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Abstract
We develop new tools to study landscapes in nonconvex optimization. Given one
optimization problem, we pair it with another by smoothly parametrizing the domain.
This is either for practical purposes (e.g., to use smooth optimization algorithms with
good guarantees) or for theoretical purposes (e.g., to reveal that the landscape satisfies
a strict saddle property). In both cases, the central question is: how do the landscapes of
the two problems relate?More precisely: how do desirable points such as local minima
and critical points in one problem relate to those in the other problem? A key finding
in this paper is that these relations are often determined by the parametrization itself,
and are almost entirely independent of the cost function. Accordingly, we introduce
a general framework to study parametrizations by their effect on landscapes. The
framework enables us to obtain newguarantees for an array of problems, someofwhich
were previously treated on a case-by-case basis in the literature. Applications include:
optimizing low-rank matrices and tensors through factorizations; solving semidefinite
programs via the Burer–Monteiro approach; training neural networks by optimizing
their weights and biases; and quotienting out symmetries.
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1 Introduction

We consider pairs of optimization problems (P) and (Q) as defined below, where
E is a linear space, M is a smooth manifold,1 and ϕ : M → E is a smooth
(over)parametrization of the search space X = ϕ(M) of (P).2 Their optimal val-
ues are equal:

M

X ⊆ E R

ϕ

f

g= f ◦ϕ

min
y∈M

g(y) (Q)

min
x∈X

f (x) (P)

We usually assume f : E → R is smooth (C∞), hence so is g = f ◦ ϕ : M→ R by
composition.

1 All linear spaces and manifolds are assumed to be finite-dimensional.
2 The two-headed arrow � in the diagram denotes a surjection.
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Smooth parametrizations of nonconvex landscapes

Such pairs of problems (P) and (Q) arise in two scenarios (concrete examples
follow):

(a) Our task is to minimize f on X as in (P), but we lack good algorithms to do so,
e.g., becauseX lacks regularity. In this case, we choose a smooth parametrization
ϕ of X and run algorithms on the smooth problem (Q) instead.

(b) Our task is to minimize g onM as in (Q), but its landscape is complex (e.g., due
to symmetries). In this case, we factor g through a smooth map ϕ in the hope
of revealing a problem (P) whose landscape is simpler and can be leveraged to
analyze that of (Q).

In both cases, we run an optimization algorithm on the smooth problem (Q). This
algorithmmay find desirable points y onM for (Q) (global or local minima, stationary
points). For example, certain trust-region algorithms are guaranteed to accumulate at
second-order stationary points—see [18] and an extension to manifolds [40, §3]–
and many first- and even zeroth-order methods converge to second-order stationary
points from almost all initializations [4, 36, 57]. However, in general such points need
not map to desirable points ϕ(y) on X for (P). Indeed, nonlinear parametrizations
may severely distort landscapes, and notably may introduce spurious critical points.
Algorithms running on (Q) are liable to terminate at an approximately stationary point
near such a spurious point, and return a point whose image through ϕ is nowhere near
any stationary point for (P).

In this paper, we characterize the properties that the parametrization ϕ needs to
satisfy for desirable points of (Q) to map to desirable points of (P), that is, we develop
a general framework to relate the landscapes of pairs of problems of the above form.
Importantly, we observe that these properties are often entirely independent of the
cost function f in (P), since many parametrizations map desirable points for (Q) to
those for (P) for any cost function. Our framework enables us to unify and strengthen
the analysis of a wealth of parametrizations arising in applications, hitherto studied
case-by-case and often only for specific costs.

Parametrizations are ubiquitous. They arise in semidefinite programming [10, 16],
low-rank optimization [25, 38, 44], computer vision [19], inverse kinematics and
trajectory planning [52, Chaps. 1,4], algebraic geometry [26, Chap. 17], training neural
networks [41, 46], and risk minimization [6, 7, 54]. The following are two concrete
examples that illustrate the above two scenarios.

For an example of scenario (a), consider minimizing a cost f over the set
X = R

m×n≤r of allm×n matrices of rank at most r . Unfortunately, standard algorithms
running on (P) may converge to a non-stationary point because of the nonsmooth
geometry of X [40, 45]. Instead of trying to solve (P) directly, it is common to
parametrize X by the linear space M = R

m×r × R
n×r using the rank factoriza-

tion ϕ(L, R) = LR�, and to solve (Q) instead. The resulting problem (Q) requires
minimizing a smooth cost function over a linear space; there are several algorithms
that converge to a second-order stationary point for such problems. Furthermore, any
second-order stationary point for (Q) maps under ϕ to a stationary point for (P) by
[25, Thm. 1]. Thus, parametrization of X by ϕ gives us an algorithm converging to a
stationary point for (P) by running standard algorithms on (Q), even though similarly
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Table 1 Sets used frequently in the paper

Bounded-rank matrices R
m×n≤r = {X ∈ R

m×n : rank(X) ≤ r}
Fixed-rank matrices R

m×n=r = {X ∈ R
m×n : rank(X) = r}

Symmetric matrices S
m = {X ∈ R

m×m : X = X�}
Nonnegative orthant R

m≥0 = {x ∈ R
m : xi ≥ 0 for all i}

Positive orthant R
m
>0 = {x ∈ R

m : xi > 0 for all i}
Positive-semidefinite (PSD) matrices S

m�0 = {X ∈ S
m : X � 0}

Positive-definite (PD) matrices S
m�0 = {X ∈ S

m : X � 0}
Standard simplex �n−1 =

{
x ∈ R

n≥0 :
∑n

i=1 xi = 1
}

Stiefel matrices St(m, r) = {X ∈ R
m×r : X�X = Ir }

Unit sphere Sm−1 = St(m, 1)

Orthogonal matrices O(m) = St(m,m)

Special orthogonal matrices SO(m) = {X ∈ O(m) : det(X) = 1}
Invertible matrices GL(m) = {X ∈ R

m×m : det(X) 
= 0}
Grassmannian Gr(m, r) = {S ⊆ R

m : S linear subspace, dim S = r}
Other sets include low rank tensors and functions representable by fixed neural network archi- tectures

reasonable algorithms may fail to produce a stationary point when applied directly
to (P).

For an illustration of scenario (b), consider finding the smallest eigenvalue of a
d × d symmetric matrix A, which can be written in the form (Q) with M the unit
sphere in R

d and g(y) = y�Ay. This problem is not convex, hence it could have
bad local minima. Here is one way to reason that it does not (as is well known).
If λ ∈ R

d denotes the vector of eigenvalues of A and U ∈ O(d) is an orthogonal
matrix of eigenvectors satisfying A = Udiag(λ)U� (both of which are unknown),
define ϕ(y) = diag(U�yy�U ) ∈ R

d and f (x) = λ�x . It is easy to check that
g = f ◦ϕ, and thatX = ϕ(M) is the standard simplex inR

d . The resulting problem (P)
is convex in this case, hence each of its stationary points is a global minimum. A
corollary of the theory we develop in this paper is that any second-order stationary
point for (Q) with ϕ as above maps to a stationary point for (P), for any cost function
f—see Example 4.13. Thus, we recover the well-known fact that any second-order
stationary point for the eigenvalue problem (Q) is globally optimal. Even though the
problem (P) cannot be solved directly in this case because f and ϕ are unknown, their
mere existence can be used to show that the nonconvexity of (Q) is “benign”. From
this perspective, problem (P) reveals hidden convexity in problem (Q). This hidden
convexity is present more generally in lifts arising from Kostant’s convexity theorem,
extending this example to optimization of certain linear functions over certain Lie
group orbits [35].

