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Abstract
Akeyproblem inmathematical imaging, signal processing and computational statistics
is theminimization of non-convex objective functions thatmay be non-differentiable at
the relative boundary of the feasible set. This paper proposes a new family of first- and
second-order interior-pointmethods for non-convex optimization problemswith linear
and conic constraints, combining logarithmically homogeneous barrierswith quadratic
and cubic regularization respectively. Our approach is based on a potential-reduction
mechanism and, under the Lipschitz continuity of the corresponding derivative with
respect to the local barrier-induced norm, attains a suitably defined class of approxi-
mate first- or second-order KKT points with worst-case iteration complexity O(ε−2)
(first-order) and O(ε−3/2) (second-order), respectively. Based on these findings, we
develop new path-following schemes attaining the same complexity, modulo adjust-
ing constants. These complexity bounds are known to be optimal in the unconstrained
case, and our work shows that they are upper bounds in the case with complicated
constraints as well. To the best of our knowledge, this work is the first which achieves
these worst-case complexity bounds under such weak conditions for general conic
constrained non-convex optimization problems.
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1 Introduction

Non-convex optimization is an active area of research in optimization with one of
the goals being to establish complexity guarantees for finding approximate stationary
points, see the review [40] and the references therein. Two large groups of algorithms
that allow one to achieve this goal are first-order methods [2, 20, 23, 32, 51] and
second-order methods [18, 26, 27, 29–32, 37, 38, 42, 79]. Higher-order algorithms are
also analyzed, e.g., in [17, 28, 33, 74]. One of the challenges in the development and
analysis of algorithms for non-convex optimization is dealing with constraints. The
class of optimization problems we consider in this paper is described as follows.

Let E be a finite dimensional vector space with inner product 〈·, ·〉 and Euclidean
norm ‖·‖. We are concerned with solving constrained conic optimization problems of
the form

min
x

f (x) s.t.: Ax = b, x ∈ K̄. (Opt)

The main working assumption underlying our developments is as follows:

Assumption 1 1. K̄ ⊂ E is a pointed (i.e., K̄ ∩ (−K̄) = {0}) closed convex cone with
nonempty interior K;

2. A : E→ R
m is a linear operator assigning each element x ∈ E to a vector in R

m

and having full rank., i.e., im(A) = R
m , b ∈ R

m ;
3. The feasible set X̄ = K̄ ∩ L, where L = {x ∈ E|Ax = b}, is compact and has

nonempty relative interior denoted by X = K ∩ L;
4. f : E → R is possibly non-convex, continuous on X̄ and continuously differen-

tiable on X;
5. Problem (Opt) admits a global solution. We let fmin(X) = min{ f (x)|x ∈ X̄}.
Note that f is not assumed to be globally differentiable, but only over the rela-

tive interior of the feasible set. Problem (Opt) contains many important classes of
optimization problems as special cases. We summarize the three most important ones
below.

Example 1 (NLP with non-negativity constraints) For E = R
n and K̄ ≡ K̄NN = R

n+
we recover non-linear programming problems with linear equality constraints and
non-negativity constraints: X̄ = {x ∈ R

n|Ax = b, and xi ≥ 0 for all i = 1, . . . , n}.
♦

Example 2 (Optimization over the second-order cone) Consider E = R
n and K̄ ≡

K̄SOC = {x = (x0, x) ∈ R× R
n−1|x0 ≥ ‖x‖2}, the second-order cone (SOC). In this

case problem (Opt) becomes a non-linear second-order conic optimization problem.
Such problems have a huge number of applications, including energy systems [75],
network localization [84], among many others [3]. ♦

Example 3 (Semi-definite programming) If E = S
n is the space of real symmetric

n× n matrices and K̄ ≡ K̄SDP = S
n+ is the cone of positive semi-definite matrices, we

obtain a non-linear semi-definite programming problem. Endow this space with the
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standard inner product 〈a, b〉 = tr(ab). In this case, the linear operator A assigns a
matrix x ∈ S

n to a vectorAx = [〈a1, x〉, . . . , 〈am, x〉]�. Suchmathematical programs
have received enormous attention due to the large number of applications in control
theory, combinatorial optimization, and engineering [13, 41, 70]. ♦

Example 4 (Exponential cone programming) Consider the exponential cone defined
as

Kexp = {x ∈ R
3|x1 ≥ x2e

x3/x2 , x2 > 0}

with the closure K̄exp = cl(Kexp) = Kexp ∪ {(x1, 0, x3)|x1 ≥ 0, x3 ≤ 0}. Kexp is an
important convex cone that is implemented in standard numerical solution packages
like YALMIP, MOSEK, and CVX, as it can be used to represent a lot of interesting
convex sets arising in optimization; see [34] and the PhD thesis [35]. ♦

1.1 Motivating applications

1.1.1 Inverse problems with non-convex regularization

An important instance of (Opt) is the composite optimization problem

min
x

{
f (x) = �(x)+ λ

n∑
i=1

ϕ(x p
i )

}
s.t.: x ∈ K̄NN, (1)

where � : Rn → R is a smooth data fidelity function, ϕ : R → R is a convex
function, p ∈ (0, 1), and λ > 0 is a regularization parameter. A common use of
this problem formulation is the regularized empirical risk-minimization problem in
high-dimensional statistics, or the variational regularization technique in inverse prob-
lems. Non-negativity constraints can be motivated by some prior knowledge about the
observed object which needs to be reconstructed. For example, the true signal may
represent an image with positive intensities of the pixels, or one can consider Poisson
Inverse Problem as in [59]. Common specifications for the regularizing function are
ϕ(s) = s, orϕ(s) = s2/p. In the first case, we obtain

∑n
i=1 ϕ(x p

i ) =∑n
i=1 x

p
i = ‖x‖pp

on KNN, whereas in the second case, we get
∑n

i=1 ϕ(x p
i ) = ∑n

i=1 x2i = ‖x‖2. Note
that the first case yields the objective f which is non-convex and non-differentiable at
the boundary of the feasible set. It has been reported in imaging sciences that the use of
such non-convex and non-differentiable regularizer has advantages in the restoration
of piecewise constant images. Bian and Chen [15] contains a nice survey of studies
supporting this observation. Moreover, in variable selection, the L p penalty func-
tion with p ∈ (0, 1) owns the oracle property [44] in statistics, while L1 (called the
LASSO) does not; problem (1) with p ∈ (0, 1) can be used for variable selection at
the group and individual variable levels simultaneously, while the very same problem
with p = 1 can only work for individual variable selection [66]. See [36, 50] for a
complexity-theoretic analysis of this problem.
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1.1.2 Low rank matrix recovery

On the space of symmetric matrices E = S
n , together with the feasible set X̄ =

{x ∈ E|Ax = b, x ∈ K̄SDP} we can consider the composite model f (x) = �(x) +
r(x), with smooth loss function � : E → R, and with regularizer r : E → R ∪
{+∞}. In applications the regularizer is given in the form of a matrix function r(x) =∑

i σi (x)
p on x ∈ KSDP, where p ∈ (0, 1) and σi (x) is the i-th singular value of the

matrix x . The resulting optimization problem is a matrix version of the non-convex
regularized problem (1). See [67, 86] for a wealth of optimization problems following
this description.

1.2 Challenges and contribution

One of the challenges in approaching problem (Opt) algorithmically is to deal with
the feasible set L∩ K̄. A projection-based approach faces the computational bottleneck
to project onto the intersection of a cone with an affine subspace, which makes the
majority of the existing first-order [2, 20, 23, 32, 51, 57, 77] and second-order [18,
26, 27, 31, 32, 37, 38, 42, 79] methods practically less attractive, as they either are
designed for unconstrained problems or use proximal steps in the updates. When
primal feasibility is not a major concern, augmented Lagrangian algorithms [5, 7, 19,
54] are an alternative, though they do not always come with complexity guarantees.
These observations motivate us to focus on primal barrier-penalty methods that allow
us to decompose the feasible set and treat K̄ and L separately. Barrier methods are
classical and powerful for convex optimization in the form of interior-point methods
[78]. In the non-convex optimization setting results are in a sense fragmentary, with
many different algorithms existing for different particular instantiations of (Opt). In
particular, the main focus of barrier methods for non-convex optimization has been
on particular cases, such as non-negativity constraints [16, 22, 58, 82, 85, 87] and
quadratic programming [47, 73, 87]. In this paper we develop a flexible and unifying
algorithmic framework that is able to accommodate first- and second-order interior-
point algorithms for (Opt) with potentially non-convex and non-smooth at the relative
boundary objective functions, and general, possibly non-symmetric, conic constraints.
To the best of our knowledge, our framework is the first one providing complexity
results for first- and second-order algorithms to reach points satisfying, respectively,
suitably defined approximate first- and second-order necessary optimality conditions,
under such weak assumptions and for such a general setting.

1.2.1 Our approach

At the core of our approach is the assumption that the cone K̄ admits a logarithmically
homogeneous self-concordant barrier (LHSCB)h(x) ([78], cf.Definition1), forwhich
we can retrieve information about the function value h(x), the gradient ∇h(x) and the
Hessian H(x) = ∇2h(x) with relative ease. This is not a very restrictive assumption,
since all standard conic restrictions in optimization (i.e., K̄NN, K̄SOC, K̄SDP and K̄exp)
have this property. Using this barrier function, our algorithms are designed to reduce
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the potential function

Fμ(x) = f (x)+ μh(x), (2)

where μ > 0 is a (typically) small penalty parameter. By definition, the domain
of the potential function Fμ is the interior of the cone K̄. Therefore, any algorithm
designed to reduce the potential will automatically respect the conic constraints, and
the satisfaction of the linear constraints L can be ensured by choosing search directions
from the nullspace of the linear operator A. Our target is to find points satisfying
suitably defined approximate necessary first- and second-order optimality conditions
for problem (Opt) expressed in terms of ε-KKT and (ε1, ε2)-2KKT points respectively
(cf. Sect. 3 for a precise definition).1

1.2.2 Finding points satisfying approximate necessary first-order conditions

To produce an ε-KKT point for the model problem (Opt), we construct a novel
gradient-based method, which we call the first-order adaptive Hessian barrier algo-
rithm (FAHBA, Algorithm 1). The main computational steps involved in FAHBA are
the identification of a search direction and a step-size policy, guaranteeing feasibility
and sufficient decrease in the potential function value. The algorithm starts from an
approximate analytic center of the feasible set. To find a search direction, we employ a
linear model for Fμ, regularized by the squared local norm induced by the Hessian of
the barrier function h, which is thenminimized over the tangent space of the affine sub-
space L. The step-size is adaptively chosen to ensure feasibility and sufficient decrease
in the objective function value f . For a judiciously chosen value of μ, we prove that
this gradient-based method enjoys the upper iteration complexity bound O(ε−2) for
reaching an ε-KKT point when a “descent Lemma” holds relative to the local norm
induced by the Hessian of h (cf. Assumption 3 and Theorem 1 in Sect. 4). We then
move on in proving thatFAHBA can be embeddedwithin a path-following scheme that
iteratively reduces the value of μ. This renders our first-order interior-point method
parameter-free and any-time convergent, with basically the same iteration complexity
of O(ε−2).

1.2.3 Finding points satisfying approximate necessary second-order conditions

To obtain (ε1, ε2)-2KKTpoints, we construct a second-order adaptiveHessian barrier
algorithm (SAHBA, Algorithm 3). As for FAHBA, the search direction subroutine
minimizes a localmodel of the potential function Fμ over the tangent space of the affine
subspace L. The minimized model is composed of the linear model for Fμ, augmented
by second-order information on the objective function f and regularized by the cube
of the local norm induced by the Hessian of h. The regularization parameter is chosen
adaptively to allow for potentially larger steps in the areas of small curvature. For a
judiciously chosen value ofμ, we establish (cf. Theorem3) theworst-case upper bound

1 Following the existing literature [58, 61, 82], we use weak second-order necessary optimality conditions.
We refer to Sect. 3.3 for the detailed discussion.
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O(max{ε−3/21 , ε
−3/2
2 }) on the number of iterations for reaching an (ε1, ε2)-2KKT

point, under a weaker version of the assumption that the Hessian of f is Lipschitz
relative to the local norm induced by the Hessian of h (cf. Assumption 4 in Sect. 5
for a precise definition). We then propose a path-following version of SAHBA that
iteratively reduces the value of μ making the algorithm parameter-free and any-time
convergent, with O(max{ε−3/21 , ε

−3/2
2 }) complexity.

1.3 Related work

To the best of our knowledge, FAHBA and SAHBA are the first interior-point algo-
rithms that achieve such complexity bounds for the general non-convex problem
template (Opt). Closest to our approach, but within the trust-region framework, are
the works [58, 65, 82]. All these papers focus on the special case of non-negativity
constraints with K̄ = K̄NN (Example 1) and fixμ before the start of the algorithm based
on the desired accuracy ε, which may require some hyperparameter tuning in practice
and may not work if the desired accuracy is not yet known. Interestingly, for the spe-
cial case K̄ = K̄NN, our algorithms provide stronger results under weaker assumptions,
compared to the first- and second-order methods in [58], the second-order method in
[65] specified to our setting of linear constraints, and the first-order implementation
of the second-order method in [82]. We make this claim precise in Sects. 4.4 and 5.3.

1.3.1 First-order methods

In the unconstrained setting, when the gradient is Lipschitz continuous, the standard
gradient descent achieves the lower iteration complexity bound O(ε−2) to find a first-
order ε-stationary point x̂ such that ‖∇ f (x̂)‖ ≤ ε [24, 25, 76]. The original inspiration
for the construction of our methods comes from the paper [22] on Hessian barrier
algorithms, which in turn was strongly influenced by continuous-time techniques [4,
21]. We extend the first-order method of [22] to general conic constraints, and develop
a unified complexity analysis, which goes far beyond the quadratic optimization case
studied in detail in that reference.

1.3.2 Second-order methods

In unconstrained optimization with Lipschitz continuous Hessian, cubic-regularized
Newton methods [55, 79] and second-order trust region algorithms [27, 37, 38]
achieve the lower iteration complexity bound O(max{ε−3/21 , ε

−3/2
2 }) [24, 25] to find

a second-order (ε1, ε2)-stationary point, i.e., a point x̂ satisfying ‖∇ f (x̂)‖ ≤ ε1 and
λmin

(∇2 f (x̂)
) ≥ −√ε2, where λmin(·) denotes the minimal eigenvalue of a matrix.2

The existing literature on non-convex problems with non-linear constraints either
considers only equality constraints [39], only inequality constraints [65], or both, but

2 A number of works, e.g. [27, 82], consider an (ε1, ε2)-stationary point defined as x̂ such that ‖∇ f (x̂)‖ ≤
ε1 and λmin

(
∇2 f (x̂)

)
≥ −ε2 and the corresponding complexity O(max{ε−3/21 , ε−32 }). Our definition

and complexity bound are the same up to redefinition of ε2.
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require projection [32]. Moreover, they do not consider general conic constraints as
as we do in this paper.

1.3.3 Approximate optimality conditions

Bian et al. [16] consider box-constrained minimization of the same objective as in
(1) and propose a notion of ε-scaled KKT points. Their definition is tailored to the
geometry of the optimization problem, mimicking the complementarity slackness
condition of the classical KKT theorem for the non-negative orthant. In particular, their
first-order condition consists of feasibility of x along with a scaled gradient condition.
Haeser et al. and O’Neill–Wright [58, 82] convincingly argue that, without additional
assumptions on the objective function, points that satisfy the scaled gradient condition
may not approach KKT points as ε decreases. Thus, [58, 82], provide alternative
notions of approximate first- and second-order KKT conditions for the domain KNN.
Inspired by [58], we define the corresponding notions for general cones. Our first-
order conditions turn out to be stronger than those of [58, 82] and the second-order
condition is equivalent to theirs in the particular case of non-negativity constraints
(cf. Sects. 3.3, 4.4, and 5.3). The proof that our algorithms are guaranteed to find
such approximate KKT points requires some fine analysis exploiting the structural
properties of logarithmically homogeneous barriers associated to the cone K, and are
not simple extensions of arguments used for KNN.

We remark that after the first release of our preprint on arXiv on October 29,
2021 (https://arxiv.org/abs/2111.00100v1), the paper [61] appeared in July 2022,
of which we became aware during the revision of our paper after its submission.
They also consider the model problem (Opt) and also build their algorithmic develop-
ments on a barrier construction. They propose a Newton-CG based method for finding
(ε, ε)-second-order approximate KKT points with similar to ours iteration complex-
ity guarantee O(ε−3/2), yet the dependence of their complexity bound on the barrier
parameter is not clear. Their algorithm also runs for a fixed parameter μ, and thus is
not parameter-free, unlike our parameter-free versions. Also, unlike them, we propose
a first-order algorithm.

1.4 Notation

In what follows, E denotes a finite-dimensional real vector space, and E
∗ the dual

space, which is formed by all linear functions on E. The value of s ∈ E
∗ at x ∈ E

is denoted by 〈s, x〉. In the particular case where E = R
n , we have E = E

∗. The
gradient vector of a differentiable function f : E→ R is denoted as∇ f (x) ∈ E

∗. For
an operator H : E→ E

∗, denote by H∗ is adjoint operator, defined by the identity

(∀u, v ∈ E) : 〈Hu, v〉 = 〈u,H∗v〉.

Thus,H∗ : E→ E
∗. It is called self-adjoint ifH = H∗.We use λmax(H) (λmin(H)), to

denote the maximum (minimum) eigenvalue of such operators. Important examples of
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such self-adjoint operators are Hessians of twice differentiable functions f : E→ R:

(∀u, v ∈ E) : 〈∇2 f (x)u, v〉 = 〈u,∇2 f (x)v〉.

Operator H : E → E
∗ is positive semi-definite if 〈Hu, u〉 ≥ 0 for all u ∈ E. If the

inequality is always strict for non-zero u, then H is called positive definite. These
attributes are denoted as H � 0 and H � 0, respectively. By fixing a positive definite
self-adjoint operator H : E→ E

∗, we can define the following Euclidean norms

‖u‖ = 〈Hu, u〉1/2, ‖s‖∗ = 〈s,H−1s〉1/2 u ∈ E, s ∈ E
∗.

In some cases we use notation ‖u‖H to explicitly indicate the operator used to define
the norm. If E = R

n , then H is usually taken as the identity matrix H = I. The
L∞-norm of x ∈ R

n is denoted as ‖x‖∞ = maxi=1,...,n|xi |. The directional derivative
of function f : E→ R is defined in the usual way:

Df (x)[v] = lim
ε→0+

1

ε
[ f (x + εv)− f (x)].

