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Abstract
Consider the closed convex hull K of a monomial curve given parametrically as
(tm1, . . . , tmn ), with the parameter t varying in an interval I . We show, using con-
structive arguments, that K admits a lifted semidefinite description by O(d) linear
matrix inequalities (LMIs), each of size

⌊ n
2

⌋ + 1, where d = max{m1, . . . , mn} is the
degree of the curve. On the dual side, we show that if a univariate polynomial p(t)
of degree d with at most 2k + 1 monomials is non-negative on R+, then p admits
a representation p = t0σ0 + · · · + td−kσd−k , where the polynomials σ0, . . . , σd−k

are sums of squares and deg(σi ) ≤ 2k. The latter is a univariate positivstellensatz
for sparse polynomials, with non-negativity of p being certified by sos polynomi-
als whose degree only depends on the sparsity of p. Our results fit into the general
attempt of formulating polynomial optimization problems as semidefinite problems
with LMIs of small size. Such small-size descriptions are much more tractable from
a computational viewpoint.

Mathematics Subject Classification 90C23 · 90C22 · 13J30 · 06E05

1 Introduction

Polynomial optimization studies the task of minimizing an n-variate polynomial p ∈
R[x1, . . . , xn] over a semialgebraic set S ⊆ R

n . The convexification approach to this
problem consists of picking finite sets A ⊇ supp(p) ofZ

n
+, considering the monomials

xα = xα1
1 . . . xαn

n with α ∈ A and finding exact or approximate descriptions of the
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closed convex hulls

K = conv {(xα)α∈A : x ∈ S}

within some optimization paradigm. The basic idea is that optimizing a polynomial
p = c0 + ∑

α∈A cαxα ∈ R[x1, . . . , xn] means to optimize the affine-linear function
λ : (yα)α∈A �→ c0 + ∑

α∈A cα yα over K . Usually, descriptions of the sets K arise
from positivstellensätze from real algebra, since non-negativity of λ on K corresponds
to non-negativity of p on S. Most positivstellensätze in real algebra employ sum-
of-squares (sos) certificates. This fact establishes a connection from real algebra to
semidefinite optimization, since the cone�n,2d of n-variate sos polynomials of degree
≤ 2d is a linear image of the cone of symmetric positive semidefinite matrices of size(n+d

n

)
. As suggested by Lasserre in his seminal work [13] and following this line of

ideas, Putinar’s positivstellensatz [17] leads to a hierarchy of outer approximations
of K in terms of semidefinite constraints. Although Lasserre’s approach provides a
universal template for converting polynomial problems to semidefinite ones, further
adjustment is usually needed tomake it computationally tractable. Despite the fact that
semidefinite programs are solvable in polynomial time under mild assumptions within
a given error tolerance [3, 16], solving a semidefinite program can quickly become
extremely challenging in practice since the size of the semidefinite constraints is a
critical parameter. We view a semidefinite problem as the problem of optimization of
a linear function subject to finitely many linear matrix inequalities (LMIs). An LMI
of size d is the condition M(y) � 0 that imposes semidefiniteness of a symmetric
d × d matrix M(y) whose entries are affine-linear functions in the variables y =
(y1, . . . , yN ). To get a first impression of how the workload is increased by large
size of the LMIs, consider the approximation of a semidefinite problem inf{L(y) :
M1(y) � 0, . . . , M�(y) � 0} by the convex problem L(y) − ε

∑�
i=1 log det Mi (y)

that uses the logarithmic barrier and a small parameter ε > 0. Solving the convex
problem with the gradient descent method would involve computing the gradients of
the barriers, which requires to invert thematrices Mi (y) [6, 4.3.1]. But inverting Mi (y)

of a large size is known to be expensive. So, while in theoretical considerations it is
customary to model � LMIs as a single LMI of size �d, using a block-diagonal matrix,
this reduction conceals the aspect of efficiency, since a general LMI of size �d has a
much higher computational cost than � LMIs of size d.

To address this issue, the following terminology was introduced in [4]:

Definition 1.1 Let C ⊆ R
n be a set. A description of C in the form

C = {
x ∈ R

n : M1(x, y) � 0, . . . , M�(x, y) � 0 for some y ∈ R
m}

(1)

where the Mi are LMIs in (x, y), is called a lifted (or extended) semidefinite repre-
sentation of C . If every Mi has size ≤ d, we say that (1) is a lifted representation of
size ≤ d. The minimal d for which C admits a lifted representation of size ≤ d is the
semidefinite extension degree of C , denoted sxdeg(C). If no such d exists one puts
sxdeg(C) = ∞.
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By studying sxdeg(C) one keeps track of the size of the LMIs needed to optimize
linear functions over C , disregarding their number. For computations, both size and
number of the LMIs play a role, but size is more critical as a parameter. Clearly
sxdeg(C) = 1 if and only if C is a polyhedron, and it is easy to see that sxdeg(C) ≤ 2
if and only if C is second-order cone representable [9]. In [4] it was shown that
the cone �n,2d of n-variate sos polynomials of degree ≤ 2d has sxdeg = (n+d

n

)
,

matching the size of the LMIs in Lasserre’s approach. The rapid growth of
(n+d

n

)
in

n and d explains why the computational time needed to solve Lasserre’s relaxations
is extremely sensitive to the choice of n and d. This issue with the size of the LMIs
was detected by a number of researchers. Some suggestions for how to cope with it
in practice were made in [1, 5, 23, 24]. The common general idea in [1, 5, 23, 24]
is to deliberately choose a cone C , which has small sxdeg(C) by its construction, to
serve as a tractable outer approximation of K . Or, from the dual viewpoint, to choose
a cone P of non-negative polynomials of more specific structure than in Putinar’s
positivstellensatz, such that P has small sxdeg(P). While these approaches seem to
help in practice, they are purely heuristic, since positivstellensätze are still missing
that would guarantee that positivitiy can indeed always be certified in the intended,
computationally less expensive, manner.