We state our main definitions and results relating the landscapes of (P) and (Q)
in general, and instantiate these results on a number of specific lifts arising in the
literature, in Sect. 2. Table 1 collects the notations and definitions for several sets used
throughout the paper.
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2 Lifts and their properties

We call the parametrization in (Q) a (smooth) lift of X :

Definition 2.1 A smooth lift ofX ⊆ E is a smoothmanifoldM together with a smooth
map ϕ : M→ E such that ϕ(M) = X .

As the two scenarios in Sect. 1 illustrate, understandingwhen liftsmap desirable points
for (Q) to desirable points for (P) yields guarantees for algorithms running on (Q).
Here desirable points might be minimizers (global or local) and stationary points (of
first, second, or higher order). The relation between these two sets of desirable points
has been studied for various specific lifts and cost functions. In this paper, we study
this relation in general and answer the following question:

Which lifts have the property that desirable points of (Q)map to desirable points
of (P), for all cost functions f ?

Surprisingly, we find that many lifts arising in practice satisfy such properties, yielding
guarantees for algorithms running on (Q) that are independent of the particular cost
function involved, and only depend on the geometry of the lift. We further show that
whenever a lift does not preserve desirable points for all cost functions, then it fails
to do so already for quite simple costs. In this case our results identify obstructions
to proofs of guarantees for algorithms, which must then exploit the structure of the
particular cost function at hand.

To begin answering the above question, we note that global minima of (Q) always
map under ϕ to global minima of (P), for all cost functions f . This holds simply
because ϕ(M) = X , see Proposition 3.5. Global minima are hard to find in general,
so we study other types of desirable points such as local minima and stationary points.
In contrast to global minima, these types of desirable points are not guaranteed tomap3

to each other under smooth lifts. In fact, it is possible for a local minimum of (Q) to
map under ϕ to a non-stationary point for (P), see Example 3.7. Thus, we define the
following properties of smooth lifts that, when satisfied, yield a connection between
desirable points for (Q) and those for (P).

Definition 2.2 (Desirable properties of lifts) Suppose ϕ : M→ X is a smooth lift.

(a) The lift ϕ satisfies the “local⇒ local” property at y ∈ M if, for all continuous
f : X → R, if y is a local minimum for (Q) then x = ϕ(y) is a local minimum
for (P). We say ϕ satisfies the “local⇒local” property if it does so at all y ∈M.

(b) The lift ϕ satisfies the “k ⇒ 1” property at y for k = 1, 2 if for all k-times
differentiable f : X → R, if y is a kth-order stationary point (“k-critical” for
short) for (Q) then x = ϕ(y) is stationary for (P). We say ϕ satisfies the “k⇒1”
property if it does so at all y ∈M.

The precise definitions of each type of desirable points above is given in Sect. 3. We
fully characterize these properties and explain how to check themon specific examples.

3 The converse question is simple: preimages of local minima are local minima by continuity of ϕ (Propo-
sition 3.6), and preimages of stationary points are stationary by differentiability of ϕ (Proposition 3.13).
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We then apply our results to study lifts arising in applications ranging from low-rank
matrices and tensors to neural networks.

Note that “2⇒1” at y implies “1⇒1” at y since 2-critical points are 1-critical, but no
other implication between the different properties holds in general—see Remark 2.13.
We also mention that C∞ smoothness is not necessary for the above properties or for
their characterizations. For example, it suffices for the manifold M and the lift ϕ to
be of class Ck for the definition of “k⇒1” and its characterization to apply. For “local
⇒ local” it suffices for M to be a topological space satisfying certain properties (see
“Appendix 1”) and for ϕ to be continuous.

Our characterizations of “local⇒ local” and “1⇒1” are easy to state as follows.

Theorem 2.3 The lift ϕ : M→ X satisfies “local⇒local” at y ∈M if and only if it
is open at y. If ϕ does not satisfy “local⇒local” at y, there is a smooth cost f such
that y is a local minimum for (Q) but ϕ(y) is not a local minimum for (P).

By definition, the map ϕ is open at y ∈ M if it maps neighborhoods of y (that is,
sets containing y in their interior) to neighborhoods of ϕ(y) (in the subspace topology
on X from E)—a purely topological property. Proving that openness is sufficient for
“local⇒ local” is easy. Proof of its necessity requires substantial work, deferred to
“Appendix 1”. Our proof in the appendix provides the result in a more general, topo-
logical setting without using smoothness. It also provides (possibly new) conditions
which are equivalent to openness and may be easier to check for some lifts.

Our characterization for “1⇒1” involves the image of the differential of the lift
map ϕ, and is proved in Sect. 3.2.1.

Theorem 2.4 The lift ϕ : M → X satisfies “1 ⇒ 1” at y ∈ M if and only if
im Dϕ(y) = TxX , where x = ϕ(y). If ϕ does not satisfy “1 ⇒ 1”, there is a lin-
ear cost f such that y is 1-critical for (Q) but ϕ(y) is not stationary for (P).

Here ϕ is viewed as a smooth map between smooth manifolds M → E , and its
differential Dϕ(y)maps the tangent space TyM to (in general, a subset of) the tangent
cone TxX , see Definition 3.1. Since Dϕ(y) is a linear map and TyM is a linear space,
“1⇒1” is rarely satisfied: unless all tangent cones ofX are linear subspaces, for every
smooth lift ϕ, there exists a (linear) f such that some stationary point for (Q) does not
map to a stationary point for (P).

Our characterization for “2⇒1” is more complicated, involving the second deriva-
tive of ϕ as well. We state an equivalent condition for “2⇒1”, as well as sufficient
and necessary conditions for it that are easier to check in some applications, in Theo-
rem 3.23. If “2⇒1” fails at y, we show in Corollary 3.18 that there exists a convex
quadratic cost f such that y is 2-critical for (Q) but ϕ(y) is not stationary for (P). Note
also that if “1⇒1” holds at y then so does “2⇒1” by definition.

Understanding stationarity on X requires knowledge of its tangent cones. These
can be hard to characterize. We show that it is sometimes possible to obtain an explicit
expression for the tangent cones simultaneously with proving “1⇒1” and “2⇒1”
for some lift of X , see Sects. 3.5 and 4. This is somewhat surprising since the tangent
cones to X are defined independently of any lift.

Given a set X , it is also natural to seek constructions of a smooth lift ϕ : M→ X
satisfying desirable properties. We give a systematic construction of a map ϕ : M→
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X in Sect. 4 which maps a set M surjectively onto X . When the set M constructed
in this way is a smooth manifold, we obtain a smooth lift and give conditions under
which ϕ satisfies each of the above properties.

We now proceed to apply our results to study various lifts arising in the literature.

2.1 The sphere-to-simplex Hadamard lift

There is growing interest in optimizing over the probability simplex X = �n−1 ⊆
E = R

n by lifting it to the sphere via the Hadamard lift

M = Sn−1, ϕ(y) = y � y, (Had)

where� denotes the entrywise (Hadamard) product. Using this lift leads to fast algo-
rithms for high-dimensional problems (Q), see [14, 42, 56]. This is also essentially the
lift that appears in the eigenvalue example (scenario (b)) in Sect. 1, see Example 4.13.
This lift is particularly natural in applications involving probabilities since the push-
forward under ϕ of the standard metric on the sphere is the Fisher-Rao metric on the
simplex [5, Prop. 2.1].

We can characterize precisely where each of our desirable properties holds.

Proposition 2.5 The lift (Had) satisfies “local⇒ local” everywhere, “1⇒1” at y if
and only if yi 
= 0 for all i (i.e., at preimages of the relative interior of the simplex),
and “2⇒1” everywhere.

We prove this proposition in Corollary 4.12 by showing that the lift (Had) is a special
case of our construction of lifts in Sect. 4 and can be analyzed using the general results
we prove there.