More generally, for v1, . . . , vp ∈ E, we define Dp f (x)[v1, . . . , vp] the p-th direc-
tional derivative at x along directions vi ∈ E. In that way we define ∇ f (x) ∈ E

∗
by Df (x)[u] = 〈∇ f (x), u〉 and the Hessian ∇2 f (x) : E→ E

∗ by 〈∇2 f (x)u, v〉 =
D2 f (x)[u, v]. We denote by L0 � {v ∈ E|Av = 0}� ker(A) the tangent space
associated with the affine subspace L ⊂ E.

2 Preliminaries

2.1 Cones and their self-concordant barriers

Let K̄ ⊂ Ebe a regular cone: K̄ is closed convexwith nonempty interiorK = int(K̄), and
pointed (i.e. K̄∩(−K̄) = {0}). Any such cone admits a self-concordant logarithmically
homogeneous barrier h(x) with finite parameter value θ [78].

Definition 1 A function h : K̄ → (−∞,∞] with dom h = K is called a θ -
logarithmically homogeneous self-concordant barrier (θ -LHSCB) for the cone K̄ if:

(a) h is a θ -self-concordant barrier for K̄, i.e., for all x ∈ K and u ∈ E

|D3h(x)[u, u, u]| ≤ 2D2h(x)[u, u]3/2, and

sup
u∈E
|2Dh(x)[u] − D2h(x)[u, u]| ≤ θ.

(b) h is logarithmically homogeneous:

h(t x) = h(x)− θ ln(t) ∀x ∈ K, t > 0.
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We denote the set of θ -logarithmically homogeneous barriers byHθ (K).

The constant θ is called the parameter of the barrier function. Just like in standard
interior point methods, it affects the iteration complexity of our methods. Given h ∈
Hθ (K), from [76, Thm 5.1.3] we know that for any x̄ ∈ bd(K̄), any sequence (xk)k≥0
with xk ∈ K and limk→∞ xk = x̄ satisfies limk→∞ h(xk) = +∞. For a pointed cone
K̄, we have θ ≥ 1 and the Hessian H(x) � ∇2h(x) : E → E

∗ is a positive definite
linear operator defined by 〈H(x)u, v〉 � D2h(x)[u, v] for all u, v ∈ E, see [76, Thm.
5.1.6]. The Hessian gives rise to a (primal) local norm

(∀x ∈ K)(∀u ∈ E) : ‖u‖x � 〈H(x)u, u〉1/2.

We also define a dual local norm on E
∗ as

(∀x ∈ K)(∀s ∈ E
∗) : ‖s‖∗x � 〈[H(x)]−1s, s〉1/2.

The Dikin ellipsoid with center x ∈ K and radius r > 0 is defined as the open set
W(x; r) � {u ∈ E| ‖u − x‖x < r}. The usage of the local norm adapts the unit ball
to the local geometry of the set K. Indeed, the following classical results are key to the
development of our methods, since they allow us to ensure feasibility of the iterates
and sufficient decrease of the potential function in each iteration of our algorithms.

Lemma 1 (Theorem 5.1.5 [76]) For all x ∈ K we have W(x; 1) ⊆ K.

Proposition 1 (Theorem 5.1.9 [76]) Let h ∈ Hθ (K), x ∈ dom h, and a fixed direction
d ∈ E. For all t ∈ [0, 1

‖d‖x ), with the convention that 1
‖d‖x = +∞ if ‖d‖x = 0, we

have:

h(x + td) ≤ h(x)+ t〈∇h(x), d〉 + t2‖d‖2xω(t‖d‖x ),

where ω(t) = −t−ln(1−t)
t2

.

We will also use the following inequality for the function ω(t) [76, Lemma 5.1.5]:

ω(t) ≤ 1

2(1− t)
, t ∈ [0, 1). (3)

Appendix A contains some more technical properties of LHSCBs which are used in
the proofs. We close this section with important examples of conic domains to which
our methods can be directly applied.

Example 5 (Non-negativity constraints) For E = R
n and K̄ = K̄NN, we define the

log-barrier h(x) = −∑n
i=1 ln(xi ) for all x ∈ KNN = R

n++. It is readily seen that
h ∈ Hn(K). ♦

Example 6 (SOC constraints) Let E = R
n and K̄ = K̄SOC, defined in Example 2. For

x = (x0, x) ∈ K̄SOC, we define the barrier h(x) = − ln(x20 − x�x). It is well known
that h ∈ H2(KSOC) [78]. ♦

123



P. Dvurechensky, M. Staudigl

Example 7 (SDP constraints) Let E = S
n and K̄ = K̄SDP, defined in Example 3.

Consider the barrier h(x) = − ln det(x). It is well known that h ∈ Hn(KSDP). ♦

Example 8 (The exponential cone) Consider the exponential cone Kexp with closure
K̄exp introduced in Example 4. This set admits a 3-LHSB

h(x1, x2, x3) = − ln(x2 ln(x1/x2)− x3)− ln(x1)− ln(x2) ∈ H3(Kexp).

We remark that this cone is not self-dual (cf. Definition 2), but

GK̄exp = K̄∗exp = cl
(
{y ∈ R

3|y1 ≥ −y3ey2/y3−1, y1 > 0, y3 < 0}
)

,

under the linear transformation G =
⎡
⎣1/e 0 0

0 0 − 1
0 − 1 0

⎤
⎦ . There are many convex sets

that can be represented using the exponential cone. We list some examples below, but
refer to the PhD thesis [35] for further details.

– Exponential: {(t, u)|t ≥ eu} ⇐⇒ (t, 1, u) ∈ K̄exp;
– Logarithm: {(t, u)|t ≤ ln(u)} ⇐⇒ (u, 1, t) ∈ K̄exp;
– Entropy: t ≤ −u ln(u) ⇐⇒ t ≤ u ln(1/u) ⇐⇒ (1, u, t) ∈ K̄exp;
– Relative Entropy: t ≥ u log(u/w) ⇐⇒ (w, u, t) ∈ K̄exp;
– Softplus function: t ≥ ln(1 + eu) ⇐⇒ a + b ≤ 1, (a, 1, u − t) ∈
K̄exp, (b, 1,−t) ∈ K̄exp.

♦

2.2 Exploiting the structure of symmetric cones

Nesterov and Todd [80] introduced self-scaled barriers, which later were realized as
LHSCBs for symmetric cones. Such barriers are nowadays key to define primal–dual
interior point methods with potentially larger step-sizes for convex problems. Our
methods can also exploit the structure of self-scaled barriers, leading to potentially
larger step-sizes and eventual faster convergence in practice. For a given closed convex
nonempty cone K̄, its dual cone is the closed convex and nonempty cone K̄∗ � {s ∈
E
∗|〈s, x〉 ≥ 0 ∀x ∈ K̄}. If h ∈ Hθ (K), then the dual barrier is defined as h∗(s) �

supx∈K{〈−s, x〉 − h(x)} for s ∈ K̄∗. Note that h∗ ∈ Hθ (K∗) [78, Theorem 2.4.4].

Definition 2 An open convex cone is self-dual if K∗ = K. K is homogeneous if for all
x, y ∈ K there exists a linear bijection G : E → E such that Gx = y and GK = K.
An open convex cone K is called symmetric if it is self-dual and homogeneous.

The class of symmetric cones can be characterized within the language of Euclidean
Jordan algebras [45, 46, 63, 64]. For optimization, the three symmetric cones of most
relevance are K̄NN, K̄SOC, and K̄SDP.

Definition 3 ([80]) h ∈ Hθ (K) is a θ -self-scaled barrier (θ -SSB) if for all x, w ∈ K
we have H(w)x ∈ K and h∗(H(w)x) = h(x) − 2h(w) − θ . Let Bθ (K) denote the
class of θ -SSBs.
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Clearly, Bθ (K) ⊂ Hθ (K). Hauser and Güler [60] showed that every symmetric cone
admits a θ -SSB for some θ ≥ 1, while a characterization of the barrier parameter θ has
been obtained in [56]. The main advantage of working with SSBs instead of LHSCBs
is that we can make potentially longer steps in the interior of the cone K towards the
direction of its boundary, and have larger decrease of the potential. Let x ∈ K and
d ∈ E. Denote

σx (d) � (sup{t : x − td ∈ K})−1.

Since W(x; 1) ⊆ K for all x ∈ K, we have that σx (d) ≤ ‖d‖x and σx (−d) ≤ ‖d‖x
for all d ∈ E. Therefore [0, 1

‖d‖x ) ⊆ [0, 1
σx (d)

). Hence, if the scalar quantity σx (d)

can be computed efficiently, it would allow us to make a larger step without violating
feasibility.

Example 9 For K̄ = K̄NN, to guarantee x − td ∈ KNN, we need xi − tdi > 0 for all
i ∈ {1, . . . , n}. Hence, if di ≤ 0, this is satisfied for all t ≥ 0. If di > 0, we obtain the
restriction t ≤ xi

di
. Therefore, σx (−d) = max{ dixi : di > 0}. ♦

Example 10 For K̄ = K̄SDP, we see that x − td � 0 if and only if Id � t x−1/2dx−1/2,
where Id is the identity matrix and x1/2 denotes the square root of a matrix x ∈
KSDP. Hence, if λmax(x−1/2dx−1/2) > 0, then t < 1

λmax(x−1/2dx−1/2) . Thus, σx (d) =
max{λmax(x−1/2dx−1/2), 0}. ♦

The analogous result to Proposition 1 for barriers h ∈ Bθ (K) reads as follows:

Proposition 2 (Theorem 4.2 [80]) Let h ∈ Bθ (K) and x ∈ K. Let d ∈ E be such that
σx (−d) > 0. Then, for all t ∈ [0, 1

σx (−d)
), we have:

h(x + td) ≤ h(x)+ t〈∇h(x), d〉 + t2‖d‖2xω(tσx (−d)).

2.3 Unified notation

Our algorithms work on any conic domain on which we can efficiently evaluate a
θ -LHSCB.

Assumption 2 K̄ is a regular cone admitting an efficient barrier setup h ∈ Hθ (K).
By this we mean that at a given query point x ∈ K, we can construct an oracle that
returns to us information about the values h(x),∇h(x) and H(x) = ∇2h(x), with low
computational efforts.

Note that when h ∈ Bν(K), we have the flexibility to treat h either as h ∈ Hν(K) or
as h ∈ Bν(K). Given the potential advantages when working on symmetric cones, it
is useful to develop a unified notation handling the case h ∈ Hθ (K) and h ∈ Bθ (K) at
the same time. We therefore introduce the notation

(∀(x, d) ∈ X× E) : ζ(x, d) �
{ ‖d‖x if h ∈ Hθ (K) \Bθ (K),

σx (−d) if h ∈ Bθ (K).
(4)
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Note that

(∀(x, d) ∈ X× E) : ζ(x, d) ≤ ‖d‖x , (5)

(∀(x, d) ∈ X× E)

(
∀t ∈

[
0,

1

ζ(x, d)

))
: x + td ∈ K. (6)

Propositions 1 and 2 together with Eq. (4), give us the one-and-for-all Bregman bound

h(x + td)− h(x)− 〈∇h(x), td〉 ≤ t2‖d‖2xω(tζ(x, d)), (7)

valid for all (x, d) ∈ X× E and t ∈
[
0, 1

ζ(x,d)

)
.

3 Approximate optimality conditions

Consider the non-convex optimization problem (Opt). If x∗ is a local solution of the
optimization problem at which the objective function f is continuously differentiable,
then there exists y∗ ∈ R

m such that

∇ f (x∗)− A∗y∗ ∈ −NCK̄(x
∗). (8)

This is equivalent to the standard local optimality condition [81]

〈∇ f (x∗), x − x∗〉 ≥ 0 ∀x ∈ X̄ = K̄ ∩ L. (9)

Remark 1 Since −NCK̄(x
∗) ⊆ K̄∗, the inclusion (8) implies s∗ � ∇ f (x∗)−A�y∗ ∈

K̄∗. ♦

3.1 First-order approximate KKT conditions

The next definition specifies our notion of an approximate first-order KKT point for
problem (Opt).

Definition 4 Given ε≥0, a point x̄ ∈ E is an ε-KKT point for problem (Opt) if there
exists ȳ ∈ R

m such that

Ax̄ = b, x̄ ∈ K, (10)

s̄ = ∇ f (x̄)− A∗ ȳ ∈ K̄∗, (11)

〈s̄, x̄〉 ≤ ε. (12)

Note that by conditions (10) and (11) x̄ ∈ K and s̄ ∈ K̄∗, i.e., are feasible and
〈s̄, x̄〉 ≥ 0. Thus, condition (12) is reasonable since it recovers the standard com-
plementary slackness when ε → 0. Although our definition explicitly requires strict
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primal feasibility, similar approximate KKT conditions have been introduced for can-
didates x̄ which may be infeasible. This gains relevance in primal–dual settings and
sequential optimality conditions for Lagrangian-based methods. In such setups a pro-
jection should be used [7, 9].

Definition 4 can bemotivated as an approximate version of the exact first-orderKKT
condition stated as Theorem 5 in Appendix B. It is also easy to show that the above
definition readily implies the standard approximate first-order stationarity condition
〈∇ f (x̄), x − x̄〉 ≥ −ε, for all x ∈ X̄ (cf. (9)). Indeed, let x ∈ X̄ be arbitrary and x̄
satisfy Definition 4. Then,

〈∇ f (x̄), x − x̄〉 = 〈s̄, x − x̄〉 + 〈ȳ,A(x − x̄)〉 = 〈s̄, x〉 − 〈s̄, x̄〉 ≥ −ε,

where we used that Ax = Ax̄ = b, 〈s̄, x〉 ≥ 0 since x ∈ K̄ and s̄ ∈ K̄∗, and 〈s̄, x̄〉 ≤ ε.
The next result uses a perturbation argument based on an interior penalty approach,

inspired by [58], and shows that our definition of an ε-KKT point is attainable and
can be read as an approximate KKT condition.

Proposition 3 Let x∗ ∈ X̄ be a local solution of problem (Opt) where f is continuously
differentiable on X. Then, there exist sequences (xk)k≥1 ⊂ X, (yk)k≥1 ⊂ R

m and
sk = ∇ f (xk)− A∗yk , k ≥ 1 satisfying the following:

(i) xk → x∗.
(ii) For all ε > 0 we have |〈sk, xk〉| ≤ ε for all k sufficiently large.
(iii) All accumulation points of the sequence (sk)k≥1 are contained in−NCK̄(x

∗) ⊆ K̄∗.

Proof (i) Consider the following perturbed version of problem (Opt), for which x∗ is
the unique global solution if we take δ > 0 sufficiently small,

min
x

f (x)+ 1

2
‖x − x∗‖2 s.t.: Ax = b, x ∈ K̄, ‖x − x∗‖2 ≤ δ. (13)

Further, consider the penalty function

ϕk(x) � f (x)+ μkh(x)+ 1

2
‖x − x∗‖2

for a sequence μk → 0+ as k →∞ and the optimization problem

min
x

ϕk(x) s.t.: Ax = b, x ∈ K, ‖x − x∗‖2 ≤ δ.

It is well known [48] that a global solution xk exists for this problem for all k ≥ 1,
and that cluster points of the sequence (xk)k≥1 are global solutions of (13). Since
‖xk − x∗‖2 ≤ δ, the sequence xk is bounded and, thus, xk → x∗ as k →∞.

(ii) For k large enough, xk is a local solution of

min
x

ϕk(x) s.t.: Ax = b.
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The optimality conditions for this problem read as

∇ f (xk)+ (xk − x∗)+ μk∇h(xk)− A∗yk = 0,

where yk ∈ R
m is a Lagrange multiplier. Setting sk � ∇ f (xk) − A∗yk , we can

continue with

|〈sk, xk〉| = |〈x∗ − xk, xk〉 − μk〈∇h(xk), xk〉| (81)= |〈x∗ − xk, xk〉 + μkθ |.

As xk → x∗ and μk → 0, we conclude that limk→∞|〈sk, xk〉| = 0.
(iii) Let x ∈ K̄ be arbitrary. Using part (ii) and the Cauchy–Schwarz inequality, we see

that

〈sk, x〉 = 〈sk, x − xk〉 + 〈sk, xk〉
= 〈x∗ − xk, x − xk〉 + 〈sk, xk〉 − μk〈∇h(xk), x − xk〉
(83)≥ −‖x∗ − xk‖ · ‖x − xk‖ + 〈sk, xk〉 − μkθ → 0.

Hence, lim infk→∞〈sk, x〉 ≥ 0 for all x ∈ K̄, which proves that accumulation
points of (sk)k≥1 are contained in the dual cone K̄∗.
Let xk → x∗. Assume first that x∗ ∈ X = K ∩ L. Then the sequence (sk)k≥1
constructed as in part (i i) satisfies sk = −μk∇h(xk) + (x∗ − xk) for all k ≥ 1.
Consequently, sk → 0 as k → ∞. Now assume that x∗ ∈ bd(X). Choosing
μk � 1

‖∇h(xk)‖ → 0 as k →∞, gives sk = x∗ − xk − 1
‖∇h(xk)‖∇h(xk). Lemma 4

in Appendix A shows that the sequence
( ∇h(xk)‖∇h(xk)‖

)
k≥1 is bounded with all its

accumulation points contained inNCK̄(x
∗). This readily implies that accumulation

points of the sequence (sk)k≥1 must be contained in −NCK̄(x
∗).

��

3.2 Second-order approximate KKT conditions

Our definition of an approximate second-order KKT point is motivated by the exact
definition in Theorem 6, stated in Appendix B. The natural inexact version of this
definition reads as follows.

