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Abstract
We show how to round any half-integral solution to the subtour-elimination relaxation
for the TSP, while losing a less-than−1.5 factor. Such a rounding algorithm was
recently given by Karlin, Klein, and Oveis Gharan based on sampling from max-
entropy distributions. We build on an approach of Haddadan and Newman to show
how sampling from the matroid intersection polytope, combined with a novel use of
max-entropy sampling, can give better guarantees.

1 Introduction

The (symmetric) traveling salesman problem asks: given an graph G = (V , E) with
edge-lengths ce ≥ 0, find the shortest tour that visits all vertices at least once. The
Christofides-Serdyukov algorithm [4, 13] gives a 3/2-approximation to this APX-hard
problem; this was recently improved to a (3/2−ε)-approximation by the breakthrough
work of Karlin, Klein, and Oveis Gharan, where ε > 0 [10]. A related question is:
what is the integrality gap of the subtour-elimination polytope relaxation for the TSP?
Wolsey had adapted the Christofides-Serdyukov analysis to show an upper bound of
3/2 [16] (also [14]), and there exists a lower bound of 4/3. Building on their above-
mentioned work, Karlin, Klein, and Oveis Gharan gave an integrality gap of 1.5 − ε′
for another small constant ε′ > 0 [11], thereby making the first progress towards the
conjectured optimal value of 4/3 in nearly half a century.

Most of this work was done when the author was a postdoc at NYU and supported in part by the Simons
Collaboration on Algorithms and Geometry.
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Both these recent results are based on a randomized version of the Christofides-
Serdyukov algorithm proposed by Oveis Gharan, Saberi, and Singh [12]. This
algorithm first samples a spanning tree (plus perhaps one edge) from the max-entropy
distribution with marginals matching the LP solution, and adds an O-join on the odd-
degree vertices O in it, thereby getting an Eulerian spanning subgraph. Since the first
step has expected cost equal to that of the LP solution, these works then bound the
cost of this O-join by strictly less than half the optimal value, or the LP value. The
proof uses a cactus-like decomposition of the near min-cuts of the graph with respect
to the values xe, like in [12].

Given the 3/2 barrier has been broken, we can ask: what other techniques can be
effective here? How can we make further progress? These questions are interesting
even for caseswhere theLPhas additional structure. The half-integral cases (i.e., points
for which xe ∈ {0, 1/2, 1} for all e) are particularly interesting due to the Schalekamp,
Williamson, and van Zuylen conjecture, which says that the integrality gap is achieved
on instances where the LP has optimal half-integral solutions [15]. The team of Karlin,
Klein, and Oveis Gharan first used their max-entropy approach to get an integrality
gap of 1.49993 for half-integral LP solutions [9], before they moved on to the general
case in [10] and obtained an integrality gap of 1.5 − ε; the latter improvement is
considerably smaller than in the half-integral case. It is natural to ask: can we do
better for half-integral instances?

In this paper, we answer this question affirmatively. We show how to get tours of
expected cost at most 1.4983 times the linear program value using an algorithm based
on matroid intersection. Moreover, some of these ideas can be used to strengthen the
max-entropy sampling approach in the half-integral case. The matroid intersection
approach and the strengthened max-entropy approach each yield improvements over
the bound in [9]. Combining the techniques gives our final quantitative improvement:

Theorem 1.1 Let x be a half-integral solution to the subtour elimination polytope with
cost c(x). There is a randomized algorithm that rounds x to an integral solution whose
cost is at most (1.5 − ε) · c(x), where ε = 0.001695.

We view our work as showing a proof-of-concept of the efficacy of combinato-
rial techniques (matroid intersection, and flow-based charging arguments) in getting
an improvement for the half-integral case. We hope that these techniques, ideally
combined with max-entropy sampling techniques, can give further progress on this
central problem. Our randomized algorithm does run in polynomial time, if we allow
exponentially small error in the marginal x .

Our Techniques The algorithm is again in the Christofides-Serdyukov framework. It
is easiest to explain for the case where the graph (a) has an even number of vertices,
and (b) has no (non-trivial) proper min-cuts with respect to the LP solution values
xe—specifically, the only sets for which x(∂S) = 2 correspond to the singleton cuts.
Here, our goal is that each edge is “even” with some probability: i.e., both of its
endpoints have even degree with probability p > 0. In this case we use an idea due to
Haddadan and Newman [7]: we shift and get a {1/3, 1}-valued solution y to the subtour
elimination polytope KT SP . Specifically, we find a random perfect matching M in the
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support of x , and set ye = 1 for e ∈ M , and 1/3 otherwise, thereby ensuring E[y] = x .
To pick a random tree from this shifted distribution y, we do one of the following:

1. We pick a random “independent” set M ′ of matching edges (so that no edge in
E is incident to two edges of M ′). For each e′ ∈ M ′, we place partition matroid
constraints enforcing that exactly one edge is picked at each endpoint—which,
along with e′ itself, gives degree 2 and thereby makes the edge even as desired.
Finding spanning trees subject to another matroid constraint can be implemented
using matroid intersection. (We refer the interested reader to [3] for a similar
application of the matroid intersection technique.)

2. Or, instead we sample a random spanning tree from the max-entropy distribution,
with marginals being the shifted value y. (In contrast, [9] sample trees from x
itself; our shifting allows us to get stronger notions of evenness than they do: e.g.,
we can show that every edge is “even-at-last” with constant probability, as opposed
to having at least one even-at-last edge in each tight cut with some probability.)

(Our algorithm randomizes between the two samplers to achieve the best guarantees.)
For the O-join step, it suffices to give fractional values ze to edges so that for every odd
cut in T , the z-mass leaving the cut is at least 1. In the special case we consider, each
edge only participates in two min-cuts—those corresponding to its two endpoints. So
set ze = xe/3 if e is even, and xe/2 if not; the only cuts with z(∂S) < 1 are minimum
cuts, and these cuts will not show up as O-join constraints, due to evenness. For this
setting, if an edge is even with probability p, we get a (3/2 − p/6)-approximation!

It remains to get rid of the two simplifying assumptions. To sample trees when |V |
is odd (an open question from [7]), we add a new vertex to fix the parity, and perform
local surgery on the solution to get a new TSP solution and reduce to the even case.
The challenge here is to show that the losses incurred are small, and hence each edge
is still even with constant probability.

Finally, what if there are proper tight sets S, i.e., where x(∂S) = 2? We use the
cactus decomposition of a graph (also used in [9, 12]) to sample spanning trees from
pieces of G with no proper min-cuts, and union these trees together. These pieces
are formed by contracting sets of vertices in G, and have a hierachical structure.
Moreover, each such piece is either of the form above (a graph with no proper min-
cuts) for which we have already seen samplers, or else it is a double-edged cycle
(which is easily sampled from). Since each edge may now lie in many min-cuts, we
no longer just want an edge to have both endpoints be even. Instead, we use an idea
from [9] that uses the hierarchical structure on the pieces considered above. Every
edge of the graph is “settled” at exactly one of these pieces, and we ask for both of its
endpoints to have even degree in the piece at which it is settled. The ze value of such
an edge may be lowered from an initial value of xe/2 in the O-join without affecting
constraints corresponding to cuts in the piece at which it is settled.

Since cuts at other levels of the hierarchy may now be deficient because of the
lower values of ze, we may need to increase the z f values for other “lower” edges f to
satisfy these deficient cuts. This last part requires a charging argument, showing that
each edge e has ze that is strictly smaller than xe/2 in expectation. For our samplers,
the naïve approach of distributing charge uniformly as in [9] does not work, so we
instead formulate this charging as a flow problem.
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2 Notation and preliminaries

Given a multigraph G = (V , E), and a set S ⊆ V , let ∂S denote the cut consisting
of the edges connecting S to V \ S; S and S̄:=V \ S are called shores of the cut.
(For a singleton set {v}, we write ∂v instead of ∂{v}.) A subset S ⊆ V is proper if
1 < |S| < |V | − 1; a cut ∂S is called proper if the set S is a proper subset. A set S
is tight if |∂S| equals the size of the minimum edge-cut in G. Two sets S and S′ are
crossing if S ∩ S′, S\S′, S′\S, and V \(S ∪ S′) are all non-empty.

Define the subtour elimination polytope KT SP (G) ⊆ R
|E |:

x(∂v) = 2 ∀v ∈ V (LP-TSP)

x(∂S) ≥ 2 ∀ proper S

x ≥ 0.

Let x be half-integral and feasible for (LP-TSP). W.l.o.g. we can focus on solutions
with xe = 1/2 for each e ∈ E , doubling edges if necessary. The support graph G is
then a 4-regular 4-edge-connected (henceforth 4EC) multigraph.

The spanning tree polytope KspT (G) ⊆ R
|E(G)| for a multigraph G is:

x(E(S)) ≤ |S| − 1 ∀S ⊆ V (G) (LP-spT)

x(E(V (G))) = |V (G)| − 1

x ≥ 0.

where E(S) is the set of edges with both endpoints in S. This is the graphic matroid
polytope, and the convex hull of the spanning trees.

Definition 2.1 (r -Trees) Given a multigraph G and “root” vertex r ∈ V (G), an r -tree
T is a connected subgraph with n edges: the vertex r has degree exactly 2, and the
subgraph restricted to the other vertices V (G) \ {r} is a spanning tree on them. This
is a matroid, though we do not use this fact.

The (integral) perfect matching polytope KPM ⊆ R
|E(G)| is defined as follows:

x(∂v) = 1 ∀v ∈ V (LP-PM)

x(∂S) ≥ 1 ∀S with |S| odd

x ≥ 0.

The (integral) O-join dominator polytope K join(G, O) is defined as follows. Let
O ⊆ V , |O| even.

z(∂(S)) ≥ 1 ∀S ⊆ V , |S ∩ O| odd
z ≥ 0

Fact 2.2 For any solution x ∈ KT SP (G), it holds that x |E(V (G)\{r}) ∈ KspT (G[V (G)\
{r}]), x/2 ∈ KPM (G) (when |V (G)| is even), and x/2 ∈ K join(G, O) for O ⊆ V (G),
|O| even.
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Lemma 2.3 Consider a sub-partition P = {P1, P2, . . . , Pt } of the edge set of G. Let
x be a fractional solution to (LP-spT) that satisfies x(Pi ) ≤ 1 for all i ∈ [t]. Then
we can efficiently sample from a probability distributionD over spanning trees which
contain at most one edge from each of the parts Pi , such that PrT←D[e ∈ T ] = xe.

Proof This follows immediately from the integrality of the matroid intersection poly-
tope and Carathéodory’s Theorem. (See, for e.g., [5], for how to do this sampling in
poly-time.) ��

2.1 Themax-entropy distribution over spanning trees

Definition 2.4 (Strong Rayleigh Distributions, [2]) Let μ be a probability distribu-
tion on spanning trees. The generating polynomial for μ is p(z) = ∑

T∈T P(e ∈
T )

∏
e∈T ze. We say μ is strongly Rayleigh (SR) if p is a real stable polynomial (i.e.,

p(z) 
= 0 if Im(ze) > 0 for all e ∈ T , i.e., if z lies in the upper half plane).