In this paper, we make a first step in filling this gap by studying the size of semidef-
inite representations for sparse polynomial optimization problems in one variable.
Consider a set A = {m1, . . . , mn} of positive integers m1 > · · · > mn > 0
and a non-degenerate interval I ⊆ R. For optimizing the univariate polynomial
p = ∑

a∈A cata ∈ R[t] on the interval I , we are interested in finding a lifted
semidefinite representation of K = conv{(tm1, . . . , tmn ) : t ∈ I } ⊆ R

n . Since the
curve (tm1, . . . , tmn ) is a projection of the rational normal curve (t i )1≤i≤m1 of degree
m1, Lasserre’s approach gives a description of size

⌊m1
2

⌋ + 1. When the number
n = |A| of monomials is small compared to the degree m1, it is desirable to find an
alternative description of smaller size. Our main result (Theorem 3.19) shows that the
semidefinite extension degree of such K is at most

⌊ n
2

⌋ + 1, which is the best possi-
ble bound. Consequently, the size of the description depends only on the number of
monomials, and not on the degree. The description is completely explicit and follows
from a sparse positivstellensatz (Theorem 3.9). The latter characterizes non-negativity
of a degree d polynomial p with at most 2k +1 terms on an interval I ⊆ R+, by using
the cone t0�1,2k + · · · + td−2k�1,2k , which is of semidefinite extension degree k + 1.
The key technical ingredient in our proof is Jacobi’s bialternant formula for Schur
polynomials from the theory of symmetric polynomials.

Our result about non-negativity of univariate sparse polynomials should help to
understand the impact of sparsity-based approaches to optimization problems of arbi-
trary dimension. Univariate problems may, on the one hand, demonstrate phenomena
that occur in every dimension.On the other, whenever some limitation can be identified
in the one-dimensional case, it will also be present in a certain form in an n-dimensional
setting as well. Furthermore, our main result can serve as a starting point for further
studies in several directions. It would obviously be interesting to obtain similar results
in the multivariate case. While our K is given as the closed convex hull of a monomial
curve, one may ask for bounds on the semidefinite extension degree of closed convex
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hulls K of arbitrary semialgebraic curves S ⊆ R
n . For n = 2, it was proved in [19]

that every closed convex semialgebraic set K in the plane is second-order cone repre-
sentable, i.e. has sxdeg(K ) ≤ 2. It can be shown that the bound sxdeg(K ) ≤ ⌊ n

2

⌋ + 1
holds for the closed convex hull of an arbitrary semialgebraic curve S ⊆ R

n , but the
proof is much more involved [20].

The paper is organized as follows. After a few preliminaries in Sect. 2, the main
result is obtained in Sect. 3. In Sect. 4 we introduce the cones of sums of copositive
fewnomials,which forma sparse counterpart of the cones of non-negative polynomials.
We show that in the one-dimensional case these cones admit semidefinite descriptions
with LMIs of small size, and explain that such descriptions lead to variations of
Lasserre’s relaxations that are based on LMIs of small size.

After this paper was submitted, Philipp di Dio pointed out to us that our Lemma 3.4
is contained, in much greater generality, in work of Karlin and Studden on T -systems.
We are grateful for this hint and refer to [11] Chapter 2 for more details.

2 Preliminaries

2.1. Let Z+ = {0, 1, 2, . . .}, N = {1, 2, 3, . . .} and R+ = [0,∞[. The cardinality of
a set A is denoted by |A|. For a tuple α = (α1, . . . , αn) ∈ Z

n we use the notation
|α| := α1+· · ·+αn . For univariate polynomials wemostly use t to denote the variable,
and we write R[t]d = { f ∈ R[t] : deg( f ) ≤ d}. The support of a polynomial p =∑

α cαxα ∈ R[x1, . . . , xn] is the set supp(p) := {
α ∈ Z

n+ : cα 
= 0
}
. By Sm we

denote the space of real symmetric m × m matrices, and Sm
+ is the cone of positive

semidefinite matrices in Sm . The linear span of a subset M of a vector space is denoted
lin(M).
2.2. Let C ⊆ R

n be a convex cone. The dual cone of C is C∗ = {y ∈ R
n : ∀ x ∈ C

〈x, y〉 ≥ 0}, where 〈x, y〉 denotes the standard inner product on R
n . The bi-dual

C∗∗ := (C∗)∗ of C equals the closure of C , i.e. C∗∗ = C . The cone C is pointed if
C ∩ (−C) = {0}. When C ⊆ V is a convex cone in an arbitrary real vector space V ,
the dual cone is C∗ := {

y ∈ V ∨ : ∀x ∈ C y(x) ≥ 0
}
, where V ∨ is the dual vector

space of V .
A face of C is a convex cone F with F ⊆ C such that x, y ∈ C and x + y ∈ F

imply x, y ∈ F . For any x ∈ C there is a unique inclusion-minimal face F of C with
x ∈ F , called the supporting face of x in C . One-dimensional faces of convex cones
are called extreme rays. It is well-known that a finite-dimensional closed and pointed
convex cone is the Minkowski sum of its extreme rays.
2.3. We briefly explain the conic duality behind the approaches in polynomial opti-
mization by providing a generic version of the discussion in [14] Ch. 10. We are given
a subset S of R

n and polynomials p, q in a finite-dimensional vector subspace V of
R[x1, . . . , xn] such that q > 0 on S. A common choice for q is the constant q = 1. The
problem of minimizing the quotient p/q over S can be relaxed (i.e., lower bounded)
by making use of a closed convex cone C ⊆ V that satisfies g ≥ 0 on S for every
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g ∈ C . One has

inf
S

p

q
≥ sup {λ ∈ R : p − λq ∈ C} ,

where the supremum is a conic optimization problem dual to the problem

inf
{
v(p) : v ∈ C∗, v(q) = 1

}
.

In the following proposition, the mentioned duality is phrased without any reference
to polynomial by identifying V and its dual space V ∨ with R

N , where N := dim(V ).

Proposition 2.4 Let N be a positive integer and C ⊆ R
N be a closed and pointed

convex cone. Then for every p ∈ C and q ∈ C�{0} one has

sup {λ ∈ R : p − λq ∈ C} = inf
{〈p , v〉 : v ∈ C∗, 〈v , q〉 = 1

}
. (2)

This is a special case of the duality of conic optimization problems, cf. the discussion
in [7] 2.1.4. We omit the proof which is quite straightforward.