Definition 5 Given ε1, ε2 ≥ 0, a point x̄ ∈ E is an (ε1, ε2)-2KKT point for problem
(Opt) if there exists ȳ ∈ R

m such that for s̄ = ∇ f (x̄)−A∗ ȳ conditions (10) and (11)
hold, as well as

〈s̄, x̄〉 ≤ ε1, (14)

∇2 f (x̄)+√ε2H(x̄) � 0 on L0. (15)
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Given x ∈ X, define the set of feasible directions asFx � {v ∈ E|x+v ∈ X}.Lemma 1
implies that

Tx � {v ∈ E|Av = 0, ‖v‖x < 1} ⊆ Fx . (16)

Upon defining d = [H(x)]1/2v for v ∈ Tx , we obtain a direction d satisfying
A[H(x)]−1/2d = 0 and ‖d‖ = ‖v‖x . Hence, for x ∈ K, we can equivalently char-
acterize the set Tx as Tx = {[H(x)]−1/2d|A[H(x)]−1/2d = 0, ‖d‖ < 1}. In terms
of feasible directions contained in the set Tx , we observe that condition (15) can be
rewritten as follows:

∇2 f (x̄)+√ε2H(x̄) � 0 on L0

⇐⇒ 〈∇2 f (x)[H(x)]−1/2u, [H(x)]−1/2u〉 ≥ −√ε2

‖u‖2 ∀u ∈ ker(A[H(x)]−1/2)
⇐⇒ 〈∇2 f (x)[H(x)]−1/2u, [H(x)]−1/2u〉 ≥ −√ε2

∀u ∈ ker(A[H(x)]−1/2) ∩ {u ∈ E|‖u‖ < 1}
⇐⇒ 〈∇2 f (x)v, v〉 ≥ −√ε2 ∀v ∈ Tx .

The last line connects our approximate KKT condition with the exact condition stated
in Theorem 6 in Appendix B. The next Proposition gives a justification of Definition 5.
We again use a perturbation argument based on an interior penalty approach, inspired
by [58].

Proposition 4 Let x∗ ∈ X̄ be a local solution of problem (Opt), where f is twice
continuously differentiable on X. Then, there exist sequences (xk)k≥1 ⊂ X, (yk)k≥1 ⊂
R
m and sk = ∇ f (xk)− A∗yk , k ≥ 1, satisfying the following:

(i) xk → x∗.
(ii) For all ε1 > 0 we have |〈sk, xk〉| ≤ ε1 for all k sufficiently large.
(iii) All accumulation points of the sequence (sk)k≥1 are contained in −NCK̄(x

∗) ⊆
K̄∗.

(iv) For all sequences vk ∈ Txk we have

lim inf
k→∞ 〈∇

2 f (xk)vk, vk〉 ≥ 0.

Proof Consider the penalty function

ϕk(x) � f (x)+ μkh(x)+ 1

4
‖x − x∗‖4.

It is easy to see that the proof of Proposition 3 still applies,mutatis mutandis, showing
that items (i)–(iii) of the current Proposition hold.
(iv) The point xk satisfies the necessary second-order condition

〈(
∇2 f (xk)+ μk∇2h(xk)+ ‖xk − x∗‖2 IdE+2(xk − x∗)⊗ (xk − x∗)

)
v, v
〉
≥ 0
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for all v ∈ L0. Here IdE is the identity operator on E. This reads as

〈∇2 f (xk)v, v〉 ≥ −μk‖v‖2xk − ρk‖v‖2,

where ρk is the largest eigenvalue of ‖xk − x∗‖2 IdE+2(xk − x∗) ⊗ (xk − x∗). We
know that xk → x∗. Let (vk)k≥1 be an arbitrary sequence with vk ∈ Txk for all k ≥ 1.
Then, there exists a sequence (uk)k≥1 satisfying vk = [H(xk)]−1/2uk and ‖uk‖ < 1.
Therefore, ‖vk‖2xk = ‖uk‖2 < 1, and ‖vk‖ = ‖uk‖∗xk ≤ ‖xk‖e∗(uk), where we have
used Lemma 5 and the definition e∗(v) � supx∈K:‖x‖=1‖v‖∗x . We thus obtain the
bound

〈∇2 f (xk)vk, vk〉 ≥ −μk‖uk‖2 − ρk‖xk‖2e∗(uk)2.

Since the sequence (uk)k≥1 is bounded,μk → 0+ and ρk → 0+ as k →∞, the claim
follows. ��

3.3 Discussion

3.3.1 Comparison with approximate KKT conditions for interior-point methods

To compare our approximate KKT conditions with the ones previously formulated
in the literature we consider the particular case K̄ = K̄NN ⊂ E = R

n as in [58, 82].
The exact optimality condition for problem (Opt), assuming that f is continuously
differentiable at x∗, reads in this case as the complementarity system for the primal–
dual triple (x∗, y∗, s∗) ∈ K̄NN × R

m × K̄NN given by

Ax∗ = b, s∗ = ∇ f (x∗)− A∗y∗ ∈ K̄NN,

(∀i = 1, . . . , n) : x∗i s∗i = 0.

These conditions directly motivate the approximate optimality conditions used in the
interior-point method of [58], which are A∗ x̄ = b, x̄ > 0, and

s̄ = ∇ f (x̄)− A∗ ȳ ≥ −ε1n, (17)

max
1≤i≤n|x̄i [∇ f (x̄)− A∗ ȳ]i | ≤ ε, (18)

d�
(
diag[x̄]∇2 f (x̄) diag[x̄] + √εI

)
d ≥ 0 ∀d ∈ ker(A[H(x̄)]−1/2), (19)

where 1n ∈ R
n is the vector of all ones and I = IdRn is the n × n identity matrix.

Note that, in this particular case, our first-order conditions (10)–(12) are similar but a
bit stronger since they imply (17) and (18). Note also that the change of variable v =
[H(x̄)]−1/2d = diag[x̄]d shows the equivalence between our second-order condition
(15) and the condition (19). These observations provide additional motivation for our
definitions of approximateKKTpoints since similar in spirit definitions of approximate
KKT points were previously used in the literature, i.e., in [58].
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As pointed out in [82], conditions (18) and (19) are commonly used approximate
optimality conditions for (Opt) [15, 36].However, these two conditions alone are insuf-
ficient to guarantee that a sequence of points that satisfies these conditions as ε→ 0
converges to a KKT point for f [58]. For this reason the condition (17) is added in
[58]. These conditions can be overly stringent for coordinates i in which x̄i is positive
and numerically large (which is possible only if the norm of the vectors is not toomuch
restricted in concrete instances, due to our compactness assumption). In this case, the
complementarity condition (18) requires the corresponding dual variable s̄i to be very
small. Similarly, (19) requires that the Hessian in the subspace spanned by these coor-
dinates can have only minimal negative curvature. Such requirements contrast sharply
with the case of unconstrainedminimization. In the limiting scenario inwhich all of the
coordinates of x̄ are far from the boundary, these approximate first-order conditions are
significantly harder to satisfy than in the (equivalent) unconstrained formulation. To
remedy this potential problem, O’Neill and Wright [82] proposed scaling in Eqs. (18)
and (19) only when x̄i ∈ (0, 1]. This operation aims for an interpolation between
the bound-constrained case (when x̄i is small) and the unconstrained case (when x̄i is
large), while also controlling the normof thematrix used in their optimality conditions.
Since [82] only assume non-negativity constraints without linear equality constraints,
and no further upper bounds on the decision variables, this clipping of variables makes
a lot of sense. However, since we assume compactness, the coordinates of the approxi-
mate solutions can become large, but only up to a pre-defined and known upper bound.
Hence, the hardness issue of identifying an approximate KKT point is less pronounced
in our work.Moreover, we prove that our algorithms produce approximate KKT points
with standard scaling and with a similar iteration complexity as in the setting of [82].
Finally, it is easy to show that the conditions with interpolating scaling of [82] follow
in our setting for K̄ = K̄NN as well since 0 ≤ min{xi , 1} ≤ xi in this case.

3.3.2 Complementarity conditions for symmetric cones

If K̄ is a symmetric cone, the approximate complementarity conditions (12) and (14)
are equivalent to approximate complementarity conditions formulated in terms of the
multiplication ◦ under which K becomes an Euclidean Jordan algebra. [72, Prop.2.1]
shows that x ◦ y = 0 if and only if 〈x, y〉 = 0, where 〈·, ·〉 is the inner product of
the space E. Moreover, if K̄ is a primitive symmetric cone, then by [45, Prop.III.4.1],
there exists a constant a > 0 such that a tr(x ◦ y) = 〈x, y〉 for all x, y ∈ K. In view
of this relation, our approximate complementarity conditions can be written in the
form of condition s̄ ◦ x̄ ≤ ε. Hence, our approximate KKT conditions reduce to the
ones reported in [6]. In particular, for K̄ = K̄NN we recover the standard approximate
complementary slackness condition s̄ki x̄

k
i ≤ ε for all i , as in this case the Jordan

product ◦ gives rise to the Hadamard product. See [5] for more details.

3.3.3 On the relation to scaled critical points

In absence of differentiability at the boundary, a popular formulation of necessary
optimality conditions involves the definition of scaled critical points. Indeed, at a local
minimizer x∗, the scaled first-order optimality condition x∗i [∇ f (x∗)]i = 0, 1 ≤ i ≤ n
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holds, where the product is taken to be 0 when the derivative does not exist. Based
on this characterization, one may call a point x ∈ KNN with |xi [∇ f (x)]i | ≤ ε for
all i = 1, . . . , n an ε-scaled first-order point. Algorithms designed to produce ε-
scaled first-order points, with some small ε > 0, have been introduced in [15, 16].
As reported in [58], there are several problems associated with this weak definition of
a critical point. First, when derivatives are available on K̄NN, the standard definition
of a critical point would entail the inequality 〈∇ f (x), x ′ − x〉 ≥ 0 for all x ′ ∈ K̄NN.

Hence, [∇ f (x)]i = 0 for xi > 0 and [∇ f (x)]i ≥ 0 for xi = 0. It follows that
∇ f (x) ∈ K̄NN, a condition that is absent in the definition of a scaled critical point.
Second, scaled critical points come with no measure of strength, as they hold trivially
when x = 0, regardless of the objective function. Third, there is a general gap between
local minimizers and limits of ε-scaled first-order points, when ε → 0+ (see [58]).
Similar remarks apply to the scaled second-order condition, considered in [15]. Our
definition of approximate KKT points overcome these issues. In fact, our definitions of
approximate first- and second-order KKT points are continuous in ε, and therefore in
the limit our approximate KKT conditions coincide with first- and weak second-order
necessary conditions for a local minimizer. This is achieved without assuming global
differentiability of the objective function or performing an additional smoothing of
the problem data as in [14, 15].

3.3.4 Second-order conditions in the literature on interior-point methods compared
to standard second-order conditions

As discussed above, our necessary second-order optimality conditions stated in Propo-
sition 4, and their approximate counterpart given in Definition 5, are in alignment with
the existing body of work that studies non-convex conic optimization [58, 61, 82]. In
particular, condition (15) coincides with those used in [58, 82] for the particular case
of non-negativity constraints, and in [61] for general conic constraints. However, the
necessary second-order optimality conditions in Proposition 4, [58, Theorem 1], [82,
Theorem 3.1], [61, Theorem 4] are weaker than the standard ones that we refer to as
strong conditions. This can be easily illustrated with the following example.3

Example 11 (Strong vs. weak necessary second-order optimality conditions) Consider
E = R and K̄ = K̄NN = R+. Also, assume that there are no linear equality constraints.
Consider the function f : R+ → R defined by

f (x) =
⎧⎨
⎩
− 1

2 x
2 if x ∈ [0, 1],

1
2 (x − 2)2 − 1 if x ∈ (1, 3],
x − 7

2 if x ∈ (3,∞).

This function is continuously differentiable on R++, bounded from below, and has
Lipschitz gradient. The minimization problem min{ f (x)|x ∈ R+} has two first-order
KKT points x ∈ {0, 2}, both supported by Lagrange multiplier s = 0. A strong
second-order necessary optimality condition involves the strong critical cone [81,

3 We thank an anonymous referee who proposed to us a similar example.
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Section12.5], which in the current example reads as

Cs(x) = {d ∈ R|d ≥ 0 if x = 0}.

A strong second-order necessary condition is then

〈d,∇2 f (x̄)d〉 ≥ 0 ∀d ∈ Cs(x̄).

Since Cs(0) = [0,∞), but ∇2 f (0) = −1, it follows that x̄ = 0 does not satisfy the
strong second-order necessary condition. However, Cs(2) = R, and ∇2 f (2) = 1. In
fact (x∗, s∗) = (2, 0) is the global solution to the problem. When the strong critical
cone is replaced by the weak critical cone [52, 53]

Cw(x) = {d ∈ R|d = 0 if x = 0},

the weak second-order necessary condition reads as

〈d,∇2 f (x̄)d〉 ≥ 0 ∀d ∈ Cw(x̄). (20)

Clearly x̄ = 0 satisfies this weak second-order condition.
At the same time, x̄ = 0 is a second-order stationary point in the sense of Propo-

sition 4 since the necessary conditions (i)–(iv) of that Proposition hold. Indeed,
let us consider the sequence xk = 1

k , k ≥ 1 and the corresponding sequence
sk = ∇ f (xk) = −xk = − 1

k . Then, clearly xk → 0 = x̄ and condition (i) holds.
Condition (ii) also holds since |〈sk, xk〉| = 1

k2
≤ ε1 for sufficiently large k. Since

sk → 0 as k → ∞, we have that condition (iii) holds as well. We finally show that
(iv) holds. Let us consider arbitrary vk ∈ Txk . Then, by the Definition (16) of Txk we
have that 1 > ‖vk‖xk =

√〈H(xk)vk, vk〉 = |vk/xk | = |kvk |, which implies |vk | ≤ 1
k

and 〈∇2 f (xk)vk, vk〉 = −v2k → 0 as k →∞, which finishes the proof of (iv). Thus,
we proved that x̄ = 0 is a second-order stationary point in the sense of Proposition 4.
Importantly, one can show that in this example the point x̄ = 0 satisfies also second-
order necessary optimality conditions in [58, Theorem 1], [82, Theorem 3.1], [61,
Theorem 4]. Overall, in this example we see that x̄ = 0 is not a strong second-order
stationary point, but is a weak second-order stationary point since (20) as well as con-
ditions in Proposition 4, [58, Theorem 1], [82, Theorem 3.1], [61, Theorem 4] hold.

♦

Our second-order necessary conditions involve the set Tx . Theorem 3.2 in [73]
demonstrates that the cone generated by Tx coincides with the weak critical cone for
conic programming, which is used in weak second-order necessary conditions [8, 52].
At the same time, weak second-order necessary conditions are appropriate notions for
barrier algorithms. Indeed, [53] gives an explicit example illustrating that accumula-
tion points of trajectories generated by barrier algorithms will converge to stationary
points satisfying the weak second-order necessary condition, but not the strong ver-
sion. Later, Andreani and Secchin [10] made a small modification in Gould and Toint’s
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counterexample to come to the same conclusion for augmented Lagrangian-type algo-
rithms. Hence, the most we can expect from our method is that it generates points that
approximately satisfy the weak second-order necessary optimality conditions.

4 A first-order Hessian barrier algorithm

In this section we introduce a first-order potential reduction method for solving (Opt)
that uses a barrier h ∈ Hθ (K) and potential function (2).We assume that we are able to
compute an approximate analytic center at low computational cost. Specifically, our
algorithm relies on the availability of a θ -analytic center, i.e. a point x0 ∈ X such that

h(x) ≥ h(x0)− θ ∀x ∈ X. (21)

To obtain such a point x0, one can apply interior point methods to the convex program-
ming problem minx∈X h(x). Moreover, since θ ≥ 1 we do not need to solve it with
high precision, making the application of computationally cheap first-order method,
such as [43], an appealing choice for this preprocessing step.

4.1 Local properties

Our complexity analysis relies on the ability to control the behavior of the objective
function along the set of feasible directions and with respect to the local norm.

Assumption 3 (Local smoothness) f : E→ R∪{+∞} is continuously differentiable
on X and there exists a constant M > 0 such that for all x ∈ X and v ∈ Tx , where Tx

is defined in (16), we have

f (x + v)− f (x)− 〈∇ f (x), v〉 ≤ M

2
‖v‖2x . (22)

Remark 2 If the set X̄ is bounded, we have λmin(H(x)) ≥ σ for some σ > 0. In
this case, assuming f has an M-Lipschitz continuous gradient, the classical descent
lemma [76] implies Assumption 3. Indeed,

f (x + v)− f (x)− 〈∇ f (x), v〉 ≤ M

2
‖v‖2 ≤ M

2σ
‖v‖2x .

♦

Remark 3 We emphasize that the local Lipschitz smoothness condition (22) does not
require global differentiability. Consider the composite non-smooth and non-convex
model (1) on K̄NN, with ϕ(s) = s for s ≥ 0. This means

∑n
i=1 ϕ(x p

i ) = ‖x‖pp
for p ∈ (0, 1) and x ∈ K̄NN. As a concrete example for the smooth part of the
problem let us consider the L2-loss �(x) = 1

2‖Nx − p‖2. This gives rise to the
L2 − L p minimization problem, an important optimization formulation arising in
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phase retrieval, mathematical statistics, signal processing and image recovery [36, 49,
50, 71]. Setting M = λmax(N∗N), the descent lemma yields

�(x+) ≤ �(x)+ 〈∇�(x), x+ − x〉 + M

2
‖x+ − x‖2,

for x, x+ ∈ KNN. Since t �→ t p is concave for t > 0 and p ∈ (0, 1), we have, for
x, x+ ∈ KNN,

(x+i )p ≤ x p
i + px p−1

i (x+i − xi ) i = 1, . . . , n.

Adding these inequalities, we immediately arrive at condition (22) in terms of the
Euclidean norm. Over a bounded feasible set X̄, this implies Assumption 3 (cf.
Remark 2). At the same time, f is not differentiable for x ∈ bd(KNN) = {x ∈
R
n+|xi = 0 for some i}. ♦

We emphasize that in Assumption 3, the Lipschitz modulusM is hardly known exactly
in practice, and it is also not an easy task to obtain universal upper bounds that can
be efficiently used in the algorithm. Therefore, adaptive techniques should be used to
estimate it and are likely to improve the practical performance of the method.

Considering x ∈ X, v ∈ Tx and combining Eq. (22) with Eq. (7) (with d = v and

t = 1 < 1
‖v‖x

(5)≤ 1
ζ(x,v)

) reveals a suitable quadratic model, to be used in the design of
our first-order algorithm.