A distribution μ over spanning trees is called λ-uniform or weighted uniform if
there exist non-negative weights λ : E → R such that P(T ) ∝ ∏

e∈T λ(e). Borcea et
al. [2] showed that λ-uniform spanning tree distributions are SR.

Theorem 2.5 ([1], Theorem5.1)There exists aλ-uniformdistributionμ over spanning
trees such that given z in the relative interior of the spanning tree polytope of G =
(V , E),

∑

T�e
Pμ(T ) = ze.

Themax-entropy distribution, which is the distributionμon spanning treesmaximizing
the entropy of μ subject to preserving the marginals ze (that is, Pμ(e ∈ T ) = ze), is
one such distribution.

Asadpour et al [1] showed that we can find weights λ̃ : E → R
+ which approx-

imately respect the marginals given by a vector z in the spanning tree polytope in
polynomial time.

Theorem 2.6 ([1]) Given z in the relative interior of the spanning tree polytope of
G = (V , E) and some ε > 0, values λ̃e for e ∈ E can be found such that, for all
e ∈ E, the λ̃-uniform distribution μ satisfies

∑

T�e
Pμ(T ) ≤ (1 + ε)ze.

The running time is polynomial in |V |, log 1/mine ze and log 1/ε.

Fact 2.7 ([2]) Let μ be an SR distribution. Let F ⊂ E be a subset of edges. Then the
projection of μ onto F , i.e., μ|F (A) = ∑

S:S∩F=A μ(S), is also SR. Moreover, for
any edge e ∈ E , conditioning on e ∈ T or on e /∈ T preserves the SR property.
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Theorem 2.8 (Negative Correlation, [12]) Let μ be an SR distribution on spanning
trees.

1. Let S be a set of edges and XS = |S ∩ T |, where T ∼ μ. Then, XS ∼ ∑|S|
i=1 Yi ,

where the Yi are independent Bernoulli random variables with success probabili-
ties pi and

∑
i pi = E[XS].

2. For any set of edges S and e /∈ S,

(i) Eμ[XS] ≤ Eμ[XS | Xe = 0] ≤ Eμ[XS] + Pμ(e ∈ T ), and
(ii) Eμ[XS] − 1 + Pμ(e ∈ T ) ≤ Eμ[XS | Xe = 1] ≤ Eμ[XS].

Theorem 2.9 ([8], Corollary 2.1) Let g : {1, . . . ,m} → R and let 0 ≤ p ≤ m.
Let B1, . . . , Bm be Bernoulli random variables with probabilities p∗

1, . . . , p
∗
m that

maximize (or minimize) E[g(B1 + · · · + Bm)] over all possible success probabilities
pi for Bi for which p1 + · · · + pm = p. Then {p∗

1, . . . , p
∗
m} ∈ {0, x, 1} for some

x ∈ (0, 1).

3 Samplers

In this section, we describe the MaxEnt and MatInt samplers for graphs with an
even number of vertices that contain no proper min-cuts. We give bounds on certain
correlations between edges that will be used in Sect. 5 to prove that every edge is
“even” with constant probability. The samplers for the case where the graph has an
odd number of vertices are more technical and are deferred to Appendix B.

Suppose the graph H = (V , E) is 4-regular and 4-edge-connected (4EC), contains
at least four vertices, and has no proper min-cuts.1 This means all proper cuts have
six or more edges. We are given a dedicated external vertex r ∈ V (H); the vertices
I := V \{r} that are not external are called internal. (In future sections, this vertex r
will be given by a cut hierarchy.) Call the edges in ∂r external edges; all other edges
are internal. An internal vertex is called a boundary vertex if it is adjacent to r . An
edge is said to be special if both of its endpoints are non-boundary vertices.

We show two ways to sample a spanning tree on H [I ], the graph induced on the
internal vertices, being faithful to the marginals xe, i.e., PT (e ∈ T ) = xe for all
e ∈ E(H)\∂r . Moreover, we want that for each internal edge, both its endpoints have
even degree in T with constant probability. This property will allow us to lower the
cost of the O-join in Sect. 6. While both samplers will satisfy this property, each will
do better in certain cases. The MatInt sampler targets special edges; it allows us to
“hand-pick” edges of this form and enforce that both endpoints of such edges have
degree 2 in the tree. We enforce this property via partition matroid constraints, so the
conclusion that the endpoints have degree 2 will be immediate. TheMaxEnt sampler,
on the other hand, relies on maximizing the randomness of the spanning tree sampled
(subject to being faithful to the marginals); negative correlation properties allow us to
obtain the evenness property, and in particular, better probabilities than MatInt for
non-special edges, and a worse probability for the special edges.

1 This implies that H is a simple graph: since parallel edges between u, v means that ∂({u, v}) is a proper
min-cut; we use this simplicity of the graph often in the arguments of this section.
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Our samplers will depend on the parity of |V |: when |V | is even, the MatInt
sampler is the one given by [7, Theorem 13], which we describe in Sect. 3.1. They left
the case of odd |V | as an open problem, and in Appendix B we extend their procedure
to the odd case.

3.1 Samplers for Even |V(H)|

Since H is 4-regular and 4EC and |V (H)| is even, setting a value of 1/4 = xe/2 on each
edge gives a solution to the perfect matching polytope KPM (H) by Fact 2.2.

1. Sample a perfect matching M such that P(e ∈ M) = 1/4 = xe/2 for all e ∈ E(H).
2. (Shift) Define a new fractional solution y (that depends on M): set ye = 1 for

e ∈ M , and ye = 1/3 otherwise. We have y ∈ KT SP (H), and hence y|I ∈
KspT (H [I ]) by Fact 2.2: indeed, each vertex has y(∂v) = 1+ 3 · 1/3 = 2 because
M is a perfect matching. Moreover, every proper cutU in H has at least six edges,
so y(∂U ) ≥ |∂U | · 1/3 ≥ 2. Furthermore,

EM [ye] = 1/4 · 1 + 3/4 · 1/3 = 1/2 = xe. (1)

3. Sample a spanning tree faithful to the marginals y, using one of two samplers:

(a) MaxEnt Sampler: Sample from the max-entropy distribution on spanning
trees with marginals y. (Since y may not be in the relative interior of the
spanning tree polytope, contract the 1-valued edges to obtain a 6-regular, 1/3-
uniform solution. Thismay have nontrivialmin-cuts, so once again use a cactus
hierarchy to decompose the graph into pieces (see Sect. 4.2); the induced
solution on each piece is in the relative interior of the spanning tree polytope.
For each piece, sample a λ-uniform spanning tree that preserves marginals,
and then take the union of these trees.)

(b) MatInt Sampler:
i. Color the edges of M using 7 colors such that no edge of H is adjacent

to two edges of M having the same color; e.g., by greedily 7-coloring
the 6-regular graph H/M (Fig. 1) . Let M ′ be one of these color classes
picked uniformly at random. Hence, P(e ∈ M ′) = 1/28, and P(∂v ∩ M ′ 
=
∅) = 1/7.

ii. For each edge e = uv ∈ M ′, let Luv and Ruv be the sets of edges incident
at u and v other than e. Note that |Luv| = |Ruv| = 3. Place partition
matroid constraints y(Luv) ≤ 1 and y(Ruv) ≤ 1 on each of these sets.
Finally, restrict the partition constraints to the internal edges of H ; this
means some of these constraints are no longer tight for the solution y.

(c) Given the sub-matching M ′ ⊆ M , and the partition matroidM on the internal
edges defined using M ′, use Lemma 2.3 to sample a tree on H [I ] (i.e., on the
internal vertices and edges of H ) with marginals ye, subject to this partition
matroid M. (Recall this is valid as y|I ∈ KspT (H [I ]).)

Conditioned on the matching M , we have P(e ∈ T | M) = ye; now using (1), we
have P(e ∈ T ) = xe for all e ∈ (E\∂r).
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Fig. 1 The matching M consists
of all highlighted edges (both
brown and green), one possible
choice of M ′ has edges {a, c}
highlighted in brown, and the
constraints are placed on the
edges adjacent to those in M ′
(marked in gray) (color figure
online)

Remark 3.1 The issue when |V (H)| is odd is that x/2 is not a point in the perfect
matching polytope. To fix this, we split the external vertex r into two vertices r1, r2,
but this action introduces a proper min-cut. So, we can no longer directly sample a
spanning tree on the interval vertices I . To fix this, we make careful local changes to
the fractional solution y to get a new solution ŷ|I that has the correct marginals and
is still in the spanning tree polytope. Finally, we show that, with some small loss in
constants, we can reduce the analysis to that of when |V (H)| is even. See Appendix
B.

3.2 Correlation properties of samplers

Let T be a tree sampled using either theMatInt or theMaxEnt sampler. The follow-
ing claimswill be used to prove the evenness property in Sect. 5. Each table gives lower
bounds on the corresponding probabilities for each sampler. The proofs for |V (H)|
odd are in Appendix B.

Lemma 3.2 If f , g are internal edges incident to a vertex v, then

Probability statement MatInt MaxEnt

P(|T ∩ { f , g}| = 2) 1/9 1/9

P(T ∩ { f , g} = { f }) 1/9 12/72

Lemma 3.3 If edges e, f , g, h incident to a vertex v are all internal, then

Lemma 3.4 For an internal edge e = uv:
(a) if both endpoints are non-boundary vertices, then
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Probability statement MatInt MaxEnt

P(|T ∩ {e, f , g, h}| = 2) 2/21 8/27

P(|T ∩ {e, f }| = |T ∩ {g, h}| = 1) 4/63 16/81

Probability statement MatInt MaxEnt

P(|∂T (u)| = |∂T (v)| = 2) 1/36 128/6561

(b) if both u, v are boundary vertices, then

Probability statement MatInt MaxEnt

P(exactly one of u, v has odd degree in T ) 1/9 5/18

3.2.1 Correlation properties: |V(H)| even

We now prove the correlation properties for the even case: the numerical bounds for
the even case are better than those claimed above (which will be dictated by the proofs
of the odd case; see Appendix B).

Proof of Lemma 3.2, Even Case To prove P(|T ∩ { f , g}| = 2) ≥ 1/9, we need only
knowledge of the marginals and not the specific sampler. If one of f , g lies in M
(which happens w.p. 1/2), then its y-value equals 1 and it belongs to T w.p. 1, and the
other edge is chosen w.p. 1/3, making the unconditional probability 1/2 ·1/3 = 1/6 ≥ 1/9.
Similarly, conditioned on f lying in M and hence belonging to T , edge g is not chosen
w.p. 1 − ye = 2/3, so P(T ∩ { f , g} = { f }) ≥ 1/4 · 2/3 = 1/6 ≥ 1/9.

The MaxEnt claim: It remains to show that P(T ∩ { f , g} = { f }) ≥ 12/72.
Conditioned on f ∈ M , we have g /∈ T w.p. 2/3. Now condition on neither f nor g in
M (happens w.p. 1/2). By Theorem 2.8,

1/3 ≤ E[ f ∈ T | g /∈ T ]

By Theorem 2.9, P( f ∈ T | g /∈ T ) ≥ 1/3, so P( f ∈ T ∧ g /∈ T ) ≥ 1/3 · 2/3 = 2/9.
Putting all of this together, we get

P( f ∈ T ∧ g /∈ T ) ≥ 1/4 · 2/3 + 1/2 · 2/9 = 5/18 ≥ 12/72.

