈ P

}
= min

X
{〈C,X〉 : 〈Ai,X〉 = bi , i ∈ [m], X � 0} . (16)

The point x̄ is optimal for the maximization problem above. Complementary
slackness then implies that any X optimal to the dual problem should sat-
isfy (C−∑m

i=1 Ai x̄i )X = 0, or equivalently, Col(X) ⊆ Nul(C−∑m
i=1 Ai x̄i ) = Rx̄.

To show that gj is contained in K (x̄) for j ∈ J , we first observe that Vj is feasible for
the minimization problem

min
X

{〈C,X〉 : 〈Ai,X〉 = (gj)i , i ∈ [m], X � 0
}
.

Then, since Col(Vj) ⊆ Rx̄, we know that (C −∑m
i=1 Ai x̄i )Vj = 0. Therefore, x̄

andVj are optimal solutions to maxx
{
gj�x : x ∈ P

}
and minX{〈C,X〉 : 〈Ai,X〉 =

(gj)i , i ∈ [m], X � 0}, respectively. This implies that gj is indeed contained in K (x̄)
for j ∈ J .

Now, suppose that the vectors gj, j ∈ J form a Hilbert basis of K (x̄).
Then, we have b =∑ j∈J α jgj for some α j ≥ 0, α j ∈ Z, j ∈ J . Conse-
quently, X :=∑ j∈J α jV j is feasible for the minimization problem in (16) with
Col(X) ⊆ Rx̄. Since this establishes complementary slackness between X and x̄,
it follows that X is a dual optimal solution that satisfies property (PZ)V .

Conversely, if the LMI is totally dual integral on Z
m , it follows that the dual

problem in (16) has an optimal solution X satisfying property (PZ)V . Therefore,
X = ∑k

j=1 α jVj for some α j ≥ 0, α j ∈ Z, j ∈ [k]. Now, let J C := [k]\J . Then,
X =∑ j∈J α jVj +∑ j∈J C α jVj.

By complementary slackness, we have Col(X) ⊆ Rx̄, implying that
Col(

∑
j∈J C α jVj) = Col(X−∑ j∈J α jVj) ⊆ Rx̄. Since theVj’s are positive semidef-

inite, we also know that Col(α jVj) ⊆ Col(
∑

j∈J C α jVj) ⊆ Rx̄ for all j ∈ J C .

However, by the definition of J C we have Col(Vj) � Rx̄, so we must have α j = 0 for
all j ∈ J C . We conclude that X is a non-negative integer combination of the matrices
Vj with j ∈ J . By the constraints of the minimization problem in (16), it finally
follows that b = ∑

j∈J α jgj. As the construction can be repeated for all b ∈ Z
m in
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K (x̄), we conclude that {gj : j ∈ J } indeed forms a Hilbert basis of K (x̄). The same
holds for all other extreme points x̄ for which K (x̄) ∩ Z

m �= ∅. ��
Theorem 6 has a significant implication on the structure of the induced spectrahe-

dron of a bounded LMI that is TDI on Z
m .

Corollary 2 If a bounded LMI C−∑m
i=1 Aixi � 0 that satisfies Slater’s condition is

totally dual integral on Z
m, the spectrahedron P = {x ∈ R

m : C−∑m
i=1 Aixi � 0}

is polyhedral.

Proof Let h P : R
m → R denote the support function of P , i.e., h P (x) :=

supa∈P {x�a} and let (c, d) ∈ Z
m × R be such that P ⊆ {x ∈ R

m : c�x ≤ d}.
Then, there exists an extreme point x̄ of P such that c ∈ K (x̄). By Theorem 6, it
follows that there exists a subset J ⊆ [k] and α j ≥ 0, α j ∈ Z, j ∈ J such that
c = ∑

j∈J α jgj. Obviously, h P (c) = c�x̄ and, since gj ∈ K (x̄), h P (gj) = gj�x̄ for

all j ∈ J . Now, the conical combination of the inequalities gj�x ≤ h P (gj), each with
weight α j , results in

∑
j∈J α jgj�x ≤∑ j∈J α j h P (gj) =∑ j∈J α jgj�x̄ = c�x̄ ≤ d.

Since the left-hand side equals c�x, the halfspace {x ∈ R
m : c�x ≤ d} is implied by

the inequalities gj�x ≤ h P (gj), j ∈ [k].
Since this construction can be repeated for all halfspaces of the form {x ∈ R

m :
c�x ≤ d}where (c, d) ∈ Z

m×R, and P equals the intersection of all such halfspaces,
see Proposition 1, it follows that P is contained in the polyhedron induced by gj�x ≤
h P (gj), j ∈ [k]. Since the converse inclusion is also true, P is polyhedral. ��

Corollary 2 implies that the only bounded linear matrix inequalities that may be
TDI on Z

m can be described by a finite number of linear inequalities. This is the case,
for instance, when the matrices C and Ai, i ∈ [m], are diagonal or simultaneously
diagonalizable. In general, it isNP-hard to decide whether a spectrahedron is polyhe-
dral [58]. The following result provides a characterization of polyhedral spectrahedra
that are full-dimensional. Observe that any spectrahedron can be transformed to a
full-dimensional spectrahedron by a restriction to its affine hull.

Theorem 7 (Ramana [58]) Let P = {x ∈ R
m : C −∑m

i=1 Aixi � 0} be a full-
dimensional spectrahedron. Then, P is polyhedral if and only if there exists a non-
singular matrix M ∈ R

n×n and d, ai ∈ R
�, C′,A′i ∈ Sn−�, i ∈ [m], with � ≤ n such

that for all x ∈ R
m we have

M

(
C−

m∑

i=1
Aixi

)
M� =

[
C′ −∑m

i=1 A′ixi 0
0 Diag(d)−∑m

i=1 Diag(ai)xi

]
(17)

with P = {x ∈ R
m : Diag(d)−∑m

i=1 Diag(ai)xi � 0}.
It is well-known that any rational polyhedron P can be described by a totally dual

integral system of linear inequalities, see Giles and Pulleyblank [42]. Hence, if a spec-
trahedron P satisfies Theorem7with rationald, ai for all i ∈ [m], then P is totally dual
integral on Z

m with respect to generating matrices V = {Diag(e1), . . . ,Diag(e�)} ⊆
S�+.
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By relaxing the notion of total dual integrality to a strict subset Z of Z
m , it might

be possible to identify other conditions of TDIness that go beyond polyhedrality. In
return, the best one can hope for is a description of clCG(P, Z), see Theorem 5.

As shown by Bhardwaj et al. [10], any full-dimensional spectrahedron P can be
expressed by a linearmatrix inequality in the form of (17), even if P is non-polyhedral.
When the residual linear matrix formC′ −∑m

i=1 A′ixi cannot be further diagonalized,
the form on the right-hand side of (17) is called the normal form of the linear matrix
inequality. Intuitively speaking, the bottom right block of (17) can be viewed as the
polyhedral part of the spectrahedron. As an extension of the result by Giles and Pul-
leyblank [42], the following result shows that the polyhedral part of a spectrahedron
can, under mild conditions, be made totally dual integral on an appropriate set Z .

Theorem 8 Let P = {x ∈ R
m : C −∑m

i=1 Aixi � 0} be a full-dimensional spec-
trahedron that can be written in the normal form (17) for some non-singular matrix
M ∈ R

n×n and d, ai ∈ Q
�, C′,A′i ∈ Sn−�, i ∈ [m] with 1 ≤ � ≤ n. Let Z ⊆ Z

m be
such that

max
x

{
b�x : x ∈ P

}
= max

x

{
b�x : Diag(d)−

m∑

i=1
Diag(ai)xi � 0

}

for all b ∈ Z. Then there exists a linear matrix inequality describing P that is totally
dual integral on Z.

Proof Let Q = {x ∈ R
m : Diag(d) −∑m

i=1 Diag(ai)xi � 0}. Since d and ai are
rational for all i ∈ [�], it follows from Giles and Pulleyblank [42] that there exists
some totally dual integral representation of Q, i.e., Q = {x ∈ R

m : Âx ≤ d̂} for
some Â ∈ Z

�′×m, d̂ ∈ Q
�′ with Âx ≤ d̂ TDI. For all i ∈ [m], let âi denote the i th

column of Â. Then, P can be written as

P =
{
x ∈ R

m :
[
C′ −∑m

i=1 A′ixi 0
0 Diag(d̂)−∑m

i=1 Diag(âi )xi

]
� 0

}
. (18)

We will show that the LMI in (18) is totally dual integral on Z . For any b ∈ Z , we
have that

max
x

{
b�x : x ∈ P

}
= max

x

{
b�x : x ∈ Q

}
= min

y

{
d̂�y : y ≥ 0, y�Â = b�

}
.

By construction, the minimization problem above has an optimal solution ŷ ∈ Z
�′+.

Now, we define X̂ :=
[
0 0
0 Diag(ŷ)

]
∈ Sn−�+ ⊕ S�′+ .

It follows from above that
〈[

C′ 0
0 Diag(d̂)

]
, X̂
〉
= d̂�ŷ and

〈[
A′i 0
0 Diag(âi )

]
, X̂
〉
= bi

for all i ∈ [m]. Therefore, X̂ is optimal to the SDP dual to maxx{b�x : x ∈ P}.
By construction, X̂ is an integer conical combination of matrices in the set V =
{0 ⊕ Diag(ei) : i ∈ [�′]} of integer PSD matrices. We conclude that the LMI given
in (18) is totally dual integral on Z . ��
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Our final condition for total dual integrality on a set Z is not related to the poly-
hedrality of the spectrahedron induced by the linear matrix inequality, but related
to the feasible set of its corresponding dual problem to be polyhedral. It is pos-
sible for a spectrahedron to be non-polyhedral, while the feasible set of its dual
problem is polyhedral. For instance, consider the non-polyhedral spectrahedron
Q = {x ∈ R

2 : x2 ≥ x21/2} considered in Example 1. For any b ∈ Z
2−, its dual feasi-

ble set is given by
{[ x1 x2

x2 x3

] ∈ S2 : x1 ≥ −b21/2b2, x2 = −1/2b1, x3 = −1/2b2
}
,

which is polyhedral. Let us formalize the criterion of polyhedrality of the dual feasible
set.

Definition 5 The set {A1, . . . ,Am} is called finitely generative on Z ⊆ Z
m if

there exists a finite set of integer PSD matrices V = {V1, . . . ,Vk} such that
{X : 〈Ai,X〉 = bi , i ∈ [m], X � 0} is contained in cone(V) for all integer vectors
b ∈ Z .

The condition of the dual feasible set to be polyhedral is also considered in recent
works on SDP exactness [67]. Observe that if {A1, . . . ,Am} is finitely generative, then
{X : 〈Ai,X〉 = bi , i ∈ [m], X � 0} is polyhedral for all b ∈ Z (since cone(V) ⊆
Sn+). Moreover, if {A1, . . . ,Am} is finitely generative on Z , then {tA1, . . . , tAm} is
also finitely generative on Z for any scalar t > 0.

As shown below, the constraint matrices being finitely generative and integer is
a sufficient condition for the existence of a totally dual integral description of the
spectrahedron.

Theorem 9 Let C −∑m
i=1 Aixi � 0 be an LMI satisfying Slater’s condition with

{A1, . . . ,Am} ⊆ Z
n×n finitely generative on Z. Then, the spectrahedron P ={

x ∈ R
m : C−∑m

i=1 Aixi � 0
}

can be described by a linear matrix inequality that
is totally dual integral on Z.

Proof LetV = {V1, . . . ,Vk} denote the finite set of integer PSDmatrices correspond-
ing to {A1, . . . ,Am} in Definition 5. Let b ∈ Z and let t > 0 be a positive rational
number. We consider the following semidefinite program and its dual:

sup
x

{
b�x : tC−

m∑

i=1
tAixi � 0

}

= inf
X
{〈tC,X〉 : 〈tAi,X〉 = bi , i ∈ [m], X � 0} . (19)

Based on the fact that {A1, . . . ,Am} is finitely generative, we know that the feasible
set of the minimization problem in (19) is contained in cone(V). Since we also know
the minimum is attained due to Slater’s condition, we can rewrite the dual problem as
follows:
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min
X

{
〈tC,X〉 : 〈tAi,X〉 = bi , i ∈ [m], X = α1V1 + · · · + αkVk, α ≥ 0

}

= min
X

{
〈tC,X〉 : t triu(Ai)

�svec(X) = bi , i ∈ [m], α ≥ 0

svec(X)− α1svec(V1)− · · · − αksvec(Vk) = 0

}

= min
X

{
〈tC,X〉 :

[
tA′ 0
I −V′

] [
svec(X)

α

]
=
[
b
0

]
, α ≥ 0

}
,

where A′ := [
triu(A1) . . . triu(Am)

]�, V′ := [
svec(V1) . . . svec(Vk)

]
, triu : Sn →

R
1
2 (n2+n) is the operator that maps a matrix to a vector containing its upper-triangular

entries and svec : Sn → R
1
2 (n2+n) is the symmetric vectorization operator that maps

a matrix to a vector containing its upper-triangular part with weight two on the off-
diagonal elements and weight one on the diagonal elements. The linear system in the
dual problem above can be written as

t

[
A′ 0
I −V′

] [
svec(X)

α

]
=
[
b
0

]
, or equivalently,

[
A′ 0
I −V′

] [
svec(X)

α

]
= 1

t

[
b
0

]
.

Each basic feasible solution to this system with α ≥ 0 is the unique solution to one of
its non-singular subsystems. Following the proof by Giles and Pulleyblank [42], it is
possible to find a rational number t∗ such that for all b ∈ Z , there exists an optimal

solution that satisfies svec(X) ∈ Z
1
2 (n2+n) and α ∈ Z

k . When mapping svec(X) back
toX ∈ Sn , it follows that the SDP dual to max{b�x : t∗C−∑m

i=1 t∗Aixi � 0} for all
b ∈ Z has an optimal solutionX satisfyingX =∑ j∈[k] α jVj, α j ≥ 0, j ∈ [k].withα

integer. Hence, property (PZ)V holds forX. We conclude that t∗C−∑m
i=1 t∗Aixi � 0

is a linear matrix inequality describing P that is totally dual integral on Z . ��

2.5 Strengthened Chvátal–Gomory cuts

Dash et al. [24] consider a strengthening of the CG cuts for rational polyhedra. We
briefly present here their approach that can be applied to general convex sets.

For all c ∈ Z
m such that P ⊆ {x ∈ R

m : c�x ≤ d}, the correspond-
ing CG cut is c�x ≤ �d�. The validity of this cut follows from the inequality
�d� ≥ max

{
c�x : c�x ≤ d, x ∈ Z

m
}
, where equality holds if the entries in c are

relatively prime. However, the gap between �d� and max{c�x : x ∈ P ∩ Z
m} can

generally be very large. In order to reduce this gap, suppose that we know that P ∩Z
m

is contained in some set S ⊆ Z
m . Given a valid inequality c�x ≤ d for P , we define

�d�S,c := max
{
c�x : c�x ≤ d, x ∈ S

}
. (20)

By construction, c�x ≤ �d�S,c is valid for P ∩ Z
m . We refer to these type of cuts

as S-Chvátal–Gomory (S-CG) cuts. These cuts are at least as strong as standard CG
cuts, since taking S = Z

m provides the standard CG cut. The geometric interpretation
of an S-CG cut is that we shift the hyperplane {x ∈ R

m : c�x = d} in the direction
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of P ∩ Z
m until it hits a point in S. An example for S is the set {0, 1}m in the case of

binary optimization problems.

3 A CG-based branch-and-cut algorithm for ISDPs

Solving ISDPs is a relatively newfield of research forwhichonly a fewgeneral-purpose
solution approaches have been proposed. Gally et al. [40] present a B&B algorithm
called SCIP-SDP for solving (M)ISDPs with continuous SDPs as subproblems. Alter-
natively, Kobayashi and Takano [46] propose a B&C algorithm that initially relaxes
the PSD constraint and solves a mixed integer linear program (MILP), where the PSD
constraint is imposed dynamically via cutting planes. Numerical results in [46] show
that the B&C algorithm of [46] outperforms the B&B algorithm of [40]. The difference
can be explained by the high performance of the current MILP solvers compared to
the much less robust conic interior point methods that are used in [40]. It has to be
noted, however, that an older version of SCIP-SDP with DSDP [9] as SDP solver was
used in the computational results of [46]. The authors of [50] also compare the two
approaches and conclude that SCIP-SDP is much faster on average than the approach
by Kobayashi and Takano. However, they use Mosek [54] as an SDP solver and an
improved implementation of SCIP-SDP. Another project that encounters MISDPs is
YALMIP [49], although its performance is inferior compared to the other two meth-
ods [40, 46].