The relation between desirable points for (Q) and for (P) have been previously
studied in [42], where the authors show that 2-critical points for (Q) map to 2nd-order
KKT points for (P), viewed as a nonlinear program, for any twice-differentiable cost.
This is a strengthening of “2⇒1”. The authors of [21] prove similar relations between
first- and second-order optimality conditions for problems (P) over R

n≥0, and for their
lifts (Q) to R

n via the entrywise-squaring lift in (Had).
The Hadamard lift also induces a lift of the set of column-stochastic matrices

X = {X ∈ R
n×m
≥0 : X�1n = 1n} to the product of spheres (called the oblique

manifold [9, §7.2]) via

M =
(
Sn−1

)m
, ϕ(y1, . . . , ym) = [y1 � y1, . . . , ym � ym]. (HadProd)

Here 1n is the all-1’s vector of length n and [x1, . . . , xm] denotes horizontal concate-
nation of m vectors xi of length n to form an n × m matrix. By studying products of
lifts in Proposition 4.11, we characterize the properties of (HadProd) in Example 4.14
and obtain the following result.

Proposition 2.6 The lift (HadProd) satisfies “local⇒local” everywhere, “1⇒1” at
(y1, . . . , yk) if and only if (yi ) j 
= 0 for all i, j , and “2⇒1” everywhere.
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Optimization over stochastic matrices has been applied to nonnegative matrix factor-
ization [22]. Such optimization also arises in information theory [8], where stochastic
matrices represent transition probabilities of channels.

2.2 Smooth semidefinite programs via Burer–Monteiro

Consider the domain X of a rank-constrained semidefinite program (SDP),

X = {X ∈ S
n�0 : rank(X) ≤ r , 〈Ai , X〉 = bi for i = 1, . . . ,m

} ⊆ E = S
n,

where 〈U , V 〉 = Tr(U�V ) is the (Frobenius) inner product on E . The Burer–
Monteiro approach [11] to optimizing overX consists of optimizing over the following
parametrization instead:

M = {R ∈ R
n×r : hi (R):=〈Ai R, R〉 − bi = 0 for i = 1, . . . ,m}, ϕ(R) = RR�.

(BM)

Burer and Monteiro prove in [12, Prop. 2.3] that local minima for (Q) map under ϕ to
local minima for (P) for linear costs f .

Under some conditions on the Ai , bi (which are satisfied generically [16, Prop. 1] as
well as for several applications of interest [10]), the constraints hi (R) = 0 constitute
(constant-rank) local defining functions (in the sense of [37, Thm. 5.12]) forM, which
is then an embedded submanifold of R

n×r . In that case,M and ϕ constitute a smooth
lift of X . In [10], assuming f is linear (as is typical for SDPs), the authors use the
assumption that the hi are local defining functions to prove that (in our terminology)
rank-deficient 2-critical points for (Q) map under ϕ to stationary points for (P). This
was also shown for nonlinear f in [30], though under more restrictive conditions on
Ai , bi (e.g., Ai A j = 0 for i 
= j). In all cases, these results allow to capture benign
non-convexity when f is convex, as then stationary points for (P) are global minima.

Using our framework, we can generalize these results to any (twice-differentiable)
costs and remove the restrictions on the rank of the 2-critical points.

Proposition 2.7 The Burer–Monteiro lift (BM) satisfies “local⇒ local” everywhere.
If M in (BM) is a smooth manifold with (constant-rank) local defining functions
{hi }mi=1, then this lift satisfies “1⇒1” at R if and only if rank(R) = r , and “2⇒1”
everywhere.

We prove this result too in Corollary 4.12 using general properties of our lift construc-
tion in Sect. 4. Our theory also yields explicit expressions for the tangent cones to X
in (4.4), which (to our knowledge) have not previously appeared in the literature.

2.3 Low-rankmatrices

Consider the set X = R
m×n≤r of matrices in E = R

m×n with rank at most r . We study
several natural lifts of this real algebraic variety. The first one we study is based on
the rank factorization of a matrix:
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M = R
m×r × R

n×r , ϕ(L, R) = LR�. (LR)

The authors of [25] showed (in our terminology) that “1⇒1”does not hold everywhere,
but “2⇒1” does. We further proved in [38, Prop. 2.30] that this lift does not satisfy
“local⇒local” everywhere either. We strengthen these results here using our unified
framework, by characterizing precisely where each of these properties hold. The proof
of the following proposition is given in Sect. 5.1.

Proposition 2.8 The lift of X = R
m×n≤r given by (LR) satisfies:

• “local⇒ local” at (L, R) if and only if rank(L) = rank(R) = rank(LR�),
• “1⇒1” at (L, R) if and only if rank(L) = rank(R) = r ,
• and “2⇒1” everywhere onM [25].

The second lift we study for R
m×n≤r is the desingularization lift introduced in [31]. It

is given by

M = {(X ,S) ∈ R
m×n × Gr(n, n − r) : S ⊆ ker X}, ϕ(X ,S) = X . (Desing)

Here Gr(n, n − r) is the Grassmann manifold of (n − r)-dimensional subspaces of
R
n [9, §9]. We proved in [38, Prop. 2.37] that this lift too does not satisfy “local⇒

local”. The following proposition parallels the one above and is proved in Sect. 5.2.

Proposition 2.9 The lift of X = R
m×n≤r given by (Desing) satisfies:

• “local⇒ local” at (X ,S) if and only if rank(X) = r; the same is true for “1⇒
1”.

• “2⇒1” everywhere onM.

A potential advantage of the desingularization lift over the matrix factorization lift is
that the preimage of a matrix, ϕ−1(X), is compact for the former but not for the latter.

Note that both lifts (LR) and (Desing) satisfy “1 ⇒ 1” and “local ⇒ local” at
preimages of rank-r matrices, but the lift (LR) further satisfies “local ⇒ local” at
“balanced” preimages of lower-rank matrices. We also mention that no smooth lift of
R
m×n≤r can satisfy “1⇒1” at preimages of lower-rank matrices by Theorem 2.4, since

the tangent cones to such matrices are not linear spaces.
In [44], the authors experiment with various SVD-type lifts for optimization over

matrices of rank exactly r . The following proposition, proved in the arxiv version
of this paper [39, App. D], gives some of the properties of these lifts, extended to
parametrize all of R

m×n≤r .

Proposition 2.10 The SVD lift and its modification from [44] satisfy the following.

• The SVD lift of R
m×n≤r given by

M = St(m, r)× R
r × St(n, r), ϕ(U , σ, V ) = Udiag(σ )V�, (SVD)

satisfies “local⇒local” at (U , σ, V ) if and only if |σ1|, . . . , |σr | are nonzero and
distinct; the same holds for “1⇒1”.
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• The modified SVD lift

M = St(m, r)× S
r × St(n, r), ϕ(U , M, V ) = UMV�, (MSVD)

satisfies “local⇒ local” at (U , M, V ) if and only if the eigenvalues of M satisfy
λi (M)+ λ j (M) 
= 0 for all i, j ; the same holds for “1⇒1”.

In [44, §6.3], the authors observed that Riemannian gradient descent running on (Q)
gets stuck in a suboptimal point for a certain matrix completion problem using (SVD)
but not using (MSVD). We can use Proposition 2.10 to understand their observation.
Their algorithm only generates iterates with strictly positive diagonals σ in (SVD) and
strictly positive-definite middle factors M in (MSVD), and can only converge to such
points. Proposition 2.10 shows that (MSVD) satisfies “local⇒local” and “1⇒1” in
that region, while (SVD) does not.