��
Proof of Lemma 3.3, Even Case The MatInt claims: Each perfect matching M con-
tains one of these four edges in ∂v. Say that edge is e. If e also belongs to M ′ (w.p. 1/7),
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then T contains exactly one of { f , g, h}. Since 1/7 ≥ 2/21, this gives us the first bound
in Lemma 3.3. Moreover, the probability of this edge in T belonging to the other pair
(in this case, {g, h}) is 2/3. Hence P(|T ∩{e, f }| = 1∧|T ∩{g, h}| = 1) ≥ 2/21 > 4/63,
giving us the other bound in Lemma 3.3 for the MatInt sampler.

The MaxEnt claims: For the first bound in Lemma 3.3, we have that one of the
four edges must be in M and have y-value 1. W.l.o.g., call that edge e. The other three,
f , g, h, will be 1/3-valued edges. Since E[X f ,g,h] = 1, we may apply Theorem 2.9
and obtain a lower bound of

P(X f ,g,h = 1) ≥ 3 · 1/3 · (2/3)2 = 4/9 ≥ 8/27.

For the second bound in Lemma 3.3, call S1 = {e, f } and S2 = {g, h}. W.l.o.g., we
once again label e ∈ M . Then, P( f /∈ T ) = 2/3. So for S2, we condition on f /∈ T .
Then by Theorem 2.8,

2/3 ≤ E[XS2 | f /∈ T ] ≤ 2/3 + 1/3 = 1.

Hence, we use Theorem 2.9 again and obtain P(XS2 = 1 | f /∈ T ) ≥ 2 · 1/3 · 2/3 = 4/9.
In total, we obtain

P(|T ∩ {e, f }| = |T ∩ {g, h}| = 1) ≥ 2/3 · 4/9 = 8/27 ≥ 16/81.

��
Proof of Lemma 3.4a, Even Case TheMatInt claims:The event happenswhen e ∈ M ′,
which happens w.p. 1/28, which is at least 1/36.

The MaxEnt claims: Condition on e ∈ M . Let S1 = ∂(u)\e and S2 = ∂(v)\e.
Denote S1 = {a, b, c}. Lower boundP(|S1∩T | = 1) usingTheorem2.9:E[|S1∩T |] =
3 · 1/3 = 1, so P(|S1 ∩ T | = 1) ≥ 3 · 1/3 · (2/3)2/3 = 4/9. Consider the distribution over
the edges in S2 conditioned on a ∈ T ; this distribution is also SR. By Theorem 2.8,
1/3 ≤ E[XS2 | Xa = 1] ≤ 1. Applying Theorem 2.8 twice more,

1/3 ≤ E[XS2 | Xa = 1, Xb,c = 0] ≤ 1 + 1/3 + 1/3 = 5/3.

By Theorem 2.9, P(XS2 = 1 | Xa = 1, Xb,c = 0) ≥ 3 · 1/9 · (8/9)2 = 64/243. Using
symmetry, we obtain P(XS2 = 1∧ XS1 = 1∧ e ∈ M) ≥ 64/243 · 4/9 · 1/4 ≥ 128/6561. ��
Proof of Lemma 3.4b, Even Case The MatInt claims: For part (b), suppose e ∈ M
(w.p. 1/4), then each of u, v have two other internal edges, each with y-value 1/3. Let
us say the good cases are when exactly one of these four is chosen; exactly one of u, v

has degree 2 and the other has degree 1 in these cases. We cannot choose zero of these
four edges, because of the connectivity of T , so all bad cases choose at least two of
these four. Given the y-values of 1/3 on all four edges, the expected number of these
edges chosen are 4/3, so the the probability of a bad case at most 1/3. This means that
with probability at least 1/4 · (1 − 1/3) = 1/6, exactly one of u, v has odd degree in T .
Since 1/6 ≥ 1/9, we have proven (b).
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The MaxEnt claims: Observe that the edge e will always contribute either: 0 to
both the degree of u in T and the degree of v in T OR 1 to both of these degrees. Let
a, b be the two internal edges incident to u and c, d be the two edges incident to v.

1. Case 1: e ∈ M . This implies a, b, c, d are all 1/3-valued edges, so E[Xa,b,c,d ] =
4/3. Note that we must have Xa,b,c,d ≥ 1. Therefore, P(Xa,b,c,d = 1) ≥ 2/3.

2. Case 2: e /∈ M , exactly two of a, b, c, d are in M . W.l.o.g., say a, c ∈ M , so a and
c are in T .E[Xb,d ] = 2/3, which implies (by Theorem 2.9) thatP(Xb,d = 1) ≥ 4/9.

3. Case 3: e /∈ M , exactly one of a, b, c, d is in M . W.l.o.g., say a ∈ M , so we
have E[Xb,c,d ] = 1. We condition on e /∈ T , which happens w.p. 2/3. Since
we sample a spanning tree on the internal vertices, this means that at least one
of c, d is in T . W.l.o.g., say c ∈ T . So in order to bound the probability that
the internal parities of u, v are different, equivalently we would like to bound
P(Xb,d = 1 | e /∈ T ). Since 2/3 ≤ E[Xb,d | e /∈ T ] ≤ 2/3 + 1/3, Theorem 2.9
implies that P(Xb,d = 1 | e /∈ T ) ≥ 4/9. So removing the conditioning on e /∈ T
gives a lower bound of 2/3 · 4/9 = 8/27.

Taking the minimum of the bounds 2/3, 4/9, and 8/27 in the three cases gives

P(exactly one of u, v has odd degree in T ) ≥ 8/27 ≥ 5/18.

��

4 Sampling algorithm for general solutions; and cut Hierarchy

Now that we can sample a spanning tree from a graph with no proper min-cuts, we
introduce the algorithm to sample an r0-tree from a 4-regular, 4EC graph, perhaps
with proper min-cuts.

4.1 The algorithm

Assume that the graphG = (V , E) has a set of three distinguished vertices {r0, u0, v0},
with each pair r0, u0 and r0, v0 having a pair of edges between them. This is without
loss of generality (used in line 18). (We can introduce dummy nodes to ensure this
property, which is for simplicity—it guarantees that the top set in the cut hierarchy is
a cycle set.) Define a double cycle to be a cycle graph in which each edge is replaced
by a pair of parallel edges, and call each such pair partner edges. For A ⊆ V , we use
G/A to denote the graph that results from contracting the vertex set A.

As in [9], we refer to the sets in line 4 as critical sets. The algorithm samples
from the same pieces as in [9], with the key differences being randomizing between
the MatInt and MaxEnt samplers; the MaxEnt sampler defined with respect to
marginals y; and the critical optimization for K5’s. The r0-tree sampled is the union
of the spanning trees, edges, and paths sampled during the algorithm.

Since G is a 4-regular, 4EC graph at every stage of the algorithm, if |S| = 2 or 3,
then S must be a cycle set, whereas if |S| ≥ 4, then S may be a degree or cycle set.

123



A. Gupta et al.

Algorithm 1 Sampling an r0-tree for a half-integral solution
1: let G be the support graph of a half-integral solution x .
2: let T = ∅.
3: while there exists a proper tight set of G that is not crossed by another proper tight set do
4: let S be a minimal such set (and choose S such that r0 /∈ S).
5: Define G′ = G/(V \ S).
6: if G′ is a double cycle then
7: Label S a cycle set.
8: sample a random edge from each set of partner edges in G[S]; add these edges to T .
9: else // G′ has no proper min-cuts (Claim 4.2).
10: Label S a degree set.
11: if G′ = K5 then
12: sample a random path on G[S]
13: else
14: W.p. λ, let μ be the MaxEnt distribution over E(S)

15: W.p. 1 − λ, let μ be the MatInt distribution.
16: sample a spanning tree on G[S] from μ and add its edges to T .

17: let G = G/S

18: Due to r0, u0, v0, at this point G is a double cycle (Claim 4.1). Sample one edge between each pair of
adjacent vertices in G.

The following two claims are proved in Appendix A.1, and show that Algorithm 1 is
well-defined.

Claim 4.1 The graph remaining at the end of the algorithm (line 18) is a double cycle.

Claim 4.2 In every iteration in Algorithm 1, G ′ is either a double cycle or a graph
with no proper min-cuts.

We will prove the following theorem in Sect. 6. This in turn gives Theorem 1.1.

Theorem 4.3 Let T be the r0-tree chosen from Algorithm 1, and O be the set of odd
degree vertices in T . The expected cost of the minimum cost O-join for T is at most
(1/2 − ε) · c(x).

4.2 The cut Hierarchy

Recall our ultimate goal is to create a low cost, feasible solution in the O-join polytope,
where O is the set of odd degree vertices in our sampled tree T . We start with the
fractional solution z = x/2 and then reduce the ze value of some edges. In the process,
we may violate some constraints corresponding to min-cuts. To fix these cuts, we need
a complete description of the min-cuts of a graph. This is achieved by the implicit
hierarchy of critical sets that Algorithm 1 induces.

The hierarchy is given by a rooted tree T = (VT , ET ).2 The vertex set VT cor-
responds to all critical sets found by the algorithm, along with a root node and leaf
nodes representing the vertices in VG \ {r0}. If S is a critical set, we label the node in
VT with S, where we view S ⊆ VG and not VG ′ . The root node is labelled VG \ {r0}
2 Since there are several graphs under consideration, the vertex set of G is called VG . Moreover, for clarity,
we refer to elements of VG as vertices, and elements of VT as nodes.
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Fig. 2 A portion of the cut hierarchy T and the local multigraph G〈〈S〉〉

and each leaf nodes is labelled by the vertex in VG \ {r0} corresponding to it. Now we
define the edge set ET . A node S is a child of S′ if S ⊂ S′ and S′ is the first superset of
S contracted after S in the algorithm. In addition, the root node is a parent of all nodes
corresponding to critical sets that are not strictly contained in any other critical set
(i.e., the critical sets corresponding to the vertices in the graph G from line 17 when
the while loop terminates). Finally, each leaf node is a child of the smallest critical
set that contains it (or if no critical set contains it, is a child of the root node). Thus by
construction, vertex sets labelling the children of a node are a partition of the vertex
set labelling that node. A node in VT is a cycle or degree node if the corresponding
critical set labelling it is a cycle or degree set, respectively. We say the root node is
a cycle node (since the graph G in line 18 is a double cycle), and accordingly call
VG \ {r0} a cycle set. (The leaf nodes are not labelled as degree or cycle nodes.)

Definition 4.4 (Local multigraph) Let S ⊆ VG be a set labelling a node in T . Define
the local multigraph G〈〈S〉〉 to be the following graph: take G and contract the subsets
of VG labelling the children of S in T down to single vertices and contract S̄ to a single
vertex vS̄ . Remove any self-loops. The vertex vS̄ is called the external vertex; all other
vertices are called internal vertices. An internal vertex is called a boundary vertex if
it is adjacent to the external vertex. The edges in G〈〈S〉〉 \ vS̄ are called internal edges.
Observe that G〈〈S〉〉 is precisely the graph G ′ in line 5 of Algorithm 1 when S is a
critical set, and is a double cycle when S = VG\{r0}.