In this section we present a generic B&C algorithm for solving ISDPs that exploits
CG cuts of the underlying spectrahedron. This algorithm can be seen as an extension
of the works of [15, 46]. In Sect. 3.1 we provide a general B&C framework for ISDPs
which uses a cut generation routine based on S-CGcuts. Section2 presents a separation
routine for the special class of binary SDPs.

3.1 Generic Branch-and-Cut framework

We start this section by presenting the B&C framework proposed by Kobayashi and
Takano [46] for ISDPs in standard dual form, see (5). However, the approach can be
extended to problems in primal form in a straightforward way. We define

F :=
{
x ∈ R

m : diag

(
C−

m∑

i=1
Aixi

)
≥ 0

}
, (21)

which can be seen as the polyhedral part of the spectrahedron P , see (6). We assume
that the problem of maximizing b�x over F is bounded, which is a non-restrictive
assumption whenever the original ISDP is bounded.

The B&C algorithm of [46] is based on a dynamic constraint generation known as
a lazy constraint callback. The algorithm starts with optimizing over the set F ∩ Z

m ,
i.e.,

max
{
b�x : x ∈ F ∩ Z

m
}

, (22)
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which can be solved using a B&B algorithm. Whenever an integer point x̂ is found
in the branching tree, it is verified whether C−∑m

i=1 Ai x̂i � 0 is satisfied. If so, the
solution is feasible for (DI SD P ) and provides a possibly better lower bound to prune
other nodes in the tree. If not, then 〈C−∑m

i=1 Ai x̂i ,dd�〉 < 0 where d is a normalized
eigenvector corresponding to the smallest eigenvalue of C−∑m

i=1 Ai x̂i . This leads to
the following valid constraint for (DI SD P ):

〈
C−

m∑

i=1
Aixi ,dd�

〉
≥ 0, or equivalently,

m∑

i=1
〈Ai,dd�〉xi ≤ 〈C,dd�〉, (23)

which separates x̂ from P . Now, the algorithm adds to F a cut of type (23) to cut off
the current point and continues the branching scheme using this additional constraint.
This process is iterated until the optimality of a solution for (DI SD P ) is guaranteed
by the B&B procedure.

It follows from the Rayleigh principle that 〈C −∑m
i=1 Ai x̂i ,U〉 is minimized by

takingU = dd� with d as defined above. In that sense, the cut (23) is the strongest cut
with respect to violation in the PSD constraint. However, this type of separator ignores
the fact that an optimal solution is also integer.We now propose an alternative stronger
separator based on the CG procedure that exploits both the PSD and the integrality
constraint.

Let S ⊆ Z
m be a set containing the feasible set of (DI SD P ), with S = Z

m in case
of no prior knowledge about the problem. If x̂ /∈ P , and consequently x̂ /∈ clCG(P),
it follows from (9) that there exists a dual multiplier U ∈ Sn+ with 〈Ai,U〉 ∈ Z

for all i ∈ [m], such that
∑m

i=1〈Ai,U〉x̂i > �〈C,U〉�. Taking such U and defining
v(U) := (〈A1,U〉, . . . , 〈Am,U〉)�, we obtain the following S-CG cut:

m∑

i=1
〈Ai,U〉xi ≤ �〈C,U〉�S,v(U), (24)

see (20). The cut (24) exploits both the PSD and the integrality constraints in (DI SD P )

by separating x̂ from clCG(P) instead of only from P . As clCG(P) ⊆ P for bounded
spectrahedra, this type of cut is possibly stronger than the eigenvalue cut (23) for all
S containing P ∩ Z

m . Figure4 depicts a simplified example indicating the geometric
difference between the cuts (23) and (24).

It is not clear in general how to find an appropriate cut (24) separating x̂ from
clCG(P). Indeed, this is closely related to the CG separation problem, which was
proven to be NP-hard even for polytopes contained in the unit hypercube, see Cor-
nuéjols et al. [18]. Fischetti and Lodi [38] show how to solve the separation problem
for polyhedra using a mixed integer programming problem. Extending their procedure
to the class of spectrahedra, implies solving a MISDP. Instead, we can adopt problem-
specific separation routines that are efficient and provide strong cuts. For instance, in
the next subsection we present a separation routine for binary SDPs in primal form.
Moreover, we later provide various separation routines for cuts of the form (24) for
the quadratic traveling salesman problem.
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Fig. 4 Simplified example of strengthened separation routine on spectrahedron P from Example 1. The
dotted line shows an eigenvalue cut (23) separating x̂ from P , the solid line shows a CG cut (24) separating
x̂ from clCG (P), where S = Z

m

Alongside extending the approach of Kobayashi and Takano [46], our framework
also continues on the work of Çezik and Iyengar [15]. In [15] CG cuts for binary conic
programs are introduced. It is noted that there is no method known for separating
CG cuts from fractional points, and consequently the CG cuts are not included in the
numerical experiments of [15]. Since our approach separates on integer points only, we
partly resolve this issue for certain classes of problems by exploiting the underlying
structure of the programs. As a result, we present the first practical algorithm that
utilizes CG cuts in conic problems.

We end this section by providing a pseudocode of the B&C framework, see Algo-
rithm 1. Suppose SeparationRoutine is a separation routine for constructing CG
cuts of the form (24), wherewe assume this routine can generatemultiple dualmatrices
at a time. In “Appendix 2” we present a separation routine for binary SDPs.

4 The Chvátal–Gomory procedure for ISDP formulations of the QTSP

In this section we provide an in-depth study on solving the Quadratic Traveling Sales-
man Problem using our B&C approach. We formally define the QTSP in Sect. 4.1.
In Sect. 4.2 we derive two ISDP formulations of the QTSP. Our first ISDP model
exploits the algebraic connectivity of a directed tour. Our second formulation exploits
the algebraic connectivity of a directed tour and the distance twomatrix that originates
from the product of a tour matrix with itself. Finally, in Sect. 4.3 we derive CG cuts
for the two ISDPs and show that we can obtain various classes of well-known cuts in
this way.
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Algorithm 1: CG-based B&C algorithm for solving (DI SD P )

Input: C,Ai, i ∈ [m] , S, ε > 0, Output: x̄, O PT := b�x
1 Initialize F as defined in (21).
2 B&B procedure: Start or continue the branch-and-bound algorithm for solving the MILP

max
{
b�x : x ∈ F ∩ Z

m
}
incorporating the callback function below at each node in the

branching tree.

3 Callback procedure: if an integer point x̄ ∈ F is found then
4 if λmin

(
C−∑m

i=1 Ai x̂i
)

< −ε then
5 Call SeparationRoutine(C,A1, . . . ,Am, S, x̄) which provides matrices Uj, j ∈ [K ]. Add

the cuts
∑m

i=1〈Ai,Uj〉xi ≤ �〈C,Uj〉�S,v(Uj) for j ∈ [K ] to F .

6 else
7 Use x̄ to cut off other nodes in the branching tree.
8 end
9 Return to Step 2

10 end

4.1 The quadratic traveling salesman problem

Let G = (N , A) be a directed simple graph on n := |N | nodes and m := |A| arcs.
A directed cycle C in G that visits all the nodes exactly once is called a directed
Hamiltonian cycle or a directed tour in G. For the sake of simplicity, we often omit
the adjective ‘directed’ in the sequel.

A tour in G can be represented by a binary matrix X = (xi j ) ∈ {0, 1}n×n such that
xi j = 1 if and only if arc (i, j) is used in the tour. We refer to such a matrix as a tour
matrix. The set of all tour matrices in G is defined as follows:

Tn(G) :=
{
XC ∈ {0, 1}n×n : xC

i j = 1 if and only if (i, j) ∈ C for Hamiltonian cycle C
}

.

(25)

It follows from (25) that for allX ∈ Tn(G)we have xi j = 0 if (i, j) /∈ A. In particular,
diag(X) = 0n . Given a distance matrix D = (di j ) ∈ R

n×n , the (linear) traveling
salesman problem (TSP) is the problem of finding a Hamiltonian cycle C of G that
minimizes

∑
(i, j)∈C di j . As G is directed and D is not necessarily symmetric, this

version of the problem is sometimes referred to as the asymmetric traveling salesman
problem. Using the set defined in (25), we can state the TSP as follows:

TSP(D, G) := min

⎧
⎨

⎩

n∑

i=1

n∑

j=1
di j xi j : X ∈ Tn(G)

⎫
⎬

⎭ . (26)

We now define the quadratic version of the TSP, where the total cost is given by the
sum of interaction costs between arcs used in the tour. In accordance with most of the
literature, we assume that a quadratic cost is incurred only if two arcs are placed in
succession on the tour, see e.g., [33–35, 45, 61]. To model this problem, we define the
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set of the so-called 2-arcs of G, i.e.,

A := {(i, j, k) : (i, j), ( j, k) ∈ A, |{i, j, k}| = 3} , (27)

which consists of all node triples of G that can be placed in succession on a cycle.
Now let Q = (qi jk) ∈ R

n×n×n be a cost matrix such that qi jk = 0 if (i, j, k) /∈ A.
Then the quadratic traveling salesman problem (QTSP) is formulated as:

QTSP(Q, G) := min

⎧
⎨

⎩

n∑

i=1

n∑

j=1

n∑

k=1
qi jk xi j x jk : X ∈ Tn(G)

⎫
⎬

⎭ . (28)

Since the in- and outdegree of each node on a Hamiltonian cycle is exactly one, we
have X1 = 1 and X�1 = 1 for all X ∈ Tn(G). The set of square binary matrices
that satisfy this property is known as the set of permutation matrices Πn , i.e., Πn :={
X ∈ {0, 1}n×n : X1 = 1, X�1 = 1

}
. The permutation matrices that additionally

satisfy diag(X) = 0n induce a disjoint cycle cover in Kn .
Similar to the definition of Tn(G), we can also restrict Πn to the entries induced by

G. That is, Πn(G) has a zero on position (i, j) whenever (i, j) /∈ A.

4.2 ISDP based on algebraic connectivity in directed graphs

Cvetković et al. [19] derive an ISDP formulation of the symmetric linear TSP based
on algebraic connectivity. We now exploit the equivalent of this notion for directed
graphs to derive two ISDP formulations of the QTSP. Different from our approach,
there was no attempt in [19] to solve the ISDP itself, only its SDP relaxation.

Let DG be an n × n diagonal matrix that contains the outdegrees of the nodes
of G on the diagonal. Moreover, let AG denote the adjacency matrix of G. That is,
(AG)i j = 1 if there exists an arc from i to j in G, and (AG)i j = 0 otherwise. We
define the directed out-degree Laplacian matrix of G as LG := DG−AG. The matrix
LG can be asymmetric and has a zero eigenvalue with corresponding eigenvector 1n .
Observe that there exist also other ways for defining the directed graph Laplacian of
G, see e.g., [14]. Wu [70] generalized Fiedler’s notion of algebraic connectivity of
an undirected graph [32] to directed graphs, by exploiting the out-degree Laplacian
matrix.

Definition 6 The algebraic connectivity of a directed graph G is given by

a(G) := min
x∈S

x�LGx = min
x∈Rn

x �=0,x⊥1n

x�LGx
x�x

= λmin

(
1

2
W� (LG + LG

�)W
)

,

where S := {x ∈ R
n : x ⊥ 1n , ‖x‖2 = 1} and W ∈ R

n×(n−1) is a matrix whose
columns form an orthonormal basis for 1⊥n .

The last equality inDefinition 6 follows from theCourant-Fischer theorem.Observe
that a(G) is not necessarily equal to the second smallest eigenvalue of the directed
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Laplacian matrix, which is the definition of its undirected counterpart. The algebraic
connectivity a(G) as defined in Definition 6 is a real number that can be negative.

A directed graph is called balanced if for each node its indegree is equal to its
outdegree. LetB ∈ {−1, 0, 1}n×m be the signed incidence matrix of G, i.e., Bi,e = −1
if arc leaves node i , Bi,e = 1 if e enters node i and Bi,e = 0 otherwise. One can verify
that G is balanced if and only if LG + LG

� = BB�. This implies that for balanced
graphs the matrix 1

2 (LG + LG
�) is positive semidefinite. Wu [70] observes that if G

is balanced, then a(G) = λ2((LG+LG
�)/2) ≥ 0.A directed graph is called strongly

connected if for every pair of distinct nodes u, v ∈ N there exists a directed path from
u to v in G. The balanced graphs that are strongly connected are characterized by their
algebraic connectivity, see Proposition 5 below. Connectedness of directed graphs is
also studied in [14, 66].

Proposition 5 (Wu [70]) Let a directed graph G be balanced. Then, a(G) > 0 if and
only if G is strongly connected.

This characterization can be exploited to derive a certificate for a tour matrix via a
linear matrix inequality. In order to do so, we consider the spectrum of a Hamiltonian
cycle. Let C be a Hamiltonian cycle in G corresponding to the tour matrixX ∈ Tn(G),
see (25). We then have 1

2

(
LC + LC�

) = In − 1
2 (X+ X�). The matrix X+ X� with

X ∈ Tn(G) has the same spectrum as the adjacency matrix of the standard undirected

n-cycle. As a result, the spectrum of 1
2 (X + X�) is given by cos

(
2π j

n

)
for j ∈ [n]

see e.g., [19]. From this, it follows that the spectrum of 1
2

(
LC + LC�

)
is given by

1− cos (2π j/n) for j ∈ [n], and the algebraic connectivity of a directed Hamiltonian
cycle C is a(C) = 1− cos(2π/n). We define:

kn := cos

(
2π

n

)
and hn := 1− kn . (29)

Next, we extend a result by Cvetković et al. [19] from undirected to directed Hamil-
tonian cycles.

Theorem 10 Let H be a spanning subgraph of a directed graph G where the in- and
outdegree equals one for all nodes in H. LetX be its adjacency matrix and let α, β ∈ R

be such that α ≥ hn/n and kn ≤ β < 1, with kn, hn as defined in (29). Then, H is a
directed Hamiltonian cycle if and only if

Z := βIn + αJn − 1

2

(
X+ X�

)
� 0.

Proof LetLH be the Laplacianmatrix of H and letW be as given in Definition 6. Then
a(H) = λmin

( 1
2W

� (LH + LH
�)W

)
. Let Z � 0. This implies that W�ZW � 0,

i.e.,
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W�ZW =W�
(

βIn + αJn − 1

2

(
X+ X�

))
W

= βW�W+ αW�JnW− 1

2
W� (X+ X�

)
W

= βIn−1 − 1

2
W� (X+ X�

)
W = (β − 1)In−1 + 1

2
W� (LH + LH

�)W � 0,

where we used the fact that JnW = 0 and 1
2 (LH + LH

�) = In − 1
2 (X + X�). The

linear matrix inequality above can be rewritten as

1

2
W� (LH + LH

�)W � (1− β)In−1 �⇒ a(H) = λmin

(
1

2
W� (LH + LH

�)W
)

≥ 1− β.

Since β < 1, we have α(H) > 0. Because H is balanced, it follows fromProposition 5
that H is strongly connected and, thus, H is a directed Hamiltonian cycle.

Conversely, let H be a directed Hamiltonian cycle. Then, a(H) = λmin
( 1
2W

�
(
LH + LH

�)W
) = 1 − kn . Since β ≥ kn , we have 1

2W
� (LH + LH

�)W − (1 −
β)In−1 � 0 ⇐⇒ W�ZW � 0, following the same derivation as above. Now, let
x ∈ R

n . Since the columns ofW form a basis for 1⊥n , x can be written as x =Wy+δ1n

for some y ∈ R
n−1 and δ ∈ R. This yields:

x�Zx = y�W�ZWy+ 2δy�W�Z1n + δ21�n Z1n

= y�W�ZWy︸ ︷︷ ︸
≥0

+ 2δy�W� ((β − 1)1n + αn1n)︸ ︷︷ ︸
=0

+ δ2n ((β − 1)+ αn)︸ ︷︷ ︸
≥0

,

where we used the facts that W�ZW � 0,W�1n = 0 and β − 1 + αn ≥ kn − 1 +
n 1−kn

n = 0. Thus, Z � 0. ��

In order to present our first ISDP formulation of the QTSP, we derive an explicit
expression for the set Tn(G) and linearize the objective function. The former can be
done using Theorem 10. The set Tn(G) can be fully characterized by the permutation
matrices that satisfy a linear matrix inequality. That is,

Tn(G) = Πn(G) ∩
{
X ∈ Sn : βIn + αJn − 1

2
(X+ X�) � 0

}
, (30)

for all α ≥ hn/n and kn ≤ β < 1. Recall thatΠn(G) is the set of permutation matrices
implied by G, see Sect. 4.1.