Lemma 2 (Quadratic overestimation) For all x ∈ X, v ∈ Tx and L ≥ M, we have

Fμ(x + v) ≤ Fμ(x)+ 〈∇Fμ(x), v〉 + L

2
‖v‖2x + μ‖v‖2xω(ζ(x, v)). (23)

4.2 Algorithm description and its complexity

4.2.1 Defining the step direction

Let x ∈ X be given. Our first-order method employs a quadratic model Q(1)
μ (x, v) to

compute a search direction vμ(x), given by

vμ(x) � argmin
v∈E:Av=0

{
Q(1)

μ (x, v) � Fμ(x)+ 〈∇Fμ(x), v〉 + 1

2
‖v‖2x

}
. (24)

For the above problem, we have the following system of optimality conditions involv-
ing the dual variable yμ(x) ∈ R

m :

∇Fμ(x)+ H(x)vμ(x)− A∗yμ(x) = 0, (25)

Avμ(x) = 0. (26)
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Since H(x) � 0 for x ∈ X, any standard solution method [81] can be applied for
the above linear system. Moreover, this system can be solved explicitly. Indeed, since
H(x) � 0 for x ∈ X, and A has full row rank, the linear operator A[H(x)]−1A∗ is
invertible. Hence, vμ(x) is given explicitly as

vμ(x) = −([H(x)]−1A∗(A[H(x)]−1A∗)−1A[H(x)]−1
−[H(x)]−1)∇Fμ(x) � −Sx∇Fμ(x).

To give some intuition behind this expression, observe that we can give an alternative
representation of Sx as Sxv = [H(x)]−1/2x [H(x)]−1/2v, where

xv � v − [H(x)]−1/2A∗(A[H(x)]−1A∗)−1A[H(x)]−1/2v.

This shows that Sx is just the ‖·‖x -orthogonal projection operator onto
ker(A[H(x)]−1/2).

4.2.2 Defining the step-size

To determine an acceptable step-size, consider a point x ∈ X. The search direction
vμ(x) gives rise to a family of parameterized arcs x+(t) � x + tvμ(x), where t ≥ 0.
Our aim is to choose this step-size to ensure feasibility of iterates and decrease of the
potential. By (6) and (26), we know that x+(t) ∈ X for all t ∈ Ix,μ � [0, 1

ζ(x,vμ(x)) ).

Multiplying (25) by vμ(x) and using (26), we obtain 〈∇Fμ(x), vμ(x)〉 = −‖vμ(x)‖2x .
Choosing t ∈ Ix,μ, we bound

t2‖vμ(x)‖2xω(tζ(x, vμ(x)))
(3)≤ t2‖vμ(x)‖2x

2(1− tζ(x, vμ(x)))
.

Therefore, if tζ(x, vμ(x)) ≤ 1/2, we readily see from (23) that

Fμ(x+(t))− Fμ(x) ≤ −t‖vμ(x)‖2x +
t2M

2
‖vμ(x)‖2x + μt2‖vμ(x)‖2x

= −t‖vμ(x)‖2x
(
1− M + 2μ

2
t

)
� −ηx (t). (27)

The function t �→ ηx (t) is strictly concave with the unique maximum at 1
M+2μ , and

two real roots at t ∈
{
0, 2

M+2μ
}
. Thus, maximizing the per-iteration decrease ηx (t)

under the restriction 0 ≤ t ≤ 1
2ζ(x,vμ(x)) , we choose the step-size

tμ,M (x) � min

{
1

M + 2μ
,

1

2ζ(x, vμ(x))

}
.
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Algorithm 1: First-order Adaptive Hessian Barrier Algorithm -
FAHBA(μ, ε, L0, x0)

Data: h ∈ Hθ (K), μ > 0, ε > 0, L0 > 0, x0 ∈ X.
Result: (xk , yk , sk , Lk ) ∈ X× R

m × K∗ × R+, where sk = ∇ f (xk )− A∗yk , and Lk is the last
estimate of the Lipschitz constant in (22).

Set k = 0;
repeat

Set ik = 0. Find vk � vμ(xk ) and the corresponding dual variable yk � yμ(xk ) as the solution
to

min
v∈E:Av=0{Fμ(xk )+ 〈∇Fμ(xk ), v〉 + 1

2
‖v‖2

xk
}. (28)

repeat

αk � min

{
1

2ik Lk + 2μ
,

1

2ζ(xk , vk )

}
,where ζ(·, ·) as in (4) (29)

Set zk = xk + αkv
k , ik = ik + 1;

until

f (zk ) ≤ f (xk )+ 〈∇ f (xk ), zk − xk 〉 + 2ik−1Lk‖zk − xk‖2
xk

. (30)

;

Set Lk+1 = 2ik−1Lk , xk+1 = zk , k = k + 1;

until ‖vk‖xk < ε
θ ;

4.2.3 Backtracking on the Lipschitz modulus

The above step-size rule, however, requires knowledge of the parameter M . To boost
numerical performance, we employ a backtracking scheme in the spirit of [79] to esti-
mate the constant M at each iteration. This procedure generates a sequence of positive
numbers (Lk)k≥0 for which the local Lipschitz smoothness condition (22) holds.More
specifically, suppose that xk is the current position of the algorithm with the corre-
sponding initial local Lipschitz estimate Lk and vk = vμ(xk) is the corresponding
search direction. To determine the next iterate xk+1, we iteratively try step-sizes αk of
the form tμ,2ik Lk

(xk) for ik ≥ 0 until the local smoothness condition (22) holds with

x = xk , v = αkv
k and local Lipschitz estimate M = 2ik Lk , see (30). This process

must terminate in finitely many steps, since when 2ik Lk ≥ M , inequality (22) with M
changed to 2ik Lk , i.e., (30), follows from Assumption 3.

4.2.4 First-order algorithm and its complexity result

Combining the search direction finding problem (24) with the just outlined back-
tracking strategy, yields a First-order Adaptive Hessian Barrier Algorithm (FAHBA,
Algorithm 1).

Our main result on the iteration complexity of Algorithm 1 is the following Theo-
rem, whose proof is given in Sect. 4.3.
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Theorem 1 LetAssumptions 1–3hold.Fix the error tolerance ε > 0, the regularization
parameterμ = ε

θ
, and some initial guess L0 > 0 for the Lipschitz constant in (22). Let

(xk)k≥0 be the trajectory generated byFAHBA(μ, ε, L0, x0), where x0 is a θ -analytic
center satisfying (21). Then the algorithm stops in no more than

KI (ε, x
0) =

⌈
4( f (x0)− fmin(X)+ ε)

θ2(max{M, L0} + ε/θ)

ε2

⌉
(31)

outer iterations, and the number of inner iterations is no more than 2(KI (ε, x0)+1)+
max{log2(M/L0), 0}. Moreover, the last iterate obtained from FAHBA(μ, ε, L0, x0)
constitutes a 2ε-KKT point for problem (Opt) in the sense of Definition 4.

Remark 4 The line-search process of finding the appropriate ik is simple since only
recalculating zk is needed, and repeatedly solvingproblem (28) is not required. Further-
more, the sequence of constants Lk is allowed to decrease along subsequent iterations,
which is achieved by the division by the constant factor 2 in the final updating step of
each iteration. This potentially leads to longer steps and faster decrease of the potential.

♦

Remark 5 Since θ ≥ 1, f (x0) − fmin(X) is expected to be larger than ε, and the
constant M is potentially large, we see that the main term in the complexity bound

(31) is O
(
Mθ2( f (x0)− fmin(X))

ε2

)
= O

(
θ2

ε2

)
, i.e., has the same dependence on ε as

the standard complexity bounds [24, 25, 69] of first-order methods for non-convex
problems under the standard Lipschitz-gradient assumption, which on bounded sets
is subsumed by our Assumption 3. Further, if the function f is linear, Assumption 3
holds with M = 0 and we can take L0 = 0. In this case, the complexity bound (31)

improves to O
(

θ( f (x0)− fmin(X))
ε

)
. ♦

Remark 6 Just like classical interior-point methods, the iteration complexity of
FAHBA depends on the barrier parameter θ ≥ 1. For conic domains, the characteriza-
tion of this barrier parameter has thus been an active research line. [56] demonstrated
that for symmetric cones, the barrier parameter is equivalent to algebraic properties
of the cone and identified it with the rank of the cone (see [45] for a definition of the
rank of a symmetric cone). This deep analysis gives an exact characterization of the
optimal barrier parameter for the most important conic domains in optimization. For
KNN and KSDP, it is known that θ = n is optimal, whereas for KSOC the optimal barrier
parameter is θ = 2 (and therefore independent of the dimension n). ♦

4.2.5 Connection with interior point flows on polytopes

Consider K̄ = K̄NN, and X = KNN∩L. We are given a function f : X̄→ Rwhich is the
restriction of a smooth function f : Rn → R. The canonical barrier for this setting
is h(x) = −∑n

i=1 ln(xi ), so that H(x) = diag[x−21 , . . . , x−2n ] � X−2 for x ∈ X.
Applying our first-order method on this domain gives the search direction vμ(x) =
−Sx∇Fμ(x) = −X(I−XA�(AX2A�)−1AX)X∇Fμ(x). This explicit formula yields
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various interesting connections between our approach and classical methods. First, for
f (x) = c�x and μ = 0, we obtain from this formula the search direction employed
in affine scaling methods for linear programming [1, 11, 12]. Second, [22] partly
motivated their algorithm as a discretization of theHessian-Riemannian gradient flows
introduced in [4, 21]. Heuristically, we can think of FAHBA as an explicit Euler
discretization (with non-monotone adaptive step-size policies) of the gradient-like
flow ẋ(t) = −Sx(t)∇Fμ(x(t)), which resembles very much the class of dynamical
systems introduced in [21]. This gives an immediate connection to a large class of
interior point flows on polytopes, heavily studied in control theory [62].

4.3 Proof of Theorem 1

Ourproof proceeds in several steps. First,we show that procedureFAHBA(μ, ε, L0, x0)
produces points in X, and, thus, is indeed an interior-point method. Next, we show that
the line-search process of finding appropriate Lk in each iteration is finite, and estimate
the total number of trials in this process. Then we enter the core of our analysis where
we prove that if the stopping criterion does not hold at iteration k, i.e., ‖vk‖xk ≥ ε

θ
,

then the objective f is decreased by a quantity O(ε2), and, since the objective is glob-
ally lower bounded, we conclude that the method stops in at most O(ε−2) iterations.
Finally, we show that when the stopping criterion holds, the method has generated an
ε-KKT point.

4.3.1 Interior-point property of the iterates

By construction x0 ∈ X. Proceeding inductively, let xk ∈ X be the k-th iterate of the
algorithm, delivering the search direction vk � vμ(xk). By Eq. (29), the step-size αk

satisfies αk ≤ 1
2ζ(xk ,vk )

, and, hence, αkζ(xk, vk) ≤ 1/2 for all k ≥ 0. Thus, by (6)

xk+1 = xk + αkv
k ∈ K. Since, by (28), Avk = 0, we have that xk+1 ∈ L. Thus,

xk+1 ∈ K ∩ L = X. By induction, we conclude that (xk)k≥0 ⊂ X.

4.3.2 Bounding the number of backtracking steps

Let us fix iteration k. Since the sequence 2ik Lk is increasing as ik is increasing, and
Assumption 3 holds,we know thatwhen 2ik Lk ≥ max{M, Lk}, the line-search process
for sure stops since inequality (30) holds. Hence, 2ik Lk ≤ 2max{M, Lk} must be the
case, and, consequently, Lk+1 = 2ik−1Lk ≤ max{M, Lk}, which, by induction, gives
Lk+1 ≤ M̄ � max{M, L0}. At the same time, log2

(
Lk+1
Lk

)
= ik − 1, ∀k ≥ 0. Let

N (k) denote the number of inner line-search iterations up to the k−th iteration of
FAHBA(μ, ε, L0, x0). Then, using that Lk+1 ≤ M̄ = max{M, L0},

N (k) =
k∑
j=0

(i j + 1) =
k∑
j=0

(log2(L j+1/L j )+ 2) ≤ 2(k + 1)+max{log2(M/L0), 0}.

This shows that on average the inner loop ends after two trials.
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4.3.3 Per-iteration analysis and a bound for the number of iterations

Let us fix iteration counter k. Since Lk+1 = 2ik−1Lk , the step-size (29) reads as αk =
min

{
1

2Lk+1+2μ, 1
2ζ(xk ,vk )

}
. Hence, αkζ(xk, vk) ≤ 1/2, and (27) with the specification

t = αk = tμ,2Lk+1(x
k), M = 2Lk+1, x = xk , vμ(xk) � vk gives:

Fμ(xk+1)− Fμ(xk) ≤ −αk‖vk‖2xk (1− (Lk+1 + μ)αk) ≤ −
αk‖vk‖2xk

2
, (32)

where we used that αk ≤ 1
2(Lk+1+μ)

in the last inequality. Substituting into (32) the
two possible values of the step-size αk in (29) gives

Fμ(xk+1)− Fμ(xk) ≤
⎧⎨
⎩−

‖vk‖2
xk

4(Lk+1+μ)
if αk = 1

2(Lk+1+μ)

− ‖vk‖2
xk

4ζ(xk ,vk )

(5)≤ −‖vk‖xk4 if αk = 1
2ζ(xk ,vk )

.

(33)

Recalling Lk+1 ≤ M̄ (see Sect. 4.3.2), we obtain that

Fμ(xk+1)− Fμ(xk) ≤ −‖v
k‖xk
4

min

{
1,
‖vk‖xk
M̄ + μ

}
� −δk .

Rearranging and summing these inequalities for k from 0 to K − 1 gives

K min
k=0...,K−1 δk ≤

K−1∑
k=0

δk ≤ Fμ(x0)− Fμ(xK )

(2)= f (x0)− f (xK )+ μ(h(x0)− h(xK )) ≤ f (x0)− fmin(X)+ ε, (34)

where we used that, by the assumptions of Theorem 1, x0 is a θ -analytic center defined
in (21) and μ = ε/θ , implying that h(x0) − h(xK ) ≤ θ = ε/μ. Thus, up to passing
to a subsequence, δk → 0, and consequently ‖vk‖xk → 0 as k →∞. This shows that
the stopping criterion in Algorithm 1 is achievable.

Assume now that the stopping criterion ‖vk‖xk < ε
θ
does not hold for K iterations

of FAHBA. Then, for all k = 0, . . . , K − 1, it holds that δk ≥ min
{

ε
4θ , ε2

4θ2(M̄+μ)

}
.

Together with the parameter coupling μ = ε
θ
, it follows from (34) that

K
ε2

4θ2(M̄ + ε/θ)
= K min

{
ε

4θ
,

ε2

4θ2(M̄ + ε/θ)

}
≤ f (x0)− fmin(X)+ ε.

Hence, recalling that M̄ = max{M, L0}, we obtain

K ≤ 4( f (x0)− fmin(X)+ ε) · θ
2(max{M, L0} + ε/θ)

ε2
,
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i.e., the algorithm stops for sure after no more than this number of iterations. This,
combined with the bound for the number of inner steps in Sect. 4.3.2, proves the first
statement of Theorem 1.

4.3.4 Generating "-KKT point

To finish the proof of Theorem 1, we now show that when Algorithm 1 stops for the
first time, it returns a 2ε-KKT point of (Opt) according to Definition 4.

Let the stopping criterion hold at iteration k. By the optimality condition (25) and
the definition of the potential (2), we have

∇ f (xk)− A∗yk + μ∇h(xk) = −H(xk)vk ⇐⇒ [H(xk)]−1(
∇ f (xk)− A∗yk + μ∇h(xk)

)
= −vk . (35)

Denoting gk � −μ∇h(xk), multiplying both equations, and using the stopping crite-
rion ‖vk‖xk < ε

θ
, we conclude

‖∇ f (xk)− A∗yk − gk‖∗xk = ‖vk‖xk <
ε

θ
.

Whence, setting sk � ∇ f (xk)− A∗yk ∈ E
∗, the definition of the dual norm yields

ε

θ
> ‖vk‖xk = ‖sk − gk‖∗xk

= ‖sk − gk‖[H(xk )]−1
(79)= ‖sk − gk‖∇2h∗(−∇h(xk ))

= ‖sk − gk‖∇2h∗( 1
μ
gk ) = μ‖sk − gk‖∇2h∗(gk ), (36)

where in the last equality we used the fact h∗ ∈ Hθ (K∗), so that Eq. (80) delivers the
identity ∇2h∗( 1

μ
gk) = μ2∇2h∗(gk). Since we set μ = ε

θ
, it follows

‖sk − gk‖∇2h∗(gk ) =
‖vk‖xk

μ
<

ε

μθ
= 1. (37)

Thus, since, by (78), gk = −μ∇h(xk) ∈ int(K∗), applying Lemma 1, we can now
conclude that ∇ f (xk)−A∗yk = sk ∈ int(K∗) and therefore (11) holds. By construc-
tion, xk ∈ K and Axk = b. Thus, (10) holds as well. Finally, since (xk, sk) ∈ K × K∗,
we see

0 ≤ 〈sk, xk〉 = 〈sk − gk, xk〉 + 〈gk, xk〉
≤ ‖sk − gk‖∗xk · ‖xk‖xk − μ〈∇h(xk), xk〉
(36),(82),(81)= ‖vk‖xk

√
θ + μθ

<
√

θ
ε

θ
+ ε ≤ 2ε, (38)
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where the last inequality uses θ ≥ 1. Hence, the complementarity condition (12) holds
as well. This finishes the proof of Theorem 1.

4.4 Discussion

4.4.1 Special case of non-negativity constraints

For K̄ = K̄NN = R
n+, i.e., a particular case covered by our general problem template

(Opt), [58] consider a first-order potential reduction method employing the standard
log-barrier h(x) = −∑n

i=1 ln(xi ) and using a trust-region subproblem for obtaining
the search direction. For x ∈ KNN, we have ∇h(x) = [−x−11 , . . . ,−x−1n ]�, H(x) =
diag[x−21 , . . . , x−2n ] � X−2, which makes the problem in a sense simpler since we
have a natural coupling between the variable x and the Hessian H(x) expressed

as [H(xk)− 1
2 sk]i = xki s

k
i and simplifying the derivation of the complementarity

condition. More precisely, combining (35), the information [H(xk)]−1/2∇h(xk) =
−1n, θ = n, and the stopping criterion of Algorithm 1 at iteration k, saying that
‖vk‖xk < ε

θ
, we see

‖[H(xk)]− 1
2 (∇ f (xk)− A∗yk)− μ1n‖∞ ≤ ‖[H(xk)]− 1

2 (∇ f (xk)− A∗yk)− μ1n‖
= ‖−[H(xk)] 12 vk‖ <

ε

n
.