Properties of T :

1. Let G be a 4-regular, 4EC graph with associated hierarchy T . Let S ⊆ VG be a
set labelling a node in T . If S is a degree node in T , then G〈〈S〉〉 has at least five
vertices and no proper min-cuts, and hence every proper cut in G〈〈S〉〉 has at least
6 edges. If S is a cycle node in T , then G〈〈S〉〉 is exactly a double cycle.
These follow from Claim 4.2 and the equivalence between G ′ and G〈〈S〉〉.

2. Algorithm 1 can be restated as follows: For each non-leaf and non-root node S in
T , sample a random path on G〈〈S〉〉 \vS̄ if it is a double cycle or K5, and otherwise
use theMaxEnt orMatInt samplers w.p. λ and 1−λ, respectively, onG〈〈S〉〉\vS̄ .
Sample a uniformly random cycle on the double cycle in line 18.

3. For a degree set S, the graph G〈〈S〉〉 having no proper min-cuts implies that it has
no parallel edges. In particular, no vertex has parallel edges to the external vertex
in G〈〈S〉〉. Hence we get the following:
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Corollary 4.5 For a set S labeling a non-leaf node in T and any internal vertex v ∈
G〈〈S〉〉: if S is a cycle set then |∂v ∩ ∂S| ∈ {0, 2}, and if S is a degree set then
|∂v ∩ ∂S| ∈ {0, 1}.

Finally,we showhow the hierarchyT allows us to characterize themin-cut structure
of G. The cactus representation of min-cuts ([6]) is a compact representation of the
min-cuts of a graph, and it can be constructed from the cut hierarchy; we defer the
details to Appendix A.2. In turn we obtain the following complete characterization of
the min-cuts of G in terms of local multigraphs.

Claim 4.6 Anymin-cut in G is either (a) ∂S for some node S in T , or (b) ∂X where X is
obtained as follows: for some cycle set S in T , X is the union of vertices corresponding
to some contiguous segment of the cycle G〈〈S〉〉.

5 Analysis part I: the even-at-last property

The proof of Theorem 4.3 proceeds in two parts:

(1) In this section, we show that each edge e is “even-at-last” with constant probability.
(This is an extension of the property that both of its endpoints have even degree.)

(2) Then we construct the fractional O-join. As always, z = x/2 is a feasible join,
but we show how to save a constant fraction of the LP value for an edge when it
is even-at-last. This savings causes other cuts to be deficient, so other edges raise
their z values in response. However, a charging argument shows that the z-value for
an edge does decrease by a constant factor, in expectation. This argument appears
in Sect. 6.

To address part (1), let us define a notion of evenness for every edge in G. In the
case where G has no proper min-cuts, we called an edge even if both of its endpoints
were even in T . Now, the general definition of evenness will depend on where an edge
belongs in the hierarchy T .

Definition 5.1 We say an edge e ∈ E(G) is settled at S if S is the (unique) set such
that e is an internal edge of G〈〈S〉〉; call S the last set of e. If S is a degree or cycle set,
we call e a degree edge or cycle edge, respectively.

Definition 5.2 (Even-at-Last) Let S be the last set of e, and T 〈〈S〉〉 be the restriction
of T to G〈〈S〉〉.
1. A degree edge e is called even-at-last (EAL) if both of its endpoints have even

degree in T 〈〈S〉〉.
2. For a cycle edge e = uv, the graph G〈〈S〉〉\{vS̄} is a chain of vertices

v�, . . . , u, v, . . . , vr , with consecutive vertices connected by two parallel edges.
LetC := {v�, . . . , u}, andC ′ := {v, . . . , vr } be the partition of this chain. The cuts
∂C and ∂C ′ are called the canonical cuts for e. Cycle edge e is called even-at-last
(EAL) if both canonical cuts are crossed an even number of times by T 〈〈S〉〉; in
other words, if there is exactly one edge in T 〈〈S〉〉 from each of the two pairs of
external partner edges leaving v� and vr .
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Informally, a degree edge is EAL in the general case if it is even in the tree at the
level at which it is settled. Also note that cycle edges settled at the same (cycle) set
are either all EAL or none are EAL.

Definition 5.3 (Special and Half-Special Edges) Let e be settled at a degree set S. We
say that e is special if both of its endpoints are non-boundary vertices in G〈〈S〉〉 and
half-special if exactly one of its endpoints is a boundary vertex in G〈〈S〉〉.

We now prove a key property used in Sect. 6 to reduce the z-values of edges in the
fractional O-join.

Theorem 5.4 (The Even-at-Last Property) The table below gives lower bounds on the
probability that special, half-special, and all other types of degree edges are EAL in
each of the two samplers.

Special Half-special Other degree edges

MatInt 1/36 1/21 1/18

MaxEnt 128/6561 4/27 1/12

Moreover, a cycle edge is EAL w.p. at least λ · 1/12 + (1 − λ) · 1/18.
Proof Let e be settled at S. Let TS be the spanning tree sampled on the internal vertices
of G〈〈S〉〉 (in the notation of Algorithm 1, the spanning tree sampled on G[S]).

First, assume that S is a degree set:

1. If none of the endpoints of e are boundary vertices in G〈〈S〉〉 (i.e., e is special),
then it is EAL exactly when both its endpoints have even degree in TS . By Lemma
3.4(a), this happens w.p. 1/36 for the MatInt sampler and w.p. 128/6561 for the
MaxEnt sampler.

2. Now suppose that e is half-special, so that exactly one of the endpoints of e = uv

(say u) is a boundary vertex in G〈〈S〉〉, with edge f incident to u leaving S. By
Lemma 3.3, the other endpoint v is even in TS w.p. 2/21 for the MatInt sampler
and 8/27 for theMaxEnt sampler. Moreover, the edge f is chosen at a higher level
than S and is therefore independent of TS , and hence can make the degree of u
even w.p. 1/2. Thus e is EAL w.p. 1/21 for the MatInt sampler and 4/27 for the
MaxEnt sampler.

3. Suppose both endpoints of e are boundary vertices of S, with edges f , g leaving
S. Let q= be the probability that the degrees of vertices u, v in the tree TS chosen
within S have the same parity, and q 
= = 1−q=. Now, when S is contracted andwe
choose a r0-tree T ′ on the graph G/S consistent with the marginals, let p= be the
probability that either both or neither of f , g are chosen in T ′, and p 
= = 1− p=.
Hence

Pr[e E AL] = qoo p11 + qoe p10 + qeo p01 + qee p00 = 1/2(p=q= + p 
=q 
=), (2)
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where qoo, qoe, qeo and qee correspond to different parity combinations of u and v

in TS and p00, p01, p10, p11 correspond to whether f and g are chosen in T ′. The
second inequality follows from Claim C.1 applied to the random r0-tree T ′.

(a) If f , g are settled at different levels, then they are independent. This gives
p= = p 
= = 1/2, and hence Pr[e E AL] = 1/4 regardless of the sampler.

(b) If f , g have the same last set which is a degree set, then by Lemma 3.2 each
of the quantities p11, p01, p10 ≥ 1/9. By Claim C.1, p00 ≥ 1/9 as well. Hence,
(2) gives Pr[e E AL] ≥ 1/9.

(c) If f , g have the same last set which is a cycle set, then first consider the
case where f , g are partners, in which case p 
= = 1. Now (2) implies that
Pr[e E AL] = q 
=/2, which by Lemma 3.4(b) is≥ 1/2 ·1/9 = 1/18 in theMatInt
sampler, and 1/2 · 5/18 = 5/36 in the MaxEnt sampler.
If f , g are not partners, then they are chosen independently, in which case
again p= = p 
= = 1/2, and hence Pr[e E AL] = 1/4.

Next, let S be a cycle set. Let e = uv be an edge inside the cycle, and let {a, b}, {c, d}
be the four edges crossing ∂S. Let vS be the vertex obtained by contracting down S
(whose incident edges are then {a, b, c, d}). Now in order for e to be EAL, one each
of {a, b} and {c, d} must belong to T ; call this event E . We again consider cases based
on where these edges are settled. Let node P be the parent of node S, and let vS be
the vertex in G〈〈P〉〉 obtained from contracting S.

1. If all four edges are settled at P , and P is a degree set, then Lemma 3.3 says that
for theMatInt sampler, we have Pr[E] ≥ 4/63. In contrast, theMaxEnt sampler
gives us Pr[E] ≥ 16/81.

2. If all four edges are settled at P , and P is a cycle set, then no matter how these
four edges are distributed, Pr[E] ≥ 1

2 .
3. If three of them {a, b, c} are settled at P , and the fourth (say d) at a higher level,

then since P has a vertex vS with a single edge leaving it, P must be a degree set.
Now exactly one of {a, b} is chosen in T w.p. at least 1/9 in the MatInt sampler
and 12/72 in the MaxEnt sampler, by Lemma 3.2. And since d is independently
picked at a different level, exactly one of {c, d} is chosen in T w.p. 1/2, giving an
overall probability of 1/18 in theMatInt sampler and 1/12 in theMaxEnt sampler.

4. Finally, if only two edges are settled at P , and two others go to higher levels, then
P is a cycle set by Corollary 4.5. In this case, exactly one of the two edges that are
settled in P is chosen. Now we want a specific one of the edges going to a higher
level to be chosen into T (and the other to not be chosen), which in the worst case
happens w.p. at least 1/9, due to Lemma 3.2.

��

6 Analysis part II: theO-join and charging

To prove Theorem 4.3 and thereby finish the proof, we construct an O-join for the
random tree T , and bound its expected cost via a charging argument. The structure
here is similar to [9]; however, we use a flow-based argument to perform the charging

123



Matroid-based TSP rounding...

instead of the naive one, and also use our stronger property that every edge is EAL
with constant probability (versus the weaker property obtained in [9] that every tight
cut contains an EAL edge with constant probability).

Let O denote the (random set of) odd-degree vertices in T . The dominant of the
O-join polytope K join(G, O) is given by

x(∂S) ≥ 1 ∀S ⊆ V , |S ∩ O| odd.

This polytope is integral, so it suffices to exhibit a fractional O-join solution z ∈
K join(G, O), with low expected cost. (The expectation is taken over O .) Note that
|S ∩ O| odd if and only if |∂S ∩ T | odd.

NowTheorem4.3 follows from the claim below,whichwewill prove in this section.

Lemma 6.1 There is an ε > 0 such that if the r0-tree T is sampled using the procedure
described in Algorithm 1, and O is the set of odd-degree vertices in T , then there is a
fractional solution z ∈ K join(G, O)whereE[ze] ≤ (1/2−ε)xe for all edges e ∈ E(G).

6.1 Construction of the fractionalO-join

The construction of the fractional O-join z goes as follows: We start with the solution
z = x/2. Notice that z(∂S) ≥ 1 is a tight constraint in this initial solution when S is a
min-cut. Now we describe how to reduce the ze values.