3 Convex hulls of monomial curves

Let I ⊆ R be a non-degenerate closed interval, let V ⊆ R[t] be a linear subspace of
finite dimension, and let P = { f ∈ V : f ≥ 0 on I }, a closed and pointed convex
cone in V . We start by showing that every face of the cone P is described by suitable
vanishing conditions at points of I , or at infinity when I is unbounded. Let ords( f )

denote the order of vanishing of f ∈ R[t] at s ∈ R.

Proposition 3.1 For 0 
= f ∈ P put W f = {g ∈ V : ∀ s ∈ I ords(g) ≥ ords( f )}.
Let U f = {g ∈ W f : deg(g) ≤ deg( f )} if I is unbounded, and put U f = W f if I
is compact. Then U f is the linear span of the supporting face F f of f . In particular,
dim(F f ) = dim(U f ).

Before starting with the proof, we record two consequences. For extreme rays of
P , Proposition 3.1 implies:

Corollary 3.2 Assume that I is compact, let f ∈ V span an extreme ray of P. Then f
has at least dim(V ) − 1 roots in I , counting with multiplicity.

Proof By assumption we have F f = R+ f , so W f = R f by Proposition 3.1. Since
W f consists of the elements in V with at least the same roots in I as f , there have to be
at least codim(W f ) = dim(V )− 1 many roots of f in I , counting with multiplicities.

��
In the non-compact case, the result reads as follows:

Corollary 3.3 Let I be unbounded, let f ∈ P span an extreme ray of P. Write d =
deg( f ) and Vd := {g ∈ V : deg(g) ≤ d}. Then f has at least dim(Vd) − 1 roots in
I , counting with multiplicity.
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Proof Same argument as for Corollary 3.2, since R f consists of the elements in Vd

with at least the same roots in I as f . ��
Proof of Proposition 3.1 The supporting face of f is F f = {p ∈ P : ∃ γ > 0 with
f − γ p ∈ P}. Clearly, if p, q ∈ P with f = p + q then p, q ∈ W f , and also
deg(p), deg(q) ≤ deg( f ) when I is unbounded. Therefore F f ⊆ U f holds. To prove
U f ⊆ lin(F f ), note that for every g ∈ U f there exists a constant c > 0 such that
c|g| ≤ f on I . Indeed, for every s ∈ I there is a constant cs > 0 with cs |g(t)| ≤ f (t)
on some neighborhood Js of s. If I contains a right half-line, there are a, c > 0 with
c|g(t)| ≤ f (t) for all t ∈ J∞ = [a,∞[, and similarly in the case of a left half-line.
By passing to a finite subcovering of I we find a constant c as required.

By the preceding remark we find a linear basis g1, . . . , gr of U f with the property
that |gi | ≤ f on I for i = 1, . . . , r . It follows that f − gi ∈ F f (i = 1, . . . , r ), and
so U f = lin( f − g1, . . . , f − gr , f ) is contained in lin(F f ). ��

We continue to assume that V ⊆ R[t] is a linear subspace of finite dimension, and
weput dim(V ) =: n+1.Assumeweare givenn vanishing conditions for elements ofV
at points on the real line, where we allow conditions of higher order vanishing. If these
conditions are independent on V , the following lemma gives an explicit formula for
the essentially unique solution of these conditions in V . Given a polynomial p = p(t)

in R[t], we denote the j-th derivative of p(t) by p( j)(t) = d j

dt j p(t).

Lemma 3.4 Let p0, . . . , pn be a linear basis of V . Let ξ = (ξ1, . . . , ξr ) be a tuple of
pairwise different real numbers, and let b1, . . . , br ≥ 1 be integers with

∑r
i=1 bi = n.

The following conditions are equivalent:

(i) The matrix

A(t; ξ) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

p0(t) · · · pn(t)
p0(ξ1) · · · pn(ξ1)

...
...

p(b1−1)
0 (ξ1) · · · p(b1−1)

n (ξ1)
...

...

p0(ξr ) · · · pn(ξr )
...

...

p(br −1)
0 (ξr ) · · · p(br −1)

n (ξr )

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

(3)

of size (n + 1) × (n + 1) and with entries in R[t] has non-zero determinant;
(ii) the subspace { f ∈ V : ordξi ( f ) ≥ bi for i = 1, . . . , r} of V has dimension one.

When (i) and (ii) hold, the polynomial det A(t; ξ) is the unique (up to scaling) element
of V that vanishes in ξi of order at least bi , for i = 1, . . . , r .

Proof Note that the dimension in (ii) is always≥ 1. The matrix B formed by the lower
n rows of (3) is the matrix of the linear map φ : V → R

n ,

p �→
(

p(ξ1), . . . , p(b1−1)(ξ1), . . . , p(ξr ), . . . , p(br −1)(ξr )
)
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with respect to the basis p0, . . . , pn of V . Subspace (ii) is just the kernel of φ. The
determinant of (3) is an element of V , and is non-zero if and only if B has a non-
vanishing n × n-minor. This is equivalent to φ being surjective, and hence also to
(ii). The last assertion is clear since det A(t; ξ) is an element of V that has a zero of
multiplicity ≥ bi at ξi , for i = 1, . . . , r . ��
3.5. Next we recall some background on Schur polynomials. Let n ∈ N be a fixed
integer and let x = (x0, . . . , xn) be a tuple of indeterminates. We consider partitions
μ = (m0, . . . , mn) into n + 1 pieces, with m0 ≥ · · · ≥ mn ≥ 0. A particular partition
is δ = (n, n − 1, . . . , 1, 0). Given a partition μ as above, the determinant

Fμ(x) := det

⎛

⎜
⎝

xm0
0 · · · xmn

0
...

...

xm0
n · · · xmn

n

⎞

⎟
⎠

is identically zero unless the mi are pairwise distinct. In this latter case, λ = μ − δ =(
m0 − n, . . . , mn−1 − 1, mn

)
is another partition. Clearly, the Vandermonde product

v(x) :=
∏

0≤i< j≤n

(xi − x j ) = Fδ(x)

divides Fμ(x). The co-factor is the Schur polynomial sλ(x) of the partition λ. In other
words, the bialternant formula

Fμ(x) = v(x) · sλ(x) (4)

holds. Depending on how Schur polynomials are introduced, identity (4) is either the
definition of sλ(x) or a theorem, see [21] Theorem 7.15.1.