Therefore, sinceμ = ε/n and sk = ∇ f (xk)−A∗yk , we have H(xk)− 1
2 sk = Xksk > 0

and xk ∈ R
n++ implies sk ∈ R

n++. Additionally, from the triangle inequality, we have

‖Xksk‖∞ ≤ ‖H(xk)−1/2sk − μ1n‖∞ + μ ≤ 2ε

n
. (39)

By Remark 5, these results are achieved after O
(
Mn2( f (x0)− fmin(X))

ε2

)
iterations of

FAHBA. This bound is by the factor 1
n sharper than the complementarity measure

employed in [58] who have just ε in the r.h.s. of relation (39), although they work
under an assumption similar to our Assumption 3 and the additional assumption that
the level sets of f are bounded. Conversely, in order to attain an approximate KKT
point with the same strength as in [58], the above calculations suggest that we can
weaken our tolerance from ε to ε · n, which results in an overall iteration complex-

ity of O
(
M( f (x0)− fmin(X))

ε2

)
, and a complementarity measure ‖Xksk‖∞ ≤ 2ε. Thus,

in the particular case of non-negativity constraints our general algorithm is able to
obtain results similar to [58], but under weaker assumptions. At the same time, our
algorithm ensures a stronger measure of complementarity. Indeed, our algorithm guar-
antees that xk ∈ KNN, sk = ∇ f (xk)−A∗yk ∈ KNN, i.e., xk, sk > 0, and approximate

complementary 0 ≤ ∑n
i=1|xki ski | =

∑n
i=1 xki s

k
i ≤ 2ε after O

(
Mn2( f (x0)− fmin(X))

ε2

)
iterations, which is stronger than max1≤i≤n|xki ski | ≤ 2ε guaranteed by [58]. Indeed,
max1≤i≤n|xki ski | ≤

∑n
i=1|xki ski | ≤ nmax1≤i≤n|xki ski |, and both equalities are achiev-
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able. Moreover, to match our stronger guarantee, one has to change ε → ε/n in the

complexity bound of [58], which leads to the same O
(
Mn2( f (x0)− fmin(X))

ε2

)
complex-

ity bound. Besides these important insights, our algorithm is designed for general
cones, rather than only for K̄NN. For more general cones we can not use the identity

[H(x)]− 1
2 = X, which was very helpful for the derivation of (39) and for the analysis

in [58]. Thus, for general, potentially non-symmetric, coneswe have to exploit suitable
properties of the barrier class Hθ (K) and develop a new analysis technique. Finally,
our method does not rely on the trust-region techniques as in [58] that may slow down
the convergence in practice since the radius of the trust region is no greater than O(ε)

leading to short steps.

4.4.2 Exploiting the structure of symmetric cones

In (33) we can clearly observe the benefit of the use of θ -SSB in our algorithm, when-
ever K is a symmetric cone. Indeed, when αk = 1

2ζ(xk ,vk )
, the per-iteration decrease of

the potential is
‖vk‖2

xk

4ζ(xk ,vk )
≥ ε‖vk‖xk

4θζ(xk ,vk)
which may be large if ζ(xk, vk) = σxk (−vk) 

‖vk‖xk .
4.4.3 The role of the penalty parameter

Next, we discuss more explicitly, how the algorithm and complexity bounds depend
on the parameter μ. The first observation is that from (37), to guarantee that sk ∈ K∗,
we need the stopping criterion to be ‖vk‖xk < μ, which by (38) leads to the error
2μθ in the complementarity conditions. From the analysis following equation (34),
we have that

K
μ2

4(M̄ + μ)
= K min

{
μ

4
,

μ2

4 (M̄ + μ)

}
≤ f (x0)− fmin(X)+ μθ.

Whence, recalling that M̄ = max{M, L0},

K ≤ 4( f (x0)− fmin(X)+ μθ) · max{M, L0} + μ

μ2 .

Thus, we see that after O(μ−2) iterations the algorithm finds a (2μθ)-KKT point, and
if μ → 0, we have convergence to a KKT point, but the complexity bound tends to
infinity and becomes non-informative. At the same time, as it is seen from (28), when
μ → 0, the algorithm itself can be interpreted as a preconditioned gradient method
with the local preconditioner given by the Hessian H(x).

We also see from the above explicit expressions in terms of μ that the design of the
algorithm requires careful balance between the desired accuracy of the approximate
KKT point expressed mainly by the complementarity condition, stopping criterion,
and complexity. Moreover, the step-size should be also taken carefully to ensure the
feasibility of the iterates, and the standard for first-order methods step-size 1/M may
not work.
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4.5 Anytime convergence via restarting FAHBA

The analysis of Algorithm 1 is based on the a-priori fixed tolerance ε > 0 and the
parameter coupling μ = ε/θ . This coupling allows us to embed Algorithm 1 within
a restarting scheme featuring a decreasing sequence {μi }i≥0, combined with restarts
of FAHBA for each particular μi . This restarting strategy frees Algorithm 1 from
hard-coded parameters and connects it well to traditional barrier methods. Moreover,
the complexity of such path-following method is the same as for FAHBA, up to a
constant factor.

To describe this double-loop algorithm, we fix ε0 > 0 and select the starting point
x00 as a θ -analytic center of X with respect to h ∈ Hθ (K). We let i ≥ 0 denote the
counter for the restarting epochs at the start of which the value μi is decreased. In
epoch i , we generate a sequence {xki }Ki

k=0 by calling FAHBA(μi , εi , L
(i)
0 , x0i ) until the

stopping condition is reached. This will take at most KI (εi , x0i ) iterations, specified

in Eq. (31). We store the last iterate x̂i = xKi
i and the last estimate of the Lipschitz

constant M̂i = L(i)
Ki

obtained fromprocedureFAHBA(μi , εi , L
(i)
0 , x0i ) and then restart

the algorithm using the “warm start” x0i+1 = x̂i , L
(i+1)
0 = M̂i/2, εi+1 = εi/2,

μi+1 = εi+1/θ . If ε ∈ (0, ε0) is the target accuracy of the final solution, it suffices to
perform !log2(ε0/ε)" + 1 restarts since, by construction, εi = ε0 · 2−i .

Algorithm 2: Restarting FAHBA

Data: h ∈ Hθ (K), ε0 > 0, x00 ∈ X satisfying (21), L(0)
0 > 0.

Result: Point x̂i , dual variables ŷi , ŝi = ∇ f (x̂i )− A∗ ŷi .
for i = 0, 1, . . . do

Set εi = 2−i ε0, μi = εi
θ
;

Obtain (x̂i , ŷi , ŝi , M̂i ) from FAHBA(μi , εi , L
(i)
0 , x0i );

Set x0i+1 = x̂i and L(i+1)
0 = M̂i /2.

end

Theorem 2 Let Assumptions 1–3 hold. Then, for any ε ∈ (0, ε0), Algorithm 2 finds
a 2ε-KKT point for problem (Opt) in the sense of Definition 4 after no more than
I (ε) = !log2(ε0/ε)" + 1 restarts and at most

⌈
16

3ε2
( f (x0)− fmin(X)+ ε0)θ

2(max{M, L(0)
0 } + ε0/θ)

⌉

iterations of FAHBA.

Proof Let us consider a restart i ≥ 0 and repeat the proof of Theorem 1 with
the change ε → εi , μ → μi = εi/θ , L0 → L(i)

0 = M̂i−1/2, M̄ =
max{M, L0} → M̄i = max{M, L(i)

0 }, x0 → x0i = x̂i−1. Let Ki be the last itera-

tion of FAHBA(μi , εi , L
(i)
0 , x0i ) meaning that ‖vKi ‖xKi <

εi
θ
, ‖vKi−1‖xKi−1 ≥ εi

θ
,
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and the stopping criterion does not hold for Ki iterations k = 0, . . . , Ki − 1. From
the analysis following Eq. (34), we have that

Ki
ε2i

4θ2(M̄i + εi/θ)
≤ Ki min

k=0...,Ki−1
δik ≤

Ki−1∑
k=0

δik ≤ Fμi (x
0
i )− Fμi (x

Ki
i ). (40)

Further, using the fact that μi is a decreasing sequence and (21), it is easy to deduce

Fμi+1(x
0
i+1) = Fμi+1(x

Ki
i )

(2)= f (xKi
i )+ μi+1h(xKi

i )
(2)= Fμi (x

Ki
i )

+ (μi+1 − μi )h(xKi
i )

(21)≤ Fμi (x
Ki
i )+ (μi+1 − μi )(h(x00 )− θ)

(40)≤ Fμi (x
0
i )− Ki

ε2i

4θ2(M̄i + εi/θ)
+ (μi+1 − μi )(h(x00 )− θ). (41)

Letting I ≡ I (ε) = !log2( ε0
ε
)"+ 1, by Theorem 1 applied to the restart I − 1, we see

that FAHBA(μI−1, εI−1, L(I−1)
0 , x0I−1) outputs a 2ε-KKT point for problem (Opt)

in the sense of Definition 4. Summing inequalities (41) for all the performed restarts
i = 0, . . . , I − 1 and rearranging the terms, we obtain

I−1∑
i=0

Ki
ε2i

4θ2(M̄i + εi/θ)
≤ Fμ0(x

0
0 )− FμI (x

0
I )+ (μI − μ0)(h(x00 )− θ)

(2)= f (x00 )+ μ0h(x00 )− f (x0I )− μI h(x0I )+ (μI − μ0)(h(x00 )− θ)

(21)≤ f (x00 )− fmin(X)+ μ0h(x00 )− μI h(x00 )+ μI θ + (μI − μ0)(h(x00 )− θ)

≤ f (x00 )− fmin(X)+ μ0θ = f (x00 )− fmin(X)+ ε0.

Moreover, based on our updating choice L(i+1)
0 = M̂i/2, it holds that

M̄i = max{M, L(i)
0 } = max{M, M̂i−1/2}

= max{M, L(i−1)
Ki−1 /2} ≤ max{M, M̄i−1} ≤ ... ≤ max{M, M̄0} ≤ max{M, L(0)

0 }.

Hence,

Ki ≤ 4( f (x0)− fmin(X)+ ε0) · θ
2(M̄i + εi/θ)

ε2i
≤ C

ε2i
,

whereC ≡ 4( f (x0)− fmin(X)+ε0)θ
2(max{M, L(0)

0 }+ε0/θ). Finally, we obtain that

the total number of iterations of procedures FAHBA(μi , εi , L
(i)
0 , x0i ), 0 ≤ i ≤ I − 1,
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to reach accuracy ε is at most

I−1∑
i=0

Ki ≤
I−1∑
i=0

C

ε2i
≤ C

ε20

I−1∑
i=0

(22)i ≤ C

3ε20
·
(
41+log2

( ε0
ε

))
= 4C

3ε2

= 16( f (x0)− fmin(X)+ ε0)θ
2(max{M, L(0)

0 } + ε0/θ)

3ε2
.

��

5 A second-order Hessian barrier algorithm

Wenowpresent a second-order potential reductionmethod for (Opt) under the assump-
tion that the second-order Taylor expansion of f on the set of feasible directions Tx

defined in (16) is sufficiently accurate in the geometry induced by h ∈ Hθ (K).

Assumption 4 (Local second-order smoothness) f : E→ R∪{+∞} is twice contin-
uously differentiable on X and there exists a constant M > 0 such that, for all x ∈ X
and v ∈ Tx , where Tx is defined in (16), we have

‖∇ f (x + v)− ∇ f (x)− ∇2 f (x)v‖∗x ≤
M

2
‖v‖2x . (42)

A sufficient condition for (42) is the following local counterpart of the global Lipschitz
condition on the Hessian of f :

(∀x ∈ X)(∀u, v ∈ Tx ) : ‖∇2 f (x + u)− ∇2 f (x + v)‖op,x ≤ M‖u − v‖x ,

where ‖B‖op,x � supu:‖u‖x≤1
{ ‖Bu‖∗x‖u‖x

}
is the induced operator norm for a linear oper-

ator B : E→ E
∗. Indeed, this condition implies (42):

‖∇ f (x + v)−∇ f (x)−∇2 f (x)v‖∗x = ‖
∫ 1

0
(∇2 f (x + tv)− ∇2 f (x))v dt‖∗x

≤
∫ 1

0
‖∇2 f (x + tv)− ∇2 f (x)‖op,x · ‖v‖x dt ≤ M

2
‖v‖2x .

Further, Eq. (42) implies

f (x + v)−
[
f (x)+ 〈∇ f (x), v〉 + 1

2
〈∇2 f (x)v, v〉

]
≤ M

6
‖v‖3x . (43)
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To obtain this, observe that for all x ∈ X and v ∈ Tx , we have

| f (x + v)− f (x)− 〈∇ f (x), v〉 − 1

2
〈∇2 f (x)v, v〉|

= |
∫ 1

0
〈∇ f (x + tv)−∇ f (x)− 1

2
∇2 f (x)v, v〉 dt |

≤
∫ 1

0
‖∇ f (x + tv)− ∇ f (x)− 1

2
∇2 f (x)v‖∗x dt · ‖v‖x ≤

M

6
‖v‖3x .

Remark 7 Assumption4 subsumes,when X̄ is bounded, the standardLipschitz-Hessian
setting. If the Hessian of f is Lipschitz with modulus M with respect to the standard
Euclidean norm, we have by [76, Lemma 1.2.4] that

‖∇ f (x + v)−∇ f (x)−∇2 f (x)v‖ ≤ M

2
‖v‖2.

Since X̄ is bounded, one can observe that λmax([H(x)]−1)−1 = λmin(H(x)) ≥ σ for
some σ > 0, and (42) holds. Indeed, denoting g = ∇ f (x + v)−∇ f (x)−∇2 f (x)v,
we obtain

(‖g‖∗x )2 ≤ λmax([H(x)]−1)‖g‖2 ≤ M2

4λmin(H(x))
‖v‖4 ≤ M2

4σ 3 ‖v‖4x .

♦

Remark 8 The cubic overestimation of the objective function in (43) does not rely
on global second order differentiability assumptions. To illustrate this, we revisit the
structured composite optimization problem (1), assuming that the data fidelity function
� is twice continuously differentiable on an open neighborhood containing X, with
Lipschitz continuous Hessian ∇2� with modulus γ w.r.t. the Euclidean norm. On
the domain KNN we employ the canonical barrier h(x) = −∑n

i=1 ln(xi ), having
H(x) = diag[x−21 , . . . , x−2n ] = X−2. This means, for all x, x+ ∈ X, we have

�(x+) ≤ �(x)+ 〈∇�(x), x+ − x〉 + 1

2
〈∇2�(x)(x+ − x), x+ − x〉 + γ

6
‖x+ − x‖3.

As penalty function, we again consider the L p-regularizer with p ∈ (0, 1). For any
t, s > 0, one has

t p ≤ s p + ps p−1(t − s)+ p(p − 1)

2
s p−2(t − s)2 + p(p − 1)(p − 2)

6
s p−3(t − s)3.

Further, v ∈ Tx if and only if v = [H(x)]−1/2d = Xd for some d ∈ R
n satisfying

AXd = 0 and ‖d‖ < 1. Since p(1− p) ≤ 1/4, it follows that p(1− p)(2− p) ≤ 1/2.
Thus, using x+ = x + v = x + Xd, we get
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f (x+)−
(

( f (x)+ 〈∇ f (x),Xd〉 + 1

2
〈∇2 f (x)Xd,Xd〉

)
≤ γ

6
‖Xd‖3 + 1

12

n∑
i=1

x p
i d

3
i

≤ γ

6
‖Xd‖3 + 1

12
‖x‖p∞

n∑
i=1

d3i ≤
1

6

(
γ ‖x‖3∞ +

1

2
‖x‖p∞

)
‖d‖3.

Since we assume that X̄ is bounded, there exists a universal constant M > 0
such that γ ‖x‖2∞ + 1

2‖x‖p∞ ≤ M . Combining this with Remark 7, we obtain
a cubic overestimation as in Eq. (43). Importantly, f (x) is not differentiable for
x ∈ bd(KNN) = {x ∈ R

n+|xi = 0 for some i}. ♦

We emphasize that in Assumption 4, the Lipschitz modulus M is hardly known
exactly in practice, and it is also not an easy task to obtain universal upper bounds
that can be used in implementations. Therefore, adaptive techniques should be used
to estimate it and are likely to improve the practical performance of the method.

Assumption 4 also implies, via (43) and (7) (with d = v and t = 1 < 1
‖v‖x

(5)≤ 1
ζ(x,v)

),
the following upper bound for the potential function Fμ.

Lemma 3 (Cubic overestimation) For all x ∈ X, v ∈ Tx and L ≥ M, we have

Fμ(x + v) ≤ Fμ(x)+ 〈∇Fμ(x), v〉 + 1

2
〈∇2 f (x)v, v〉 + L

6
‖v‖3x + μ‖v‖2xω(ζ(x, v)).

5.1 Algorithm description and its complexity

5.1.1 Defining the step direction

Let x ∈ X be given. In order to find a search direction, we choose a parameter L > 0,
construct a cubic-regularized model of the potential Fμ(2, and minimize it on the
linear subspace L0):

vμ,L (x) ∈ Argmin
v∈E:Av=0

{
Q(2)

μ,L (x, v) � Fμ(x)+ 〈∇Fμ(x), v〉 + 1

2
〈∇2 f (x)v, v〉 + L

6
‖v‖3x

}
,

(44)

where by Argmin we denote the set of global minimizers. The model consists of three
parts: linear approximation of h, quadratic approximation of f , and a cubic regularizer
with penalty parameter L > 0. Since this model and our algorithm use the second
derivative of f , we call it a second-order method. Our further derivations rely on
the first-order optimality conditions for the problem (44), which say that there exists
yμ,L(x) ∈ R

m such that vμ,L(x) satisfies

∇Fμ(x)+ ∇2 f (x)vμ,L(x)+ L

2
‖vμ,L(x)‖x H(x)vμ,L(x)− A∗yμ,L(x) = 0, (45)

−Avμ,L(x) = 0. (46)
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We also use the following extension of [79, Prop. 1] with the local norm induced by
H(x).