Define

pMI
sp :=1/36, pMI

hs :=1/21, pMI :=1/18, pME
sp :=128/6561, pME :=1/12

psp:=λpME
sp + (1 − λ)pMI

sp , phs :=λpME + (1 − λ)pMI
hs , p:=λpME + (1 − λ)pMI .

Let psp(e), phs(e), and pd(e) denote the probabilities that e is EAL if e is a special
degree edge, half-special degree edge, or other degree edge, respectively. Let pc(e)
denote the probability that a cycle edge e is EAL. These constants are just lower
bounds on the probability an edge is EAL. Indeed, by Theorem 5.4,

psp(e) ≥ psp, phs(e) ≥ phs, pd(e) ≥ p, pc(e) ≥ p.

(We do not distinguish the half-special case in theMaxEnt sampler, as the half-special
bound of 4/27 in Theorem 5.4 is greater than pME .) Call an edge e a K5 degree edge
if e is settled at a degree set S where G〈〈S〉〉 is a K5. By the inequalities above, the
random variables below are well-defined.

1. Define a Bernoulli random variable for each edge e:

(a) If e is a special degree edge, set Be ∼ Ber(psp/psp(e)).
(b) If e is a half-special degree edge, set Be ∼ Ber(phs/phs (e)).
(c) If e is any other degree edge, set Be ∼ Ber(p/pd (e)).
(d) If e is a cycle edge, set Be ∼ Ber(p/pc(e)). Further, if e and f are partners,

perfectly correlate their coin flips, i.e., set Be = B f .

123



A. Gupta et al.

2. If e is EAL and Be = 1, reduce ze by

(a) τ if e is a non-K5 degree edge.
(b) γ if e is a K5 degree edge.
(c) β if e is a cycle edge.

3. We enforce that τ ≤ γ ≤ β ≤ 1/12, β ≥ 2τ , and β ≥ 2γ . We will optimize τ, γ,

and β via a linear program later, in Sect. 6.7.

This reduction scheme may make z infeasible for the O-join polytope. We now
discuss how to maintain feasibility.

The purpose of the Bernoulli coin flips is to flatten the probability that an edge is
reduced down to the lower bound on the probability that it is EAL from Theorem 5.4:

Observation 6.2 If e is a special, half-special, other degree, or cycle edge, then ze is
reduced with probability exactly psp, phs , p, or p, respectively.

6.2 Maintaining feasibility of the fractionalO-join via charging

Suppose f is EAL and that we reduce edge z f (per its coin flip B f ). Say f is settled
at S. If S is a degree set, then the only min-cuts of G〈〈S〉〉 are the degree cuts. So the
only min-cuts that the edge f is part of in G〈〈S〉〉 are the degree cuts of its endpoints,
call themU , V , in G〈〈S〉〉 (U and V are vertices in G〈〈S〉〉 representing setsU and V in
G). But since |∂U ∩ T | and |∂V ∩ T | are both even by definition of EAL, we need not
worry that reducing z f causes z(∂U ) ≥ 1 and z(∂V ) ≥ 1 to be violated. Likewise, if
S is a cycle set, then by definition of EAL all min-cuts S′ in G〈〈S〉〉 containing e have
|∂S′ ∩ T | even, so again we need not worry.

Since f is only an internal edge for its last set S, only certain O-join constraints
(recall O-join constraints are of the form z(∂S′) ≥ 1, |∂S′∩T | odd)may be violated by
reducing z f . In particular, only the cuts S′ represented in lower levels of the hierarchy
(that is, cuts S′ in multigraphs G〈〈X〉〉 for X ⊂ S) may be violated, since these are the
only multigraphs in which f can be an external edge. Specifically, let f be an external
edge for some G〈〈X〉〉 and S′ be a min-cut of G〈〈X〉〉 (either a degree cut or a canonical
cut). (For instance, in Fig. 2, let f be an edge between S1 and S2. We have that f is
settled at S. Take X = S2. Now f is an external edge in G〈〈X〉〉. Reducing z f may
now cause a min-cut S′ in G〈〈X〉〉 to become violated.) By Claim 4.6, cuts of the form
S′ (i.e., min-cuts in G〈〈X〉〉 for X ⊂ S) are the only cuts that may be violated in the
O-join polytope as a result of reducing z f . Call the internal edges (in G〈〈X〉〉) of ∂S′
lower edges. When z f is reduced and |∂S′ ∩ T | is odd, we must distribute an increase
(charge) over the lower edges totalling the amount by which z f is reduced, so that
z(∂S′) = 1. We say these lower edges receive a charge from f . How the charge is
distributed will depend on whether the lower edges are degree edges or cycle edges
(see Sect. 6.3 and Sect. 6.4 below). (For instance, in the example from Fig. 2, letting
f = (u, v) where v ∈ S2, if z f is reduced by β, we could increase each internal edge
in G〈〈X〉〉 incident to v by β/2, i.e, charge these edges.)

We claim that this procedure maintains feasibility of the O-join solution z. Indeed,
by Claim 4.6, no constraint corresponding to a min-cut in the O-join polytope is
violated. Further, by capping the amount an edge can be reduced at 1/4 − 1/6 = 1/12,
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Fig. 3 Case (i)

we will ensure that none of the constraints are violated, since every other cut has at
least 6 edges.

To prove Lemma 6.1, we will lower bound the expected decrease to ze, using
different strategies for charging e when e is a cycle edge versus a degree edge. In
particular, when e is a cycle edge, we distribute charge from an external edge evenly
between e and its partner.When e is a degree edge, chargewill be distributed according
to a maximum-flow solution.

6.3 Charging of cycle edges

We now analyze the expected net decrease for each edge, starting with cycle edges.
The expected decrease for a cycle edge starts off as exactly p · β by Observation 6.2.
However, we need to control the amount of charge the edge receives from edges settled
at higher levels. Note that in the calculations, we assume the worst-case scenario that
such edges settled at higher levels are reduced w.p. exactly p. The special/half-special
edges are reduced with lower probability, which is only better for us because the
expected amount of charge will be lower in these cases. Note also that throughout the
calculations we may assume that an edge settled at a higher level is a cycle edge. This
will follow from the assumption that β ≥ 2τ, 2γ .

Consider a cycle edge e that is settled at set S. Let its partner on the cycle be e′, and
let the four external edges for S be {a, b} (leaving the vertex u) and {c, d} (leaving
vertex v). When S is contracted, vertex vS has these four edges {a, b, c, d} incident to
it. Let P be S’s parent node in T . Moreover, let C and C ′ be the canonical cuts, as in
the figure below (Figs. 3 and 4).

We start with a small lemma which will be invoked in our casework.

Lemma 6.3 If P has two edges leaving it and P is a cycle set, one must be from {a, b}
and one from {c, d}.
Proof To see this, say both c and d (leaving node v) both did not leave P . Since P
is a cycle set, c and d are partner edges. Consider the min cut-set S′ which c and d
are adjacent to in G〈〈P〉〉. S′ ∪ v is a proper min cut which crosses S; however, this
contradicts the fact that S is a critical set (namely S is not supposed to be crossed by
another proper min cut). ��
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Fig. 4 Case (ii)

We consider the following cases as in [9].

(i) Two of the four edges incident to vS also leave P—and therefore P is a cycle set
by Corollary 4.5. By Lemma 6.3, of the two edges leaving P , one must be from
{a, b} and one from {c, d}.
Without loss of generality, let {a, d} are the external edges for P , and {b, c} are
internal (and hence partners in this cycle set).
Now, consider the event that b is reduced; the important observation is that c is
also reduced, because both are EAL at the same time and their coins are perfectly
correlated. Not only that, the event that b is reduced implies that |δ(S) ∩ T | is
even. This means that both cuts C,C ′ are deficient by the same amount and at the
same time, due to this event of reducing b, c, and raising e helps both of them.
This means the net expected charge to e is at most

p
β

2

(
Pr[C odd | b reduced] + Pr[C odd | a reduced] + Pr[C ′ odd | d reduced]).

(Note that there is no term for c here because of the discussion above; moreover,
the β/2 term reflects that the charge of β is split between e, e′.)
Since a and b are settled at different levels, the parity of cut C is unbiased, even
either conditioned on choices within P , or else conditioned on choices outside P .
The same holds for the parity of C ′, so each of the probabilities above is at most
1/2, making the net expected decrease

p(β − β/2 · 3 · 1/2) = pβ/4 . (3)

(ii) Only one of the edges incident to vS , say edge a, is external for P . By Corollary
4.5, P is a degree set, and in the worst case, a K5 degree set since γ ≥ τ . The
charge is maximized when a is a cycle edge, in which case the expected charge to
e is at most

p
(
β/2 Pr[C odd | a reduced] + γ/2 Pr[C odd | b reduced] + 2 · γ/2

)
.
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Fig. 5 Case (iii)

Since a and b are settled at different levels, the parity of the cut C is unbiased,
either conditioning on the process inside P or else outside P , which makes the
above expression p(β/4 + 5γ/4), and the net expected decrease to be

p(β − β/4 − 5γ/4) = p(3β/4 − 5γ/4) . (4)

(iii) All four of the edges are internal to P , which is a cycle set. The partners must
now be one edge from each of the two pairs {a, b} and {c, d}—let’s say {a, d} and
{b, c} are partners (due to the proof of Lemma 6.3). The cut C is odd in S if and
only if C ′ is odd; indeed, C is odd means we choose both or neither of {a, b}, and
since {c, d} are the partners of {a, b}, we choose both or neither of them. Hence,
increasing e fixes both cuts at the same time, similar to the argument in (i), so we
focus only on the increase due to cut C . Since a and b belong to different pairs
and are chosen independently into the tree T , Pr[C odd] = 1/2. This means both
a and b can give a expected charge of p(β/2) · 1/2 to e. The net expected decrease
is p(β − 2 · β/2 · 1/2) = pβ/2, which is no worse than (3).

(iv) All four of the edges are internal to P , and P is a degree set (Figs. 5 and 6. Note
thatG〈〈P〉〉 cannot be a K5 since the vertex vS has four internal edges incident to it.
We simply bound the charge due to each edge by τ/2, and hence get net expected
decrease of

p(β − 4 · τ/2) = p(β − 2τ) . (5)

6.4 Charging degree edges: max-flow formulation

So far we have shown that no cycle edge will receive too much charge. We did this by
considering four different configurations for the external edges of S, and distributing
charge evenly between a cycle edge and its partner. Before showing that no degree
edge receives too much charge, we will define a charging scheme for degree edges
that achieves better bounds than distributing charge uniformly. A similar flow-based
charging argument was independently used in [10].

Let G〈〈S〉〉 be the local multigraph for some degree set S, so G〈〈S〉〉 is 4-regular and
has no proper min-cuts. For an external edge e, let ue denote the internal boundary
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Fig. 6 Case (iv)

vertex to which e is incident. We create a bipartite graph H = (B, F, E) from G〈〈S〉〉
as follows. The vertices of B are labelledwith the external edges ofG〈〈S〉〉. The vertices
of F are labelled with the internal edges of G〈〈S〉〉. So |B| = 4. Place an edge between
e ∈ B and f ∈ F in the edge set E if e and f share ue as an endpoint. We call H the
bipartization of G〈〈S〉〉.