To linearize the objective function, we follow the same construction as proposed
by Fischer et al. [35]. For all two-arcs (i, j, k) ∈ A, see (27), we define a variable
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yi jk := xi j x jk . This equality can be guaranteed by the introduction of the following
set of linear coupling constraints:

xi j =
∑

k∈N :
(k,i, j)∈A

yki j =
∑

k∈N :
(i, j,k)∈A

yi jk for all (i, j) ∈ A and yi jk ≥ 0 for all (i, j, k) ∈ A.

We define the following set:

F1 :=

⎧
⎪⎪⎨

⎪⎪⎩
(y,X) ∈ {0, 1}A ×Πn(G) : xi j =

∑

k∈N :
(k,i, j)∈A

yki j =
∑

k∈N :
(i, j,k)∈A

yi jk ∀(i, j) ∈ A

⎫
⎪⎪⎬

⎪⎪⎭
.

(31)

Now, our first ISDP formulation of the QTSP is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

min
∑

(i, j,k)∈A
qi jk yi jk

s.t. βIn + αJn − 1

2

(
X+ X�

)
� 0, (y,X) ∈ F1,

(I SD P1)

where α ≥ hn/n and kn ≤ β < 1. One can verify that setting α = hn/n and β = kn

leads to the strongest linear matrix inequality among all possible values for α and β.
Thus, we use these values in the computational results of Sect. 5.

Remark 2 In fact, we do not need to enforce integrality on y explicitly. Namely, if
X ∈ Tn(G), it follows from the integrality of X and the coupling constraints that
yi jk = 1 if (i, j, k) ∈ A is used in the tour and 0 otherwise. Hence, when optimizing
over F1 using a B&B or B&C algorithm, we relax the integrality constraint on y and
branch on X only.

In what follows, we further exploit properties of tour matrices to derive our second
ISDP formulation of the QTSP. Let X ∈ Tn(G) be a tour matrix and define X(2) =
(x (2)

i j ) := X · X. For i, k ∈ N we have x (2)
ik = ∑n

j=1 xi j x jk = ∑
j∈N :(i, j,k)∈A yi jk ,

where the last equality follows from the definition of y. Thus, X(2) is a binary matrix
and x (2)

ik = 1 if and only if the length of the shortest directed path from i to k in the
subgraph induced by X is equal to two.

Wecan again characterize a tourmatrix as inTheorem10by combining the variables
X and X(2). Observe that the directed graph induced by X(2) is balanced with in- and
outdegree one, and circulant (but not strongly connected for even n). Moreover, the
circulant graph C2 corresponding to X + X(2) is strongly connected and balanced
with in- and outdegree two. The spectrum of 1

2 ((X + X(2)) + (X + X(2))�) for any
X ∈ Tn(G) and X(2) = X · X is given by

cos

(
2π j

n

)
+ cos

(
4π j

n

)
for j ∈ [n], (32)
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which results in the algebraic connectivity of C2 being a(C2) = 2 − (cos(2π/n) +
cos(4π/n)). We define

k(2)
n := cos

(
2π

n

)
+ cos

(
4π

n

)
and h(2)

n := 2− k(2)
n . (33)

Now, we are ready to state the following theorem.

Theorem 11 Let H be a spanning subgraph of a directed graph G where the in-
and outdegree equals one for all nodes in H. Let X be its adjacency matrix and let
X(2) := X · X be the distance two adjacency matrix. Let α(2), β(2) ∈ R be such that
α(2) ≥ h(2)

n /n and k(2)
n ≤ β(2) < 2, with k(2)

n , h(2)
n as defined in (33). Then H is a

directed Hamiltonian cycle if and only if

Z := β(2)In + α(2)Jn − 1

2

(
(X+ X(2))+ (X+ X(2))�

)
� 0.

Proof See “Appendix 1”. ��
We define the set F2 as follows:

F2 :=

⎧
⎪⎪⎨

⎪⎪⎩

(
y,X,X(2)

)
∈ F1 ×Πn(G2) : x (2)

ik =
n∑

j∈N :
(i, j,k)∈A

yi jk ∀(i, k) ∈ A2

⎫
⎪⎪⎬

⎪⎪⎭
,

(34)

where

Πn(G
2) :=

{
X(2) ∈ {0, 1}n×n : X(2)1 = 1, (X(2))�1 = 1, diag(X(2)) = 0,

x (2)
i j = 0 ∀(i, j) /∈ A2

}
,

and A2 is the set of node pairs (i, j) for which there exists a directed path from i
to j of length 2. The set F2 and the result of Theorem 11 lead to our second ISDP
formulation of the QTSP:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

(i, j,k)∈A
qi jk yi jk

s.t. βIn + αJn − 1

2

(
X+ X�

)
� 0

β(2)In + α(2)Jn − 1

2

(
(X+ X(2))+ (X+ X(2))�

)
� 0,

(y,X,X(2)) ∈ F2,

(I SD P2)
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where α ≥ hn/n, kn ≤ β < 1, α(2) ≥ h(2)
n /n and k(2)

n ≤ β(2) < 2. Again the choice
of α, β, α(2) and β(2) equal to their lower bounds provides the strongest continuous
relaxation.

It follows from Theorem 11 that one can remove the first linear matrix inequality
in (I SD P2) and still obtain an exact formulation of the QTSP. However, the bound
obtained from the SDP relaxation of (I SD P2) dominates the bound obtained from the
SDP relaxation of (I SD P1). In that sense, the formulation (I SD P2) can be seen as a
level two formulation of the QTSP, whose continuous relaxation is stronger than that
of the first level formulation. An additional advantage of the level two formulation is
that both linear matrix inequalities may be used to generate CG cuts, as we show in
the following section.

In the same vein, one can construct level k formulations of the QTSP for k =
3, . . . , n. This leads to a hierarchy of formulations, whose SDP relaxations are of
increasing strength and complexity.

4.3 Chvátal–Gomory cuts for the ISDPs of the QTSP

In order to solve (I SD P1) and (I SD P2) using our B&C algorithm, we study various
CG-based separation routines for theQTSP. We first derive a general CG cut generator
for the formulations (I SD P1) and (I SD P2). Thereafter, we show how different types
of well-known inequalities for theQTSP can be derived as CG cuts of the formulations
(I SD P1) and (I SD P2).

Let us consider (I SD P1). The setF1, see (31), consists of all tuples (y,X)whereX
represents a node-disjoint cycle cover in G. Our B&C algorithm starts with optimizing
over the set F1, where we are allowed to relax the integrality of y at no cost, see
Remark 2. If an integer point (ŷ, X̂) is found in the branching tree, it is verified

whether λmin

(
βIn + αJn − 1

2

(
X̂+ X̂�

))
≥ 0. If so, then X̂ ∈ Tn(G) and we have

found a possibly new incumbent solution. If not, then X̂ is the adjacency matrix of
a node-disjoint cycle cover that is not a Hamiltonian cycle. Therefore we have to
generate dual matrices that cut off the current point.

The first separation routine that we present is based on finding a set of integer

eigenvectors corresponding to a negative eigenvalue of βIn + αJn − 1
2

(
X̂+ X̂�

)
.

Proposition 6 Let X ∈ Πn(G) be the adjacency matrix of a directed node-disjoint
cycle cover consisting of k ≥ 2 cycles. Let {S1, . . . , Sk} be the partition of the nodes
implied by the cycle cover and define for each l ∈ [k] the vector

vl
i :=

{
n − |Sl | if i ∈ Sl

−|Sl | if i /∈ Sl .

Then
〈
vl(vl)�, βIn + αJn − 1

2 (X+ X�)
〉
< 0 for all l ∈ [k].
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Proof The vectors vl are eigenvectors of X and X� corresponding to eigenvalue 1.
Therefore we have:

(
βIn + αJn − 1

2
(X+ X�)

)
vl = βvl + α ((n − |Sl |) · |Sl | + (n − |Sl |) · (−|Sl |)) 1

− 1

2
vl − 1

2
vl

= (β − 1)vl,

fromwhere it follows that vl is an eigenvector ofβIn+αJn− 1
2 (X+X�) corresponding

to eigenvalue β − 1. Since we assume β < 1, this eigenvalue is negative, from which
the conclusion follows. ��

The result of Proposition 6 can be used within our B&C algorithm in the following
way. Let {S1, . . . , Sk} be the partition of the nodes implied by the current solution X̂
and let Ul := vl(vl)� where vl is as defined in Proposition 6. Then for each l ∈ [k]
we construct the following CG cuts:

〈
Ul,

1

2
(X+ X�)

〉
≤
⌊
〈Ul, βIn + αJn〉

⌋
⇐⇒

〈
Ul,X

〉
≤
⌊
〈Ul, βIn + αJn〉

⌋
,

(35)

which cut off the current point. Observe that the choice α = hn/n and β = kn leads
to non-integer values for α and β, i.e., the CG rounding step provides a strengthened
eigenvalue cut.

Since the result of Proposition 6 can be repeated for the extended linear matrix
inequality in Theorem 11, we also obtain the following CG cuts with respect to
(I SD P2):

〈
Ul,X+ X(2)

〉
≤
⌊
〈Ul, β(2)In + α(2)Jn〉

⌋
∀l ∈ [k]. (36)

Next, we consider the class of subtour elimination constraints. It has been shown
by Çezik and Iyengar [15] that the ordinary subtour elimination constraints defined by
Dantzig et al. [23] can be obtained as CG cuts for the symmetric TSP, provided that α
and β equal their lower bounds. We extend the result from [15] and present five types
of subtour elimination constraints that are in fact (strengthened) CG cuts of (I SD P1)

and/or (I SD P2), see Table 1. Many of these constraints do not follow directly from
the linear matrix inequalities, but require the addition of a positive multiple of a subset
of the affine constraints. It is shown by Fischer [34] that the inequalities IV and V of
Table 1 define facets of the asymmetric quadratic traveling salesman polytope.

In “Appendix 3”, we explicitly derive these inequalities as (strengthened) CG cuts.
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Table 1 Five types of subtour elimination constraints for the QTSP that can be obtained as (strengthened)
CG cuts of (I SD P1) and/or (I SD P2)

Inequality Description

I
∑
i∈S
j∈S

xi j ≤ |S| − 1, ∀S ⊂

N , 2 ≤ |S| < n

CG cut of βIn + αJn − 1
2

(
X+ X�

)
� 0

with dual multiplier U = 1S1
�
S .

II
∑
i∈S
j /∈S

xi j ≥ 1, ∀S ⊂ N , 2 ≤ |S| < n CGcut ofβIn+αJn− 1
2

(
X+ X�

)
� 0with

dual multiplier U = 1S1
�
S and −X1 = −1

with dual multiplier 1S.

III
k∑

l=1
∑

i∈Sl
j∈Sl

xi j −
∑

l �=p

∑
i∈Sl
j∈Sp

xi j ≤ n − 2k

∀(S1, . . . , Sk ),∪k
l=1Sl = N , Sl ∩ Sp =

∅ ∀l �= p

CG cut of βIn + αJn − 1
2

(
X+ X�

)
� 0

with dual multiplierU = 2
∑k

l=1 1Sl1�Sl and−X1 = −1 with dual multiplier 1.

IV xi j+x ji+
∑

k∈N :
(i,k, j)∈A

yik j+
∑

k∈N :
( j ,k,i)∈A

y jki ≤ 1

∀i, j ∈ N , i �= j, n ≥ 5

S-CGcut ofβ(2)In+α(2)Jn− 1
2
(
(X+X(2))+

(X + X(2))�
) � 0 with dual multiplier U =

1{i,j}1�{i,j} and
∑

k∈N
(i,k, j)∈A

yik j − x(2)
i j = 0,

∑
k∈N :

( j,k,i)∈A
y jki − x(2)

j i = 0, −xii = 0,

−x j j = 0, −x(2)
i i = 0 and −x(2)

j j = 0, each
with dual multiplier 1.

V
∑
i∈S
j∈S

xi j +
∑
i∈S
j∈S

∑
k∈N\S:

(i,k, j)∈A
yik j ≤ |S| − 1 ∀S ⊂

N , 2 ≤ |S| < 1
2 n

S-CGcut ofβ(2)In+α(2)Jn− 1
2
(
(X+X(2))+

(X + X(2))�
) � 0 with dual multiplier U =

1S1
�
S and

∑
k∈N :(i,k, j)∈A yik j − x(2)

i j = 0,
for all i, j ∈ S, each with dual multiplier 1,
and −yik j ≤ 0 for all (i, k, j) ∈ A with
i, k, j ∈ S, each with dual multiplier 1.

The third column describes which (in)equalities and dual multipliers are used to construct the inequality

5 Computational results

In this section we test our ISDP formulations of the QTSP, see Sect. 4. We solve the
ISDPs using various settings of our CG-based B&C framework, see Algorithm 1,
where we include different sets of cuts from Sect. 4.3 in the separation routines. We
compare the performance of our approach with the two other ISDP solvers from the
literature.

5.1 Design of numerical experiments

In total we compare seven different approaches, among which two from the literature
and five variants of our B&C approach. The former class consists of the following:

• KT: The B&C algorithm of Kobayashi and Takano [46], see Sect. 3.1.
• SCIP-SDP: The general ISDP solver of Gally et al. [40]. This approach is based
on solving continuous SDPs in a B&B framework.
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A third project that is known for its ability to solve ISDPs is YALMIP [49]. Preliminary
experiments show, however, that the solver of [49] is significantly outperformed by
the solvers from [40] and [46]. Therefore, we do not take the solver of YALMIP into
account.

On top of the approaches from the literature, we consider five variants of our B&C
procedure that differ in the initial feasible set and the type of cuts that we add in the
separation routine:

• CG1 In this setting we solve (I SD P1) where we initially optimize over F1, see
(31). In the separation routine we add the CG cut of the form (35) for each subtour
present in the current candidate solution.

• CG2 In this setting we solve the second QTSP formulation (I SD P2). We initially
optimize over F2, see (34), and in each callback iteration we add the CG cuts of
the form (35) and (36) for each subtour in the current candidate solution.

• SEC-simple In this setting we solve (I SD P1) by starting from optimizing over
F1, see (31). In the callback procedure, we add the ordinary subtour elimination
constraints, see Type I in Table 1, for all subtours in the current candidate solution.

• SEC This setting solves (I SD P2) with subtour elimination constraints of Type I,
IV and V from Table 1. The latter type of constraint is added only for the subtours
of size less than 1

2n. Since the order two variablesX(2) in this setting do not appear
directly in the cutting planes, we eliminate them also from the initial MILP based
on preliminary tests. That is,we start optimizing overF1, see (31).Moreover, based
on a result by Fischer et al. [35] we also add additional cuts to forbid subtours of
three nodes. For a triple i, j, k of distinct nodes, the following cut is valid for any
tour: yi jk + yki j ≤ xi j . We add this cut for all distinct i, j, k ∈ S in the separation
routine whenever a subtour on S with |S| = 3 is present in the current candidate
solution. Observe that there are six of them for each triple of nodes.

• SEC-CG This setting solves (I SD P2), starting fromF2, see (34). In the separation
routines,we add all the cuts that are included in the previous settingSEC.Moreover,
on top of that we also add the CG cuts (35) and (36) in the callback procedure.

Recall that the separation routines are only called at integer points, which represent
cycle covers of G. Therefore, the separation of all mentioned cuts boils down to
identifying the subtours in the cycle cover. Also, recall that the integrality of y is
relaxed in all settings, see Remark 2.

The setting SEC looks similar to the best exact QTSP solving strategy of Fischer
et al. [34]. However, there are two main differences between the methods. First, our
separation routine is only called on integer points, while the algorithm of [35] sep-
arates on fractional points. The separation on integer points is computationally very
cheap compared to the fractional separation method applied by [35]. Consequently,
the former separation can lead to superior behavior, as observed by Aichholzer et
al. [2] for the symmetric QTSP. Second, our approach results from a more general
B&C framework for solving integer SDPs, which is not limited to the QTSP.

Notice that the derived CG cuts of Type II and III from Table 1 are not added in the
test settings. Preliminary experiments have shown that the cut-set subtour elimination
constraints (Type II of Table 1) have similar practical behaviour compared to the
ordinary subtour elimination constraints. Also, preliminary tests show that the addition
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of one merged Type III cut instead of all separate Type I cuts leads to worse behaviour
in terms of overall computation time. We expect this difference to be caused by the
sparsity of the Type I cuts, compared to the very dense Type III cuts.