Proposition 5 For all x ∈ X it holds

∇2 f (x)+ L

2
‖vμ,L(x)‖x H(x) � 0 on L0. (47)

Proof The proof follows the same strategy as Lemma 3.2 in [29]. Let {z1, . . . , z p}
be an orthonormal basis of L0 and the linear operator Z : Rp → L0 be defined by
Zw =∑p

i=1 ziwi for all w = [w1; . . . ;w p]� ∈ R
p. With the help of this linear map,

we can absorb the nullspace restriction, and formulate the search-direction finding
problem (44) using the projected data

g � Z∗∇Fμ(x), J � Z∗∇2 f (x)Z, H � Z∗H(x)Z � 0. (48)

We then arrive at the cubic-regularized subproblem to find uL ∈ R
p s.t.

uL ∈ Argmin
u∈Rp

{
〈g, u〉 + 1

2
〈Ju, u〉 + L

6
‖u‖3H

}
, (49)

where ‖·‖H is the norm induced by the operator H. From [79, Thm. 10] we deduce

J+ L‖uL‖H
2

H � 0.

Denoting vμ,L(x) = ZuL , we see

‖uL‖H = 〈Z∗H(x)ZuL , uL 〉1/2 = 〈H(x)(ZuL),ZuL 〉1/2 = ‖vμ,L(x)‖x , and

Z∗
(
∇2 f (x)+ L

2
‖vμ,L(x)‖x H(x)

)
Z � 0,

which implies ∇2 f (x) + L
2 ‖vμ,L(x)‖x H(x) � 0 over the nullspace L0 = {v ∈ E :

Av = 0}. ��

The above proposition gives some ideas on how one could numerically solve problem
(44) in practice. In a preprocessing step, we once calculate matrix Z and use it during
the whole algorithm execution. At each iteration we calculate the new data using
(48), leaving us with a standard unconstrained cubic subproblem (49). Nesterov and
Polyak [79] show how such problems can be transformed to a convex problem towhich
fast convex programmingmethods could in principle be applied. However, we can also
solve it via recent efficient methods based on Lanczos’ method [29, 68]. Whatever
numerical tool is employed, we can recover our search direction vμ,L(x) by the matrix
vector product ZuL in which uL denotes the solution obtained from this subroutine.

123



P. Dvurechensky, M. Staudigl

5.1.2 Defining the step-size

Our next goal is to construct an admissible step-size policy, given the search direction
vμ,L(x). Let x ∈ X be the current position of the algorithm. Define the param-
eterized family of arcs x+(t) � x + tvμ,L(x), where t ≥ 0 is a step-size. By
(6) and since vμ,L(x) ∈ L0 by (46), we know that x+(t) is in X provided that
t ∈ Ix,μ,L � [0, 1

ζ(x,vμ,L (x)) ). For all such t , Lemma 3 yields

Fμ(x+(t)) ≤ Fμ(x)+ t〈∇Fμ(x), vμ,L(x)〉 + t2

2
〈∇2 f (x)vμ,L(x), vμ,L(x)〉

+ Mt3

6
‖vμ,L(x)‖3x + μt2ω(tζ(x, vμ,L(x))). (50)

Since vμ,L(x) ∈ L0, multiplying (47) with vμ,L(x) from the left and the right, and
multiplying (45) by vμ,L(x) and combining with (46), we obtain

〈∇2 f (x)vμ,L(x), vμ,L(x)〉 ≥ − L

2
‖vμ,L(x)‖3x , (51)

〈∇Fμ(x), vμ,L(x)〉 + 〈∇2 f (x)vμ,L(x), vμ,L(x)〉 + L

2
‖vμ,L(x)‖3x = 0. (52)

Under the additional assumption that t ≤ 2 and L ≥ M , we obtain

t〈∇Fμ(x), vμ,L(x)〉 + t2

2
〈∇2 f (x)vμ,L(x), vμ,L(x)〉 + Mt3

6
‖vμ,L(x)‖3x

(52)= −t
(
〈∇2 f (x)vμ,L(x), vμ,L(x)〉 + L

2
‖vμ,L(x)‖3x

)

+ t2

2
〈∇2 f (x)vμ,L(x), vμ,L(x)〉 + Mt3

6
‖vμ,L(x)‖3x

=
(
t2

2
− t

)
〈∇2 f (x)vμ,L(x), vμ,L(x)〉 − Lt

2
‖vμ,L(x)‖3x +

Mt3

6
‖vμ,L(x)‖3x

(51),t≤2≤
(
t2

2
− t

)(
− L

2
‖vμ,L(x)‖3x

)
− Lt

2
‖vμ,L(x)‖3x +

Mt3

6
‖vμ,L(x)‖3x

= −‖vμ,L(x)‖3x
(
Lt2

4
− Mt3

6

)
L≥M≤ −‖vμ,L(x)‖3x

Lt2

12
(3− 2t) .

Substituting this into (50), we arrive at

Fμ(x+(t)) ≤ Fμ(x)− ‖vμ,L(x)‖3x
Lt2

12
(3− 2t)+ μt2ω(tζ(x, vμ,L(x)))

(3)≤ Fμ(x)− ‖vμ,L(x)‖3x
Lt2

12
(3− 2t)+ μ

t2‖vμ,L(x)‖2x
2(1− tζ(x, vμ,L(x)))

.
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for all t ∈ Ix,μ,L . Therefore, if tζ(x, vμ,L(x)) ≤ 1/2, we readily see

Fμ(x+(t))− Fμ(x) ≤ − Lt2‖vμ,L(x)‖3x
12

(3− 2t)+ μt2‖vμ,L(x)‖2x

= −‖vμ,L(x)‖3x
Lt2

12

(
3− 2t − 12μ

L‖vμ,L(x)‖x
)

� −ηx (t).

(53)

Maximizing the function ηx (t) explicitly and carrying the resulting minimizer t∗
through the analysis by finding an upper bound for the corresponding per-iteration
decrease −ηx (t∗) is technically quite challenging. Instead, we adopt the following
step-size rule

tμ,L(x) � 1

max{1, 2ζ(x, vμ,L (x))} = min

{
1,

1

2ζ(x, vμ,L(x))

}
. (54)

Note that tμ,L(x) ≤ 1 and tμ,L(x)ζ(x, vμ,L (x)) ≤ 1/2. Thus, this choice of the
step-size is feasible to derive (53).

5.1.3 Backtracking on the Lipschitz modulus

Just like Algorithm 1, our second-order method employs a line-search procedure
to estimate the Lipschitz constant M in (42), (43) in the spirit of [27, 79]. More
specifically, suppose that xk ∈ X is the current position of the algorithm with the cor-
responding initial local Lipschitz estimate Mk . To determine the next iterate xk+1, we
solve problem (44) with L = Lk = 2ik Mk starting with ik = 0, find the correspond-
ing search direction vk = vμ,Lk (x

k) and the new point xk+1 = xk + tμ,Lk (x
k)vk .

Then, we check whether the inequalities (42) and (43) hold with M = Lk , x = xk ,
v = tμ,Lk (x

k)vk , see (58) and (57). If they hold, we make a step to xk+1. Otherwise,
we increase ik by 1 and repeat the procedure. Obviously, when Lk = 2ik Mk ≥ M , both
inequalities (42) and (43)withM changed to Lk , i.e., (58) and (57), are satisfied and the
line-search procedure ends. For the next iteration we setMk+1 = max{2ik−1Mk, L} =
max{Lk/2, L}, so that the estimate for the local Lipschitz constant on the one hand
can decrease allowing larger step-sizes, and on the other hand is bounded from below.

5.1.4 Second-order algorithm and its complexity result

The resulting procedure gives rise to a Second-order Adaptive Hessian Barrier
Algorithm (SAHBA, Algorithm 3).

Our main result on the iteration complexity of Algorithm 3 is the following Theo-
rem, whose proof is given in Sect. 5.2.

Theorem 3 Let Assumptions 1, 2, and 4 hold. Fix the error tolerance ε > 0, the
regularization parameterμ = ε

4θ , and some initial guess M0 > 144ε for the Lipschitz
constant in (42). Let (xk)k≥0 be the trajectory generated by SAHBA(μ, ε, M0, x0),
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Algorithm 3: Second-order Adaptive Hessian Barrier Algorithm -
SAHBA(μ, ε, M0, x0)

Data: h ∈ Hθ (K), μ > 0, ε > 0, M0 ≥ 144ε, x0 ∈ X.
Result: (xk , yk−1, sk , Mk ) ∈ X× R

m × K∗ × R+, where sk = ∇ f (xk )− A∗yk−1, and Mk is the
last estimate of the Lipschitz constant in (42).

Set L � 144ε, k = 0;
repeat

Set ik = 0. repeat
Set Lk = 2ik Mk . Find vk � vμ,Lk (x

k ) and yk � yμ,Lk (x
k ) as a global solution to

min
v:Av=0

{
Fμ(xk )+ 〈∇Fμ(xk ), v〉 + 1

2
〈∇2 f (xk )v, v〉 + Lk

6
‖v‖3

xk

}
. (55)

Set αk � min

{
1,

1

2ζ(xk , vk )

}
,where ζ(·, ·) as in (4). (56)

Set zk = xk + αkv
k , ik = ik + 1;

until

f (zk ) ≤ f (xk )+ 〈∇ f (xk ), zk − xk 〉 + 1

2
〈∇2 f (xk )(zk − xk ), zk − xk 〉 (57)

+ Lk
6
‖zk − xk‖3

xk
, and

‖∇ f (zk )−∇ f (xk )− ∇2 f (xk )(zk − xk )‖∗
xk
≤ Lk

2
‖zk − xk‖2

xk
. (58)

;

Set Mk+1 = max{ Lk2 , L}, xk+1 = zk , k = k + 1

until ‖vk−1‖xk−1 < �k−1 �
√

ε
4Lk−1θ and ‖vk‖xk < �k �

√
ε

4Lkθ
;

where x0 is a 4θ -analytic center satisfying (21). Then the algorithm stops in no more
than

KI I (ε, x
0) =

⌈
192θ3/2

√
2max{M, M0}( f (x0)− fmin(X)+ ε)

ε3/2

⌉
(59)

outer iterations, and the number of inner iterations is nomore than 2(KI I (ε, x0)+1)+
2max{log2(2M/M0), 1}. Moreover, the output of SAHBA(μ, ε, M0, x0) constitutes
an (ε,

max{M,M0}ε
8θ )-2KKT point for problem (Opt) in the sense of Definition 5.

Remark 9 Since f (x0) − fmin(X) is expected to be larger than ε, and the con-
stant M is potentially large, we see that the main term in the complexity bound

(59) is O
(

θ3/2
√
M( f (x0)− fmin(X))

ε3/2

)
= O(( θ

ε
)3/2). Note that the complexity result

O(max{ε−3/21 , ε
−3/2
2 }) reported in [24, 25] to find an (ε1, ε2)-2KKT point for arbitrary

ε1, ε2 > 0, is known to be optimal for unconstrained smooth non-convex optimization
by second-ordermethods under the standardLipschitz–Hessian assumption, subsumed
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on bounded sets by our Assumption 4. A similar dependence on arbitrary ε1, ε2 > 0
can be easily obtained from our theorem by setting ε = min{ε1, ε2}. ♦

5.2 Proof of Theorem 3

The main steps of the proof are similar to the analysis of Algorithm 1. We start by
showing the feasibility of the iterates and correctness of the line-search process. Next,
we analyze the per-iteration decrease of Fμ and f and show that if the stopping cri-
terion does not hold at iteration k, then the objective function is decreased by the
value O(ε3/2). From this, since the objective is globally lower bounded, we conclude
that the algorithm stops in O(ε−3/2) iterations. Finally, we show that when the stop-
ping criterion holds, the primal–dual pair (xk , yk−1) resulting from solving the cubic
subproblem (55) yields a dual slack variable sk such that this triple constitutes an
approximate second-order KKT point.

5.2.1 Interior point property of the iterates

By construction x0 ∈ X. Proceeding inductively, let xk ∈ X be the k-th iterate of the
algorithm, with the search direction vk � vμ,L(xk). By Eq. (56), the step-size αk

satisfies αk ≤ 1
2ζ(xk ,vk )

. Consequently, αkζ(xk, vk) ≤ 1/2 for all k ≥ 0, and using (6)

as well as Avk = 0 (see Eq. (55)), we have that xk+1 = xk +αkv
k ∈ X. By induction,

it follows that xk ∈ X for all k ≥ 0.

5.2.2 Bounding the number of backtracking steps

To bound the number of cycles involved in the line-search process for finding appro-
priate constants Lk , we proceed as in Sect. 4.3.2. Let us fix an iteration k. The sequence
Lk = 2ik Mk is increasing as ik is increasing, and Assumption 4 holds. This implies
(43), and thus when Lk = 2ik Mk ≥ max{M, Mk}, the line-search process for sure
stops since inequalities (57) and (58) hold.Hence, Lk = 2ik Mk ≤ 2max{M, Mk}must
be the case, and, consequently, Mk+1 = max{Lk/2, L} ≤ max{max{M, Mk}, L} =
max{M, Mk}, which, by induction, gives Mk ≤ M̄ � max{M, M0} and Lk ≤ 2M̄ . At
the same time, by construction,Mk+1 = max{2ik−1Mk, L} = max{Lk/2, L} ≥ Lk/2.

Hence, Lk+1 = 2ik+1Mk+1 ≥ 2ik+1−1Lk and therefore log2
(
Lk+1
Lk

)
≥ ik+1 − 1,

∀k ≥ 0. At the same time, at iteration 0 we have L0 = 2i0M0 ≤ 2M̄ , whence,

i0 ≤ log2
(
2M̄
M0

)
. Let N (k) denote the number of inner line-search iterations up to

iteration k of SAHBA. Then,

N (k) =
k∑
j=0

(i j + 1) ≤ i0 + 1+
k∑
j=1

(
log2

(
L j

L j−1

)
+ 2

)

≤ 2(k + 1)+ 2 log2

(
2M̄

M0

)
,
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since Lk ≤ 2M̄ = 2max{M, M0} in the last step. Thus, on average, the inner loop
ends after two trials.

5.2.3 Per-iteration analysis and a bound for the number of iterations

Let us fix iteration counter k. The main assumption of this subsection is that the
stopping criterion is not satisfied, i.e., either ‖vk‖xk ≥ �k or ‖vk−1‖xk−1 ≥ �k−1.
Without loss of generality, we assume that the first inequality holds, i.e., ‖vk‖xk ≥
�k , and consider iteration k. Otherwise, if the second inequality holds, the same
derivations can bemade considering the iteration k−1 and using the second inequality
‖vk−1‖xk−1 ≥ �k−1. Thus, at the end of the k-th iteration

‖vk‖xk ≥ �k =
√

ε

4Lkθ
. (60)

Since the step-size αk = min{1, 1
2ζ(xk ,vk )

} = tμ,Lk (x
k) in (56) satisfies αk ≤ 1 and

αkζ(xk, vk) ≤ 1/2 (cf. (54) and a remark after it), we can repeat the derivations of
Sect. 5.1, changing (43) to (57). In this way we obtain the following counterpart of
(53) with t = αk , L = Lk , x = xk , vμ,Lk (x

k) � vk :

Fμ(xk+1)− Fμ(xk) ≤ −‖vk‖3xk
Lkα

2
k

12

(
3− 2αk − 12μ

Lk‖vk‖xk
)

≤ −‖vk‖3xk
Lkα

2
k

12

(
1− 12μ

Lk‖vk‖xk
)

, (61)

where in the last inequality we used that αk ≤ 1 by construction. Substitutingμ = ε
4θ ,

and using (60), we obtain

1− 12μ

Lk‖vk‖xk
= 1− 12ε

4θLk‖vk‖xk
(60)≥ 1− 3ε

θLk

√
ε

4Lkθ

= 1− 6
√

ε√
θLk

≥ 1− 6
√

ε√
144θε

≥ 1

2
,

using that, by construction, Lk = 2ik Mk ≥ L = 144ε and that θ ≥ 1. Hence, from
(61),

Fμ(xk+1)− Fμ(xk) ≤ −‖vk‖3xk
Lkα

2
k

24
. (62)

Substituting into (62) the two possible values of the step-size αk in (56) gives

Fμ(xk+1)− Fμ(xk) ≤
⎧⎨
⎩
−‖vk‖3

xk
Lk
24 , if αk = 1,

− Lk‖vk‖3xk
96(ζ(xk ,vk ))2

(5)≤ − Lk‖vk‖xk
96 if αk = 1

2ζ(xk ,vk )
.

(63)
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This implies

Fμ(xk+1)− Fμ(xk) ≤ − Lk‖vk‖xk
96

min
{
1, 4‖vk‖2xk

}
� −δk . (64)

Rearranging and summing these inequalities for k from 0 to K − 1, and using that
Lk ≥ L , we obtain

K min
k=0,...,K−1

L‖vk‖xk
96

min
{
1, 4‖vk‖2xk

}
≤

K−1∑
k=0

δk ≤ Fμ(x0)− Fμ(xK )

(2)= f (x0)− f (xK )+ μ(h(x0)− h(xK )) ≤ f (x0)− fmin(X)+ ε,

(65)

where we used that, by the assumptions of Theorem 3, x0 is a 4θ -analytic center
defined in (21) and μ = ε

4θ , implying that h(x0) − h(xK ) ≤ 4θ = ε/μ. Thus, up to
passing to a subsequence, we have ‖vk‖xk → 0 as k →∞, which makes the stopping
criterion in Algorithm 3 achievable.

Assume now that the stopping criterion does not hold for K iterations of SAHBA.
Then, for all k = 0, . . . , K − 1, it holds that

δk = Lk

96
min

{
‖vk‖xk , 4‖vk‖3xk

} (60)≥ Lk

96
min

{√
ε

4Lkθ
,

4ε3/2

43/2L3/2
k θ3/2

}

Lk≤2M̄,θ≥1≥ 1

96
min

{
Lk
√

ε√
8M̄θ3/2

,
ε3/2

2L1/2
k θ3/2

}

Lk≤2M̄,Lk≥144ε≥ 1

96
min

{
(144ε) · √ε√

8M̄θ3/2
,

ε3/2√
8M̄θ3/2

}
= ε3/2

192θ3/2
√
2M̄

.

Thus, from (65)

K
ε3/2

192θ3/2
√
2M̄
≤ f (x0)− fmin(X)+ ε.

Hence, recalling that M̄ = max{M0, M}, we obtain K ≤
192θ3/2

√
2max{M0,M}( f (x0)− fmin(X)+ε)

ε3/2
, i.e., the algorithm stops for sure after no more

than this number of iterations. This, combined with the bound for the number of inner
steps in Sect. 5.2.2, proves the first statement of Theorem 3.