The following lemma follows from the Max-Flow Min-Cut theorem:

Lemma 6.4 Given a bipartite graph G = (B, F, E) and c ≥ 0, there exists m :
B × F → R+ satisfying

∑
f ∈∂u m(u, f ) = 1 for all u ∈ B, (6)

∑
u∈∂ f m(u, f ) ≤ c for all f ∈ F (7)

if and only if

|N (R)| ≥ |R|
c for all R ⊆ B (8)

Lemma 6.4 now gives the following result, which follows from straightforward
casework.

Lemma 6.5 Let H = (B, F, E) be the bipartization of G〈〈S〉〉, as described above. If
G〈〈S〉〉 is not a K5, then the smallest c satisfying (8) is given by c = 1/2. If G〈〈S〉〉 is a
K5, then the smallest c satisfying (8) is given by c = 2/3.

The fact that we may achieve a value of c = 1/2 instead of c = 2/3 as long as G〈〈S〉〉
is not a K5 motivates why we utilize a different sampler for K5. In fact, c = 2/3 on K5
is achieved by distributing uniform charge over internal edges.

6.5 Charging of non-K5 degree edges

We now analyze the expected net decrease for degree edges. By Observation 6.2, the
expected decrease for a non-special degree edge starts off as at least phs · τ or phs · γ ,
since phs ≤ p. We will analyze the charge on non-K5 degree and K5 degree edges
separately, as a different sampler is used whenG〈〈S〉〉 = K5.We begin with the former.
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6.5.1 Charging of non-special edges

1. Case 1: All external edges are non-K5 degree edges. Letm : B× F → R+ be any
function satisfying the constraints in Lemma 6.4 for c = 1/2 (by Lemma 6.5 such
an m exists, and can be found efficiently using max-flow min-cut). The charging
scheme is as follows: for each external edge e and boundary vertex ue, if the cut
δ(u) is odd and the edge e is reduced, charge each internal edge f incident to ue
by τ ·m(e, f ). The constraint (6) ensures that the charge neutralizes the reduction
of e by τ . For any internal edge f , let δ( f ) denote the external edges with which
f shares an endpoint, i.e., the neighbors of f in the bipartization H = (B, F, E).
We have

E[charge to f ] =
∑

e∈δ( f )

τ · m(e, f ) · P(ue odd ∧ e reduced)

≤ τ · c · P(ue odd | e reduced) · P(e reduced) (9)

Using the naive bound that P(ue odd | e reduced) ≤ 1, we obtain that the the

expected decrease is at least phsτ − τ

2
· p.

2. Case 2: All external edges are K5 degree edges. An analogous argument to (9)

(with γ instead of τ ) shows that the expected decrease is at least phsτ − γ

2
· p.

3. Case3:All external edges are cycle edges.Wehave thatP(ue odd | e reduced) = 1
2

in this case, since f ∈ T is independent of whether f is reduced since f has a
partner edge. So an analogous argument to (9) (with β/2 instead of τ ) shows that

the expected decrease is at least phsτ − β

2
· 1
2

· p.
4. Case 4: The external edges are a combination of non-K5 degree edges, K5

degree edges, and cycle edges. In this case, An analogous argument to (9)
(with max{ τ

2 ,
γ
2 ,

β
4 } instead of τ ) shows that the expected decrease is at least

phsτ − p · max{ τ
2 ,

γ
2 ,

β
4 }.

6.5.2 Charging of special edges

These edges are never charged, as their endpoints are both non-boundary. Also, these
cannot be K5 degree edges by definition. So the expected decrease is equal to the

expected reduction, which is at least pspτ = τ

36
.

6.6 Charging of K5 degree edges

K5 degree edges have an initial decrease of exactly pγ , as they are neither special nor
half-special. We will use the following lemma, whose proof is straightforward.
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Lemma 6.6 Let G〈〈S〉〉 = K5. Let f be an external edge and u be the boundary vertex
that is one of its endpoints. Then

Pr(u odd | f reduced) = 1

2
.

We will factor in this probability into the charging of K5 degree edges below.

1. All external edges are non-K5 degree edges. Since the edge being charged is a
K5 edge, Lemma 6.5 gives us a worst-case expected charge of p · 2τ

3 . However,
factoring in Pr(u odd | f reduced) = 1

2 for every external edge f , we have a
worst-case expected charge of p · 2τ

3 · 1
2 , which by (9) gives us an expected net

decrease of at least

pγ − p
τ

3
.

2. All external edges are K5 degree edges.Using similar reasoning as above, we have
a worst-case expected charge of p · 2γ3 · 12 , which gives us an expected net decrease
of at least

pγ − p
γ

3
.

3. All external edges are cycle edges. Using the same reasoning as above, we get an
expected net decrease of at least

pγ − p
β

3
.

4. The external edges are a combination of non-K5 degree edges, K5 degree edges,
and cycle edges.An argument as in the previous section shows that the three cases
above are the only possible worst cases.

6.7 Setting the parameters

For fixed λ, finding the optimal values of β, γ, τ can be done with a linear program.
In particular, we maximize the minimum expected decrease δ, which is the minimum
of the boxed expressions in §6.3 and Sect. 6.4. The additional constraints are that
τ ≤ γ ≤ β, β ≤ 1/12, β ≥ 2τ , and β ≥ 2γ . We then optimize over λ. This gives
λ = 0.4715, β = 1/12, γ = 0.0401, τ = 0.0355, and δ = 0.0008475. We have
ε = 2δ = 0.001695, proving Theorem 4.3.

Funding Open Access funding provided by Carnegie Mellon University
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A details of the cut Hierarchy construction

A.1 The algorithm

Fact A.1 (Lemma 2 in [6]) Let k ≥ 1 be an integer, H = (W , F) be a 4-regular, 4EC
graph in which there is a proper min-cut, and every proper min-cut is crossed by some
proper min-cut. Then H is a double cycle.

Proof of Claim 4.1 Let G f refer to the graph in the claim, and G refer to the input to
the algorithm.

Case 1: There is no proper tight set in G f . Let u be the vertex in G f such that the
two edges that between r0 and u0 in G are between r0 and u in G f . Then either G f

is a graph on 2 vertices with four parallel edges (i.e., a double cycle on 2 vertices), or
{r0, u} is a tight set in G f . In the latter case, since {r0, u} is not proper, G f is a double
cycle with 3 vertices. Case 2: There is a proper tight set in G f , and every proper tight
set is crossed by another proper tight set. By Fact A.1, G f is a double cycle. ��
Proof of Claim 4.2 Let vS̄ denote the vertex corresponding to the contraction of V \S in
G ′. SupposeG ′ has a proper min-cut. Let S′ be the shore of this min-cut not containing
vS̄ . Then S′ ⊂ S. But by minimality of S, S′ is crossed by another proper tight set.
Since this must be true for every proper min-cut S′ in G ′, by Fact A.1, G ′ must be a
double cycle. ��

A.2 Cactus representation of min-cuts

Claim 4.6 Anymin-cut in G is either (a) ∂S for some node S in T , or (b) ∂X where X is
obtained as follows: for some cycle set S in T , X is the union of vertices corresponding
to some contiguous segment of the cycle G〈〈S〉〉.

To prove the above claim, we recall the cactus representation of min-cuts (see, for
e.g., [6], for a full exposition). The key idea to prove Claim 4.6 is that Algorithm 1
implicitly constructs the cactus representation of min-cuts.

Definition A.2 A cactus is a loopless, 2EC graph in which each edge belongs to exactly
one cycle.

Note that this includes cycles on two vertices, containing exactly two parallel edges.
The min-cuts of a cactus are obtained by cutting any two edges belonging to the same
cycle.
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Fig. 7 Construction of the cactus C from the hierarchy T in the proof of Claim 4.6

Theorem A.3 (Cactus Representation of Min-Cuts, [6], Theorem 7) Let G be a 4-
regular, 4EC graph. There is a cactus C = (U , F) and a mapping φ : V → U so
that if U1 and Ū1 are two shores of a min-cut in C, then φ−1(U1) and φ−1(Ū1) are
two shores of a min-cut in G. Further, every min-cut in G can be obtained this way
for some U1.

Proof sketch of Claim 4.6 Construct a cactus C = (U , F) as follows. Create a vertex
uS in U for every node S in the hierarchy. If S is a cycle node, make a cycle between
uS and the vertices uT for all nodes T which are children of S. If S is a degree node,
include two parallel edges from uS to each uT for which T is a child of S. See Fig. 7.
All of the terminal vertices inU , except for uVG\r0 , correspond to all of the leaf nodes
in T , which in turn correspond to all of the vertices in VG \{r0}. We identify the vertex
uVG\r0 in U with the vertex r0 in VG . In other words, the mapping φ in Theorem A.3
can be defined as φ(v) = uv for all v ∈ VG\r0, and φ(r0) = uVG\r0 .

Since the construction of the cactus in the proof of Theorem A.3 given in [6] and
the construction of C above are equivalent, φ satisfies the conclusions of Theorem
A.3. Since the min-cuts of a cactus are obtained by cutting any two edges belonging
to the same cycle, Claim 4.6 follows. ��

B Samplers for odd |V(H)|
The main change from the case where V (H) is even is that x/2 = 1/4 · 1 is not a point
in the perfect matching polytope: in fact, H has no perfect matchings because it has
an odd number of vertices.

To fix this, split the external vertex r into two external vertices r1, r2, each incident
to some two of the edges in ∂r , and then add two parallel edges between r1, r2. Call
this multigraph Ĥ . Again, all vertices and edges between vertices in V \ {r1, r2} are
called internal, vertices in {r1, r2} and edges in ∂r1 ∪ ∂r2 are external, and internal
vertices adjacent to external vertices are boundary vertices.

Fact B.1 The graph Ĥ is also 4-regular and 4EC; it has an even number of vertices.
However, it contains a single proper min-cut separating the internal vertices I :=
V \ {r1, r2} from the two external vertices. Any perfect matching M of Ĥ contains
either zero or two edges in ∂ I .
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The sampling procedure for trees on H [I ] = Ĥ [I ] is conceptually similar to the
one above, but with some crucial changes because of the proper min-cut.

1. Since Ĥ is 4-regular and 4EC, and |V (Ĥ)| is even, setting 1/4 = xe/2 on each
edge gives a solution KPM (Ĥ) in the perfect matching polytope. Sample a perfect
matching M such that for each edge e, we have Pr[e ∈ M] = 1/4. Again define
the fractional solution

ye = 1/3 + 1(e∈M) · 2/3.

This ensures E[y] = x , but y|I may no longer be in the spanning tree polytope
KspT (Ĥ [I ]). Indeed, y(∂ I ) ∈ {4/3, 8/3} depending on whether M has zero or two
edges crossing the cut, so y(E(I )) ∈ {|I | − 2/3, |I | − 4/3} and not |I | − 1 as
required. Hence we cannot directly sample a spanning tree on Ĥ [I ], as we did
above. We fix this in step 3 below.

2. Pick a random induced sub-matching M ′ of M , and define partition matroid
constraints on the sets Luv, Ruv incident on the endpoints of edges uv in this
sub-matching M ′ exactly as in steps i and ii of the sampling procedure for the
even-size case above.