2.4 Low-rank tensors

Tensor factorization formats correspond to lifts mapping factors to low-rank tensors,
for various notions of tensor rank. For example, the canonical polyadic (CP) decompo-
sition of rank atmost 1 corresponds to the lift ofX = {X ∈ R

n1×···×nd : CP-rank(X) ≤
1} [34] via tensor product ⊗ as:

M = R
n1 × · · · × R

nd , ϕ(v1, . . . , vd) = v1 ⊗ · · · ⊗ vd .

Other examples include CP decompositions of higher rank, Tucker and Tensor Train
(TT) decompositions, and more generally tensor networks [15, 34]. Surprisingly, none
of these lifts satisfy “2⇒1”: we derive this from more general obstructions to “2⇒
1” for multilinear lifts in Sect. 5.3. Here is one take-away: any stationarity guaran-
tees for algorithms targeting second-order critical points over the factors in a tensor
decomposition must exploit the structure of the cost function.

2.5 Neural networks

Training neural networks is done via lifts. Indeed, hereM is the manifold of weights
and biases of a fixed neural network architecture (typically a linear space; sometimes
a product of spheres if normalization constraints are present). The lift ϕ maps a choice
of weights and biases to the function given by the corresponding neural network.
The image X = ϕ(M) of this lift is the set of functions that can be represented by
the architecture, viewed as a subset of some linear space E of functions (e.g., an L p

space4).
The authors of [46] show that such ϕ is not open for any choice of (nonconstant)

Lipschitz continuous activation functions. Our Theorem 2.3 then implies that “local⇒
local” fails for all neural network lifts used in practice. Consequently, training such a
neural network by optimizing over its weights and biases might yield a spurious local

4 Even though these spaces are not finite-dimensional, our results still apply, see “Appendix 1”.
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minimum that does not parametrize a local minimum in function space. In that case, a
different parametrization of the same function might not be a local minimum for (Q).

When the neural network architecture is linear with three or more layers, the cor-
responding lift is multilinear, hence does not satisfy “2 ⇒ 1” by the same general
obstructions from Sect. 5.3 we use for tensor decompositions. Similarly to the ten-
sor case, this implies that proofs of guarantees for training algorithms must exploit
the structure in specific cost functions (the loss). Additional study of lifts defined by
linear neural networks was done in [32, 54], where the authors characterize (in our
terminology) “1⇒1” for lifts defined by linear and linear convolutional architectures.

2.6 Submersions and higher order stationary points

All the setsX we consider in this paper contain dense smooth submanifolds.Moreover,
even though lifts of such sets X do not satisfy “1⇒1” everywhere on the lift, they
do so at preimages of points on this submanifold, allowing us to prove much stronger
guarantees. More precisely, we define the following subset of X .

Definition 2.11 A point x ∈ X is smooth if there is an open neighborhood U ⊆ E
containing x such that U ∩ X is a smooth embedded submanifold of E . It is called
nonsmooth or singular otherwise.

The smooth locus of X , denoted X smth, is the set of smooth points of X .

For all constraint sets in practical optimization problemswe are aware of,X smth is itself
a smooth embedded submanifold of E . In general, it is a union of smooth embedded
submanifolds, though possibly of different dimensions. For example, if X = R

m×n≤r
then X smth = R

m×n=r and if X = �n−1 then X smth = �n−1
>0 consisting of strictly

positive simplex vectors. All the lifts we consider for these sets in Sects. 2.1 and 2.3
indeed satisfy “1⇒1” on the preimages of X smth (though that is not always the case).

If the lift satisfies “1⇒1” at preimages of smooth points, then it is a submersion
there and hence preserves not only local minima, but also stationary points of all
orders. The following proposition, proved in Sect. 3.2.1, formalizes this.

Proposition 2.12 Let y ∈ ϕ−1(X smth) ⊆M. If ϕ satisfies “1⇒1” at y, then it also
satisfies “local⇒ local” and “k⇒k” for all k ≥ 1 at y.

Here “k⇒ k” is defined analogously to Definition 2.2, where kth-order stationarity
(or “k-criticality” for short) of x ∈ X smth is defined using curves similarly to 1- and
2-criticality [13, §3.1.1]. This property can be used in proofs of benign nonconvexity.

Remark 2.13 (Relations between lift properties) Aside from Proposition 2.12, the only
relation between the three properties in Definition 2.2 is that “1⇒1” at y implies “2⇒
1” at y (since 2-critical points are 1-critical). None of the other possible implications
hold in general: The desingularization lift (Desing) shows that “2⇒1” at y implies
neither “1⇒1” nor “local⇒ local” at y in general. The example ϕ(x) = x3 viewed
as a lift from M = R to X = R satisfies “local⇒ local” at the origin but neither “2
⇒1” nor “1⇒1”, hence “local⇒ local” does not imply the other two properties.

Finally, the standard parametrization of the cochleoid curve [58] satisfies “1⇒1”
but not “local⇒ local” at all preimages of the origin, hence “1⇒1” does not imply
“local⇒ local”.
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Submersions between smooth manifolds, including quotients by group actions [9,
§9.2] and several lifts arising in practice (Example 3.14), satisfy “local⇒ local” and
“k⇒k” for all k ≥ 1 [9, Prop. 9.6]. Therefore, a lift ϕ composed with a submersionψ

asϕ◦ψ inherits the properties ofϕ.We study such compositions of lifts in Sect. 3.3, and
apply our results to a composition used in the robotics and computer vision literature
[19] in Example 3.29.

3 Characterizations of lifts

In this section, we relate the landscapes of (P) and (Q) and prove the characterizations
of our lift properties stated in Sect. 2. To this end, we formally define the different
types of desirable points we consider. We first define the (contingent or Bouligand)
tangent cone5 [17, §2.7].

Definition 3.1 The tangent cone to X at x ∈ X is the set

TxX =
{
v = lim

i→∞
xi − x

τi
: xi ∈ X , τi > 0 for all i, τi → 0

}
⊆ E .

This is a closed (not necessarily convex) cone [50, Lem. 3.12].

In particular, if γ is a differentiable curve in X with γ (0) = x , then γ ′(0) ∈ TxX . If
x is a smooth point of X (Definition 2.11), then TxX is the usual tangent space to X
at x [49, Ex. 6.8].

Definition 3.2 (Desirable points for (P)) A point x ∈ X is a

(a) global minimum for (P) if f (x) = minx ′∈X f (x ′).
(b) local minimum for (P) if there is a neighborhood U ⊆ X of x such that f (x) =

minx ′∈U f (x ′).
(c) (first-order) stationary point for (P) if D f (x)[v] ≥ 0 for all v ∈ TxX , or equiva-

lently, if ∇ f (x) is in the dual (TxX )∗ of the tangent cone.

In words, x is stationary if the cost function is non-decreasing to first order along
all tangent directions at x . Local minima of (P) are stationary [50, Thm. 3.24]. The
dual of a cone K ⊆ E contained in a Euclidean space E with inner product 〈·, ·〉 is
defined by

K ∗ = {x ∈ E : 〈x, x ′〉 ≥ 0 for all x ′ ∈ K }.

The equivalence in part (c) then follows since D f (x)[v] = 〈∇ f (x), v〉 by definition
of the (Euclidean) gradient ∇ f (x). We use the following properties of dual cones
throughout (see [20, Prop. 4.5] for proofs):

• The dual cone is always a closed convex cone.
• If K1 ⊆ K2, then K ∗2 ⊆ K ∗1 .

5 In this paper, a cone is a set K such that x ∈ K �⇒ αx ∈ K for all α > 0.

123



Smooth parametrizations of nonconvex landscapes

• The bidual cone K ∗∗ = (K ∗)∗ of K is equal to the closure of its convex hull:
K ∗∗ = conv(K ). In particular, K ∗∗ ⊇ K .

• If K is a linear space, then its dual K ∗ is equal to its orthogonal complement K⊥.
Next, we define desirable points for (Q).