5.2.4 Generating ("1,"2)-2KKT point

In this section, to finish the proof of Theorem 3, we show that if the stopping criterion
in Algorithm 3 holds, i.e., ‖vk−1‖xk−1 < �k−1 and ‖vk‖xk < �k , then the algorithm
has generated an (ε1, ε2)-2KKT point of (Opt) according to Definition 5, with ε1 = ε

and ε2 = max{M0,M}ε
8θ .
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Let the stopping criterion hold at iteration k. Using the first-order optimality con-
dition (45) for the subproblem (55) solved at iteration k − 1, there exists a Lagrange
multiplier yk−1 ∈ R

m such that (45) holds. Now, expanding the definition of the
potential (2) and adding ∇ f (xk) to both sides, we obtain

∇ f (xk)− A∗yk−1 + μ∇h(xk−1) = ∇ f (xk)−∇ f (xk−1)−∇2 f (xk−1)vk−1

− Lk−1
2
‖vk−1‖xk−1H(xk−1)vk−1.

Setting sk � ∇ f (xk)−A∗yk−1 ∈ E
∗ and gk−1 � −μ∇h(xk−1), after multiplication

by [H(xk−1)]−1, this is equivalent to

[H(xk−1)]−1
(
sk − gk−1

)
= [H(xk−1)]−1

(
∇ f (xk)− ∇ f (xk−1)−∇2 f (xk−1)vk−1

)
− Lk−1

2
‖vk−1‖xk−1vk−1.

Multiplying both of the above equalities, we arrive at

(
‖sk−gk−1‖∗xk−1

)2=(∥∥∥∥∇ f (xk)−∇ f (xk−1)−∇2 f (xk−1)vk−1− Lk−1
2
‖vk−1‖xk−1 H(xk−1)vk−1

∥∥∥∥
∗

xk−1

)2
.

Taking the square root and applying the triangle inequality, we obtain

‖sk − gk−1‖∗xk−1 ≤ ‖∇ f (xk)− ∇ f (xk−1)−∇2 f (xk−1)vk−1‖∗xk−1 +
Lk−1
2
‖vk−1‖2xk−1

(58)≤ Lk−1
2
‖αk−1vk−1‖2xk−1 +

Lk−1
2
‖vk−1‖2xk−1 . (66)

Since the stopping criterion holds, at iteration k − 1 we have

ζ(xk−1, vk−1)
(5)≤ ‖vk−1‖xk−1 < �k−1 =

√
ε

4Lk−1θ
≤
√

ε

4 · 144εθ <
1

2
, (67)

where we used that, by construction, Lk−1 ≥ L = 144ε and that θ ≥ 1. Hence, by
(56), we have that αk−1 = 1 and xk = xk−1 + vk−1. This, in turn, implies that

‖sk − gk−1‖∗xk−1
(66)≤ Lk−1‖vk−1‖2xk−1 . (68)

As in the analysis of the first-order method, we note that ‖sk − gk−1‖∗
xk−1 = μ‖sk −

gk−1‖∇2h∗(gk−1) and μ = ε
4θ , which implies
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‖sk − gk−1‖∇2h∗(gk−1) ≤
Lk−1
μ
‖vk−1‖2xk−1 <

Lk−1
μ

�2
k−1 =

Lk−1
ε
4θ

· ε

4Lk−1θ
= 1.

(69)

Thus, since, by (78), gk−1 = −μ∇h(xk−1) ∈ int(K∗), applying Lemma 1, we deduce
that ∇ f (xk) − A∗yk−1 = sk ∈ int(K∗). By construction, xk ∈ K and Axk = b.
Therefore, conditions (10) and (11) both hold. We now check for the complementarity
condition (14). We have

〈sk, xk〉 = 〈sk, xk−1 + vk−1〉 = 〈sk, xk−1〉 + 〈sk, vk−1〉.

We estimate each of the two terms in the r.h.s. separately. First,

0 ≤ 〈sk, xk−1〉 = 〈sk − gk−1, xk−1〉 + 〈gk−1, xk−1〉
≤ ‖sk − gk−1‖∗xk−1 · ‖xk−1‖xk−1 − μ〈∇h(xk−1), xk−1〉
(68),(82),(81)≤ Lk−1‖vk−1‖2xk−1

√
θ + μθ.

Second,

〈sk, vk−1〉 ≤ ‖sk‖∗xk−1 · ‖vk−1‖xk−1 ≤
(
‖sk − gk−1‖∗xk−1 + ‖gk−1‖∗xk−1

)
· ‖vk−1‖xk−1

(68),(82),(81)≤
(
Lk−1‖vk−1‖2xk−1 + μ

√
θ
)

�k−1.

Summing up, using the stopping criterion ‖vk−1‖xk−1 < �k−1 and that, by (67),
�k−1 ≤ 1 ≤ √θ , we obtain

0 ≤ 〈sk, xk〉 = 〈sk, xk−1 + vk−1〉 ≤ 2Lk−1�2
k−1
√

θ + 2μθ

= 2Lk−1
ε

4Lk−1θ
√

θ + 2
ε

4θ
θ ≤ ε, (70)

i.e., (14) holds with ε1 = ε.
Finally, we show the second-order condition (15). By inequality (47) for subproblem
(55) solved at iteration k, we obtain on L0

∇2 f (xk) � − Lk‖vk‖xk
2

H(xk) � − Lk�k

2
H(xk)

= − Lk

2

√
ε

4Lkθ
H(xk) = −

√
Lkε

4θ1/2
H(xk) � −

√
2M̄ε

4θ1/2
H(xk), (71)

where we used the second part of the stopping criterion, i.e., ‖vk‖xk < �k and that
Lk ≤ 2M̄ = 2max{M, M0} (see Sect. 5.2.2). Thus, (15) holds with ε2 = max{M,M0}ε

8θ ,
which finishes the proof of Theorem 3.
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5.3 Discussion

5.3.1 Special case of non-negativity constraints

As in Sect. 4.4, our aim in this section is to compare our result with those available in
the contemporary literature. [58, 82] focus exclusively on the domain K̄ = K̄NN = R

n+,
i.e., a particular case covered by our general problem template (Opt). A second-order
algorithm and a first-order implementation of a second-order algorithm are proposed
respectively. To compare their results with ours, consider the cone K̄NN, endowed
with the standard log-barrier h(x) = −∑n

i=1 ln(xi ). Recall that for this barrier setup
we have ∇h(x) = [−x−11 , . . . ,−x−1n ]� and H(x) = diag[x−21 , . . . , x−2n ] = X−2.
Assume that the stopping criterion applies at iteration k.Using thefirst-order optimality
condition (45) for the subproblem (55) solved at iteration k − 1 and expanding the
definition of the potential (2), there exists a dual variable yk−1 ∈ R

m such that (45)
holds, i.e.,

∇ f (xk−1)+ μ∇h(xk−1)+∇2 f (xk−1)vk−1 − A∗yk−1

= − Lk−1
2
‖vk−1‖xk−1H(xk−1)vk−1.

Multiplying both sides by [H(xk−1)]−1/2 = Xk−1, using the stopping criterion

‖vk−1‖xk−1 <
√

ε
4θLk−1 , since

Xk−1∇h(xk−1) = [H(xk−1)]−1/2∇h(xk−1) = −1n and θ = n, we obtain

‖Xk−1(∇2 f (xk−1)vk−1 +∇ f (xk−1)− A∗yk−1)− μ1n‖∞
≤ ‖Xk−1(∇2 f (xk−1)vk−1 + ∇ f (xk−1)− A∗yk−1)

− μ1n‖ = Lk−1
2
‖−H(xk−1)

1
2 vk−1‖2 = Lk−1

2
‖vk−1‖2xk−1

<
ε

8n
. (72)

Whence, since μ = ε
4n , the above bound (72) combined with the triangle inequality

yields

‖Xk−1(∇2 f (xk−1)vk−1 +∇ f (xk−1)− A∗yk−1)‖∞
≤ ‖Xk−1(∇2 f (xk−1)vk−1 +∇ f (xk−1)− A∗yk−1)− μ1n‖∞ + ‖μ1n‖∞ <

3ε

8n
.

(73)

LetVk−1 = diag[vk−11 , . . . , vk−1n ] = diag(vk−1).Using the fact that xk = xk−1+vk−1
shown after (67), we obtain

‖Xk(∇ f (xk)− A∗yk−1)‖∞
= ‖(Xk−1 + Vk−1)(∇2 f (xk−1)vk−1 + ∇ f (xk−1)− A∗yk−1 +∇ f (xk)
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−∇ f (xk−1)− ∇2 f (xk−1)vk−1)‖∞
≤ ‖Xk−1(∇2 f (xk−1)vk−1 +∇ f (xk−1)− A∗yk−1)‖∞
+ ‖Xk−1(∇ f (xk)−∇ f (xk−1)− ∇2 f (xk−1)vk−1)‖∞
+ ‖Vk−1(∇2 f (xk−1)vk−1 +∇ f (xk−1)− A∗yk−1)‖∞
+ ‖Vk−1(∇ f (xk)−∇ f (xk−1)− ∇2 f (xk−1)vk−1)‖∞
= I + I I + I I I + I V .

Let us estimate each of the four terms I − I V using two technical facts (87) and (88)
proved in Appendix C. We have:

I
(73)
<

3ε

8n
,

I I ≤ ‖Xk−1(∇ f (xk)−∇ f (xk−1)−∇2 f (xk−1)vk−1)‖
= ‖∇ f (xk)−∇ f (xk−1)− ∇2 f (xk−1)vk−1‖∗xk−1

(58)≤ Lk−1
2
‖vk−1‖2xk−1 <

ε

8n
,

I I I
(88)≤ ‖vk−1‖xk−1 · ‖Xk−1(∇2 f (xk−1)vk−1 +∇ f (xk−1)− A∗yk−1)‖∞ (67),(73)

<
3ε

8n
,

where we used xk = zk−1 = xk−1 + vk−1 in bounding I I , and the last bound for
expression I I I uses ‖vk−1‖xk−1 < 1, which is implied by Eq. (67). Finally, we also
obtain

I V
(87)≤ ‖vk−1‖xk−1 · ‖∇ f (xk)−∇ f (xk−1)− ∇2 f (xk−1)vk−1‖∗xk−1
(67),(58)≤ Lk−1

2
‖vk−1‖2xk−1 <

ε

8n
.

Summarizing, we arrive at

‖Xk(∇ f (xk)− A∗yk−1)‖∞ ≤ ε

n
. (74)

Further, by Theorem 3, we have that ∇ f (xk) − A∗yk−1 = sk ∈ int(K∗NN) = R
n++,

and

∇2 f (xk)+ H(xk)

√
Mε

n
� 0 on L0.

ByRemark9, these inequalities are achieved afterO
(√

Mn3/2( f (x0)− fmin(X))

ε3/2

)
iterations

of SAHBA. Assuming that M ≥ 1, if we change ε→ ε̃ = min{nε, nε/M}, we obtain
from these inequalities that in O

(√
Mn3/2( f (x0)− fmin(X))

ε̃3/2

)
= O

(
M2( f (x0)− fmin(X))

ε3/2

)
iterations SAHBA guarantees
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xk > 0, ∇ f (xk)− A∗yk−1 > 0

‖Xk(∇ f (xk)− A∗yk−1)‖∞ ≤ ε̃

n
≤ ε,

∇2 f (xk)+ H(xk)
√

ε � ∇2 f (xk)+ H(xk)

√
M ε̃

n
� 0 on L0.

In contrast, the second-order algorithm of [58] gives a slightly worse guar-
antee ∇ f (xk) − A∗yk−1 > −ε, and requires a larger number of iterations

O
(
max{M,R}7/2( f (x0)− fmin(X))

ε3/2

)
(R denoting the L∞ upper bound on the diameter of

the level set corresponding to x0), albeit making similar assumptions to ours. We also
can repeat the remarks from Sect. 4.4, arguing that our measure of complementarity
0 ≤ 〈sk, xk〉 ≤ ε is stronger than max1≤i≤n|xki ski | used in [58, 82]. Also, the works
[65, 82] consider problem (Opt) without linear equality constraints.

Our complexity of O(ε−3/2) is better than the complexity bound O(ε−7/4) in [65]
when their algorithm is specified to problem with linear constraint x ∈ K̄NN instead
of nonlinear inequality constraint a(x) ≥ 0 with an appropriately smooth function
a : Rn → R

m . Furthermore, our algorithm is applicable to general cones admitting
an efficient barrier setup, rather than only for K̄NN as in the discussed previous works

[58, 65, 82]. For more general cones we can not use the coupling H(x)− 1
2 = X, which

was seen to be very helpful in the derivations of the bound (74) above. Thus, to deal
with general cones, we had to find and exploit suitable properties of the barrier class
Hθ (K) and develop a new analysis technique that works for general, potentially non-
symmetric, cones. Finally, our method does not rely on the trust-region techniques as
in [58] that may slow down the convergence in practice since the radius of the trust
region is no greater than O(

√
ε) leading to short steps.

5.3.2 Exploiting the structure of symmetric cones

We note that in (63) we can clearly observe the benefit of the use of θ -SSB in our algo-

rithm.Whenαk = 1
2ζ(xk ,vk )

, the per-iteration decrease of the potential is
Lk‖vk‖3xk

96(ζ(xk ,vk ))2
≥

√
εLk‖vk‖2xk

96
√
4θ(ζ(xk ,vk ))2

which may be large if ζ(xk, vk) = σxk (−vk) ‖vk‖xk .

5.3.3 The role of the penalty parameter

Next, we discuss more explicitly, how the algorithm and complexity bounds depend
on the parameter μ. The first observation is that from (69), to guarantee that sk ∈ K∗,
we need the stopping criterion to be ‖vk−1‖xk−1 < �k−1 = √μ/Lk−1, which by (70)
leads to the error 4μθ in the complementarity conditions and by (71) leads to the error√

μ/M̄ in the second-order condition. From the analysis following equation (63), we
have that

K
μ3/2

24
√
M̄
≤ f (x0)− fmin(X)+ μθ.
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Whence, recalling that M̄ = max{M, M0},

K ≤ 24( f (x0)− fmin(X)+ μθ) ·
√
2max{M, M0}

μ3/2 .

Thus, we see that after O(μ−3/2) iterations the algorithm finds a (4μθ,μ/M̄)-2KKT
point, and if μ→ 0, we have convergence to a KKT point, but the complexity bound
tends to infinity and becomes non-informative. At the same time, as it is seen from (55),
when μ→ 0, the algorithm resembles a cubic-regularized Newton method, but with
the regularization with the cube of the local norm. We also see from the above explicit
expressions in terms of μ that the design of the algorithm requires careful balance
between the desired accuracy of the approximate KKT point expressed mainly by the
complementarity conditions, stopping criterion, and complexity. Moreover, the step-
size must be selected carefully to ensure the feasibility of the iterates. This is also
in contrast to the cubic-regularized Newton’s method where one can always take the
step-size 1.

5.4 Anytime convergence via restarting SAHBA

Similarly to the restarted FAHBA (Algorithm 2), we can obtain anytime convergence
with a similar complexity as that of SAHBA by invoking a restarted method that
uses SAHBA as an inner procedure. We fix ε0 > 0 and select the starting point x00
as a 4θ -analytic center of X in the sense of Eq. (21). In epoch i ≥ 0 we generate a
sequence {xki }Ki

k=0 by callingSAHBA(μi , εi , M
(i)
0 , x0i )withμi = εi

4θ until the stopping
condition is reached. We know that this inner procedure terminates after at most
KI I (εi , x0i ) iterations. We store the values xKi

i and M (i)
Ki
, and set x0i+1 ≡ xKi

i , as

well as M (i+1)
0 ≡ M (i)

Ki
/2. Updating the parameters to μi+1 and εi+1, we restart

by calling procedure SAHBA(μi+1, εi+1, M (i+1)
0 , x0i+1) anew. This is formalized in

Algorithm 4.

Algorithm 4: Restarting SAHBA

Data: h ∈ Hθ (K), ε0 > 0, x00 ∈ X – 4θ -analytic center, M(0)
0 ≥ 144ε0.