3. We now address that y|I is not in the spanning tree polytope by locally changing
the fractional solution as follows:

(a) (Local Decrease) If M ∩ ∂ I = ∅, then y(E(I )) = |I | − 2/3 and y(∂ I ) = 4/3.
Hence y|I is not a solution to KspT (Ĥ [I ]). To fix this, pick a random edge
e ∈ ∂ I , pick a random edge f ∈ E(I ) adjacent to e, and reduce the y-value
of f by 1/3 to get solution ŷ. (Note this may reduce either a 1-edge to 2/3, or a
1/3-edge to zero.)

(b) (Local Increase) If |M ∩ ∂ I | = 2, then y(E(I )) = |I | − 4/3, and hence
y|I /∈ KspT (Ĥ [I ]). To fix this, pick a random edge e from the two matching
edges in M ∩ ∂ I , pick a random edge f ∈ E(I ) adjacent to e, and increase the
y-value of f by 1/3 to get solution ŷ. (Note this increases one 1/3 edge to 2/3.)
Suppose this edge f is contained in some matroid constraint, say on set P of
edges:
i. If all three edges f , g, h of this constraint are in E(I ), pick a random one

of {g, h}, say h, and redefine P ← { f , g}. Note that ŷ f + ŷg = 1 and the
constraint is tight.

ii. If f belongs to a constraint P = { f , g}, that used to be { f , g, h} but
the third edge h was in ∂ I and hence was dropped, retain the constraint
P = { f , g}. Again ŷ f + ŷg = 1.

The following claims show that ŷ|I has the right marginals, and that it belongs to
the spanning tree polytope. So nowwe can sample a spanning tree T from it (subject to
the partition matroidM). Then we show, in §B.2, that this tree also satisfies negative
correlation properties.
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B.1 Feasibility of the solution ŷ

Claim B.2 (Marginal Preserving) E[̂ye] = xe = 1/2 for all e ∈ E(I ).

Proof Since E[ye] = 1/2 for all e, we focus on the expected difference E[̂ye − ye]. We
only need to worry about internal edges incident to boundary vertices, since those are
the only edges whose y-values are changed.

• Let e be an edge incident only on one boundary vertex v, that has a boundary edge
f . Now consider choosing M randomly. When M ∩ ∂ I = ∅, which happens w.p.
1/2, e is decreasedw.p. 1/12, since the total internal degree of boundary vertices is 12.
On the other hand, when f ∈ M (w.p. 1/4, and this implies the event |M∩∂ I | = 2),
e is increased with probability 1/6, since the total internal degree of the boundary
vertices incident to internal endpoints of M is 6.

• Let e = uv such that both u, v are boundary vertices with edges f , g ∈ ∂ I
respectively. Now, when M ∩ ∂ I = ∅, which happens w.p. 1/2, e is decreased w.p.
1/6 (since e is counted from both ends). When f ∈ M (w.p. 1/4, and this implies the
event |M ∩ ∂ I | = 2), e is increased with probability 1/6 “through f ”. And same
happens for g. Therefore, regardless of how f and g are correlated, e is increased
with probability 2 · 1/4 · 1/6 = 1/12.

In both cases, the expected difference is zero, giving the proof. ��
Claim B.3 (Feasible) The solutions ŷ|I belong to the spanning tree polytope.

Proof The equality constraint
∑

e∈I ŷe = |I | − 1 is satisfied by design, so we need
to check that

∑
e∈E[S′] ŷe ≤ |S′| − 1 for all proper subsets S′

� I . Recall that ∂H S′
has at least six edges, including the edges leaving I . Let a := |EH (S′, I\S′)| and
b := |EH (S′, V \I )| so that a + b ≥ 6.

Observe that

∑

e∈E[S′]
ye = 1

2

( ∑

v∈S′

∑

e∈∂H v

ye −
∑

e∈∂H S′
ye

)

≤ 1

2

(
2|S′| − (a + b)/3

)
≤ |S′| − 1.

(10)

• In a local decrease, since we decrease y to get ŷ, the constraint is still satisfied.
• In a local increase, sincewe increase only one edge by 1/3, we only need to consider
the case when (10) is tight, which implies that every edge going out of S′ has value
exactly 1/3. In particular, every vertex in S′ is matched inside S′. By construction,
the edge whose y-value we increase must have a neighboring edge matched by M
outside I . This M-edge cannot be incident to S′, so we are safe.

��

B.2 Correlation properties: |V(H)| odd

To prove the correlation properties in the odd case, we observe that each of the proofs
from §3.2.1 focuses on a small set of edges. Hence, if we can show that with constant
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probability the fractional solution for these edges is unchanged, the proofs go through
with small changes (and weaker constants). A more careful case-analysis is likely to
give better constants.

We will often make arguments that condition on certain sets of edges not being
perturbed by a local increase or decrease. The following lemma gives lower bounds
on the probabilities that these desired events occur.

Lemma B.4 Let f , g be internal edges incident to vertex v. Then, if f or g lies in M, y f

and yg remain untouched by a local increase or decrease w.p. at least 2/3. Similarly, if
v is an internal vertex with internal edges e, f , g, h, the four edges remain untouched
with probability at least 2/3

Proof If one of f , g lies in M (which happens w.p. 1/2), then its y value equals 1 and
it belongs to T w.p. 1. If there is a local increase, then the increase can only affect the
edge not in M (through its other endpoint), so the y-value remains unchanged w.p. 2/3.
If there is a local decrease, both edges f , gmay have both endpoints that are boundary
vertices in worst case, giving a 4/12 chance of being decreased, and hence a 8/12 = 2/3

chance of y-values of these two edges remaining unchanged.
The second statement follows from the fact that there are three internal edges

adjacent to an external edge. ��
Wemove on to the proofs of the correlation properties. We restate the lemmas here

for convenience.

Lemma 3.2 If f , g are internal edges incident to a vertex v, then

Probability statement MatInt MaxEnt

P(|T ∩ { f , g}| = 2) 1/9 1/9

P(T ∩ { f , g} = { f }) 1/9 12/72

Proof of Lemma 3.2, Odd Case TheMatInt claims:As in the even case, to proveP(|T∩
{ f , g}| = 2) ≥ 1/9, we need only knowledge of the marginals and not the specific
sampler. If one of f , g lies in M (which happens w.p. 1/2) y-values of these two
edges remaining unchanged with probability at least 2/3, due to Lemma B.4. Now,
conditional on these y-values remaining unchanged, the other edge (not in M) is
chosen with probability 1/3, making the unconditional probability 1/2 · 2/3 · 1/3 = 1/9,
as desired. Similarly, conditioned on f lying in M and hence belonging to T , edge g
is not chosen w.p. 1− ye = 2/3, giving a probability at least 1/4 · 2/3 · 2/3 = 1/9, proving
the second part of Lemma 3.2 for the MatInt sampler.

The MaxEnt claim: It remains to show that P(T ∩ { f , g} = { f }) ≥ 12/72. In the
case that f ∈ M , we once again have a probability of at least 2/3 that f and g are
untouched, due to Lemma B.4. Sincce P(g /∈ T ) = 2/3 in this case, we have

P(T ∩ { f , g} = { f } ∧ f ∈ M) ≥ 1/4 · 2/3 · 2/3 = 1/9.
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In the case that neither f nor g is in M , the probability f or g is chosen in a local
decrease is at most 1/3 and the probability f or g is chosen in a local increase is at
most 1/2. (For the first bound, the worst case is when each of the three endpoints of
f , g is incident to an external edge. Then the probability that neither f nor g is chosen
for a local decrease is at least 1/2 · 2/3 + 1/4 · 1/3 + 1/4 = 2/3. For the second bound,
the worst case is when each edge in M ∩ ∂ I is incident to an endpoint of f , w.l.o.g.
Then the probability that neither f nor g is chosen for a local increase is at least
1/2 · 2/3 + 1/2 · 1/3 = 1/2.) Hence, the edges remain untouched with probability at least
1/2. In total, this gives

P(T ∩ { f , g} = { f } ∧ f , g /∈ M) ≥ 1/2 · 1/2 · 2/9 = 4/72

where the bound P(T ∩ { f , g} = { f } | f , g /∈ M) ≥ 1/9 was computed in the even
case (3.2.1). Hence,

P(T ∩ { f , g} = { f }) ≥ 1/9 + 4/72 = 12/72.

��
Lemma 3.3 If edges e, f , g, h incident to a vertex v are all internal, then

Probability statement MatInt MaxEnt

P(|T ∩ {e, f , g, h}| = 2) 2/21 8/27

P(|T ∩ {e, f }| = |T ∩ {g, h}| = 1) 4/63 16/81

Proof of Lemma 3.3, Odd Case TheMatInt claims:Each perfect matchingM contains
one of these four edges in ∂v. Say that edge is e. The vertex v has no external edges,
so regardless of whether we do a local increase or decrease, these four edges remain
untouched w.p. 2/3, due to Lemma B.4. If this happens, and if e also belongs to M ′
(w.p. 1/7), tree T contains exactly one of { f , g, h}, which gives us the bound 2/21.
Moreover, the probability of this edge in T belonging to the other pair (in this case,
{g, h}) is 2/3, giving the bound 4/63.

TheMaxEnt claims: Since v is not a boundary vertex, none of e, f , g, h are picked
for a local increase or decrease w.p. at least 2/3, due to Lemma B.4. Conditioning on
e, f , g, h remaining untouched, we have the same analysis as that of the even case
(3.2.1). Hence, we obtain

P(|T ∩ {e, f , g, h}| = 2) ≥ 2/3 · 4/9 = 8/27

and

P(|T ∩ {e, f }| = |T ∩ {g, h}| = 1) ≥ 2/3 · 8/27 = 16/81.

��
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Lemma 3.4 For an internal edge e = uv:
(a) if both endpoints are non-boundary vertices, then

Probability statement MatInt MaxEnt

P(|∂T (u)| = |∂T (v)| = 2) 1/36 128/6561

(b) if both u, v are boundary vertices, then

Probability statement MatInt MaxEnt

P(exactly one of u, v has odd degree in T ) 1/9 5/18

Proof of Lemma 3.4a, Odd Case The MatInt claims: In this proof, we will often use
that G is a simple graph. Suppose e ∈ M ′, which happens w.p. 1/28. Call the edges
(∂u∪∂v)\{e} interesting edges. Condition on thematchingM (which decideswhether
the change is a local increase or a decrease), and the edge f in ∂ I whose incident
internal edge is increased/decreased. At most two of the three internal edges incident
to f can be interesting. Since u, v are non-boundary vertices, the value of e is never
changed by the alteration.

First suppose it is a local decrease, thenwith probability at least 1/3 a non-interesting
edges is reduced, and hence the matroid constraint ensures we always succeed. With
probability at most 2/3 an interesting edge is reduced, in which case we still have a 2/3

chance of getting degree 2 at both u and v. So we have 1/3 + 2/3 · 2/3 = 7/9 of success,
conditioned on the choice of the edge.