Definition 3.3 (Desirable points for (Q))

(a)+(b) Global and local minima for (Q) are defined exactly as for (P).
(c) A point y ∈ M is first-order stationary (or “1-critical”) for (Q) if for each

smooth curve c : R → M satisfying c(0) = y, we have (g ◦ c)′(0) ≥ 0, or
equivalently,6 (g ◦ c)′(0) = 0.

(d) A point y ∈ M is second-order stationary (or “2-critical”) for (Q) if it is
1-critical and (g ◦ c)′′(0) ≥ 0 for all smooth curves c : R → M satisfying
c(0) = y.

If M is embedded in a linear space, first-order stationarity in Definition 3.3(c) coin-
cides with Definition 3.2(c) by [49, Ex. 6.8]. Definition 3.3 can be rephrased in terms
of the Riemannian gradient and Hessian of g, as follows.

Proposition 3.4 [9, §4.2, §6.1] A point y ∈ M is 1-critical for (Q) if and only if
∇g(y) = 0. It is 2-critical if and only if ∇g(y) = 0 and ∇2g(y) � 0.

We proceed to study the connections between desirable points for (Q) and (P).
As mentioned in Sect. 2, the connection between global minima of (Q) and (P) is
straightforward.

Proposition 3.5 A point y ∈M is a global minimum of (Q) if and only if x = ϕ(y) is
a global minimum of (P).

Proof Because ϕ(M) = X , we have inf y∈M g(y) = inf y∈M f (ϕ(y)) =
infx∈X f (x) =: p∗. Therefore, y is a global minimum for (Q) iff g(y) = f (x) = p∗
which happens iff x is a global minimum for (P). ��
Since computing global minima is hard, the remainder of this section is devoted to
characterizing the properties in Definition 2.2 that yield connections between the other
types of points.

3.1 Local minima

In this section, we investigate the relationship between the local minima of (P) and
those of (Q). Preimages of local minima on X are always local minima onMmerely
because ϕ is continuous.

Proposition 3.6 Let x be a local minimum for (P). Any y ∈ ϕ−1(x) is a local minimum
for (Q).

Proof There exists a neighborhood U of x in X such that f (x) ≤ f (x ′) for all
x ′ ∈ U . Since ϕ : M→ X is continuous, the set U = ϕ−1(U ) is a neighborhood of
y in M. Pick an arbitrary y′ ∈ U : it satisfies ϕ(y′) = x ′ for some x ′ ∈ U . Hence,
g(y) = f (x) ≤ f (x ′) = g(y′), i.e., y is a local minimum of (Q). ��
6 If (g ◦ c)′(0) > 0, let c̃(t) = c(−t) and note that (g ◦ c̃)′(0) < 0.

123



E. Levin et al.

Fig. 1 Nodal cubic inR
2 as the shadowof its lift inR

3, shaded by the value of the function f (x) = −x1−x2.
The highlighted points are x = (0, 0) (not stationary for (P)), and its two preimages on the lift, including
y = (0, 0, 1) (a spurious local minimum for (Q))

Unfortunately, lifting can introduce spurious localminima, that is, localminima for (Q)
that exist only because of the lift and not because they were present in (P) to begin
with.

Example 3.7 (Nodal cubic) Consider the nodal cubic

X = {x ∈ R
2 : x22 = x21 (x1 + 1)}, (3.1)

and the following lift,7 as depicted in Fig. 1:

M = {y ∈ R
3 : y1 = y23 − 1, y2 = y1y3}, ϕ(y1, y2, y3) = (y1, y2). (3.2)

Let f (x) = −x1− x2. Then the point y = (0, 0, 1) is a local minimum for g = f ◦ ϕ

but ϕ(y) = (0, 0) is not even stationary for f . Indeed, we have (1, 1) ∈ T(0,0)X and
D f (0, 0)[(1, 1)] = −2 < 0.

To ensure that a lift does not introduce spurious local minima, we need to verify
that it satisfies the “local⇒ local” property (Definition 2.2(a)). We proceed to prove
the easy direction of Theorem 2.3 stating that openness implies “local⇒ local”. The
converse is more involved and is deferred to “Appendix 1”.

Proof of Theorem 2.3 Assume ϕ is open at y, and that y is a local minimum for (Q).
Then, there exists a neighborhood U of y onM such that g(y) ≤ g(y′) for all y′ ∈ U .
The set U = ϕ(U) is a neighborhood of x = ϕ(y) in X by openness of ϕ at y.
Moreover, each x ′ ∈ U is of the form x ′ = ϕ(y′) for some y′ ∈ U . Therefore,
f (x) = g(y) ≤ g(y′) = f (x ′) for all x ′ ∈ U , that is, x is a local minimum of (P).
For the converse, see Theorem A.2. ��
7 The curveM is obtained by blowing up X at the origin in the sense of algebraic geometry [26, Ch. 17].
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Not all lifts of interest are open. In particular, all lifts of low-rank matrices in Sect. 2.3
as well as the neural network lifts in Sect. 2.5 fail to be open.

Remark 3.8 In “Appendix 1”, we introduce an equivalent condition for openness of
ϕ at y that we call the Subsequence Lifting Property (SLP), see Definition A.1(3);
we find that it is sometimes easier to check. For example, Burer and Monteiro prove
that the lift (BM) satisfies “local⇒ local” in [12, Prop. 2.3] by (in our terminology)
proving SLP holds.

We note in passing that all continuous, surjective, open maps are quotient maps, hence
if ϕ is a smooth lift of X satisfying “local⇒local” then it is a quotient map fromM
to X .

3.2 Stationary points

In this section, we investigate the relationship between the first- and second-order
stationary points for (Q) and (first-order) stationary points for (P). To that end,we begin
by relating the (Riemannian) gradient and Hessian of g = f ◦ ϕ to the (Euclidean)
counterparts of f . This relation depends on the first and second derivatives of the lift
ϕ.

Definition 3.9 Let ϕ : M → X be a smooth lift and fix y ∈ M. For each v ∈
TyM, choose a curve cv on M satisfying c(0) = y and c′(0) = v. Define maps
Ly,Qy : TyM→ E by

Ly(v) = (ϕ ◦ cv)
′(0), Qy(v) = (ϕ ◦ cv)

′′(0).

We write Lϕ
y and Qϕ

y when we wish to emphasize the lift.

As a point of notation: ϕ◦cv is a curve in E hence (ϕ◦cv)
′′ denotes its Euclidean accel-

eration. In contrast, cv is a curve onM hence c′′v denotes its Riemannian acceleration,
see [9, §5.8, §8.12].

Of course, Ly is simply the differential Dϕ(y), and is therefore linear and indepen-
dent of the choice of curves cv . ThemapQy will play an important role in characterizing
“2⇒1” in Sect. 3.2.2, where we also clarify its inconsequential dependence on the
choice of curve cv . We explain how to computeLy andQy without explicitly choosing
curves cv in Sect. 3.4.

The gradients and Hessians of f and g = f ◦ ϕ are neatly related as follows in
terms of Ly .

Definition 3.10 For any w ∈ E , define ϕw : M→ R by ϕw(y) = 〈w, ϕ(y)〉.
Lemma 3.11 For any twice differentiable cost f : E → R, any y ∈M, and x = ϕ(y),
we have

∇g(y) = L∗y(∇ f (x)), ∇2g(y) = L∗y ◦ ∇2 f (x) ◦ Ly + ∇2ϕ∇ f (x)(y),

where L∗y : E → TyM is the adjoint of Ly .
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Proof For any v ∈ TyM, let cv be a smooth curve on M satisfying cv(0) = y,
c′v(0) = v and c′′v(0) = 0 (e.g., let cv be a geodesic). Let γv = ϕ ◦ cv: it satisfies
γv(0) = x and γ ′v(0) = Ly(v). Then

〈∇g(y), v〉 = (g ◦ cv)
′(0) = ( f ◦ γv)

′(0) = 〈∇ f (x),Ly(v)〉 = 〈L∗y(∇ f (x)), v〉.