The Schur polynomial sλ(x) is symmetric as a polynomial in the variables xi ,
homogeneous of degree |λ|, and of degree λ0 with respect to each variable xi . Schur
polynomials have the remarkable property that all their coefficients are non-negative
integers. In fact there exists a combinatorial description of the coefficients, see Section
7.10 in [21]. In our context, the integrality of the coefficients plays no role, but the
non-negativity is a crucial property.
3.6. We use Schur polynomials to deduce a product formula for the determinant in
Lemma 3.4, in the case where the pi are monomials. Let μ = (m0, . . . , mn) be a
partition into different parts, i.e. with m0 > · · · > mn ≥ 0. We write pi (t) = tmi

for i = 0, . . . , n, and introduce the tuples p(t) = (
p0(t), . . . , pn(t)

)
and p( j)(t) =

(
p( j)
0 (t), . . . , p( j)

n (t)
)
for j ≥ 0, where again p( j)

i (t) = d j

dt j pi (t).
Let b = (b0, . . . , br ) be a tuple of integers bi ≥ 1 such that

∑
i bi = n + 1, let

y = (y0, . . . , yr ) be a tuple of r + 1 variables. We consider the determinant Fμ,b(y)

of size n + 1 that contains, for each i = 0, . . . , r , the rows

p( j)(yi ) = (
p( j)
0 (yi ), . . . , p( j)

0 (yi )
)
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for j = 0, 1, . . . , bi − 1. In other words, let

Fμ,b(y) := det

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

p0(y0) · · · pn(y0)
p′
0(y0) · · · p′

n(y0)
...

...

p(b0−1)
0 (y0) · · · p(b0−1)

n (y0)
...

...

p0(yr ) · · · pn(yr )
...

...

p(br −1)
0 (yr ) · · · p(br −1)

n (yr )

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

(5)

and let again λ = μ − δ.

Proposition 3.7 The determinant Fμ,b(y) has the product decomposition

Fμ,b(y) = c · vb(y) · sλ,b(y)

where

vb(y) :=
∏

0≤i< j≤r

(yi − y j )
bi b j

and

sλ,b(y) := sλ

(
y0, . . . , y0︸ ︷︷ ︸

b0

, . . . , yr , . . . , yr︸ ︷︷ ︸
br

)

and c is a constant, equal to

c =
r∏

i=0

(−1)bi (bi −1)/2 ·
bi −1∏

j=0

j !

Proof We inductively derive the assertion from the bialternant formula. Let A0 be the
matrix with rows p(x0), . . . , p(xn), so

det(A0) = sλ(x) ·
∏

0≤i< j≤n

(xi − x j )

by (4). Replacing the second row p(x1) by (p(x1)− p(x0))/(x1−x0), the determinant
gets divided by x1 − x0. If we now specialize x1 := x0, the resulting matrix A1 has
second row p′(x0) and has determinant

det(A1) = −sλ(x0, x0, x2, . . . , xn) ·
n∏

j=2

(x0 − x j )
2 ·

∏

2≤i< j≤n

(xi − x j )
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By pulling out x1 − x0, we have therefore used up the factor x0 − x1 from v(x) and
got a minus sign. Now iterate this step. Next we replace the third row of A1, which is
p(x2), by

p(x2) − p(x0) − (x2 − x0)p′(x0)

(x2 − x0)2

Specializing x2 := x0, the resulting matrix A2 has rows

p(x0), p′(x0),
1

2
p′′(x0), p(x3), . . .

and has determinant

det(A2) = −sλ(x0, x0, x0, x3, . . . , xn) ·
n∏

j=3

(x0 − x j )
3 ·

∏

3≤i< j≤n

(xi − x j )

And so on. After b0 many steps, the rows have become

p(x0), p′(x0), . . . ,
1

(b0 − 1)! p(b0−1)(x0), p(xb0), . . . , p(xn),

and at that point we have thrown in 0+ 1+ · · · + (b0 − 1) = (b0
2

)
many minus signs.

We can now repeat this procedure. The next step consists in doing b1 many steps
on the variables xb0 , . . . , xb0+b1−1. And so on. Finally, relabel the variables that have
survived as y0, . . . , yr . ��
3.8. After these preparations we come to the main result of our paper. Let μ =
(m0, . . . , mn) with m0 > · · · > mn ≥ 0, write k = 1 + � n

2 �. Let R[t] be the
ring of polynomials in the variable t . We consider the subspace V = Vμ of R[t] that
is spanned by the monomials tm0 , . . . , tmn . Let I ⊆ R be an interval, and let

P := { f ∈ V : f ≥ 0 on I }.

Note that P is a closed convex cone in V . The key result is the following nichtnega-
tivstellensatz:

Theorem 3.9 Let (a) I = [0, 1] or (b) I = R+ = [0,∞[. Then every f ∈ P can be
written as a finite sum

(a) f =
∑

i

gi (t)
2qi (t) + (1 − t)

∑

j

h j (t)
2r j (t),

(b) f =
∑

i

gi (t)
2qi (t),

(6)
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where gi , qi , h j , r j are polynomials with deg(gi ), deg(h j ) ≤ � n
2 � = k − 1, such that

the degree of every summand is ≤ m0, and such that the coefficients of qi , r j are all
non-negative.