For our tests, we consider three types of instances1:

• Real instances from bioinformatics: Jäger and Molitor [45], Fischer [34] and
Fischer et al. [35, 36] consider an important application of the QTSP in compu-
tational biology. In order to recognise transcription factor binding sites or RNA
splice sites in a given set of DNA sequences, Permuted Markov (PM) models [29]
or Permuted Variable Length Markov (PVLM) models [72] can be used. Find-
ing the optimal order two PM or PVLM model boils down to solving a QTSP
instance. We consider three classes of bioinformatics instances used in [33, 34],
which are denoted by ‘bma’, ‘map’ and ‘ml’. Each class consists of 38 instances
with n ∈ {3, . . . , 40}.

• Reload instances: The reload instances are the same as the ones used by Rostami
et al. [61] and De Meijer and Sotirov [53]. The reload model [68] is inspired by
logistics and energy distribution, where a certain cost is incurred whenever the
underlying type of arc in a network changes, e.g., the means of transport. Let G
be a directed graph where each arc (i, j) is present with probability p. Each arc
in G is randomly assigned a color from a color set L with cardinality c. If two
successive arcs e and f have colors s and t , respectively, the quadratic cost among
e and f equals r(s, t), where r : L × L → R is a reload cost function such that
r(s, s) = 0 for all s ∈ L . We consider two types of reload classes:

– Reload class 1 For each pair of distinct colors s, t ∈ L the reload cost equals
r(s, t) = 1;

– Reload class 2 For each pair of distinct colors s, t ∈ L , the reload cost r(s, t)
is chosen uniformly at random from {1, . . . , 10}.

For each class, we consider 10 distinct instances for each possible combination of
n ∈ {10, 15, 20, 25}, p ∈ {0.5, 1} and c ∈ {5, 10, 20}, except for the combination
between n = 25 and p = 1 due to extremely large computation times. Thus, in
total we consider 420 reload instances.

• Turn cost instances: The special case of the QTSP where the nodes are points in
Euclidean space and the angle cost of a tour is the sum of the direction changes
at the points is called the Angular-Metric Traveling Salesman Problem (Angle-
TSP) [1]. The Angle- TSP is motivated by VLSI design and proven to be NP-
hard [1]. The problem is in the literature also known as the Minimum Bends
Traveling Salesman Problem [64]. We consider two classes of this type:

– TSPLIB instances: The TSP library (TSPLIB) [59] contains a broad set of
TSP test instances, among which a large number of Euclidean instances. We
construct a corresponding QTSP instance as follows: Given points v1, . . . , vn

in R
2, we let G be the complete graph on n vertices. For i, j, k, i �= j , j �= k,

i �= k, we define qi jk to be proportional to the angle between edges {i, j} and

1 Instances can be downloaded from https://github.com/frankdemeijer/CGforISDP.
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Fig. 5 Optimal tours of two turn instances: the TSPLIB instance ‘kn57’ (n = 57) and the grid instance
‘grid1’ (n = 430). Each square in Fig. 2b represents a vertex in the grid graph

{ j, k}. More precisely,

qi jk :=
⌈
10 ·

(
1− 1

π
arccos

(
(vi − v j )

�(vk − v j )

‖vi − v j‖ · ‖v j − vk‖

))⌉
.

This cost structure is similar to the angle-distance costs considered in Fischer
et al. [35] and De Meijer and Sotirov [52]. In total, we consider 9 TSPLIB
instances with n ranging from 15 to 70. Figure5a depicts one of the TSPLIB
instances including its optimal tour with respect to the defined quadratic cost
structure.

– Grid instances: Fekete and Krupke [30, 31] consider problems of computing
optimal covering tours and cycle covers under a turn cost model, see also
Arkin et al. [3]. These problems have many practical applications, such as pest
control and precision farming. Following this line, we consider the Angle-
TSP on grid graphs. We construct a 2D connected grid graph using the Type II
instance generator of [31]. Given the vertex coordinate vectors v1, . . . , vn ∈
{0, . . . , N1} × {0, . . . , N2} for integers N1, N2, we include an edge between
vertex i and j if and only if (vi

1 = v
j
1 and |vi

2 − v
j
2 | = 1) or (vi

2 = v
j
2 and

|vi
1 − v

j
1 | = 1). If two edges {i, j} and { j, k} are present, the quadratic costs

are computed similar as for the TSPLIB instances. In total we consider 9 grid
instances with N1 and N2 running from 20 to 80, corresponding to n ranging
from 430 to 2646. An example of a grid instance including its minimum bend
tour is given in Fig. 5b.

Both types of turn cost instances are in fact instances of the symmetric QTSP, as
they are defined on undirected graphs. To account for this, we use symmetrized
versions of (I SD P1) and (I SD P2) instead. We refer to “Appendix 4” for the
construction of these formulations.
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All our algorithms, including the algorithm of Kobayashi and Takano [46], are
implemented in Julia 1.5.3 using JuMP v0.21.10 [27] to model the mathematical
optimization problems. In particular, we exploit the solver-independent lazy constraint
callback option of JuMP to include the separation routines. Solving the underlying
MILP in the subproblems is done using Gurobi v9.10 [44] in the default settings
including built-in cuts. Experiments are carried out on a PCwith an Intel(R) Core(TM)
i7-8700CPU, 3.20GHz, 8GBRAM.To runSCIP-SDP,weuseSCIP-SDPversion 3.2.0
on the NEOS Server [20], where the B&B framework of SCIP 7.0.0 [41] and the SDP
solver Mosek 9.2 [54] are combined in the default configuration.

Observe that an older version of SCIP-SDP with DSDP [9] as SDP solver was
used in the numerical experiments of [46], which partly explains the poor behaviour
of SCIP-SDP compared to the B&C algorithm of [46]. However, our computational
study that uses SCIP-SDP with the state-of-the-art SDP solver Mosek [54] also shows
superior behaviour of the B&C algorithms.

We test all seven settings on the bioinformatics and reload instances. Since these
instance classes give a clear and consistent overview of the superior approaches, we
restrict ourselves to the best three settings for the turn cost instances. The maximum
computation time for all our approaches is set to 8h, which is in correspondence with
the maximum computation time on the NEOS Server [20].

5.2 Comparison of approaches

Table 2 and Fig. 6 provide an overview of the performance on the instances from
bioinformatics. For each setting, the average values in Table 2 are only computed over
the instances that could be solved to optimality for that setting. An extended table on
the results per instance can be found in “Appendix 5”. Observe that the percentage of
instances solved is quite similar over the three instance classes. This indicates that it
is mainly the size rather than the cost structure that determines whether a bioinfor-
matics instance can be solved or not. It is clear that our B&C settings significantly
outperform the other two ISDP solvers SCIP-SDP and KT, which can solve at most
60% of the instances to optimality. Since the separation routine of CG1 is based on
the identification of an integer eigenvector corresponding to a negative eigenvalue, the
settings KT and CG1 are almost identical apart from the CG rounding step. The large
decrease in the number of branching nodes of CG1 compared to KT is remarkable.
This indicates that the effect of deeper cuts as shown in Fig. 4 is not solely theoretical,
but also turns out to be substantial from a practical point of view.

When comparing the five different separation routines of our B&C approach, we
also see a clear pattern. The settings SEC and SEC-CG turn out to be superior, being
able to solve all instances within short computation times. Although SEC generally
provides the fastest algorithm, it sometimes happens that SEC-CG solves the instance
faster, see Fig. 6 in “Appendix 5”, due to the smaller number of B&C nodes. This
shows that the additional CG cuts can sometimes improve on the subtour elimination
constraints. The two approaches are followed by SEC-simple, which is able to solve
instances up to n = 35 to optimality. This difference is mainly due to the strengthened
subtour elimination cuts (type IVandV inTable 1) thatworkwell for the bioinformatics
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instances, as also noted by Fischer et al. [35]. Finally, the settings CG1 and CG2 are
only able to solve instances up to n = 32 and n = 27, respectively. Although the
distance two CG cuts (36) significantly reduce the number of needed branching steps,
the overall computation time is larger due to the increase in the number of variables
and constraints in CG2.

Next, we discuss the results on the set of reload instances. For both class 1 and 2
and for each value of n, p and c we consider 10 randomly generated instances. The
averaged results for each combination of parameters can be found in “Appendix 5”,
see Tables 12, 13 and 14. In general, we see that the computation times increase with
the number of nodes n and the graph density p. On the other hand, if the number of
colors c increases, the instances become easier to solve as the number of (optimal)
solutions will decrease. Table 3 shows a summary of the results accumulated over the
number of colors c. Accordingly, Fig. 7 shows the spread of the computation times,
where we also accumulate both reload classes.

When comparing the different settings, we draw similar conclusions as before. Note
that SCIP-SDP performs very poorly on the reload instances. The difference between
KT and CG1 is not as significant as before, although CG1 is still favourable above KT
on almost all instance types. The settings that involve the variables X(2) in the root
node, i.e., CG2 and SEC-CG, are outperformed by SEC-simple and SEC. Apparently,
the increase in the number of variables does not contribute much to the pruning of the
branching tree. In fact, the results in “Appendix 5” even suggest that the number of
branching nodes sometimes becomes larger. The large spread in computation times for
these settings, see Fig. 7 in “Appendix 5”, also suggests that (I SD P2) leads to a search
process that is less robust and that this effect becomes more visible as the instances
become larger. However, the S-CG cuts resulting from (I SD P2) do contribute to the
pruning of the tree, as is suggested by the strong performance of SEC. The settings
SEC and SEC-simple overall perform best. None of the two algorithms outperforms
the other in terms of computation time, even when the problem size goes up, see the
additional numerical results in Table 14 of “Appendix 5”.

Finally, we consider the turn cost instances. From the class of bioinformatics and
reload instances it is clear that the settings SEC-simple, SEC and SEC-CG generally
performbest. Hence,we restrict the numerical results on the turn cost instances to these
three settings. Tables 4 and 5 show the computation times and number of branching
nodes for the TSPLIB and grid instances, respectively.

The TSPLIB graphs are complete graphs, and hence we can only solve up to n = 70
for this instance type. We are able to solve all TSPLIB instances in a time span 900s.
Since the grid instances are more sparse, we can solve much larger instance sizes to
optimality. For this type, instances up to 2646 nodes (!) can be solved to optimality
within 15s. These are currently the largest solved QTSP instances in the literature.

When comparing the three settings, we see that SEC-simple and SEC perform
slightly better than SEC-CG on the turn cost instances. Since the different separation
routines lead to different relaxations, the branching strategy between the methods
can differ. Not surprisingly, the favourable setting is often the one with the smallest
number of B&C nodes, regardless of the time per branching node. Taking both the
TSPLIB and grid instances into account, this happens slightly more often for the
setting SEC-simple.
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6 Conclusions

In this work we study the Chvátal–Gomory cuts for spectrahedra and their strength
in solving integer semidefinite programs resulting from combinatorial optimization
problems. Accordingly, this paper increases the theoretical understanding of integer
semidefinite programming, which in turn contributes to new solution techniques for
this type of problems.

In Sect. 2 we study the elementary closure of spectrahedra and the hierarchy
obtained by iterating this procedure. Using an alternative formulation of the ele-
mentary closure, see (9), we provide simple proofs of several properties, including
a homogeneity property for bounded spectrahedra, see Theorem 3. Although some of
the here presented results are already known in the literature, the proofs we present are
considerably simpler and are mainly based on concepts from mathematical optimiza-
tion and number theory. We also present the polyhedral description of the elementary
closure of spectrahedra whose defining linear matrix inequality is totally dual integral,
see Theorem 5. To the best of our knowledge, this is the first such description for the
elementary closure of a non-polyhedral set. A full characterization of bounded LMIs
that are TDI on Z

m is given in Theorem 6. Sufficient conditions for TDI-ness on an
appropriate set Z ⊆ Z

m are given in Theorems 8 and 9.
A generic B&C algorithm for ISDPs based on strengthened CG cuts is presented

in Sect. 3, see Algorithm 1. Our algorithm is a refinement of the algorithm from [46],
where the authors use eigenvector based inequalities to separate infeasible integer
points. Moreover, our work can be seen as an extension of [15], in which the authors
introduce CG cuts for conic programs, but leave the efficient separation of CG cuts
as an open problem. Our numerical results indicate the effectiveness of the use of
deeper CG cuts. We also provide a separation routine for binary SDPs originating
from combinatorial optimization problems, see Sect. 2.

In Sect. 4 we extensively study the application of our approach to the quadratic
traveling salesman problem. Based on a generalization of the notion of algebraic
connectivity to directed graphs, we present two exact ISDP formulations of theQTSP,
see (I SD P1) and (I SD P2). We show that the simplest CG separation routine boils
down to finding integer eigenvectors of the adjacency matrix of a node-disjoint cycle
cover, see Proposition 6. However, more intricate dual multipliers lead to some well-
known families of cuts, e.g., the ordinary and strengthened versions of the subtour
elimination constraints, see Table 1. We test several variants of our B&C procedure
that involve different separation routines.

Numerical results on the QTSP show that our B&C algorithm significantly out-
performs the two alternative ISDP solvers of [40, 46]. For the real instances from
bioinformatics [35, 36], these solvers are able to solve instances up to only n = 15
and n = 25, respectively, whereas our method can solve all instances up to n = 40 in a
short timespan. As one would expect, the extension to CG inequalities leads to deeper
cuts, which successfully reduces the size of the branching tree compared to [46]. From
all considered separation routines, it turns out that the setting SEC, see page 24, is
overall most effective. This setting was able to solve almost all of the 552 testedQTSP
instances to optimality within 5min, where the largest instance contains m = 5172
arcs. This is currently the largest solved QTSP instance in the literature.
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Ourwork inspires several future research directions. It would be interesting to study
the performance of our B&C algorithm when applied to other optimization problems
that can be formulated as ISDPs.We expect the exploitation ofCGcuts in the branching
scheme to be effective for such ISDPs.Moreover, as for the QTSPmany known classes
of cuts turned out to be (strengthened) CG cuts with respect to the ISDP formulation,
it would be interesting to know whether this also holds for other problems.
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Appendix

Proof of Proposition 3, Corollary 1, Theorems 3 and 11

The proofs of results that will follow rely on the following semidefinite version of the
theorem of alternatives, see e.g., Balakrishnan and Vandenberghe [6].

Proposition 7 (Theorem of the alternatives for SDP [6]) Let C,A1, . . . ,Am ∈ Sn.
Then at most one of the following is true:

1. There exists an X " 0, 〈Ai,X〉 = 0 for all i ∈ [m] and 〈C,X〉 ≤ 0;
2. There exists an x ∈ R

m such that C−∑m
i=1 Aixi � 0.

Moreover, if there exists no x ∈ R
m such that

∑m
i=1 Aixi � 0, then exactly one of the

statements above is true.

Proposition 3. Let P = {
x ∈ R

m : C−∑m
i=1 Aixi � 0

}
be a non-empty and

bounded spectrahedron.Then there does not exist anx ∈ R
m such that

∑m
i=1 Aixi � 0.

Proof Since P is non-empty, there exists a point x∗ ∈ P , i.e., C −∑m
i=1 Aix∗i � 0.

Now suppose there exists a point x̂ such that
∑m

i=1 Ai x̂i � 0. Then clearly x̂ �= 0m

and for all t ≥ 0 we have

C−
m∑

i=1
Aix

∗
i + t

m∑

i=1
Ai x̂i = C−

m∑

i=1
Ai(x∗i − t x̂i ) � 0,

i.e., x∗ − t x̂ ∈ P for all t ≥ 0. Thus, P is unbounded, so such x̂ cannot exist. ��
Corollary 1. (One-sided Approximation Theorem) Let d ∈ R and N ≥ 2 be a positive
integer number. Then there exists an integer p ∈ Z+ such that d − �pd� ≤ 1

N .

123

http://creativecommons.org/licenses/by/4.0/


The CG procedure for ISDPs with applications in CO

Proof ByDirichlet’s Theorem, we know that for the given d and N , there exist integers
q1 and q2 with 1 ≤ q1 ≤ N such that |q1d − q2| ≤ 1

N . If q1d ≥ q2, then we have
q1d−�q1d� ≤ q1d−q2 = |q1d−q2| ≤ 1

N , so the choice p = q1 leads to the desired
result. Next, we consider the case q1d < q2, for which we have− 1

N ≤ q1d − q2 < 0.
Let M ≥ 1 be the smallest integer such that M(q1d − q2) ≤ − N−1

N , which exists
because q1d − q2 < 0. For this M we must have −1 ≤ M(q1d − q2). Namely, if
M(q1d − q2) < −1, then (M − 1)(q1d − q2) ≤ − N−1

N , contradicting the minimality
of M . Thus,

−1 ≤ M(q1d − q2) ≤ −N − 1

N
⇐⇒ 0 ≤ Mq1d − (Mq2 − 1) ≤ 1

N
.