Since this holds for all v ∈ TyM, we conclude that ∇g(y) = L∗y(∇ f (x)). Next,

〈∇2g(y)[v], v〉 = (g ◦ cv)
′′(0) = ( f ◦ γv)

′′(0)
= 〈∇2 f (x)[Ly(v)],Ly(v)〉 + 〈∇ f (x), γ ′′v (0)〉,

where the first equality uses c′′v(0) = 0, see [9, §5.9]. On the other hand, with Defini-
tion 3.10,

〈∇2ϕ∇ f (x)(y)[v], v〉 = (ϕ∇ f (x) ◦ cv)
′′(0)

= d2

dt2
〈∇ f (x), γv(t)〉

∣∣∣∣
t=0
= 〈∇ f (x), γ ′′v (0)〉,

hence

〈∇2g(y)[v], v〉 = 〈∇2 f (x)[Ly(v)],Ly(v)〉 + 〈∇2ϕ∇ f (x)(y)[v], v〉
=
〈(
L∗y ◦ ∇2 f (x) ◦ Ly +∇2ϕ∇ f (x)(y)

)[v], v
〉
.

Since this holds for all v ∈ TyM and both∇2g(y) andL∗y◦∇2 f (x)◦Ly+∇2ϕ∇ f (x)(y)
are self-adjoint linear maps on TyM, we conclude that they are equal. ��
We turn to proving our characterizations of “k⇒1” for k = 1, 2 announced in Sect. 2.

3.2.1 “1⇒1”: lifts preserving 1-critical points

Preimages of stationary points on X are always 1-critical onM. We show this after a
helpful lemma.

Lemma 3.12 Fix y ∈ M and let x = ϕ(y). Then imLy ⊆ TxX . Moreover, y is
1-critical for (Q) if and only if ∇ f (x) ∈ (imLy)

⊥ = (imLy)
∗.

Proof The first claim follows from Definition 3.1 for the tangent cone TxX and the
fact that Ly(v) = (ϕ ◦ cv)

′(0) for a curve cv as in Definition 3.9. For the second
claim, y is 1-critical for (Q) iff ∇g(y) = L∗y(∇ f (x)) = 0, or equivalently, ∇ f (x) ∈
ker(L∗y) = (imLy)

⊥. ��

Proposition 3.13 If x ∈ X is stationary for (P), then any y ∈ ϕ−1(x) is 1-critical
for (Q).
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Proof If x ∈ X is stationary for (P), then ∇ f (x) ∈ (TxX )∗. Since TxX ⊇ imLy ,
taking duals on both sides we get that ∇ f (x) ∈ (TxX )∗ ⊆ (imLy)

⊥, hence y is
1-critical for (Q) by Lemma 3.12. ��

The converse to Proposition 3.13 is false in general. In fact, Example 3.7 shows
that a lift need not even map local minima to stationary points on X . We therefore
proceed to prove Theorem 2.4 characterizing the “1⇒1” property.

Proof of Theorem 2.4 Suppose imLy = TxX , so (imLy)
⊥ = (imLy)

∗ = (TxX )∗. If
y is 1-critical for (Q), then ∇ f (x) ∈ (imLy)

⊥ by Lemma 3.12. Therefore, ∇ f (x) ∈
(TxX )∗, which is the definition of x being stationary for (P). Thus, “1⇒1” holds.

Now suppose imLy 
= TxX . This implies (TxX )∗ 
= (imLy)
⊥. Indeed, otherwise

we would have

imLy = (imLy)
⊥⊥ =

(
(imLy)

⊥)∗ = (TxX )∗∗ ⊇ TxX ⊇ imLy,

which would imply imLy = TxX . (The right-most inclusion above is by
Lemma3.12.)Using imLy ⊆ TxX again,we see that (TxX )∗ ⊆ (imLy)

⊥. Therefore,
the above observations imply that (TxX )∗ � (imLy)

⊥. Pick w ∈ (imLy)
⊥ \ (TxX )∗

and define f (x ′) = 〈w, x ′〉 for x ′ ∈ E . Then∇ f (x) = w ∈ (imLy)
⊥ so y is 1-critical

for (Q) by Lemma 3.12, but ∇ f (x) /∈ (TxX )∗, so x is not stationary for (P). Hence
“1⇒1” is not satisfied at y.

This argument also shows that if ϕ does not satisfy “1⇒1” at y, then y is 1-critical
for (Q) but x is not stationary for (P) if and only if ∇ f (x) ∈ (imLy)

⊥\(TxX )∗,
showing that if “1⇒1” fails at y then this is witnessed by a linear cost f . ��

As discussed in Sect. 2, Theorem 2.4 implies that “1⇒1” rarely holds on all ofM.
Nevertheless, “1⇒1” does usually hold at preimages of smooth points, that is, points
around which X is a smooth embedded submanifold of E as in Definition 2.11. We
now prove Proposition 2.12, stating that if “1⇒1” holds at such points then “local⇒
local” and “k⇒k” hold there as well.

Proof of Proposition 2.12 Let U ⊆ E be an open neighborhood of ϕ(y) in E such
that U ∩ X is a smooth embedded submanifold of E . Since ϕ(M) = X , we have
ϕ−1(U ∩ X ) = ϕ−1(U ) =: V , which is open inM by continuity of ϕ. Therefore, V
is also a smooth manifold, since it is an open subset of M, and ϕ|V : V → U ∩ X is
a smooth map between smooth manifolds. By Theorem 2.4, ϕ satisfies “1⇒1” at y
iff TxX = im Dϕ(y) = im D(ϕ|V )(y), where ϕ|V is viewed as a map V → E . Since
U ∩ X is an embedded submanifold of E , the differential of ϕ|V viewed as a map
V → E coincides with its differential viewed as a map V → U ∩X , hence the latter
is a submersion near y [37, Prop. 4.1]. By [37, Prop. 4.28], this implies ϕ is open at y,
hence it satisfies “local⇒ local” at y by Theorem 2.3. To see that ϕ further satisfies
“k⇒k” for all k ≥ 1, note that any curve passing through ϕ(y) is the image under ϕ

of a curve passing through y [37, Thm. 4.26], and apply Definition 3.3 for k = 1, 2
and [13, Eq. (3.11)] for k > 2. ��

The converse of Proposition 2.12 fails. For example, ϕ(y) = y3 viewed as a map
R → R satisfies “local ⇒ local” at y = 0 but not “1 ⇒ 1” since Ly = 0 for this
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y. That example also shows that “1⇒1” can fail at the preimage of a smooth point.
Likewise, “1 ⇒ 1” can hold at the preimage of a nonsmooth point, as the standard
parametrization of the cochleoid curve [58] shows. The only examples of lifts we
know of that satisfy “1⇒1” everywhere are smooth maps between smooth manifolds
that are submersions.

Example 3.14 (Submersions) Examples of submersions in optimization, that is, lifts
of the form ϕ : M→ X where X is an embedded submanifold of E and im Dϕ(y) =
Tϕ(y)X for all y ∈M, include:

• Quotient maps by smooth, free, and proper Lie group actions [9, §9], [2, §3.4],
used in particular to optimize over Grassmannians by lifting to Stiefel manifolds
[23].

• The map SO(p) → St(p, d) taking the first d columns of a rotation matrix,
which is used in the rotation averaging algorithm of the robotics paper [19], see
Example 3.29 below.