Conversely, when f has a representation as in the theorem, it is obvious that f ≥ 0
on I . See Remark 3.18 for why the case I = R is not included here.
3.10. To start the proof of Theorem 3.9 (in either case (a) or (b)), let Q be the set
of all f ∈ V that have a representation (6). Then Q is a convex cone, and Q ⊆ P .
Let E ⊆ P be the set of all polynomials f that generate an extreme ray of P . Every
element of P is a sum of finitely many elements of E , since the cone P is closed and
pointed. To prove Q = P , it therefore suffices to show f ∈ Q for any given f ∈ E .
3.11. Let us make two more reduction steps. Assume that f ∈ Q has been shown
(for all monomial subspaces) whenever f ∈ E satisfies f (0) > 0. Let f ∈ E with
f (0) = 0. Writing f = tw f̃ where w = ord0( f ), there is an index 0 ≤ s ≤ n
with ms = w. The subspace Ṽ = lin(tm0−w, . . . , tms−1−w, 1) of R[t] has dimension
s + 1 ≤ n + 1 and contains f̃ . Moreover f̃ ≥ 0 on I and f̃ (0) > 0. To fix ideas,
assume we are in case (a), so I = [0, 1]. By assumption, the theorem holds for f̃ and
the subspace Ṽ . This means that there is an identity

f̃ =
∑

i

gi (t)
2qi (t) + (1 − t)

∑

j

h j (t)
2r j (t) (7)

where deg(gi ), deg(h j ) ≤ � s
2� and the qi , r j have non-negative coefficients, such

that every summand in (7) has degree ≤ m0 − w. Multiplying the identity with tw,
we get an identity for f as claimed in Theorem 3.9(b). In case (b), the argument is
exactly the same.
3.12. So we need to establish an identity (6) for every f ∈ E with f (0) > 0. For this,
we clearly may discard all monomials of degree greater than d = deg( f ). In other
words, we may assume that deg( f ) = m0. This reduction step plays a role only in
case (b). (In fact, deg( f ) = m0 is automatic if I = [0, 1], as will be seen from the
proof below.)
3.13. From Descartes’ rule of signs (e.g. [12] Cor. 1.10.3) it follows that every non-
zero f ∈ V has at most n strictly positive roots, counting with multiplicity. On the
other hand, Corollaries 3.2 and 3.3 show that every f ∈ E with deg( f ) = m0 has at
least n roots in I . If in addition f (0) > 0, it follows that f has precisely n strictly
positive roots, and they all lie in I .
3.14. Let f ∈ E with f (0) > 0 and deg( f ) = m0. Note that mn = 0 now since
f (0) 
= 0. By 3.13, f has precisely n positive roots, and they all lie in I . It suffices to
show that every such f satisfies an identity (6).

Let ξ1, . . . , ξr be the different positive roots of f , and let bi = ordξi ( f ) (i =
1, . . . , r ). Each bi is an even integer, except possibly in case (a) when ξi = 1. We have∑r

i=1 bi = n since f has n roots in I .
Consider the determinant (5) in 3.6, with b0 := 1 and pi = tmi (i = 0, . . . , n).

After substituting y0 = t and yi = ξi (i = 1, . . . , r ), Proposition 3.7 shows that the
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determinant has a factorization

Fμ,b(t, ξ1, . . . , ξr ) = γ

r∏

i=1

(t − ξi )
bi · sλ

(
t, ξ1, . . . , ξ1︸ ︷︷ ︸

b1

, . . . , ξr , . . . , ξr︸ ︷︷ ︸
br

)

with γ 
= 0 a constant. The last factor sλ(t, ξ1, . . . , ξr ) is a polynomial in t . Since
all coefficients of the Schur polynomial sλ are ≥ 0, and since ξi > 0 for all i , this
polynomial is not identically zero (and has degreeλ0 = m0−n).Hence the determinant
is non-zero, and Lemma 3.4 implies that it agrees with f up to scaling. This means
that f has a factorization

f = γ ′
r∏

i=1

(t − ξi )
bi · sλ(t, ξ1, . . . , ξ1︸ ︷︷ ︸

b1

, . . . , ξr , . . . , ξr︸ ︷︷ ︸
br

) (8)

with a constant γ ′ 
= 0. The first factor after the constant has the form

r∏

i=1

(t − ξi )
bi = g(t)2u(t)

where deg(g) = k − 1 = � n
2 � and u(t) = 1 or t − 1. The case u(t) = t − 1 occurs

only in case (a) (I = [0, 1]) when n is odd. The last factor sλ(t, ξ1, . . . ) in (8) is a
polynomial in t with non-negative coefficients. So, up to a non-zero constant factor,
the right hand side has the form claimed in Theorem 3.9. Since f |I ≥ 0 we see that
γ ′ > 0 in case (a) with n even, and also in case (b). When n is odd in case (a), we have
ξi = 1 for some i , and bi is odd, so γ ′ < 0 in this case. The theorem is proved. ��

Recall our convention k = 1 + � n
2 �. Let � = �2k := {g ∈ R[t] : deg(g) ≤ 2k,

g ≥ 0 on R}. Each g ∈ �2k can be written g = g2
1 + g2

2 with polynomials g1, g2 of
degree ≤ k. Theorem 3.9 can be stated in the following alternative form:

Corollary 3.15 Again let (a) I = [0, 1] or (b) I = R+. With assumptions as in Theo-
rem 3.8, the inclusion

(a) P ⊆
(
� + t� + · · · + tm0−2k�

)
+ (1 − t)

(
� + t� + · · · + tm0−2k−1�

)

or

(b) P ⊆
(
� + t� + · · · + tm0−2k�

)

holds, respectively.

Remark 3.16 Part (b) of Corollary 3.15 can be considered to be a sparse (or fewnomial)
positivstellensatz (or rather, nichtnegativstellensatz) for univariate polynomials: Every
polynomial f ∈ R[t] with m monomials that is non-negative on R+ can be written as
a (finite) sum

f =
∑

i≥0

t i (pi (t)
2 + qi (t)

2)
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where pi , qi are polynomials of degree≤ �m−1
2 �. This point of viewwill be expanded

in more detail in the next section.