Since Mq2−1 is integer, it follows that Mq1d−�Mq1d� ≤ Mq1d−(Mq2−1) ≤ 1/N ,

so taking p = Mq1 gives the desired result. ��
Theorem 3. (Homogeneity property of elementary closure) Let P = {x ∈ R

m :
C −∑m

i=1 Aixi � 0} be a bounded spectrahedron that is contained in a halfspace
{x ∈ R

m : w�x ≤ d} with w ∈ Z
m and d ∈ R. Let K := {x ∈ R

m : w�x = d}. Then
clCG(P) ∩ K = clCG(P ∩ K ).

Proof If P is empty the claim is obvious, hence we assume that P is non-empty.
The inclusion clCG(P ∩ K ) ⊆ clCG(P)∩ K is trivial. In order to prove the reverse

statement, we assume that H is a rational halfspace containing P ∩ K , i.e., H = {x ∈
R

m : v�x ≤ α} where v is a vector of relative prime integers. It suffices to show that
there exists a halfspace Ĥ containing P such that ĤI ∩ K ⊆ HI . As P ∩ K is the
intersection of all such halfspaces H , we establish clCG(P) ∩ K ⊆ clCG(P ∩ K ).

For each i ∈ [m] we define the following extended matrix Ãi ∈ Sn+2 : Ãi :=[ Ai 0 0
0� −wi 0
0� 0 −vi

]
.Wefirst show that there does not exist anx ∈ R

m such that
∑m

i=1 Ãi xi �

0. For the sake of contradiction, suppose such a vector exists, i.e.,wehave
∑m

i=1 Ai x̃i �
0, w�x̃ ≤ 0 and v�x̃ ≤ 0 for some x̃, but not all of them are satisfied with equality.
Since P is non-empty and bounded, it follows from Proposition 3 that there does not
exist an x ∈ R

m such that
∑m

i=1 Aixi � 0. Hence, we must have
∑m

i=1 Ai x̃i = 0. This
implies that either w�x̃ < 0 or v�x̃ < 0, or both.

Since P is contained in {x ∈ R
m : w�x ≤ d}, it follows from Theorem 1 that

there exists T � 0 such that 〈Ai,T〉 = wi for all i ∈ [m]. Since∑m
i=1 Ai x̃i = 0, we

have
〈∑m

i=1 Ai x̃i ,T
〉 =∑m

i=1 x̃i 〈Ai,T〉 = w�x̃ = 0.
Since P ∩ K is contained in H = {x ∈ R

m : v�x ≤ α}, we can in a similar
fashion show that vi = 〈Ai,S〉+βwi for some S � 0 and β ∈ R. From this it follows
that v�x̃ = 0. We conclude that there exists no x ∈ R

m such that
∑m

i=1 Ãi xi � 0.
Next, we define the following extended matrix C̃ ∈ Sn+2 and parameter ε > 0:

C̃ :=
⎡

⎣
C 0 0
0� −d 0
0� 0 −(α + ε)

⎤

⎦ and ε :=
{

1
2 (	α
 − α) if α is not integer,
1
2 otherwise.
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Since P ∩ K is contained in H , it follows that (P ∩ K ) ∩ {x ∈ R
m : v�x ≥

α + ε} = ∅. Equivalently, we know that there does not exist an x ∈ R
m such that

C̃ −∑m
i=1 Ãi xi � 0. We can now apply Proposition 7 to this system, from where it

follows that the first of the two alternative statements should be satisfied. Hence, there
exist Û " 0, λ > 0 and μ > 0 such that 〈Ai, Û〉 −wiλ− viμ = 0 for all i ∈ [m] and
〈C, Û〉 − dλ− (α + ε)μ ≤ 0. Without loss of generality, we may assume that μ = 1
and we define

α̂ := 〈C, Û〉 and v̂i := 〈Ai, Û〉 for all i ∈ [m].

It follows from above that this particular α̂ and v̂ satisfy

α̂ ≤ α + ε + dλ and v̂i = vi + wiλ for all i ∈ [m]. (37)

Also, since Û " 0, we know that for all x ∈ P we have

v̂�x =
m∑

i=1
〈Ai, Û〉xi =

〈
m∑

i=1
Aixi , Û

〉
≤ 〈C, Û〉 = α̂, (38)

wherewe use the fact that 〈C−∑m
i=1 Aixi , Û〉 ≥ 0.Observe that the tuple (λ, v̂, α̂) can

be replaced by (λ+λ0, v̂+λ0w, α̂+λ0d) for allλ0 ≥ 0without affecting (37) and (38),
where for the maintenance of (38) we use the fact that P ⊆ {x ∈ R

m : w�x ≤ d}.
Now we choose λ0 such that λ+ λ0 ∈ Z+ and d(λ+ λ0)− �d(λ+ λ0)� < ε, which
can be done by Corollary 1. Moreover, we define d f := d(λ+ λ0)− �d(λ+ λ0)�.

Define Ĥ := {x ∈ R
m : (v̂ + λ0w)�x ≤ α̂ + λ0d}. It follows from (38) that

P ⊆ Ĥ . Moreover, we have

ĤI ∩ K ⊆ {x ∈ R
m : (v̂ + λ0w)�x ≤ �α̂ + λ0d�} ∩ {x ∈ R

m : w�x = d}
⊆ {x ∈ R

m : v�x + w�x(λ+ λ0) ≤ �α + ε + d(λ+ λ0)�,w�x = d}
⊆ {x ∈ R

m : v�x + d f ≤ �α + ε + d f �}
⊆ {x ∈ R

m : v�x ≤ �α�} = HI ,

where the last inclusion follows from the fact that d f ≥ 0 and ε + d f < 1 if α is
integer and ε + d f < 	α
 − α otherwise. ��
Theorem 11. Let H be a spanning subgraph of a directed graph G where the in-
and outdegree equals one for all nodes in H . Let X be its adjacency matrix and let
X(2) := X · X be the distance two adjacency matrix. Let α(2), β(2) ∈ R be such that
α(2) ≥ h(2)

n /n and k(2)
n ≤ β(2) < 2, with k(2)

n , h(2)
n as defined in (33). Then H is a

directed Hamiltonian cycle if and only if

Z := β(2)In + α(2)Jn − 1

2

(
(X+ X(2))+ (X+ X(2))�

)
� 0.
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Proof Let H̃ be the subgraph of G that has adjacency matrix X + X(2). Observe that
H̃ is balanced, and thus, H̃ is strongly connected if and only if a(H̃) > 0.

Let Z � 0, which implies that W�ZW � 0. Now we can use a similar derivation
as in the proof of Theorem 10, which results in the following:

1

2
W� (LH̃ + L�

H̃

)
W �

(
2− β(2)

)
In−1 �⇒ a(H̃)

= λmin

(
1

2
W� (LH̃ + L�

H̃

)
W
)
≥ 2− β(2).

Since β(2) < 2, we have a(H̃) > 0, and thus, H̃ is strongly connected. As H̃ is the
union of a directed cycle cover and its implied distance two graph, H̃ can only be
strongly connected if H is strongly connected. We conclude that H is a Hamiltonian
cycle.

Conversely, let H be a Hamiltonian cycle. In that case, the algebraic connectivity of

H̃ is a(H̃) = 2−k(2)
n , i.e., λmin

(
1
2W

�
(
LH̃ + L�

H̃

)
W
)
= 2−k(2)

n . Since β(2) ≥ k(2)
n ,

this yields

1

2
W� (LH̃ + L�

H̃

)
W−

(
2− β(2)

)
In−1 � 0 ⇐⇒ W�ZW � 0.

Now we can use the same argument as in the proof of Theorem 10 to show that Z � 0
where β, α and kn are replaced by β(2), α(2) and k(2)

n , respectively. ��

A separation routine for binary SDPs

We now focus on binary semidefinite programming problems in primal form, i.e.,

⎧
⎪⎨

⎪⎩

inf 〈C,X〉
s.t. 〈Ai,X〉 = bi for all i ∈ [m]

X � 0, X ∈ {0, 1}n×n .

(PBSD P )

In this section we present a separation routine for generating CG cuts for problems of
the form (PBSD P ) and provide an illustrative example. To do so, we use the following
characterization of binary PSD matrices.

Proposition 8 (Letchford andSørensen [48])LetX ∈ {0, 1}n×n be a symmetric matrix.
Then X � 0 if and only if X =∑k

i=1 xixi� for some xi ∈ {0, 1}n, i ∈ [k].
Each vector xi in Proposition 8 may be thought of as the characteristic vector of a

clique in the complete graph Kn . Therefore, X provides a decomposition of Kn into a
set of non-overlapping cliques.

Suppose we solve (PBSD P ) using the B&C algorithm presented in Sect. 3.1. In a
certain node in the branching tree we have obtained a symmetric matrix X̂ ∈ {0, 1}n×n

that satisfies 〈Ai, X̂〉 = bi for all i ∈ [m]. The separation oracle that we present below
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distinguishes two types of certificates for X̂ not being positive semidefinite. The first
one is obtained by a so-called dominated diagonal, i.e., X̂ii = 0, while X̂i j = 1 for
some j , which clearly implies that X̂ � 0. The second certificate is the presence of
a so-called conflicting vertex, i.e., a vertex that is contained in two separate cliques
implied by X̂. By Proposition 8, it follows that X̂ � 0. These certificates correspond
to the existence of the following induced submatrices in X̂ (up to a permutation of the
rows and columns):

i j[ ]
i 0 1
j 1 


and

i j k
[ ]i 1 1 1

j 1 1 0
k 1 0 1

,

where 
 indicates a position that can be either 0 or 1. The following result shows that
these certificates are necessary and sufficient to characterize positive semidefiniteness.

Proposition 9 Let X̂ = (x̂i j ) be binary and symmetric. Then, X̂ is positive semidefinite
if and only if X̂ contains no dominated diagonal or conflicting vertex.

Proof Necessity follows from the discussion above. To prove sufficiency, let D(i) :=
{ j ∈ [n] : x̂i j = 1} for all i ∈ [n] with x̂i i = 1. If x̂i j = 1 and x̂ik = 1, it must
follow that x̂ jk = 1, otherwise i would be conflicting. Hence, the sets D(i) for all
i with X̂ii = 1 are cliques. Since i ∈ D( j) if and only if j ∈ D(i), it follows that
the collection D of all distinct sets D(i) is a set of non-overlapping cliques. Then,
X̂ =∑D∈D 1D1

�
D , hence X̂ � 0 by Proposition 8. ��

In case of a dominated diagonal, i.e., indices i, j ∈ [n], i �= j with x̂i i = 0
and x̂i j = 1, the dual matrix U = (ei − e j )(ei − e j )

� separates X̂ from S
n+. In

case of a conflicting vertex, say i , with x̂i j = 1, x̂ik = 1, but x̂ jk = 0, the dual
matrix U = (e j + ek − ei )(e j + ek − ei )

� provides a separating hyperplane. Since
dominated diagonals and conflicting vertices can be found efficiently by enumeration,
this approach defines an efficient separation routine for binary SDPs in primal form.

The cuts 〈U,X〉 ≥ 0 can be further strengthened by exploiting the affine constraints
in a CG rounding step.We show how this can be done for a class of binary semidefinite
programming problems that often appears in relaxations of combinatorial problems.

Example 5 (Binary SDPs over the simplex) Many combinatorial optimization prob-
lems have formulations including a constraint on the trace of the matrix variable,
i.e.,

⎧
⎪⎨

⎪⎩

inf 〈C,X〉
s.t. 〈Ai,X〉 = bi for all i ∈ [m]

tr(X) = K , X � 0, X ∈ {0, 1}n×n,

(P2)

for some K ∈ N. One can solve (P2) using Algorithm 1 with F := {X ∈ Sn :
〈Ai,X〉 = bi , i ∈ [m], tr(X) = K , 0 ≤ X ≤ J}. Assume that the separation routine
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provides a dualmatrixU = (e j+ek−ei )(e j+ek−ei )
� for somedistinct i, j, k. Taking

the linear combination of 〈U,X〉 ≥ 0, tr(X) = K and xll ≥ 0 for all l /∈ {i, j, k}, each
with weight 1

2 , yields:

〈
1

2
U+ 1

2
I+ 1

2

∑

l /∈{i, j,k}
Ell, X

〉
≥ 1

2
K .

For K odd, we can strengthen the cut by replacing the right-hand side by 	 12 K 
.
This procedure can be repeated for dual matrices resulting from a dominated diagonal
certificate.

Derivation of subtour elimination constraints as CG cuts

In this appendix we elaborate on the construction of the five types of subtour elimi-
nation constraints given in Table 1 as (S-)CG cuts.

Ordinary subtour elimination constraint

Let S ⊆ N with |S| < n. The well-known subtour elimination constraint correspond-
ing to S can be obtained as a CG cut, see also [15]. Let 1S be the indicator vector of
the set of nodes S. Then

〈
1S1

�
S , βIn + αJn − 1

2

(
X+ X�

)〉
≥ 0

is a valid cut. Applying the CG procedure to this cut, yields

〈
1S1

�
S ,

1

2
(X+X�)

〉
≤
⌊〈
1S1

�
S , βIn+αJn

〉⌋
⇐⇒

∑

i∈S, j∈S

xi j ≤�|S| (β+α|S|)� .

If β = kn and α = hn/n, then for all S with |S| < n we have β + α|S| < 1. Hence,
the CG cut above implies

∑

i∈S, j∈S

xi j ≤ |S| − 1. (39)

The cut (39) is the common subtour elimination constraint introduced by Dantzig et
al. [23].

Cut-set subtour elimination constraints

The cut-set subtour elimination constraints are known to be equivalent to the ordinary
subtour elimination constraints of [23]. It is therefore no surprise that these cuts can
be obtained similarly as the ordinary subtour elimination constraints.
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Let U = 1S1
�
S be the dual multiplier of the linear matrix inequality βIn + αJn −

1
2

(
X+ X�

)
and let 1S be the dual multiplier of the constraints −X1 = −1. The sum

of these constraints yields

〈
1S1

�
S ,

1

2
(X+ X�)

〉
− 1�S X1 ≤

⌊〈
1S1

�
S , βIn + αJn

〉
− 1�S 1

⌋

⇐⇒ −
∑

i∈S, j /∈S

xi j ≤ �|S| (β + α|S|)� − |S|.

If β = kn and α = hn/n, then the right-hand side becomes |S|−1−|S| = −1, which
yields the desired cut.

Merged subtour elimination constraint

Let (S1, . . . , Sk) be a partition of the node set of G, i.e.,
⋃k

l=1 Sl = N and Sl ∩ Sp = ∅
for all l �= p. We can obtain a merged subtour elimination constraint via the CG
procedure in the following way.

Let U = 2
∑k

l=1 1Sl1
�
Sl
be the dual multiplier for βIn + αJn − 1

2

(
X+ X�

)
. Since

each dual multiplier 1Sl1
�
Sl
leads to a CG cut of Type I in Table 1, its weighted sum

also belongs to the elementary closure and looks as follows:

2
k∑

l=1

∑

i∈Sl
j∈Sl

xi j ≤ 2
k∑

l=1
(|Sl | − 1) = 2(n − k).

Now we add to this cut the equality −X1 = −1 with dual multiplier 1, which yields
the desired merged cut

2
k∑

l=1

∑

i∈Sl
j∈Sl

xi j−1�X1≤2(n − k)− 1�1⇐⇒
k∑

l=1

∑

i∈Sl
j∈Sl

xi j−
∑

l �=p

∑

i∈Sl
j∈Sp

xi j ≤ n − 2k.

Strengthened subtour elimination constraints of size two

Let i �= j and define U = 1{i,j}1�{i,j}. Taking U as the dual multiplier with respect to

β(2)In + α(2)Jn − 1
2

(
(X+ X(2))+ (X+ X(2))�

) � 0, provides the following valid
cut:

〈
1{i,j}1�{i,j}, β(2)In + α(2)Jn − 1

2

(
(X+ X(2))+ (X+ X(2))�

)〉
≥ 0.