• Deep orthogonal linear networks, mapping O(p)n → O(p) by ϕ(Q1, . . . , Qn) =
Q1 · · · Qn , whose properties are studied in [1].

Theorem 2.4 and Proposition 2.12 show that these lifts satisfy “1⇒1” and “local⇒
local”, and hence also “k⇒k” for all k ≥ 1.

Failure of a lift to satisfy “1⇒1”means that itmay introduce spurious critical points.
In the next section, we characterize the “2⇒1” property, which allows algorithms to
avoid these spurious points by using second-order information.

3.2.2 “2⇒1”: lifts mapping 2-critical points to 1-critical points

Since “1⇒1” fails on many sets of interest, we proceed to study “2⇒1”. As Sect. 2
demonstrates, this property is satisfied for many interesting lifts. We begin by stating
an equivalent characterization for “2⇒1” involving the following set.

Definition 3.15 For y ∈M and x = ϕ(y) ∈ X , define

Wy =
{
w ∈ E : there exists a twice differentiable function f : E → R

such that ∇ f (x) = wand yis2− critical for (Q)
}
.

We write Wϕ
y when we wish to emphasize the lift.

Theorem 3.16 The lift ϕ : M→ X satisfies “2⇒1” at y if and only if Wy ⊆ (TxX )∗
where x = ϕ(y).

Proof Say ϕ satisfies “2⇒1” at y and let w ∈ Wy . Pick f such that y is 2-critical
for (Q) and ∇ f (x) = w. By “2 ⇒ 1”, we know x is stationary for f , hence w =
∇ f (x) ∈ (TxX )∗. Conversely, say Wy ⊆ (TxX )∗ and let y be 2-critical for (Q) with
some cost f . Then ∇ f (x) ∈ Wy ⊆ (TxX )∗, hence x is stationary for (P). This shows
“2⇒1”. ��
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Since the 2-criticality of y for (Q) only depends on the first two derivatives of f ,
we can restrict the functions f in Definition 3.15 to be of class C∞ or even quadratic
polynomials whoseHessians are amultiple of the identity, as the following proposition
shows.

Proposition 3.17 For y ∈M and x = ϕ(y), the set Wy in Definition 3.15 satisfies:

Wy =
{
w ∈ E : ∃α > 0 s.t.yis 2-critical for (Q)with f (x ′) = 〈x ′, w〉 + α

2
‖x ′ − x‖2

}
.

In particular, Wy is a convex cone.

Proof The inclusion ⊇ is clear from the definition of Wy . Conversely, if w is in
Wy then y is 2-critical for (Q) for some f with ∇ f (x) = w. Let g = f ◦ ϕ and
α = λmax(∇2 f (x)), and define

fα(x ′) = 〈w, x ′〉 + α

2
‖x − x ′‖2, gα = fα ◦ ϕ.

Note that∇ fα(x) = w and, by Lemma 3.11, we have∇gα(y) = L∗y(w) = ∇g(y) = 0
and

∇2gα(y) = L∗y ◦ ∇2 fα(x) ◦ Ly + ∇2ϕ∇ fα(x)(y) = L∗y ◦ (α I ) ◦ Ly + ∇2ϕw(y)

� L∗y ◦ ∇2 f (x) ◦ Ly + ∇2ϕw(y) = ∇2g(y) � 0.

Thus, y is 2-critical for gα . This shows the reverse inclusion.
Wy is a convex cone since ifw1, w2 are inWy as witnessed by functions f1, f2, then

any w = λ1w1 + λ2w2 with λ1, λ2 ≥ 0 is in Wy as witnessed by f = λ1 f1 + λ2 f2.
��

Proposition 3.17 shows that if “2⇒1” is not satisfied at y, then there exists a simple
strongly convex quadratic cost f for which y is 2-critical for (Q) but x = ϕ(y) is not
stationary for (P).

Corollary 3.18 Suppose ϕ does not satisfy “2⇒1” at y ∈M and denote x = ϕ(y).
Then Wy \ (TxX )∗ 
= ∅ and for any w in that set there exists α > 0 such that if
f (x ′) = 〈w, x ′〉 + α

2 ‖x ′ − x‖2, then y is 2-critical for (Q) but x is not stationary
for (P).

We conjecture that the reverse inclusion in Theorem 3.16 always holds (it does for
all the lifts in Sect. 2). If this is indeed true, then ϕ satisfies the “2⇒1” property at
y if and only if (TxX )∗ = Wy , neatly echoing the condition for “1 ⇒ 1”, namely,
(TxX )∗ = (imLy)

⊥.
Conjucture 3.19 It always holds that (TxX )∗ ⊆ Wy.

The description of Wy can be complicated. It is therefore worthwhile to derive
sufficient conditions for “2⇒1” that are easier to check. We do so by identifying two
(admittedly technical) sets whose duals contain ∇ f (x) if x = ϕ(y) and y is 2-critical
for (Q). The sufficient conditions then require the duals of these two subsets to be
contained in (TxX )∗.
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Definition 3.20 For y ∈M, define

Ay = {w ∈ E : ∃c : R →M smooth s.t. c(0) = y, (ϕ ◦ c)′(0) = 0, (ϕ ◦ c)′′(0) = w},
By = {w ∈ E : ∃ci : R →M smooth s.t. ci (0) = y, lim

i→∞(ϕ ◦ ci )′(0) = 0, lim
i→∞(ϕ ◦ ci )′′(0) = w}.

We write Aϕ
y , B

ϕ
y when we wish to emphasize the lift.

The following are the basic properties these two sets satisfy. We give further expres-
sions for Ay, By and Wy in Proposition 3.26 below.

Proposition 3.21 Fix y ∈M and denote x = ϕ(y).

(a) Ay and By are cones, and By is closed.
(b) Ay ⊆ TxX and imLy ⊆ Ay ⊆ By.Moreover, imLy+Ay = Ay and imLy+By =

By.
(c) If y is 2-critical for g = f ◦ ϕ, then ∇ f (x) ∈ B∗y .
(d) Wy ⊆ B∗y ⊆ A∗y ⊆ (imLy)

⊥.

Proof Part (a) and the second half of part (b) are straightforward, see [39, App. B].

(b) If c : R →M satisfies c(0) = y and (ϕ ◦ c)′(0) = 0, then (ϕ ◦ c)(t) ∈ X for all t
and (ϕ ◦ c)(t) = x + (t2/2)(ϕ ◦ c)′′(0)+O(t3), hence by Definition 3.1 we have

(ϕ ◦ c)′′(0) = lim
t→0

(ϕ ◦ c)(t)− x

t2/2
∈ TxX .

This shows Ay ⊆ TxX . If w ∈ imLy so w = Ly(v) for some v ∈ TyM, let
c : R → M be a curve satisfying c(0) = y and c′(0) = v. Define c̃ : R → M
by c̃(t) = c(t2/2), and note that c̃(0) = y, (ϕ ◦ c̃)′(0) = 0, and (ϕ ◦ c̃)′′(0) =
(ϕ ◦ c)′(0) = w. Hence w is in Ay . This shows imLy ⊆ Ay .
It is clear that Ay ⊆ By from Definition 3.20.

(c) Suppose y is 2-critical for g = f ◦ ϕ and w ∈ By . Let ci : R → M witness
w ∈ By . Because y is 1-critical, (g ◦ ci )′(0) = 0 for all i . Because y is 2-critical,
for all i we have

(g ◦ ci )′′(0) = 〈∇ f (x), (ϕ ◦ ci )′′(0)〉 + 〈∇2 f (x)[(ϕ ◦ ci )′(0)], (ϕ ◦ ci )′(0)〉 ≥ 0.