Remark 3.17 As before, let V ⊆ R[t] be a linear subspace generated by n + 1 mono-
mials, and let P = { f ∈ V : f ≥ 0 on I } where (a) I = [0, 1] or (b) I = R+. In
either case, Corollary 3.15 allows us to read off a block semidefinite representation of
P of block size at most k + 1. Let ϕ : Sk+1 → R[t]2k be the linear map that sends a
symmetric matrix M = (ai j )0≤i, j≤k to

ϕ(M) := (1, t, . . . , tk) · M · (1, t, . . . , tk)� =
k∑

i, j=0

ai j t
i+ j

Then ϕ(Sk+1
+ ) = �2k . In case (a), consider the linear map

φ : (
Sk+1)2(m0−2k)+1 → R[t]

given by

(
M0, . . . , Mm0−2k; N0, . . . , Nm0−2k−1

)

�→
m0−2k∑

i=0

t iϕ(Mi ) + (1 − t)
m0−2k−1∑

j=0

t jϕ(N j )

For (b), consider the linear map φ : (
Sk+1

)m0−2k+1 → R[t] given by

(
M0, . . . , Mm0−2k

) �→
m0−2k∑

i=0

t iϕ(Mi )

In either case we have P = V ∩ φ(S+), according to Corollary 3.15, where S+ =
(Sk+1

+ )N with N = 2(m0 − 2k) + 1 in case (a) and N = m0 − 2k + 1 in case (b). This
is an explicit block diagonal semidefinite representation of P of block size k + 1.

Remark 3.18 For sparse polynomials f inR[t] that are non-negative on the whole real
axis, there does not in general exist a sparse decomposition

f =
∑

i∈2Z+
t i

(
pi (t)

2 + qi (t)
2
)

similar to the one described in Remark 3.16. For example, f = 3t4 − 4t3 + 1 =
(t −1)2(3t2 +2t +1) is non-negative on R but cannot be written f = g1(t)+ t2g2(t)
with g1, g2 sums of squares of linear polynomials.

Still, we may easily produce a block semidefinite representation of block size k +1
for P = { f ∈ V : f ≥ 0 on R}, from the case I = R+ in 3.17. It suffices to remark
that f (t) ≥ 0 on R is equivalent to f (t) and f (−t) both being ≥ 0 on R+.
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By cone duality we get the desired theorem for convex hulls of monomial space
curves:

Theorem 3.19 Let m1, . . . , mn ≥ 1 be integers, and let I ⊆ R be a semialgebraic set.
The closed convex hull K of the set

S = {
(tm1, . . . , tmn ) : t ∈ I

}

in R
n has semidefinite extension degree at most � n

2 � + 1.

Proof The set K is identified with an affine-linear slice of the dual cone P∗ of P . Since
sxdeg(P∗) = sxdeg(P) ( [19] Prop. 1.7), it suffices to prove sxdeg(P) ≤ � n

2 �+1. We
may assume that the mi are pairwise distinct. When I = [0, 1] or I = R+, the claim
sxdeg(P) ≤ � n

2 �+1 was shown in Remark 3.17. We sketch how the case of other sets
I can essentially be reduced to these two cases, without going into full details. Clearly
I can be assumed to be closed. If I = I1 ∪ I2 with I1, I2 semialgebraic, it is enough
to prove the claim for both I1 and I2, in view of [19] Prop. 1.6. In this way we reduce
to considering I = [a, b] or I = [a,∞[ where 0 ≤ a < b < ∞. The cases a = 0 are
already done (assuming b = 1 in the compact case was nowhere essential). Assume
I = [a, b] with 0 < a < b < ∞. Then every f ∈ P that generates an extreme ray
of P has exactly n roots in I , counting with multiplicities. So the reduction step 3.11
in the proof of Theorem 3.9 is not needed. Otherwise we may just follow the proof of
this theorem. In this way we arrive at a representation of every element of P in a form
similar to 3.9(a), but with weights 1, t − a, b − t and (t − a)(b − t) instead of only 1
and 1 − t . When I = [a,∞[ with a > 0, we may proceed in a similar way. ��
Remark 3.20 For I = [0, 1] or I = R+, an explicit block semidefinite representation
of K of block size � n

2 � + 1 can be obtained from Remarks 3.17, 3.18 by dualizing.

Remark 3.21 In Theorem 3.9, the upper bound � n
2 � = k − 1 for the degrees of gi , h j

cannot be made smaller in general. This can be seen by considering the tuple μ =
(n, n − 1, . . . , 1, 0) and the corresponding subspace V = R[t]≤n of R[t]: The closed
convex hull K of the set S = {(t, t2, . . . , tn) : t ∈ I } (with I = R+ or I = [0, 1]) has
sxdeg(K ) = k = � n

2 � + 1, by [4] Corollary 2.14 (see the reasoning at the beginning
of the proof of Theorem 3.19).

Remark 3.22 It is natural to ask whether the bound sxdeg(K ) ≤ � n
2 � + 1 extends to

cases more general than convex hulls of monomial curves. In fact, the same bound
is true in general whenever K ⊆ R

n is the closed convex hull of a one-dimensional
semialgebraic set in R

n [20]. However the proof gets much more difficult than in
the monomial case. Even when the curve is parametrized by polynomials instead of
monomials, one has to argue locally on sufficiently small intervals on the curve, and
there does not seem to be an explicit form for a block semidefinite representation.When
the curve is non-rational, the proof becomes technically even muchmore complicated.

Remark 3.23 In Sections 4–5 of [18], the authors explain how the convex cone M =
cone{(tm0 , . . . , tmn ) : t ∈ I } is useful in population genetics, in the case I = [0, 1]
and mi = (i+2

2

) − 1 (0 ≤ i ≤ n). There one needs to determine the Euclidean
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distance from a given point in R
n+1 to the hyperplane section C = {(x0, . . . , xn) ∈

M : x0 + · · · + xn = 1} of M. Corollary 20 of [18] relies on the fact that C has a
lifted description by two LMIs, each of size O(n2). This may be compared with our
main result, which implies that C has a lifted description by O(n2) many LMIs each
of size O(n). Interestingly, the authors of [18] are also using Descartes’ rule of sign,
Schur polynomials and the bialternant formula. Other than in our paper, their purpose
is to understand the facial structure of M (see Theorem 3 and Corollary 6 in [18]).

4 Sparse non-negativity certificates in polynomial optimization

4.1 Sums of copositive fewnomials and sparse semidefinite relaxations

We are going to take a second look at Corollary 3.15, concentrating on part (b). Let
k ≥ 1 be an integer. A univariate polynomial f ∈ R[t] will be called a k-nomial if
f is a linear combination of at most k monomials t i . We say that f is copositive if
f ≥ 0 on R+. Given a finite set J ⊆ Z+ := {0, 1, 2, . . . }, let

CP(J ) := {p ∈ R[t] : p ≥ 0 on R+ and supp(p) ⊆ J } .