Moreover, adding the coupling constraints
∑

k∈N :(i,k, j)∈A yik j − x (2)
i j = 0 and

∑
k∈N :( j,k,i)∈A y jki − x (2)

j i = 0, each with dual multiplier 1, and the constraints
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−xii = 0, −x j j = 0, −x (2)
i i = 0 and −x (2)

j j = 0, also each with dual mulitplier 1,
gives

xi j + x ji +
∑

k∈N :
(i,k, j)∈A

yik j +
∑

k∈N :
( j,k,i)∈A

y jki ≤ 2β(2) + 4α(2).

We now take β(2) = k(2)
n and α(2) = h(2)

n /n. Applying the standard CG procedure to
this inequality results in the cut

xi j + x ji +
∑

k∈N :
(i,k, j)∈A

yik j +
∑

k∈N :
( j,k,i)∈A

y jki ≤
⌊
2k(2)

n + 4
h(2)

n

n

⌋
. (40)

The right-hand side of this cut equals one if 5 ≤ n ≤ 7, two if 8 ≤ n ≤ 12 and three
if n ≥ 13.

For n ≥ 5, we can strengthen this cut by applying the S-CG procedure as explained
in Sect. 2.5. Since the cut (40) only involves variables y and X, we can restrict the
set S to the space corresponding to these variables. Let S = F1 ∩

({0, 1}A × Tn(G)
)

and let c1 be the coefficient vector of the left hand side in (40). Then the strengthened
rounding looks as follows:

⌊
2k(2)

n + 4
h(2)

n

n

⌋

S,c1

:= max

⎧
⎪⎪⎨

⎪⎪⎩
xi j + x ji +

∑

k∈N :
(i,k, j)∈A

yik j +
∑

k∈N :
( j,k,i)∈A

y jki : (40), (y,X) ∈ S

⎫
⎪⎪⎬

⎪⎪⎭
.

One can verify that the value of this maximization is equal to 1 for n ≥ 5. Namely,
if it would be greater than 1, this implies a subtour of size two (if xi j = x ji = 1),
size three (e.g., if xi j = 1 and y jki = 1 for some k ∈ N\{i, j}) or size four (e.g.,
if yik j = 1 and y jli = 1 for some distinct k, l ∈ N\{i, j}), which contradicts the

fact that X ∈ Tn(G). We conclude that

⌊
2k(2)

n + 4 h(2)
n
n

⌋

S,c1

= 1. Thus, we obtain the

strengthened CG cut

xi j + x ji +
∑

k∈N :
(i,k, j)∈A

yik j +
∑

k∈N :
( j,k,i)∈A

y jki ≤ 1.

Strenghtened subtour elimination constraints

Let S ⊂ N with 2 ≤ |S| < 1
2n and define U = 1S1

�
S . Taking U as the dual multiplier

with respect to β(2)In + α(2)Jn − 1
2

(
(X+ X(2))+ (X+ X(2))�

) � 0 provides the
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inequality

〈
1S1

�
S , β(2)In + α(2)Jn − 1

2

(
(X+ X(2))+ (X+ X(2))�

)〉
≥ 0.

For all i, j ∈ S we now add the coupling constraints
∑

k∈N :(i,k, j)∈A yik j − x (2)
i j = 0

with dual multiplier 1. Moreover, for all (i, k, j) ∈ A with i, k, j ∈ S we add the
constraint −yik j ≤ 0 with multiplier 1. This yields the following valid cut

∑

i∈S
j∈S

xi j +
∑

i∈S
j∈S

∑

k∈N\S:
(i,k, j)∈A

yik j ≤ |S|β(2) + |S|2α(2).

Again, we take β(2) = k(2)
n and α(2) = h(2)

n /n. The standard CG rounding step yields

∑

i∈S
j∈S

xi j +
∑

i∈S
j∈S

∑

k∈N\S:
(i,k, j)∈A

yik j ≤
⌊
|S|
(

k(2)
n + |S|h

(2)
n

n

)⌋
. (41)

Since |S| < 1
2n, we know

⌊
|S|
(

k(2)
n + |S|h

(2)
n

n

)⌋
≤
⌊
|S|
(

k(2)
n + 1

2
n
2− k(2)

n

n

)⌋
=
⌊
|S|
(
1+ 1

2
k(2)

n

)⌋
≤ 2|S| − 1.

However, similar to the approach in the previous subsection, we obtain a tighter bound
if we apply the strengthened CG procedure. Let T = F1 ∩

({0, 1}A × Tn(G)
)
and let

c2 be the coefficient vector of the left hand side of (41). Then,

⌊
|S|
(

k(2)
n + |S|h

(2)
n

n

)⌋

T ,c2

:= max

⎧
⎪⎪⎨

⎪⎪⎩

∑

i∈S
j∈S

xi j +
∑

i∈S
j∈S

∑

k∈N\S:
(i,k, j)∈A

yik j : (41), (y,X) ∈ T

⎫
⎪⎪⎬

⎪⎪⎭
.

It can be verified that this maximum is equal to |S|−1 for all S with |S| < 1
2n. Namely,

if (y,X) ∈ T , we cannot have both xi j = 1 and yik j = 1 for some k ∈ N . Hence,
xi j +∑k∈N\S:(i,k, j)∈A yik j ≤ 1 for all i, j ∈ S. If we now sum over all i, j ∈ S, the
result must be at most |S| − 1, otherwise a subtour would exist. The strengthened CG
cut corresponding to (41) becomes

∑

i∈S
j∈S

xi j +
∑

i∈S
j∈S

∑

k∈N\S:
(i,k, j)∈A

yik j ≤ |S| − 1.
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The symmetric quadratic traveling salesman problem

In this appendix we briefly consider the symmetric quadratic traveling salesman prob-
lem (SQTSP). Although this problem is very related to the asymmetric version used
in the rest of the paper (that we continue to denote by QTSP), the underlying model
is different. We show how to construct this model and how all cuts for the QTSP can
be extended to the symmetric case.

Let G = (V , E) be an undirected graph, where E consists of undirected pairs of
nodes {i, j} (= { j, i}), i, j ∈ V . We define E = {〈i, j, k〉 = 〈k, j, i〉 : i, j, k ∈
V , |{i, j, k}| = 3} to be the set of two-edges in G, where a two-edge is a sequence
of three distinct nodes where the reverse sequence is regarded as identical. Given is a
quadratic cost matrix Q = (qi jk), where a cost is zero if 〈i, j, k〉 /∈ E .

The goal of the SQTSP is to find an undirected Hamiltonian cycle in G such that
the total quadratic cost is minimized. To model this problem, let x̄ ∈ {0, 1}E and
ȳ ∈ {0, 1}E denote indicator vectors that are 1 if and edge, respectively two-edge, is
present in the solution and 0 otherwise.We aim to find a tuple (x̄, ȳ)with ȳi jk = x̄i j x̄ jk ,
representing a Hamiltonian cycle such that

∑
〈i, jk〉∈E qi jk yi jk is minimized.

The symmetric equivalent of the set F1, see (31), is now given by:

F s
1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(ȳ, x̄) ∈ {0, 1}E × {0, 1}E :

∑

e∈δ(i)

x̄e = 2 ∀i ∈ V

x̄i j =
∑

k∈V〈i, j,k〉∈E

ȳi jk =
∑

k∈V〈k,i, j〉∈E

ȳki j ∀{i, j} ∈ E

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where δ(i) ∈ V denotes the set of edges that are incident to i . The formulation
used in F s

1 is introduced by Fischer and Helmberg [37] where it is shown that the
equation ȳi jk = x̄i j x̄ jk is indeed established for all 〈i, j, k〉 ∈ E . Moreover, similar
to the asymmetric case, we can relax the integrality of ȳ, since it is enforced by the
integrality of x̄ and the coupling constraints, see Remark 2. It follows that the tuples
in F s

1 are characteristic vectors of node-disjoint cycle covers in G, where the smallest
cycles have size 3 due to the definition of E .

The B&C algorithm presented in Sect. 3 can now be applied to the SQTSP, starting
from optimizing over F s

1 . In order to cut off solutions that do not correspond to a
Hamiltonian cycle inG, we need separation routines for the symmetric version. Instead
of providing symmetric equivalents to allQTSP cutting planes derived in Sect. 4.3, we
present a transformation that maps any valid cut for the asymmetric version to a cut
for the SQTSP. To that end, we introduce a directed graph H = (V , A) that is defined
on the same set of nodes as the undirected graph G, where A is such that it contains
both pairs (i, j) and ( j, i) whenever the corresponding edge {i, j} is contained in G.
Moreover, we define the cost of each two-arc (i, j, k) in H to be equal to q〈i, j,k〉 for
the corresponding two-edge 〈i, j, k〉 in G. Let IS denote the original SQTSP instance
and let IA denote the corresponding asymmetric instance.

The variables in the two programs can now be related as follows: Let (y,X) be
variables in IA and define the tuple (ȳ, x̄) by x̄i j = xi j + x ji for all {i, j} ∈ E , and
ȳi jk = yi jk + yk ji for all 〈i, j, k〉 ∈ E .
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From the constraints in F1 and F s
1 , it follows that any solution (y,X) in IA leads

to a solution (ȳ, x̄) in IS with the same objective value. Reversely, any solution (ȳ, x̄)
in IS leads to a solution (or actually two solutions, one for each direction) (y,X) in
IA with the same objective value. As a result, any valid cut for IA is also valid for IS.

This implies that all cuts defined in Sect. 4.3 can be converted to cuts for the SQTSP.
Namely, given a cut for IA, we define the coefficient on x̄i j to be the sum of the
coefficients on xi j and x ji for all edges {i, j} ∈ E . Similarly, we define the coefficient
on ȳi jk to be the sum of the coefficients on yi jk and yk ji for all two-edges 〈i, j, k〉 ∈ E .
If no more violated cuts can be found in IA, the corresponding solution in IS is also
optimal. This proves the validity of the B&C algorithm for the symmetric version of
the problem.

Extended computational results

In this appendix we present a complete overview of the computational results from
which the summarized results in Sect. 5 follow. We start by considering the instances
from bioinformatics, after which we present results for the reload instances. No addi-
tional results are presented for the turn instances, since for these instances the complete
overview is already given in Sect. 5.

In all tables showing computation times, the setting that provides the shortest time
is presented in bold for each instance. Moreover, a ‘–’ indicates that a given algorithm
could not solve the instance within 8h.

The computation times and the number of branching nodes for the class of ‘bma’
instances from bioinformatics are given in Tables 6 and 7, respectively. Tables 8 and 9
provide computation times and number of branching nodes for the ‘map’ instances,
respectively. The computation times and the number of branching nodes for the ‘ml’
instances are presented inTables 10 and11, respectively. Figure6presents computation
times versus instance size for the bioinformatics instance classes.

We also present a more elaborate overview of the reload instances. For each of the
two classes and for different values of n, p and c, 10 randomly generated instances
are considered. In order to save space, we only present the results that are averaged
over these 10 similar instances. Tables 12 and 13 present the computation times and
number of branching nodes, respectively. Table 14 shows the computation times on
72 additional reload instances on both reload classes with n ∈ {21, . . . , 26}, p ∈
{0.5, 0.8} and c ∈ {5, 10, 20} in order to further investigate the difference between the
settings SEC-simple and SEC. As indicated in Sect. 5, the results in Table 14 are still
not decisive on which of the two settings performs better. Finally, Fig. 7 presents the
computation times for the reload instances for different values of n and p.
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Table 6 Computation times (s) for bioinformatics instances from the ‘bma’ class

Instance SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

bma2_3 0.001 0.001 0.006 0.153 0.001 0.001 0.001

bma2_4 0.075 0.001 0.002 0.002 0.002 0.002 0.001

bma2_5 0.079 0.005 0.004 0.017 0.005 0.005 0.008

bma2_6 0.221 0.034 0.034 0.047 0.029 0.555 0.101

bma2_7 0.436 0.048 0.051 0.062 0.054 0.157 0.039

bma2_8 2.76 0.083 0.073 0.081 0.090 0.049 0.102

bma2_9 3.85 0.114 0.121 0.165 0.120 0.028 0.043

bma2_10 17.11 0.179 0.205 0.374 0.185 0.056 0.29

bma2_11 91.38 0.496 0.442 0.841 0.272 0.281 0.251

bma2_12 440.6 0.667 0.8 1.428 0.333 0.203 0.303

bma2_13 1327 2.005 1.006 2.954 0.501 0.154 0.671

bma2_14 4794 2.76 2.524 4.396 2.190 0.582 0.82

bma2_15 13,075 7.118 4.136 7.313 2.811 0.488 1.27

bma2_16 – 11.83 6.129 12.24 2.962 0.247 1.66

bma2_17 – 24.19 6.214 23.87 4.509 1.457 3.105

bma2_18 – 58.43 16.42 84.56 9.579 1.489 3.699

bma2_19 – 49.98 20.66 54.24 13.97 1.386 3.043

bma2_20 – 98.18 20.37 127.9 20.40 1.516 3.496

bma2_21 – 1068 45.41 103.2 19.64 2.387 2.086

bma2_22 – 2120 59.95 464.3 52.09 3.093 8.663

bma2_23 – 3855 117 527.0 87.85 4.76 9.586

bma2_24 – 2461 90.07 945.9 81.87 5.866 17.73

bma2_25 – 26,594 160 1129 166.3 7.53 7.765

bma2_26 – – 451.6 3777 269.2 6.779 38.962

bma2_27 – – 372.6 8718 350.0 3.108 46.95

bma2_28 – – 1628 – 440.7 22.47 46.5

bma2_29 – – 2095 – 2700 10.65 229

bma2_30 – – 2453 – 1614 23.59 42.8

bma2_31 – – 5997 – 3434 32.72 63.66

bma2_32 – – 11,835 – 2227 41.79 168.2

bma2_33 – – – – 7985 42.97 150

bma2_34 – – – – 6673 67.8 845.3

bma2_35 – – – – – 98.17 77.03

bma2_36 – – – – – 173.3 15.26

bma2_37 – – – – – 101.1 35.64

bma2_38 – – – – – 96.33 2127

bma2_39 – – – – – 86.46 1012

bma2_40 – – – – – 236.2 1964
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Table 7 Number of branching nodes for bioinformatics instances from the ‘bma’ class