Result: Point x̂i , dual variables ŷi , ŝi = ∇ f (x̂i )− A∗ ŷi .
for i = 0, 1, . . . do

Set εi = 2−i ε0, μi = εi
4θ ;

Obtain (x̂i , ŷi , ŝi , M̂i ) from SAHBA(μi , εi , M
(i)
0 , x0i );

Set x0i+1 = x̂i and M(i+1)
0 = M̂i /2.

end

Theorem 4 Let Assumptions 1, 2, 4 hold. Then, for any ε ∈ (0, ε0), Algorithm 4 finds

an (ε,
max{M,M(0)

0 }ε
8θ )-2KKT point for problem (Opt) in the sense of Definition 5 after

no more than I (ε) = !log2(ε0/ε)" + 1 restarts and at most !300( f (x0)− fmin(X)+
ε0)θ

3/2ε−3/2
√
2max{M, M (0)

0 }" iterations of SAHBA.
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Proof Let us consider a restart i ≥ 0 and mimic the proof of Theorem 3 with the
substitution ε → εi , μ → μi = εi/(4θ), M0 → M (i)

0 = M̂i−1/2, L = 144ε →
Li = 144εi , M̄ = max{M, M0} → M̄i = max{M, M (i)

0 }, x0 → x0i = x̂i−1. Note
that M (i)

0 ≥ 144εi = Li for i ≥ 0. We verify this via induction. By construction

M (0)
0 ≥ 144ε0. Assume the bound holds for some i ≥ 1. Then, M (i+1)

0 = M (i)
Ki

/2 =
max{L(i)

Ki−1/2, Li }/2 ≥ 144εi/2 = 144εi+1, where we used the induction hypothesis
and the definition of the sequence εi .
Let Ki be the last iteration of SAHBA(μi , εi , M

(i)
0 , x0i ) meaning that the stopping

criterion does not hold at the inner Ki iterations k = 0, . . . , Ki −1. From the analysis
following Eq. (64), we obtain

Ki
ε
3/2
i

192θ3/2
√
2M̄i

≤ Fμi (x
0
i )− Fμi (x

Ki
i ). (75)

Using that μi is a decreasing sequence and x00 is a 4θ -analytic center, we see

Fμi+1(x
0
i+1)=Fμi+1(x

Ki
i )= f (xKi

i )+μi+1h(xKi
i ) = Fμi (x

Ki
i )+ (μi+1 − μi )h(xKi

i )

(21)≤ Fμi (x
Ki
i )+ (μi+1 − μi )(h(x00 )− 4θ)

(75)≤ Fμi (x
0
i )− Ki

ε
3/2
i

192θ3/2
√
2M̄i

+ (μi+1 − μi )(h(x00 )− 4θ). (76)

Let I ≡ I (ε) = !log2 ε0
ε
" + 1. By Theorem 3 applied to the restart I − 1, we see

that SAHBA(μI−1, εI−1, M (I−1)
0 , x0I−1) outputs an (εI−1, M̄I−1εI−1

8θ )-2KKT point for
problem (Opt) in the sense of Definition 5. Since εI−1 ≤ ε and, for all i ≥ 1,

M̄i = max{M, M (i)
0 } = max{M, M̂i−1/2} = max{M, M (i−1)

Ki−1 /2}
= max{M,max{L(i−1)

Ki−1−1/2, Li−1}/2}
≤ max{M,max{M̄i−1, M (i−1)

0 }/2} ≤ max{M, M̄i−1}
≤ ... ≤ max{M, M̄0} ≤ max{M, M (0)

0 }, (77)

it follows that actually we generate an (ε,
max{M,M(0)

0 }ε
8θ )-2KKT point. Summing

inequalities (76) for all the performed restarts i = 0, . . . , I − 1 and rearranging
the terms, we obtain

I−1∑
i=0

Ki
ε
3/2
i

192θ3/2
√
2M̄i

≤ Fμ0(x
0
0 )− FμI (x

0
I )+ (μI − μ0)(h(x00 )− 4θ)

= f (x00 )+ μ0h(x00 )− f (x0I )− μI h(x0I )+ (μI − μ0)(h(x00 )− 4θ)

(21)≤ f (x00 )− fmin(X)+ μ0h(x00 )− μI h(x00 )+ 4μI θ + (μI − μ0)(h(x00 )− 4θ)

≤ f (x00 )− fmin(X)+ 4μ0θ = f (x00 )− fmin(X)+ ε0,
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where in the last steps we used the coupling μ0 = ε0/θ . From this inequality, using
(77), we obtain

Ki ≤ ( f (x0)− fmin(X)+ ε0) · 192θ
3/2
√
2M̄i

ε
3/2
i

≤ C

ε
3/2
i

,

whereC ≡ 192( f (x0)− fmin(X)+ε0)θ
3/2
√
2max{M, M (0)

0 }. Finally, we obtain that
the total number of iterations of procedures SAHBA(μi , εi , M

(i)
0 , x0i ), 0 ≤ i ≤ I −1,

to reach accuracy ε is at most

I−1∑
i=0

Ki ≤
I−1∑
i=0

C

ε
3/2
i

≤ C

ε
3/2
0

I−1∑
i=0

(23/2)i

≤ C

ε
3/2
0

· 2
3/2·(1+log2( ε0

ε
)) − 1

23/2 − 1
≤ 23/2C

(
√
8− 1)ε3/2

<
300( f (x0)− fmin(X)+ ε0)θ

3/2
√
2max{M, M (0)

0 }
ε3/2

.

��

6 Conclusion

We derived Hessian barrier algorithms based on first- and second-order information
on the objective f . We performed a detailed analysis of their worst-case iteration
complexity in order to find a suitably defined approximate KKT point. Under weak
regularity assumptions and in the presence of general conic constraints, our Hessian
barrier algorithms share the best known complexity rates in the literature for first- and
second-order approximate KKT points. Our methods are characterized by a decom-
position approach of the feasible set which leads to numerically efficient subproblems
at each their iteration. Several open questions for the future remain. First, our itera-
tions assume that the subproblems are solved exactly, and for practical reasons, this
should be relaxed. Second, we mentioned that FAHBA can be interpreted as a dis-
cretization of the Hessian-barrier gradient system [4], but the exact relationship is not
explored yet. This, however, could be an important step towards understanding accel-
eration techniques of FAHBA, akin to an accelerated version of the cubic regularized
Newton method. Furthermore, the cubic-regularized version has no corresponding
continuous-time version yet. It will be very interesting to investigate this question
further. Additionally, the question of convergence of the trajectory (xk)k≥0 gener-
ated by either scheme is open. Another interesting direction for future research would
be to allow for higher-order Taylor expansions in the subproblems in order to boost
convergence speed further, similar to [28].
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Appendix A: More results on self-concordant barriers

In this appendix we collect important auxiliary results about logarithmically homoge-
neous barriers and their limit properties along primal sequences that converge to the
boundary.

We denote by L(E,E∗) the set of linear operators from E to E∗. Given h ∈ Hθ (K),
we define the operator D2h : K → L(E,E∗), by the bilinear form D2h(x)[u, v] for
all x ∈ K and for all (u, v) ∈ E. Fixing the coordinate system B, we can define a
matrix representation of the operator D2h(x) as follows. First, by the Riesz-Fréchet
representation theorem, there exists a unique element in E

∗, denoted by H(x)u such
that D2h(x)[u, v] = 〈H(x)u, v〉 for all v ∈ E. H(x) is a linear operator, so that
H(x)u ∈ E

∗ for all u ∈ E. Let u, v ∈ E with u = Bξ and v = Bα and ξ, α ∈ R
p.

Then, using the bilinearity, we see that for all x ∈ K

D2h(x)[u, v] = D2h(x)[u,

n∑
j=1

b jα j ] =
n∑
j=1

α j D
2h(x)[u, b j ]

=
n∑

i, j=1
ξiα j D

2h(x)[bi , b j ].

Hence, 〈H(x)bi , b j 〉 = D2h(x)[bi , b j ] for all i, j = 1, . . . , p. Therefore,

D2h(x)[u, v] = 〈H(x)u, v〉 = 〈H(x)Bξ,Bα〉 = 〈B∗H(x)Bξ, α〉Rp .
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This gives HB
x � B∗H(x)B : Rp → R

p as a matrix representation of the linear
operator H(x) in terms of the primal basis B on E and the dual basis B∗ on E∗. From
now on we identify E

∗ with E so that H(x) ∈ L(E;E) � L(E). Since H(x) is a
positive definite operator, there exists an inverse [H(x)]−1 : E → E so that H(x) ◦
[H(x)]−1 = [H(x)]−1 ◦ H(x) = IdE. [H(x)]−1 is again a positive definite linear
operator and thus admits a unique square root Rx : E → E satisfying [H(x)]−1 =
Rx ◦ Rx . We denote this linear operator as Rx = [H(x)]−1/2 ∈ L(E).

The dual cone K̄∗ is defined as K̄∗ � {s ∈ E
∗|〈s, x〉 ≥ 0 ∀x ∈ K̄}, and the dual

barrier is defined as h∗(s) � supx∈K{〈−s, x〉− h(x)} for s ∈ K̄∗. From [83, Theorem
3.3.1] we know that if h ∈ Hθ (K), then h∗ ∈ Hθ (K∗). Moreover,

x ∈ K ⇒ −∇h(x) ∈ int(K∗), (78)

s = −∇h(x) ⇐⇒ ∇h∗(s) = −x ⇒ ∇2h∗(s) = [∇2h(x)]−1. (79)

We also use the following properties listed in [76, Lemma 5.4.3, Theorem 5.3.7].

Proposition 6 Let h ∈ Hθ (K), x ∈ K, t > 0 and H(x) = ∇2h(x). Then,

∇2h(t x) = t−2∇2h(x), (80)

− 〈∇h(x), x〉 = θ, (81)

‖x‖2x = 〈H(x)x, x〉 = θ, 〈∇h(x), [H(x)]−1∇h(x)〉 = θ. (82)

〈∇h(x), y − x〉 < θ ∀y ∈ K (83)

The next fact is essentially [4, Lemma 4.2]. We give the simple proof here to be
self-contained.

Lemma 4 Let h ∈ Hθ (K). Consider a sequence (xk)k≥1 ⊂ K such that xk → x̄ ∈ bd(K).

Then all accumulation points of
( ∇h(xk)‖∇h(xk)‖

)
k≥1 are contained in NCK̄(x̄).

Proof By convexity of h, we have 〈∇h(xk)− ∇h(x), xk − x〉 ≥ 0 for all x ∈ K. The
sequence (‖∇h(xk)‖−1∇h(xk))k≥1 is bounded and thus converging subsequences
exist. Let ξ denote an accumulation point. After eventual relabeling, let us assume
‖∇h(xk)‖−1∇h(xk)→ ξ . Then, dividing the last inner product by ‖∇h(xk)‖ and let-
ting k →∞, we get 〈ξ, x̄ − x〉 ≥ 0 for all x ∈ K. Hence, ξ ∈ NCK̄(x̄). Since ξ is an
arbitrary accumulation point, the claim follows. ��
Lemma 5 Define the mapping e∗ : E→ [0,∞] by

e∗(v) � sup
x∈K:‖x‖=1

‖v‖∗x .

Then dom(e∗) = E.

Proof Let x ∈ K satisfy ‖x‖ = 1 and y ∈ K be arbitrary. Denote r1 � ‖x − y‖. There
exists r2 > 0 such that the open ball with center y and radius r2 is contained in K.
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By convexity, all points on the line x + α(y − x) are therefore in K, provided that
α ∈ [0, r1+r2

r1
]. Define the Minkowski functional of K̄ with pole y as

πy(x) � inf

{
t ≥ 0|y + 1

t
(x − y) ∈ K̄

}
.

It follows

πx (y) ≤ r1
r1 + r2

≤ 1+ ‖y‖
1+ ‖y‖ + r2

� a(y).

This, together with [78, Proposition 2.3.2], yields the bound

‖v‖y ≤ 1+ 3θ

1− πx (y)
‖v‖x ≤ 1+ 3θ

1− a(y)
‖v‖x .

Hence, H(x)
(

1+3θ
1−a(y)

)2 � H(y), and therefore [H(y)]−1
(

1+3θ
1−a(y)

)2 � [H(x)]−1.
We conclude

‖v‖∗x ≤
1+ 3θ

1− a(y)
‖v‖∗y ∀y ∈ K.

Therefore, fixing some y ∈ K, we have e∗(v) = supx∈K:‖x‖=1‖v‖∗x < 1+3θ
1−a(y)‖v‖∗y <

∞. ��
Lemma 6 Let h ∈ Hθ (K). For all (x, v) ∈ K × E we have

‖v‖∗x ≤ ‖x‖ · e∗(v).

Proof If h ∈ Hθ (K), then by (80)

t2H(t x) = H(x) ∀x ∈ K, t > 0.

This gives t2H(t x) ◦ H(x)−1 = H(x)−1 ◦ (t2H(t x)) = IdE. Hence,

[t2H(t x)]−1 = t−2[H(t x)]−1 = [H(x)]−1.

Choosing t = 1/‖x‖ gives ‖x‖2[H(x/‖x‖)]−1 = [H(x)]−1 for all x ∈ K. Hence, for
all v ∈ E, we get

‖v‖∗x = ‖x‖ · ‖v‖∗x/‖x‖ ≤ ‖x‖ sup
d:‖d‖=1

‖v‖∗d ≡ ‖x‖e∗(v) ∀v ∈ E.

��
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Note that

‖Rxv‖2x = 〈H(x)Rxv, Rxv〉 = 〈v, v〉 = ‖v‖2 ∀(x, v) ∈ K × E.

We use the operator Rx to define a mapping

τ : K × E→ E, (x, v) �→ τ(x, v) � x − 1

‖v‖ + 1
Rxv.

In geometric terms, we can think of τ(x, v) as a retraction acting on the Riemannian
manifold (K, ‖·‖x ). This is the content of the next result.
Lemma 7 For all (x, v) ∈ K × E we have τ(x, v) ∈ K.

Proof We use the Dikin ellipsoid condition (Lemma 1) for viability:

‖(x − 1

‖v‖ + 1
Rxv)− x‖x = 1

‖v‖ + 1
‖Rxv‖x = ‖v‖

‖v‖ + 1
< 1.

��
We next show that the operator Rx can be extended to the boundary of the cone

K. Recall that we identify the dual space E
∗ with E. Lemma 6 states that ‖Rxv‖ ≤

‖x‖ · e∗(v) for all x ∈ K and v ∈ E. This shows that the mapping K $ x �→ Rxv ∈ E

is locally bounded. This allows us to define an extension of the domain of x �→ Rx

to K̄ = K ∪ bd(K) via a limiting procedure. Let (xn)n≥1 ⊂ K with xn → x̄ ∈ bd(K),
and v ∈ E arbitrary. Let {b1, . . . , bp} be a basis of E, so that any vector v ∈ E admits
a unique representation v =∑i αi bi for some scalars αi ∈ R. Then, by linearity, we
have

Rxnv =
p∑

i=1
αi Rxn bi .

Since Rxnbi ≤ ‖xn‖e∗(bi ) for all i , we can extract a converging subsequence
Rxnk

bi → Rbi as k →∞. Via a diagonal procedure, we obtain another subsequence
(xn j ) j≥1 in order to construct a linear operator R : E→ E satisfying

Rxn j
v =

∑
i

αi Rxn j
bi →

∑
i

αi Rbi = Rv

as j →∞ for all v ∈ E.

Remark 10 If K is a symmetric cone, it is well-known that limn→∞ Rxn exists for
xn → x̄ ∈ bd(K) and is a well-defined linear operator [73].

The next result is concerned with the semi-continuity of the multi-valued mapping
x �→ Tx , defined in (16). The discussion following that equation showed that this set
can be equivalently represented as Tx = {Rxu|ARxu = 0, ‖u‖ < 1}.
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Proposition 7 Let h ∈ Hθ (K), x̄ ∈ bd(K), and Ax̄ = b. Let (xn)n≥1 ⊂ K such that
xn → x̄ and vn ∈ Txn be a corresponding sequence of direction vectors. Then, the
sequence pn � xn + vn is contained in K and converges to a limit point p ∈ K̄.
Moreover, Ap = b.

Proof For all n ≥ 1, we have vn = Rxnun for some sequence (un)n≥1 ⊂ BE � {u ∈
E|‖u‖ < 1}, and Avn = 0 for all n ≥ 1. Therefore, ‖pn − xn‖xn = ‖vn‖xn =
‖un‖ < 1, which shows pn ∈ K for all n ≥ 1 (cf. Lemma 1). Let (un j ) j≥1
be a converging subsequence and denote vn j = Rxn j

un j the corresponding sub-
sequence in Txn j

. Since ‖vn j ‖ = ‖Rxn j
un j ‖ ≤ ‖xn j ‖e∗(un j ), taking eventually

a further subsequence (we omit the relabeling), we can assume that (vn j ) j≥1 con-
verges to a limit v. This limit point must obviously satisfy the condition Av = 0 and
lim j→∞‖vn j ‖xn j = lim j→∞‖un j ‖ ≤ 1. Hence, lim j→∞ pn j = p � x̄ + v has the

properties Ap = Ax̄ = b and p ∈ K̄. ��
Deriving second-order optimality conditions for (Opt) is based on a perturbation

argument. To define admissible perturbations at boundary points x̄ ∈ bd(K), we can
use Proposition 7 that motivates the definition

Tx̄ � {v ∈ E|∃xn X→ x̄, (un)n≥1 ⊂ BE s.t. v = lim
n→∞ Rxnun and ARxnun

= 0 for all n ≥ 1}. (84)

This definition is a natural extension of the corresponding set already defined at interior
points in (16). Indeed, if x̄ ∈ K ∩ L = X is taken as the base point in the construction
of the variations in Tx̄ , we can take the constant sequences xn ≡ x̄ and un ≡ u ∈ BE

in (84), and obtain the definition (16).

Appendix B: Optimality conditions

Suppose x∗ is a local minimizer of problem (Opt) and f is continuously differentiable
at x∗. Assumption 1 guarantees that there exists a Lagrange multiplier y∗ ∈ R

m such
that the inclusion (8) holds. The following exact optimality conditions for the model
problem (Opt) are proved in [61].

Theorem 5 [61, Theorem 3] Let x∗ be a local solution of problem (Opt) and let R be
a limit operator of the sequence (Rxn )n≥1 obtained by xn → x∗. Suppose that f is
continuously differentiable at x∗. Then there exists a Lagrangian multiplier y∗ ∈ R

m

such that

∇ f (x∗)− A∗y∗ ∈ K̄∗, (85)

R(∇ f (x∗)− A∗y∗) = 0. (86)

[61, Proposition 1] proves that the conditions in Theorem 5 are equivalent to∇ f (x∗)−
A∗y∗ ∈ K̄∗, and 〈∇ f (x∗)− A∗y∗, x∗〉 = 0.
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Theorem 6 [61, Theorem 4] Let x∗ be a local minimizer of problem (Opt) and R be a
limit operator of the sequence (Rxn )n≥1 obtained by xn → x∗. Suppose that f is twice
continuously differentiable at x∗. Then there exists a Lagrangian multiplier y∗ ∈ R

m

such that (85) and (86) hold and additionally

〈∇2 f (x∗)v, v〉 ≥ 0 ∀v ∈ Tx∗ .

The set Tx∗ for x∗ ∈ bd(X̄) is defined in (84).

Appendix C: Useful inequalities

Consider the cone KNN with the standard log-barrier h(x) = −∑n
i=1 ln(xi )which has

Hessian H(x) = diag[x−21 , . . . , x−2n ] = X−2. Let V = diag[v1, . . . , vn] = diag(v),
z ∈ R

n , and x ∈ KNN. Then,

‖Vz‖∞ ≤ ‖Vz‖ ≤ ‖v‖x · ‖z‖∗x , (87)

‖Vz‖∞ ≤ ‖v‖x · ‖Xz‖∞. (88)

The first inequality in (87) is trivial. Let us prove the second inequality. Indeed, we
have

‖Vz‖2 =
n∑

i=1
(vi zi )

2 =
n∑

i=1
(vi/xi )

2 · (xi zi )2 ≤
(

n∑
i=1

(vi/xi )
2

)

·
(

n∑
i=1

(xi zi )
2

)
= 〈H(x)v, v〉 · 〈[H(x)]−1z, z〉 = ‖v‖2x · (‖z‖∗x )2,

which finishes the proof of (87). For the inequality (88), we have, denoting by v/x the
componentwise division of v by x ,

‖Vz‖∞ = ‖VX−1Xz‖∞ ≤ ‖v/x‖∞ · ‖Xz‖∞ ≤ ‖v/x‖
· ‖Xz‖∞ = ‖X−1v‖ · ‖Xz‖∞ = ‖H(x)1/2v‖ · ‖Xz‖∞ = ‖v‖x · ‖Xz‖∞.
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