This is the cone P considered in Sect. 3, for the monomial curve corresponding to J .
Let

SOCFk,d :=
∑

J⊆{0,...,d} :
|J |=k

CP(J )

The acronym SOCF stands for sums of copositive fewnomials. So f ∈ R[t]d lies in
SOCFk,d if, and only if, f can be written as a finite sum of copositive k-nomials of
degree atmost d. It is obvious how to generalize this setup fromunivariate polynomials
to a multivariate setting. This could be an interesting setup to explore in the future.

As before, let �2k ⊆ R[t] denote the set of sums of squares polynomials of degree
≤ 2k. The main result of Sect. 3 implies the following positivstellensatz for the cones
SOCF:

Corollary 4.1 For all integers k, d ≥ 1 with d > 2k, we have

SOCF2k+1,d = t0 �2k + · · · + td−2k �2k . (9)

Moreover sxdeg(SOCF2k+1,d) = k + 1.

For d = 2k, note that SOCF2k+1,2k is just the cone of all copositive univariate
polynomials of degree at most 2k, i.e., it is the cone

{ f ∈ R[t]2k : f ≥ 0 on R+} = �2k + t �2k−2,

where the latter description of copositivity in the univariate case is well known.
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Proof The inclusion “⊆” holds since, for every set J ⊆ {0, . . . , d} with |J | ≤ 2k +1,
the cone CP(J ) is contained in the right hand side of (9) (Corollary 3.15(b)). The
reverse inclusion is obvious. The last statement follows from identity (9) by using
[19] Lemma 1.4(d). ��

To describe the duals of the SOCF cones, we identify v ∈ (R[t]d)∨ and
(v0, . . . , vd) ∈ R

d+1 via vi = v(t i ).

Lemma 4.2 Let d, k ≥ 1 with d > 2k. The dual of SOCF2k+1,d is the cone

{
v = (v0, . . . , vd) ∈ R

d+1 : M0,k(v) � 0, . . . , Md−2k,k(v) � 0
}
,

where

Ms,k(v) := (
vs+i+ j

)
i, j=0,...,k ∈ R

(k+1)×(k+1).

Proof This follows from (9) in Corollary 4.1, since (C1 + C2)
∗ = C∗

1 ∩ C∗
2 and since

(�2k)
∗ = {u = (u0, . . . , uk) : M0,k(u) � 0}; see, for example, [7] Sect. 4.6. ��

The notation Ms,k(v) from Lemma 4.2 is used in the following proposition, which
provides primal and dual sparse relaxations for the problemminR+ f , with f ∈ R[t]d ,
with a flexible choice of the sparsity threshold 2k + 1.

Proposition 4.3 Let k, d be positive integers with 2k < d and f ∈ R[t]d . Then the
following elements in R ∪ {±∞} coincide:

(1) sup{λ ∈ R : f − λ ∈ SOCF2k+1,d},
(2) sup{λ ∈ R : f − λ ∈ t0 �2k + · · · + td−2k �2k},
(3) inf{〈 f , v〉 : v = (v0, . . . , vd) ∈ R

d+1, v0 = 1, M0,k(v), . . . , Md−2k,k(v) � 0}.
Proof This follows from (9) in Corollary 4.1, using Proposition 2.4. ��
Remark 4.4 For the case k = 0, relaxations in Proposition 4.3 are trivial with the
optimal value f (0) or −∞, depending on whether or not all coefficients of f − f (0)
are non-negative. But already the simplest non-trivial case k = 1 exhibits connections
to active ongoing research on sparse relaxations in polynomial optimization, namely
to the relaxations that rely on the so-called sage and sonc polynomials; see [8] and [10,
15], respectively. Both kinds of polynomials emerge from the same idea applied to
non-negativity onR

n+ andR
n , respectively. A sage polynomial is a sum of polynomials

that are non-negative on R
n+ and whose supports are contained in a simplicial curcuit.

Here, a simplicial circuit is an inclusion-minimal affinely dependent set whose convex
hull is a simplex. Since simplicial circuits within R are merely three-element sets, we
see that the cone SOCF3,d is the cone of all univariate sage polynomials of degree at
most d. Thus, the case k = 1 provides a primal and a dual sage relaxation of minR+ f .
See, for example, [10] for the discussion of the duality for the sonc and sage cones
and the applications in optimization. We also note that the special case k = 1 of
Corollary 4.1 amounts to a description of non-negative sage polynomials in terms of
the so-called reduced circuits; see [10]. That is, in the univariate situation, an analog
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of a reduced circuit in the setting of copositive (2k + 1)-nomials is a set of 2k + 1
consecutive integer values, since the support of polynomials in t i�2k is a subset of
{i, . . . , i + 2k}.

We stress that the sparsity threshold of sage and sonc polynomials is bound to the
dimension, since a circuit in dimension n cannot have more than n + 2 elements.
In contrast to this, in our setting the sparsity threshold 2k + 1 may vary arbitrarily,
bridging the sage relaxations with the dense standard relaxations of Lasserre. While
being aware that our results are limited to the univariate case, we hope that such results
might serve as an inspiration for similar studies in an arbitrary dimension n. That is,
it would be interesting to understand properties of sos and moment relaxations that
have a variable sparsity threshold.

Remark 4.5 The above discussion of sparse polynomial optimization overR+ can also
be used to handle sparse polynomial optimization on an arbitrary interval I ⊆ R+.
For example, when 2k < d − 1 and I = [0, 1], in view of Corollaries 3.15(a) and
4.1, the cone of sums of (2k + 1)-nomials of degree at most d that are non-negative
on [0, 1] can be described as SOCF2k+1,d +(1 − t)SOCF2k,d−1. For both of the
involved SOCF cones we have semidefinite descriptions of size k + 1. This leads to a
semidefinite formulation of the optimization problem inf t∈[0,1] p(t) for p a polynomial
with | supp(p)| ≤ 2k +1 usingO(d) LMIs of size k +1, analogous to the formulation
(3) given in Proposition 4.3.