Instance SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

bma2_3 1 0 0 0 0 0 0

bma2_4 1 0 0 0 0 0 0

bma2_5 15 1 1 1 1 1 1

bma2_6 31 21 15 8 1 1 4

bma2_7 91 44 44 56 20 1 1

bma2_8 223 188 162 117 106 5 10

bma2_9 488 439 468 391 101 1 1

bma2_10 1477 777 1072 1194 289 1 238

bma2_11 3907 3397 2639 2608 431 48 44

bma2_12 13,601 3428 3634 4060 670 54 50

bma2_13 29,649 8517 2240 3160 947 1 177

bma2_14 94,149 6175 11,496 3545 4977 24 50

bma2_15 250,373 20,247 10,150 3991 3981 9 41

bma2_16 – 27,932 9935 6401 5960 1 106

bma2_17 – 63,530 8223 9184 7025 308 169

bma2_18 – 123,582 24,108 36,441 8876 91 216

bma2_19 – 70,434 22,172 11,652 10,536 1 40

bma2_20 – 160,135 18,042 28,155 13,877 5 13

bma2_21 – 1,022,644 39,130 14,514 10,066 57 1

bma2_22 – 1,700,860 32,304 72,836 26,889 292 113

bma2_23 – 1,832,083 75,655 77,233 42,630 128 85

bma2_24 – 726,287 37,575 104,902 29,058 172 91

bma2_25 – 13,893,446 74,107 77,935 52,053 155 28

bma2_26 – – 196,693 280,367 34,152 89 228

bma2_27 – – 103,566 324,133 72,630 3 133

bma2_28 – – 299,599 – 90,531 549 130

bma2_29 – – 491,304 – 514,762 264 714

bma2_30 – – 406,116 – 204,763 224 254

bma2_31 – – 755,325 – 481,742 493 53

bma2_32 – – 948,536 – 221,932 637 245

bma2_33 – – – – 488,976 483 122

bma2_34 – – – – 423,497 575 583

bma2_35 – – – – – 723 49

bma2_36 – – – – – 690 3

bma2_37 – – – – – 416 3

bma2_38 – – – – – 240 903

bma2_39 – – – – – 205 259

bma2_40 – – – – – 668 258

123



The CG procedure for ISDPs with applications in CO

Table 8 Computation times (s) for bioinformatics instances from the ‘map’ class

Instance SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

map2_3 0 0.004 0 0.001 0.001 0.001 0

map2_4 0.132 0.001 0.001 0.001 0.002 0.001 0.001

map2_5 0.149 0.005 0.007 0.088 0.005 0.006 0.022

map2_6 0.291 0.033 0.026 0.042 0.051 0.021 0.029

map2_7 1.551 0.06 0.057 0.147 0.058 0.027 0.032

map2_8 3.175 0.094 0.095 0.104 0.064 0.043 0.056

map2_9 8.373 0.128 0.096 0.154 0.106 0.03 0.044

map2_10 34.23 0.254 0.193 0.376 0.189 0.091 0.324

map2_11 143.8 0.464 0.512 0.671 0.227 0.127 0.094

map2_12 436.4 0.944 0.99 1.316 0.628 0.171 0.233

map2_13 1393 1.751 1.268 3.007 0.507 0.149 0.189

map2_14 5342 2.718 1.532 9.388 0.887 0.546 0.856

map2_15 21,851 4.57 2.691 8.088 1.778 0.742 1.17

map2_16 – 11.95 4.292 16.69 2.826 0.985 1.627

map2_17 – 14.2 6.987 17.79 9.434 1.654 2.622

map2_18 – 29.77 10.03 49.97 12.14 1.24 4.798

map2_19 – 106.1 15.15 62.60 16.11 1.913 1.266

map2_20 – 70.09 22.55 120.70 18.61 2.621 4.935

map2_21 – 3831 29.79 162.26 23.55 3.384 1.943

map2_22 – 1891 57.3 533.68 53.73 3.495 6.949

map2_23 – 7268 107.5 847.80 108.8 3.334 8.991

map2_24 – 24,633 214.3 1346 80.45 5.487 39.06

map2_25 – – 517.4 1159 187.9 14.19 12.18

map2_26 – – 1097 1874 280.3 12.67 16.07

map2_27 – – 675.5 13,952 373.0 1.951 22.09

map2_28 – – 3809 – 415.5 12.58 98.8

map2_29 – – 1724 – 740.6 15.76 84.06

map2_30 – – 25,983 – 1236 15.13 236.9

map2_31 – – 3090 – 1109 41.91 74.52

map2_32 – – 15,660 – 8951 36.15 200.8

map2_33 – – – – 14,630 51.88 239.5

map2_34 – – – – – 80.5 452.2

map2_35 – – – – – 12.68 35.15

map2_36 – – – – – 154.6 16.87

map2_37 – – – – – 66.77 990.2

map2_38 – – – – – 200.2 2564

map2_39 – – – – – 78.28 1333

map2_40 – – – – – 160.1 1135
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Table 9 Number of branching nodes for bioinformatics instances from the ‘map’ class

Instance SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

map2_3 1 0 0 0 0 0 0

map2_4 1 0 0 0 0 0 0

map2_5 11 1 1 1 1 1 1

map2_6 40 14 17 8 5 1 6

map2_7 109 89 89 35 25 1 1

map2_8 232 189 160 90 93 1 1

map2_9 571 457 405 262 113 1 1

map2_10 1304 1195 823 964 122 1 508

map2_11 3935 2322 3696 1760 278 8 1

map2_12 13,169 5393 4928 2531 1203 1 1

map2_13 26,604 5467 2650 5373 875 3 1

map2_14 93,888 5014 2548 7493 1982 57 60

map2_15 255,144 6920 5496 3707 4982 18 108

map2_16 – 26,031 5539 8806 5520 80 51

map2_17 – 22,364 8195 6804 12,704 272 125

map2_18 – 48,020 14,204 11,778 14,115 144 196

map2_19 – 183,060 14,306 19,651 10,824 260 1

map2_20 – 92,733 22,274 26,159 12,710 17 58

map2_21 – 4,794,948 23,121 19,926 10,604 337 1

map2_22 – 1,224,783 41,964 74,130 22,431 118 63

map2_23 – 3,642,274 57,896 180,470 48,598 161 90

map2_24 – 9,658,211 137,416 200,038 31,283 229 334

map2_25 – – 288,931 114,603 30,430 937 232

map2_26 – – 500,653 121,344 86,160 1077 66

map2_27 – – 177,516 599,002 36,414 1 136

map2_28 – – 1,132,717 – 42,713 322 408

map2_29 – – 290,590 – 107,281 187 226

map2_30 – – 2,812,907 – 194,767 112 545

map2_31 – – 384,952 – 66,366 735 128

map2_32 – – 1,437,957 – 691,596 470 784

map2_33 – – – – 1,041,749 238 165

map2_34 – – – – – 537 307

map2_35 – – – – – 1 1

map2_36 – – – – – 1121 1

map2_37 – – – – – 149 366

map2_38 – – – – – 1145 908

map2_39 – – – – – 212 461

map2_40 – – – – – 313 215

123



The CG procedure for ISDPs with applications in CO

Table 10 Computation times (s) for bioinformatics instances from the ‘ml’ class

Instance SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

ml2_3 0 0.001 0 0.001 0 0 0.001

ml2_4 0.056 0.002 0.001 0.002 0.001 0.001 0.001

ml2_5 0.089 0.004 0.004 0.027 0.007 0.003 0.019

ml2_6 0.182 0.032 0.034 0.035 0.044 0.015 0.015

ml2_7 0.402 0.064 0.057 0.063 0.056 0.024 0.04

ml2_8 1.769 0.075 0.075 0.100 0.077 0.039 0.089

ml2_9 4.528 0.118 0.116 0.172 0.112 0.026 0.04

ml2_10 11.19 0.196 0.225 0.419 0.151 0.109 0.302

ml2_11 115.9 0.56 0.407 0.753 0.243 0.193 0.19

ml2_12 734.2 1.094 1.019 1.530 0.331 0.208 0.176

ml2_13 2544 1.379 1.032 4.594 0.615 0.302 0.334

ml2_14 9235 3.404 2.218 7.348 1.117 0.455 0.647

ml2_15 24,930 3.827 2.397 7.858 1.468 0.633 1.888

ml2_16 – 7.03 7.557 14.35 1.817 0.993 1.684

ml2_17 – 11.08 8.268 33.36 5.035 1.282 2.008

ml2_18 – 34.76 13.61 54.37 7.403 0.988 3.594

ml2_19 – 83.41 20.42 57.72 9.350 1.337 0.611

ml2_20 – 313.1 22.72 90.01 14.42 2.731 4.522

ml2_21 – 820.5 26.01 139.9 27.21 2.82 1.226

ml2_22 – 2159 82.52 483.6 59.51 4.997 6.803

ml2_23 – 15,380 105.3 627.5 77.46 4.556 13.15

ml2_24 – 10,106 170.2 871.8 106.2 6.188 28.29

ml2_25 – – 497.3 1496 257.5 8.106 11.83

ml2_26 – – 339.2 1959 303.7 7.327 42.75

ml2_27 – – 834.4 14,290 332.8 4.965 39.99

ml2_28 – – 799.3 – 1273 24.31 92.09

ml2_29 – – 1905 – 1363 15.8 70.04

ml2_30 – – 2552 – 794.5 45.74 113.8

ml2_31 – – 5976 – 894.0 27.43 48.51

ml2_32 – – – – 1281 29.85 394.9

ml2_33 – – – – 9315 39.37 460.7

ml2_34 – – – – – 96.96 273.3

ml2_35 – – – – – 99.8 69.91

ml2_36 – – – – – 53.87 21.26

ml2_37 – – – – – 110.2 866.7

ml2_38 – – – – – 83.92 921.9

ml2_39 – – – – – 124.6 688.3

ml2_40 – – – – – 238.6 4244
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Table 11 Number of branching nodes for bioinformatics instances from the ‘ml’ class

Instance SCIP-SDP KT CG1 CG2 SEC-simple SEC SEC-CG

ml2_3 1 0 0 0 0 0 0

ml2_4 1 0 0 0 0 0 0

ml2_5 11 1 1 1 1 1 1

ml2_6 31 17 17 1 16 1 1

ml2_7 79 68 68 66 28 1 1

ml2_8 232 198 187 163 85 1 18

ml2_9 505 408 464 360 106 1 1

ml2_10 1209 902 1050 1260 122 3 297

ml2_11 3828 3552 2775 2358 231 26 1

ml2_12 13,214 5766 4496 4108 525 42 1

ml2_13 30,886 3443 2201 5289 2047 49 3

ml2_14 103,844 11,042 7749 7670 2794 85 1

ml2_15 277,563 6909 3672 3841 3306 67 67

ml2_16 – 13,789 16,980 7213 2834 381 62

ml2_17 – 13,032 14,854 13,186 7307 40 32

ml2_18 – 71,319 15,265 15,073 8484 25 73

ml2_19 – 152,418 20,636 18,234 8754 46 1

ml2_20 – 543,672 25,188 21,432 9287 95 58

ml2_21 – 870,889 14,851 19,920 18,928 125 1

ml2_22 – 1,555,614 54,545 89,797 35,269 490 53

ml2_23 – 6,063,406 62,828 85,769 38,643 394 224

ml2_24 – 5,173,626 81,607 119,736 37,759 133 442

ml2_25 – – 224,467 123,644 37,777 259 77

ml2_26 – – 117,689 123,695 30,987 71 170

ml2_27 – – 236,341 445,741 36,693 42 130

ml2_28 – – 225,144 – 276,524 659 299

ml2_29 – – 355,239 – 261,368 220 221

ml2_30 – – 391,804 – 49,445 1266 237

ml2_31 – – 635,442 – 44,693 576 48

ml2_32 – – – – 87,210 201 2380

ml2_33 – – – – 595,119 612 405

ml2_34 – – – – – 1054 194

ml2_35 – – – – – 486 140

ml2_36 – – – – – 981 7

ml2_37 – – – – – 319 148

ml2_38 – – – – – 123 176

ml2_39 – – – – – 256 104

ml2_40 – – – – – 446 1007
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Fig. 6 Computation times versus instance size for the bioinformatics classes ‘bma’ (top), ‘map’ (middle)
and ‘ml’ (bottom). The computation times are given on a logarithmic scale

123



F. de Meijer, R. Sotirov

Ta
bl
e
12

C
om

pu
ta
tio

n
tim

es
of

th
e
re
lo
ad

in
st
an
ce
s
av
er
ag
ed

ov
er

10
ge
ne
ra
te
d
in
st
an
ce
s
fo
r
gi
ve
n
va
lu
es

of
n,

p
an
d

c

C
la
ss

In
st
an
ce

A
ve
ra
ge

co
m
pu
ta
tio

n
tim

es
(s
)

n
(
p,

c)
O
PT

SC
IP
-S
D
P

K
T

C
G
1

C
G
2

SE
C
-s
im

pl
e

SE
C

SE
C
-C
G

1
10

(0
.5
,5
)

5.
2

0.
13

1
0.
04

9
0.
02

5
0.
02

9
0.
01

8
0.
02

0
0.
03

0

10
(0
.5
,1
0)

5.
8

0.
13

5
0.
03

4
0.
03

8
0.
04

2
0.
02

9
0.
02

0
0.
03

1

10
(0
.5
,2
0)

7.
7

0.
21

8
0.
02

2
0.
02

3
0.
03

5
0.
02

4
0.
01

7
0.
03

3

10
(1
,5
)

2
2.
13

5
0.
17

7
0.
16

0
0.
21

0
0.
16

3
0.
15

2
0.
23

6

10
(1
,1
0)

3.
4

1.
88

8
0.
12

1
0.
13

5
0.
17

6
0.
12

9
0.
12

1
0.
18

2

10
(1
,2
0)

4.
5

0.
85

7
0.
10

0
0.
08

6
0.
10

8
0.
09

2
0.
06

5
0.
09

5

A
ve

ra
ge

4.
8

0.
89

4
0.

08
4

0.
07

8
0.

10
0

0.
07

6
0.

06
6

0.
10

1

15
(0
.5
,5
)

4.
1

3.
18

7
0.
21

1
0.
20

2
0.
38

6
0.
18

5
0.
18

5
0.
28

0

15
(0
.5
,1
0)

6.
5

2.
13

1
0.
16

0
0.
18

2
0.
19

7
0.
14

6
0.
13

4
0.
23

5

15
(0
.5
,2
0)

8.
5

1.
45

0
0.
10

2
0.
09

7
0.
17

1
0.
09

5
0.
09

8
0.
15

3

15
(1
,5
)

0.
4

45
0.
1

2.
65

7
1.
72

0
9.
56

6
1.
88

4
1.
83

5
5.
20

9

15
(1
,1
0)

2.
9

20
4.
4

1.
06

5
1.
06

4
2.
69

7
0.
88

7
0.
78

8
2.
24

3

15
(1
,2
0)

5.
1

77
.4
4

0.
55

7
0.
58

7
1.
24

6
0.
51

4
0.
49

7
1.
02

2

A
ve

ra
ge

4.
58

3
12

3.
1

0.
79

2
0.

64
2

2.
37

7
0.

61
9

0.
58

9
1.

52
4

20
(0
.5
,5
)

3.
2

16
9.
6

0.
86

9
0.
93

8
2.
52

1
0.
69

0
0.
62

9
1.
99

4

20
(0
.5
,1
0)

6.
1

19
.6
7

0.
54

3
0.
54

1
1.
11

1
0.
42

4
0.
47

3
0.
95

7

20
(0
.5
,2
0)

9.
3

56
.9
2

0.
41

9
0.
39

6
0.
89

7
0.
33

5
0.
29

4
0.
75

9

20
(1
,5
)

0
19

85
49

6.
3

23
5.
2

54
64

45
8.
0

10
2.
1

96
48

20
(1
,1
0)

2.
14

3
65

49
48

.7
1

32
.9
5

24
5.
7

24
.8
9

23
.6
9

17
4.
2

20
(1
,2
0)

4.
8

31
89

6.
22

3
6.
42

2
19

.2
6

4.
73

3
3.
80

8
12

.0
4

A
ve

ra
ge

4.
25

7
19

95
92

.1
9

46
.0

9
95

5.
7

81
.5

1
21

.8
3

16
39

25
(0
.5
,5
)

2.
6

–
21

8.
6

97
.3
9

33
90

42
.4
7

41
.4
1

72
7.
6

25
(0
.5
,1
0)

6.
4

–
6.
87

6
6.
25

3
22

.0
5

6.
36

1
5.
28

7
14

.5
6

123



The CG procedure for ISDPs with applications in CO

Ta
bl
e
12

co
nt
in
ue
d

C
la
ss

In
st
an
ce

A
ve
ra
ge

co
m
pu
ta
tio

n
tim

es
(s
)

n
(
p,

c)
O
PT

SC
IP
-S
D
P

K
T

C
G
1

C
G
2

SE
C
-s
im

pl
e

SE
C

SE
C
-C
G

25
(0
.5
,2
0)

10
.8

–
3.
02

9
3.
35

6
11

.7
25

2.
54

4
2.
12

7
5.
15

6

A
ve

ra
ge

6.
6

–
76

.1
9

35
.6

6
11

41
17

.1
2

16
.2

7
24

9.
1

2
10

(0
.5
,5
)

16
.1

0.
18

5
0.
03

6
0.
03

8
0.
06

1
0.
02

8
0.
03

1
0.
04

3

10
(0
.5
,1
0)

22
0.
11

7
0.
03

1
0.
03

8
0.
04

3
0.
02

5
0.
02

3
0.
04

0

10
(0
.5
,2
0)

30
.1
1

0.
25

2
0.
04

0
0.
04

2
0.
04

4
0.
03

4
0.
03

3
0.
04

8

10
(1
,5
)

4.
6

1.
31

6
0.
26

0
0.
22

7
0.
16

6
0.
11

0
0.
20

1
0.
20

0

10
(1
,1
0)

8.
4

0.
83

3
0.
11

1
0.
10

6
0.
15

1
0.
10

8
0.
11

7
0.
13

6

10
(1
,2
0)

11
.6

0.
73

6
0.
12

0
0.
11

0
0.
14

1
0.
13

1
0.
09

8
0.
13

6

A
ve

ra
ge

15
.4

6
0.

57
3

0.
10

0
0.

09
4

0.
10

1
0.

07
3

0.
08

4
0.