Else, suppose it is a local increase; the argument is similar. With probability at least
1/3 a non-interesting edges is increased, and hence the matroid constraint ensures we
always succeed. With probability at most 2/3 an interesting edge is increased, in which
case we change the matroid constraint to drop one of the other interesting edges. This
dropped edge can be added inwith its ŷ-value 1/3, and hencewehave a 2/3 probability of
getting degree 2 at both u and v. Again, the probability of success is 1/3+2/3 ·2/3 = 7/9

of success. Removing the conditioning on e ∈ M ′, the net probability of success is
1/28 · 7/9 = 1/36.

The MaxEnt claims: Let U = δ(u)\{e} and V = δ(v)\{e}. Condition on e ∈ M .
Since u, v are both non-boundary vertices, the value of e will remain unchanged
regardless of whether there is a local increase or decrease, so we will have ye = 1
always. Recall that y is changed at a single edge when the local increase or decrease
is performed. We take cases on whether a local increase or local decrease occurs.

A local decrease occurs. If none of the edges in U ∪ V are decreased, then (con-
ditioned on e ∈ M) the analysis from the even case (3.2.1) gives

P(XU = 1 ∧ XV = 1) ≥ 256/2187.

123



A. Gupta et al.

Now consider the case that an edge in U ∪ V is decreased. Let S1 = U and let
S2 = {a, b} denote the set of two nonzero edges in V \ {e} (see Fig. 8). Applying
Theorem 2.9 and the fact that E(|S2 ∩ T |) = 2/3, we have P(|S2 ∩ T | = 1) ≥
2 · 2/3 · 1/3 = 4/9. By Theorem 2.8,

1/3 = 1 − 2/3 ≤ E(|S1 ∩ T | | a ∈ T , b /∈ T ) ≤ 1 + 1/3 = 4/3.

We apply Theorem 2.9 again to lower bound P(|S1 ∩ T | = 1 | a ∈ T , b /∈ T ) by

P(|S1 ∩ T | = 1 | a ∈ T , b /∈ T ) ≥ 3 · 1/9 · (8/9)2 = 64/243.

Since the same calculation may be repeated with b ∈ T and a /∈ T (as ya = yb),
we have

P(XU = 1 ∧ XV = 1) ≥ 4/9 · 64/243 = 256/2187.

So comparing both cases, we have that conditioned on e ∈ M , if there is a local
decrease then

P(XU = 1 ∧ XV = 1) ≥ min{256/2187, 256/2187} = 256/2187.

A local increase occurs. We first note that the probability of no edge in U ∪ V
being increased is at least 1/3, in which case the analysis from the even case (3.2.1)
gives

P(XU = 1 ∧ XV = 1) ≥ 256/2187.

Now consider the case that an edge c, say in U , is increased from 1/3 to 2/3. Let
U\{c} = {a, b}. Since E[Xa,b] = 2/3, by Markov’s inequality we have P(Xa,b =
0) ≥ 1/3. Furthermore,E[Xc | Xa,b = 0] ≥ E[Xc] = 2/3 by Theorem 2.8. In total,
P(c ∈ T , a, b /∈ T ) ≥ 1/3 · 2/3 = 2/9 (Fig. 9). Applying Theorem 2.8 thrice more,
we obtain

1/3 ≤ E(|S2 ∩ T | | c ∈ T , a, b /∈ T ) ≤ 5/3

which by Theorem 2.9 gives us

P(|S2 ∩ T | = 1 | c ∈ T , a, b /∈ T ) ≥ 64/243.

This yields, in the case that an edge in U ∪ V is increased,

P(XU = 1 ∧ XV = 1) ≥ 64/243 · 2/9 = 128/2187.

Since the probability that no edge inU∪V is increased is at least 1/3, and 256/2187 >
128/2187, in the worst case we have that, conditioned on e ∈ M , if there is a local
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Fig. 8 The decrease case in
Lemma 3.4a, labelled with
y-values after the decrease is
performed

Fig. 9 The local increase case

increase then

P(XU = 1 ∧ XV = 1) ≥ 1/3 · 256/2187 + 2/3 · 128/2187 = 512/6561.

Now comparing the cases of local increase and decrease and removing the condi-
tioning of e ∈ M , we obtain in the worst case

P(XU = 1 ∧ XV = 1) ≥ 1/4 · min{256/2187, 512/6561} = 128/6561

which is the bound we sought.

Proof of Lemma 3.4b, Odd Case The MatInt claims. Fix a matching M such that e ∈
M (w.p. 1/4); each of u, v have two other internal edges, each with y-value 1/3. Call
these four interesting edges. Suppose M ∩ ∂ I has two edges, then we perform a local
increase step. Condition on the edge in M ∩ ∂ I chosen as part of the local increase:
in the worst case it is incident to the endpoint of two of the interesting edges.

• Then w.p. 2/3 it increases one of the interesting edges from y f = 1/3 to ŷ f = 2/3.
The total ŷ-value of interesting edges becomes 5/3. By the same argument as for
the even case, the tree T contains exactly one interesting edge with probability at
least 1/3.

• With the remaining probability 1/3, the increase is not to an interesting edge, and
hence we succeed with the original probability 2/3.

The total probability of success is therefore 2/3 · 1/3 + 1/3 · 2/3 = 4/9.
On the other hand, if M ∩ ∂ I is empty, then we perform a local decrease step.

Condition on the boundary edge chosen in the first part of the local decrease. In the
worst case it is one of the boundary edges incident to either u or v. One of the interesting
edges is reduced w.p. 2/3, from y f = 1/3 to ŷ f = 0. If that happens, the total ŷ-value
of interesting edges sums to 1. The connectivity of the spanning tree means that every
tree we sample with these marginals will have exactly one interesting edge.

Hence, in either case, we have exactly one of these four internal edges and satisfy
the condition of the claim with probability 4/9, conditioned on having e ∈ M . The
overall probability is therefore at least 1/4 · 4/9 = 1/9.
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The MaxEnt claims. Observe that the edge e will always contribute either: 0 to
both the degree of u in T and the degree of v in T OR 1 to both the degree of u in
T and the degree of v in T . Thus, to lower bound the probability that u and v have
different parities in T , we will not need to consider whether or not e is in T .

Let a, b be the two internal edges in δ(u)\{e} and c, d be the two internal edges
in δ(v)\{e}. (We know each set has exactly two edges because u, v are each boundary
vertices.) Let f , g be the two external edges incident to u, v, respectively. We take
cases based on (a) whether a local increase or decrease is performed, (b) whether or
not any of a, b, c, d are changed by the local increase or decrease, and (c) whether or
not e ∈ M . Note that for (b), we do not take subcases on whether or not e is changed,
by the above paragraph. Also note that for (c), we consider whether e ∈ M in order
to determine the marginals of {a, b, c, d} prior to a local increase or decrease.

Case I .N .1 : local increase occurs,{a, b, c, d}not touched,e ∈ M . In this case,
we obtain the same bound from Case 1 of the even case in the proof of Lemma
3.4b (see 3.2.1), that is,

P(exactly one ofu, vhas odd degree inT ) ≥ P(Xa,b,c,d = 1) ≥ 2/3 .

Case I .N .2 : local increase occurs,{a, b, c, d}not touched,e /∈ M . This case
includes the two subcases a, c ∈ M and a ∈ M, c /∈ M , which are cases 2 and
3 in the proof of Lemma 3.4b (see 3.2.1) and yield lower bounds on the desired
probabilitiy of 4/9 and 8/27 , respectively. Finally, there is one more subcase for
the case where |V (H)| is odd, namely, a, c /∈ T , since we may have f , g ∈ M .
Since in this subcase a, b, c, d are all 1/3-valued edges, we have the same bound
from Case 1 of the even case in the proof of Lemma 3.4, namely, 2/3 .
Case I .T .1 : local increase occurs,{a, b, c, d}touched,e ∈ M .Oneof the edges
a, b, c, d is increased from 1/3 to 2/3, while the rest are still 1/3-valued, since e ∈ M .
Hence, E[Xa,b,c,d ] = 5/3. Furthermore, note that we must have Xa,b,c,d ≥ 1. This
gives

P(exactly one ofu, vhas odd degree inT ) ≥ P(Xa,b,c,d = 1) ≥ 1/3 .

Case I .T .2 : local increase occurs,{a, b, c, d}touched,e /∈ M . Just as in Case
I.N.2., there are three subcases. First consider the subcase of a, c ∈ M . In this
subcase, a, c cannot be increased, so we know E[Xb,d ] = 1/3. By Theorem 2.9,
P(Xb,d = 1) ≥ 1/2 .
Next, consider the subcase that only a ∈ M . Then, we have E(Xb,c,d) = 4/3 and
hence by Theorem 2.9, P(Xb,c,d = 2) ≥ 2 · 1/3 · 1/3 ≥ 5/18 .
For thefinal subcase that f , g ∈ M ,wehaveE[Xa,b,c,d ] = 5/3 and since Xa,b,c,d ≥
1, we have P(Xa,b,c,d = 1) ≥ 1/3 .

This concludes the local increase cases. We move on to the local decrease cases.

Case D.N .1 : local decrease occurs,{a, b, c, d}not touched,e ∈ M .This is the
same case as I.N.1., giving a bound of 2/3 .
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Case D.N .2 : local decrease occurs,{a, b, c, d}not touched,e /∈ M .This is the
same case as I.N.2., taking only the first subcase (a, c ∈ M), since M ∩ ∂ I = ∅

in a local decrease. Thus the lower bound here is 4/9 .
Case D.T .1 : local decrease occurs,{a, b, c, d}touched,e ∈ M . Since e ∈ M ,
we know a, b, c, d start of as 1/3-valued. Then, w.l.o.g., say a is decreased to 0.
Then, E[Xb,c,d ] = 1. But since Xb,c,d ≥ 1, this gives P(Xb,c,d = 1) = 1 .

Case D.T .2 : local decrease occurs,{a, b, c, d}touched,e /∈ M .Since in a local
decrease M ∩ ∂ I = ∅, we have w.l.o.g. that a, c ∈ M and that a is not decreased.
So E(Xb,c,d) = 1 + 2 · 1/3 − 1/3 = 4/3. Since we know a ∈ T , we instead study
P(Xb,c,d = 2); by Theorem 2.9, we have P(Xb,c,d = 2) ≥ 2 · 1/6 · 5/6 = 5/18 .

The minimum of all the boxed quantities is 5/18. Hence, for the odd case of Lemma
3.4b, we obtain the desired bound

P(exactly one ofu, vhas odd degree inT ) ≥ 5/18.

��

C Symmetry lemma

Calim C.1 (Symmetry Lemma) For any graph H with each edge e having xe = 1/2,
let T be a random set of edges faithful to the marginals, i.e., Pr[e ∈ T ] = xe. For
any two edges f , g, let p00, p10, p01, p11 denote the probabilities of T ∩{ f , g} being
∅, { f }, {g}, { f , g} respectively. Then p00 = p11 and p01 = p10.

Proof Observe that p00 + p01 + p10 + p11 = 1. Moreover, p01 + p10 + 2p11 =
E[|T ∩ { f , g}|] = x f + xg = 1. Hence, p00 = p11, proving the first statement. Now,
p10 + p11 = x f = xg = p01 + p11, giving p10 = p01, proving the second. ��
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