4.2 Sparse semidefinite relaxations with a chordal-graph sparsity

We consider graphs G = (V , E) where |V | < ∞ and edges e ∈ E are two-element
subsets of V . A cycle of length k in G is a connected subgraph of G with k nodes
and each node having degree two. A chord of a cycle C in G is an edge of G that
connects two nodes of C but is not an edge of C . A graph G is said to be chordal
if every cycle of G of length at least four has a chord in G. A clique W ⊆ V of
G = (V , E) is a set of nodes with any two distinct nodes in W connected by an edge.
The following result provides a convenient representation of the cone of psd matrices
with the chordal sparsity pattern:

Theorem 4.6 (see [2] and [22] Sect. 9.2) Let G = (V , E) be a graph with n = |V | <

∞. With G we associate the cone

SV
+,E := {

(ai j )i, j∈V ∈ Sn+ : ai j = 0 when i 
= j and {i, j} /∈ E
}
.

If G is chordal, then this cone admits the decomposition

SV
+,E = SV1+ + · · · + SVN+ ,

where V1, . . . , VN ⊆ V are all inclusion-maximal cliques of G and, for W ⊆ V ,

SW+ := {
(ai j )i, j∈V ∈ Sn+ : ai j = 0 for (i, j) /∈ W × W

}
.
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Remark 4.7 SV
+,E is the so-called cone of psd matrices with the sparsity pattern of G =

(V , E). If G is chordal, SV
+,E is known to have favorable theoretical and computational

properties, which allow one to solve conic optimization problems with respect to
the cones SV

+,E more efficiently than the problems with respect to Sn+. For example,

computations with barrier functions can be done more efficiently on SV
+,E since there

are more efficient ways to carry out Cholesky factorization for matrices in SV
+,E when

the graph G = (V , E) is chordal. We refer to [25] Appendix A for further details.

Remark 4.8 As a consequence of Theorem 4.6 we see that, for a chordal graph G =
(V , E), the semidefinite extension degree of SV

+,E is the clique number of G, i.e., the
maximum clique size of G.

For positive integers n and k with k < n, the cone

Sn
+,k = {

(ai j )i, j=0,...,n−1 ∈ Sn+ : ai j = 0 for |i − j | > k
}

is the cone SV
+,E for the graph G = (V , E) with vertex set V = {0, . . . , n − 1} and

edge set E consisting of {i, j} that satisfy 0 < |i − j | ≤ k. In [22] Sect. 8.2, Sn
+,k is

called the cone of psdmatrices with the band sparsity pattern of the band width 2k +1.
It is clear that the graph G defining Sn

+,k is chordal and that inclusion-maximal cliques
of G are sets of the form {i, . . . , i + k} with 0 ≤ i < n − k. We show that, similarly
to how Sn+ is used for representing sos cones and truncated quadratic modules, the
cone Sn

+,k can be used for representing the cone SOCF2k+1,n . That is, optimization
problem (1) from Proposition 4.3 can be formulated as a conic problem with respect
to the cones Sn

+,k . Such formulations may have computational advantages if used in
solvers that can exploit the chordal sparsity.

Proposition 4.9 Let d, k be positive integers with 2k < d. Then the cone SOCF2k+1,d
admits a representation as a linear image of Se+1

+,k × Se
+,k , if d = 2e is even, and as a

linear image of Se+1
+,k × Se+1

+,k , if d = 2e + 1 is odd.

Proof We only consider the case of an even d with d = 2e, because the case of an odd
d is completely analogous. We use the linear map ϕ : Se+1 → R[t]d with ϕ(A) :=∑e

i, j=0 ai j t i+ j for A = (ai j )i, j=0,...,e ∈ Se+1 from Remark 3.17. As mentioned in

Remark 3.17, ϕ(SW+ ) = �2k for W = {0, . . . , k}, where the notation SW+ is borrowed

from Theorem 4.6. The latter implies ϕ(SVi+ ) = t2i�2k for Vi := {i, . . . , i + k} with
0 ≤ i ≤ d − 2k. Consequently, splitting the sum representing SOCF2k+1,d in (9) into
two according to the parity of the exponents in t0, . . . , td−2k , we obtain

SOCF2k+1,d =
e−k∑

i=0

t2i�2k + t
e−k−1∑

i=0

t2i�2k

= φ

(e−k∑

i=0

SVi+
︸ ︷︷ ︸

=:K

)
+ t φ

(e−k−1∑

i=0

SVi+
︸ ︷︷ ︸

=:L

)
.
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Thus, SOCF2k+1,d is a linear image of K × L under the linear map (A, B) �→ ϕ(A)+
t ϕ(B). In view of Theorem 4.6, K and L are copies of Se+1

+,k and Se+,k respectively.
This gives the desired assertion. ��

Remark 4.10 Wang et al. [23, 24] suggest to use the cones SV
+,E from chordal graphs

G = (V , E) to approximate sparse sos polynomials. For a given finite set A ⊆ Z
n+,

they consider the cone

�(A) := { f ∈ R[x1, . . . , xn] : f sos and supp( f ) ⊆ A}

They suggest two iterative algorithms (one in [23] and another one in [24]) that take
A as an input and produce a chordal graph G = (V , E) with V ⊆ Z

n+ in order to use
the image of the repsective cone SV

+,E under the map

ϕ : (aα,β)α,β∈V �→
∑

α,β∈V

aα,β xα+β

as an approximation of �(A). The algorithm in [23] produces a G = (V , E) being a
disjoint union of cliques. The graph G = (V , E) in [23] is guaranteed to satisfy the
equality

�(A) =
{

f ∈ ϕ(SV
+,E ) : supp( f ) ⊆ A

}
(10)

(see Thm. 3.3 in [23]), but there is no guarantee that the clique number of G is
small, or rather, the dependence of the clique number of G on the properties of A
remains unexplored. Since the graph G = (V , E) generated by an algorithm from
[23] may have large cliques, in [24] another approach is suggested that generates a
graph G = (V , E) with a smaller number of edges. This other approach is heuristic
in the sense that there are no theoretical guarantees for the equality �(A) = ϕ(SV

+,E )

(see Example 3.5. in [24]). It would be interesting to study the semidefinite extension
degree of the cones �(A) and try to relate these cones to the cones SV

+,E in a non-
heuristic way.
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