10
1

15
(0
.5
,5
)

17
.7

1.
96

7
0.
16

0
0.
18

2
0.
25

6
0.
16

4
0.
14

1
0.
26

3

15
(0
.5
,1
0)

23
.3

2.
47

6
0.
19

8
0.
15

0
0.
24

1
0.
18

3
0.
16

9
0.
25

9

15
(0
.5
,2
0)

27
.2

4.
52

5
0.
22

1
0.
19

1
0.
26

9
0.
17

3
0.
20

6
0.
26

0

15
(1
,5
)

2.
1

66
0.
9

2.
44

0
3.
63

9
10

.8
0

2.
43

0
2.
05

1
7.
07

7

15
(1
,1
0)

6.
5

11
8.
2

0.
92

5
0.
91

1
1.
69

7
0.
82

9
0.
85

5
1.
59

0

15
(1
,2
0)

11
.7

53
.3
2

0.
72

3
0.
75

3
1.
42

7
0.
62

1
0.
66

4
1.
20

3

A
ve

ra
ge

14
.7

5
14

0.
2

0.
77

8
0.

97
1

2.
44

9
0.

73
3

0.
68

1
1.

77
5

20
(0
.5
,5
)

8.
3

72
.8
9

0.
66

1
0.
64

6
1.
37

7
0.
59

3
0.
64

1
1.
58

0

20
(0
.5
,1
0)

19
.2

68
.3
1

0.
54

4
0.
52

8
1.
05

7
0.
54

5
0.
51

7
1.
28

9

20
(0
.5
,2
0)

26
.8

34
.8
2

0.
52

1
0.
58

2
1.
30

4
0.
51

7
0.
57

1
1.
18

6

20
(1
,5
)

0
13

13
10

3.
2

38
.9
8

34
52

16
.9
3

33
.9
9

24
72

20
(1
,1
0)

4.
12

5
56

59
23

.3
1

17
.4
8

95
.8
2

13
.7
1

12
.4
5

68
.5
1

20
(1
,2
0)

10
.1
1

10
94

5.
45

1
6.
17

9
13

.5
9

5.
02

9
4.
20

3
9.
49

6

A
ve

ra
ge

11
.4

2
13

74
22

.2
8

10
.7

3
59

4.
2

6.
22

3
8.

73
0

42
5.

7

123



F. de Meijer, R. Sotirov

Ta
bl
e
12

co
nt
in
ue
d

C
la
ss

In
st
an
ce

A
ve
ra
ge

co
m
pu
ta
tio

n
tim

es
(s
)

n
(
p,

c)
O
PT

SC
IP
-S
D
P

K
T

C
G
1

C
G
2

SE
C
-s
im

pl
e

SE
C

SE
C
-C
G

25
(0
.5
,5
)

8.
3

–
38

86
93

5.
3

15
,4
52

27
6.
2

21
9.
9

50
77

25
(0
.5
,1
0)

17
.7

–
5.
64

9
5.
67

2
17

.3
7

4.
40

8
4.
23

1
13

.8
9

25
(0
.5
,2
0)

23
.1

–
4.
14

2
4.
36

4
9.
86

9
3.
76

0
3.
28

0
10

.8
8

A
ve

ra
ge

16
.4

–
12

98
31

5.
1

51
59

94
.8

0
75

.8
1

17
01

123



The CG procedure for ISDPs with applications in CO

Ta
bl
e
13

N
um

be
r
of

br
an
ch
in
g
no
de
s
fo
r
th
e
re
lo
ad

in
st
an
ce
s
av
er
ag
ed

ov
er

10
ge
ne
ra
te
d
in
st
an
ce
s
fo
r
gi
ve
n
va
lu
es

of
n,

p
an
d

c

C
la
ss

In
st
an
ce

N
um

be
r
of

br
an
ch
in
g
no

de
s

n
(
p,

c)
SC

IP
-S
D
P

K
T

C
G
1

C
G
2

SE
C
-s
im

pl
e

SE
C

SE
C
-C
G

1
10

(0
.5
,5
)

19
.7

1.
1

1.
7

1.
4

0.
7

0.
7

0.
8

10
(0
.5
,1
0)

16
.6

2.
2

2.
1

3.
8

0.
8

0.
7

0.
8

10
(0
.5
,2
0)

43
.4

4.
3

3.
9

0.
7

0.
7

1.
8

2.
6

10
(1
,5
)

13
2

12
5.
9

17
3.
1

16
8.
6

74
.6

69
.4

99
.4

10
(1
,1
0)

11
5

79
82

.4
72

.3
43

.2
32

.5
43

.4

10
(1
,2
0)

46
.5

15
.4

15
.4

11
.6

9.
5

4.
6

7.
1

A
ve

ra
ge

62
.2

37
.9

8
46

.4
33

43
.0

6
21

.5
8

18
.2

8
25

.6
8

15
(0
.5
,5
)

15
5.
9

99
.4

92
.9

11
1

73
.5

67
53

.2

15
(0
.5
,1
0)

91
.8

70
.9

10
5.
1

76
.9

45
.7

28
.4

46
.8

15
(0
.5
,2
0)

48
.3

34
.9

17
.3

28
.3

11
.6

12
.9

7.
6

15
(1
,5
)

30
01

36
06

25
06

36
07

26
43

22
15

20
84

15
(1
,1
0)

16
92

12
23

11
76

12
93

92
1.
2

53
3.
8

61
8.
6

15
(1
,2
0)

40
5.
1

27
9.
4

17
0.
5

24
1.
1

15
7.
1

14
0.
1

10
8.
5

A
ve

ra
ge

89
9.

3
88

5.
8

67
8.

1
89

3.
2

64
2.

0
49

9.
5

48
6.

5

20
(0
.5
,5
)

19
29

13
12

.8
15

22
15

34
99

1
63

7.
5

68
5.
4

20
(0
.5
,1
0)

29
3.
6

33
6

36
9.
1

26
6.
7

15
9.
9

14
8.
5

15
2

20
(0
.5
,2
0)

45
9.
4

18
8.
4

17
5.
6

16
5.
9

97
.7

50
.3

75
.7

20
(1
,5
)

13
,5
29

65
,6
22

54
,0
77

44
,7
24

12
5,
56

0
27

,8
78

67
,7
24

20
(1
,1
0)

18
,0
62

29
,2
87

21
,5
83

18
,7
98

15
,5
21

10
,3
08

12
,1
10

20
(1
,2
0)

47
49

31
14

34
00

33
12

24
99

15
25

15
07

A
ve

ra
ge

65
03

16
,6

43
13

,5
21

11
,4

67
24

,1
38

67
58

13
,7

09

25
(0
.5
,5
)

–
13

1,
62

6
73

,6
71

10
6,
95

6
45

,4
80

34
,3
90

40
,7
35

25
(0
.5
,1
0)

–
60

51
54

05
64

23
55

48
46

05
37

78

123



F. de Meijer, R. Sotirov

Ta
bl
e
13

co
nt
in
ue
d

C
la
ss

In
st
an
ce

N
um

be
r
of

br
an
ch
in
g
no

de
s

n
(
p,

c)
SC

IP
-S
D
P

K
T

C
G
1

C
G
2

SE
C
-s
im

pl
e

SE
C

SE
C
-C
G

25
(0
.5
,2
0)

–
31

23
32

80
38

27
23

52
18

23
15

00

A
ve

ra
ge

–
46

,9
33

27
,4

52
39

,0
69

17
,7

93
13

,6
06

15
,3

37

2
10

(0
.5
,5
)

19
5.
6

5.
6

0.
9

3.
7

4.
2

0.
9

10
(0
.5
,1
0)

7.
77

8
2.
66

7
1.
55

56
2.
33

3
1.
55

6
0.
77

8
2.
44

4

10
(0
.5
,2
0)

29
.5
6

3.
88

9
3.
55

6
3.
33

3
3.
22

2
3.
88

8
2.
66

7

10
(1
,5
)

88
.6

63
.4

68
.1

76
.6

46
.9

22
.2

68
.1

10
(1
,1
0)

35
.6

27
.2

35
35

.4
18

17
16

.7

10
(1
,2
0)

28
.5

27
.3

21
.6

19
.5

16
.2

18
.1

20
.3

A
ve

ra
ge

34
.8

4
21

.6
8

22
.5

9
23

.0
1

14
.9

3
11

.0
3

18
.5

2

15
(0
.5
,5
)

81
.2

73
.7

10
5.
1

75
.3

58
.2

43
.1

46

15
(0
.5
,1
0)

93
.5

67
.6

50
.5

81
.6

63
.3

49
.1

65
.4

15
(0
.5
,2
0)

18
8.
1

67
.7

65
.8

65
.1

48
.7

38
.6

50
.3

15
(1
,5
)

55
88

33
06

52
57

43
94

40
16

27
34

25
94

15
(1
,1
0)

71
5.
2

10
52

86
1.
3

77
8.
3

66
9

61
9.
9

50
2.
4

15
(1
,2
0)

31
7.
8

44
2.
3

39
3.
3

45
1.
3

34
9

30
7.
7

31
5.
8

A
ve

ra
ge

11
64

83
4.

9
11

22
97

4.
4

86
7.

4
63

2.
1

59
5.

6

20
(0
.5
,5
)

66
4.
2

68
9.
6

59
6.
8

46
9.
2

33
5.
9

33
5.
2

42
6.
1

20
(0
.5
,1
0)

74
6.
9

31
7

21
8.
8

24
0.
3

23
7.
3

19
5.
1

15
3.
7

20
(0
.5
,2
0)

37
2.
8

37
4

47
4.
4

32
0.
6

25
8.
9

34
0.
2

32
8.
6

20
(1
,5
)

72
13

23
,7
66

16
,0
86

44
,8
35

87
17

91
82

20
,9
19

20
(1
,1
0)

13
,7
25

15
,1
29

11
,0
01

10
,9
07

81
24

64
21

58
70

20
(1
,2
0)

20
91

29
95

27
89

32
53

25
64

17
53

16
67

A
ve

ra
ge

41
36

72
12

51
95

10
,0

04
33

73
30

38
48

94

123



The CG procedure for ISDPs with applications in CO

Ta
bl
e
13

co
nt
in
ue
d

C
la
ss

In
st
an
ce

N
um

be
r
of

br
an
ch
in
g
no

de
s

n
(
p,

c)
SC

IP
-S
D
P

K
T

C
G
1

C
G
2

SE
C
-s
im

pl
e

SE
C

SE
C
-C
G

25
(0
.5
,5
)

–
35

3,
52

2
22

2,
42

9
31

1,
71

2
10

0,
96

7
86

,9
78

10
7,
31

8

25
(0
.5
,1
0)

–
46

73
39

75
41

56
33

35
29

65
34

21

25
(0
.5
,2
0)

–
27

66
29

73
27

79
25

83
25

37
25

33

A
ve

ra
ge

–
12

0,
32

0
76

,4
59

10
6,

21
6

35
,6

28
30

,8
27

37
,7

57

123



F. de Meijer, R. Sotirov

Table 14 Computation times of
SEC-simple and SEC on 72
additional reload instances for
given values of n, p and c

n p c Class OPT SEC-simple SEC

21 0.5 5 1 2 0.787 0.771

2 4 0.738 0.751

10 1 8 2.767 2.342

2 13 0.521 0.543

20 1 9 0.501 0.841

2 31 0.395 0.407

0.8 5 1 2 169.1 231.1

2 4 198.8 249.6

10 1 4 4.973 7.479

2 8 6.993 9.556

20 1 6 2.479 1.680

2 13 2.157 3.265

22 0.5 5 1 2 2.469 8.384

2 9 0.681 0.851

10 1 8 1.530 1.143

2 19 0.481 0.782

20 1 10 0.890 0.808

2 27 1.289 1.193

0.8 5 1 2 399.4 764.4

2 0 17.18 11.65

10 1 3 8.797 7.626

2 8 62.52 24.11

20 1 6 6.435 7.146

2 17 13.23 8.686

23 0.5 5 1 2 8.852 8.528

2 10 27.23 20.34

10 1 7 3.754 2.791

2 10 7.896 4.142

20 1 11 0.460 0.395

2 19 1.128 0.870

23 0.8 5 1 0 84.41 27.89

2 4 3655 2366

10 1 3 52.55 59.89

2 8 153.8 63.12

20 1 7 19.18 10.07

2 14 12.80 12.12
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Table 14 continued n p c Class OPT SEC-simple SEC

24 0.5 5 1 3 37.95 29.45

2 10 13.90 17.00

10 1 8 1.947 2.045

2 22 1.295 2.501

20 1 11 1.636 1.631

2 28 5.907 9.120

0.8 5 1 – – –

2 2 8249 10,517

10 1 3 101.8 132.4

2 6 168.2 143.9

20 1 7 6.754 8.559

2 13 31.22 44.26

25 0.5 5 1 2 88.49 57.76

2 8 1.701 1.367

10 1 8 18.29 18.18

2 18 18.21 17.08

20 1 11 2.821 1.554

2 18 1.431 1.838

0.8 5 1 0 9479 273.1

2 4 14,175 8042

10 1 2 68.52 94.96

2 8 30.53 55.61

20 1 6 35.54 49.12

2 13 68.26 67.23

26 0.5 5 1 2 491.6 562.8

2 6 13.74 11.77

10 1 6 18.41 16.05

2 18 6.667 8.945

20 1 9 1.877 1.800

2 26 8.740 8.587

26 0.8 5 1 – – –

2 – – –

10 1 3 127.6 159.1

2 8 3327 3104

20 1 7 183.3 86.4

2 12 115.7 92.15
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F. de Meijer, R. Sotirov

Fig. 7 Boxplots showing the computation times for the reload instances for different values of n and p,
accumulated over the reload class and the number of colors c. We omit the results of SCIP-SDP, since these
computation times are several magnitudes larger
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63. Staněk, R., Greistorfer, P., Ladner, K., Pferschy, U.: Geometric and LP-based heuristics for angular

travelling salesman problems in the plane. Comput. Oper. Res. 108, 97–111 (2019)
64. Stein, C.,Wagner, D.P.: Approximation algorithms for theminimumbends traveling salesman problem.

In: Aardal, K., Gerards, B. (eds.) Integer Programming and Combinatorial Optimization (IPCO 2001).
Lecture Notes in Computer Science, vol. 2081, pp. 406–425. Springer, Berlin (2001)

65. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math.
Program. 86, 515–532 (1999)

66. Veerman, J.J.P., Lyons, R.: A primer on Laplacian dynamics in directed graphs. Nonlinear Phenom.
Complex Syst. 23(2), 196–206 (2020)

67. Wang, A.L., Kilinç-Karzan, F.: On the tightness of SDP relaxations of QCQPs. Math. Program. 193,
33–73 (2022)

68. Wirth, H., Steffan, J.: Reload cost problems: minimum diameter spanning tree. Discrete Appl. Math.
113, 73–85 (2001)

69. Woods,B.D., Punnen,A.P.:A class of exponential neighbourhoods for the quadratic travelling salesman
problem. J. Comb. Optim. 40(2), 303–332 (2020)

70. Wu, C.W.: Algebraic connectivity of directed graphs. Linear Multilinear Algebra 53(3), 203–223
(2005)

71. Yonekura, K., Kanno, Y.: Global optimization of robust truss topology via mixed integer semidefinite
programming. Optim. Eng. 11(3), 355–379 (2010)

72. Zhao, X., Huang, H., Speed, T.P.: Finding short DNA motifs using permuted Markov models. J.
Comput. Biol. 12, 894–906 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1708.07217

	The Chvátal–Gomory procedure for integer SDPs with applications in combinatorial optimization
	Abstract
	1 Introduction
	1.1 Main results and outline
	1.2 Notation

	2 The Chvátal–Gomory procedure for ISDPs
	2.1 The Chvátal–Gomory procedure
	2.2 The elementary closure of spectrahedra
	2.3 The Chvátal rank of bounded spectrahedra
	2.4  The elementary closure of spectrahedra and total dual integrality
	2.5 Strengthened Chvátal–Gomory cuts

	3 A CG-based branch-and-cut algorithm for ISDPs
	3.1 Generic Branch-and-Cut framework

	4 The Chvátal–Gomory procedure for ISDP formulations of the QTSP
	4.1 The quadratic traveling salesman problem
	4.2 ISDP based on algebraic connectivity in directed graphs
	4.3 Chvátal–Gomory cuts for the ISDPs of the QTSP

	5 Computational results
	5.1 Design of numerical experiments
	5.2 Comparison of approaches

	6 Conclusions
	Acknowledgements
	Appendix
	Proof of Proposition 3, Corollary 1, Theorems 3 and 11
	A separation routine for binary SDPs
	Derivation of subtour elimination constraints as CG cuts
	Ordinary subtour elimination constraint
	Cut-set subtour elimination constraints
	Merged subtour elimination constraint
	Strengthened subtour elimination constraints of size two
	Strenghtened subtour elimination constraints

	The symmetric quadratic traveling salesman problem
	Extended computational results
	References