Taking i → ∞, we conclude that 〈∇ f (x), w〉 ≥ 0 and hence ∇ f (x) ∈ B∗y as
claimed.

(d) If w ∈ Wy then there exists f such that ∇ f (x) = w and y is 2-critical for (Q),
hence w ∈ B∗y by part (c). The other inclusions follow by taking duals in part (b).

��
We remark that neither the inclusion By ⊆ TxX nor TxX ⊆ By hold in general,
see [39, App. B]. Combining part (d) above with Theorem 3.16 yields the following
sufficient conditions for “2⇒1”.

Corollary 3.22 Fix y ∈M and denote x = ϕ(y).
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(a) If A∗y ⊆ (TxX )∗, and in particular if Ay = TxX , then “2⇒1” holds at y.
(b) If B∗y ⊆ (TxX )∗, then “2⇒1” holds at y.

The conditions in Corollary 3.22 yield simpler proofs of “2⇒1” for many lifts.
For example, the condition in Corollary 3.22(a) holds for the Burer–Monteiro lift
of Sect. 2.2. While it does not hold for the lifts of low-rank matrices in Sect. 2.3,
they do satisfy the stronger condition in Corollary 3.22(b). In fact, the condition in
Corollary 3.22(b) holds in all the examples satisfying “2 ⇒ 1” that we consider. It
would be interesting to determine whether it is necessary as well.

We now state and prove the chain of implications we find the most useful for
verifying or refuting “2⇒1”, as well as for computing tangent cones (see Sect. 3.5).

Theorem 3.23 Let ϕ : M→ X be a smooth lift and fix y ∈M. We have the following
chain of implications for “2⇒1”:

TxX ⊆ Ay

⇐⇒ TxX = Ay

�⇒ B∗y ⊆ (TxX )∗

�⇒ Wy ⊆ (TxX )∗

⇐⇒ ϕ satisfies“2⇒1′′at y
�⇒ (imLy)

⊥ ∩ (Qy(TyM))∗ ⊆ (TxX )∗.

Proof The equivalence of the first two conditions follows by Proposition 3.21(b). The
second condition implies the third by Proposition 3.21(b) as well. The third condition
implies the fourth by Proposition 3.21(d), which itself is equivalent to “2⇒1” at y
by Theorem 3.16.

The last implication gives a necessary condition for “2 ⇒ 1” to hold. Suppose
there exists w ∈ (imLy)

⊥ ∩ (Qy(TyM))∗\(TxX )∗. Define f (x ′) = 〈
w, x ′

〉
, whose

gradient and Hessian at x are∇ f (x) = w and∇2 f (x) = 0. For any curve c : I →M
satisfying c(0) = y, denote v = c′(0) ∈ TyM. Let g = f ◦ϕ. Note that (g ◦ c)′(0) =〈
w,Ly(v)

〉 = 0 since w ∈ (imLy)
⊥ and

(g ◦ c)′′(0) = ( f ◦ ϕ ◦ c)′′(0) = 〈w, (ϕ ◦ c)′′(0)〉 = 〈w,Qy(v)〉 ≥ 0,

where the second equality follows from the chain rule, the third equality follows from
Lemma 3.24(a) below, and the inequality follows from w ∈ (Qy(TyM))∗. Thus, y
is 2-critical for (Q). However, ∇ f (x) = w /∈ (TxX )∗ so x is not stationary for (P),
hence “2⇒1” does not hold at y. ��

Our goal now is to derive more explicit expressions for the sets Ay, By,Wy in terms
of the maps Ly and Qy from Definition 3.9. Such expressions allow us to compute
these sets in specific examples. To do so, we first recall that the value ofQy(v) depends
on the choice of curve cv in Definition 3.9. Before proceeding, we characterize the
ambiguity in Qy(v) arising from different such choices, verifying that it causes no
issues.
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Lemma 3.24 For each y ∈ M and v ∈ TyM, let cv : I → M be a curve satisfy-
ing cv(0) = y and c′v(0) = v, so we can set Qy(v) = (ϕ ◦ cv)

′′(0) according to
Definition 3.9.

(a) For any other curve c satisfying c(0) = y and c′(0) = v, we have (ϕ ◦ c)′′(0) −
(ϕ ◦ cv)

′′(0) = Ly(c′′(0)− c′′v(0)) ∈ imLy .
(b) For any u ∈ TyM, there exists a curve c as in part (a) satisfying c′′(0)−c′′v(0) = u,

hence (ϕ ◦ c)′′(0)− (ϕ ◦ cv)
′′(0) = Ly(u).

In particular, {(ϕ ◦ c)′′(0) : c(0) = y and c′(0) = v} = Qy(v)+ imLy .

Proof (a) For anyw ∈ E , recall the functionϕw(y) = 〈w, ϕ(y)〉 fromDefinition 3.10.
Let c : I → M be a curve satisfying c(0) = y and c′(0) = v. Then, on the one
hand,

d2

dt2
ϕw(c(t))

∣∣∣∣
t=0
= d2

dt2
〈w, (ϕ ◦ c)(t)〉

∣∣∣∣
t=0
= 〈w, (ϕ ◦ c)′′(0)〉.

On the other hand, using the Riemannian structure on M,

d2

dt2
ϕw(c(t))

∣∣∣∣
t=0
= 〈∇2ϕw(y)[c′(0)], c′(0)〉 + 〈∇ϕw(y), c′′(0)〉.

ByLemma3.11,wehave∇ϕw(y) = L∗y(w), so 〈∇ϕw(y), c′′(0)〉 = 〈w,Ly(c′′(0))〉.
We conclude that

〈w, (ϕ ◦ c)′′(0)〉 = 〈∇2ϕw(y)[v], v〉 + 〈w,Ly(c
′′(0))〉. (3.3)

The first term on the right-hand side is independent of c. Thus, for any w ∈ E we
have

〈w, (ϕ ◦ c)′′(0)− (ϕ ◦ cv)
′′(0)〉 = 〈w,Ly(c

′′(0)− c′′v(0))〉,

which proves the claim.
(b) For the first claim, set c(t) = expy(tv + t2(c′′v(0) − u)/2) where exp is the

exponential map of M [9, Exer. 5.46]. The second claim follows from part (a).
��

Lemma 3.24 shows that the possible values ofQy(v) (depending on the choice of curve
cv in Definition 3.9) differ by an element of imLy , and conversely, every element of
Qy(v) + imLy can be obtained by an appropriate choice of cv . Consequently, if
w ∈ (imLy)

⊥, then the inner product 〈w,Qy(v)〉 is independent of the choice of cv

in Definition 3.9. In fact, (3.3) shows that it is a quadratic form in v ∈ TyM given by:

〈w,Qy(v)〉 = 〈∇2ϕw(y)[v], v〉 ∀v ∈ TyM. (3.4)

We stress that this identity requires w ∈ (imLy)
⊥ in general. It allows us to view

〈w,Qy(v)〉 interchangeably as either a quadratic form in v on TyM or a linear form
in w on (imLy)

⊥.
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Remark 3.25 (Disambiguation of Qy) Lemma 3.24 implies that it is natural to define
Qy on the quotient E/ imLy to avoid the above ambiguities, but it is less convenient
to use in practice—see [39, Rmk. 3.25]. Accordingly, in the remainder of the paper
we often refer to Qy modulo imLy .

We now express the sets Ay, By,Wy appearing in our conditions for “2 ⇒1” in
terms of the maps Ly and Qy . We explain how to compute Ly and Qy in various
settings in Sect. 3.4 below.

Proposition 3.26 For any y ∈M,

(a) Ay = Qy(kerLy)+ imLy .
(b) By = ⋃

(vi )i≥1:Ly(vi )→0
limi→∞(Qy(vi )+ imLy).

8

(c) Wy =
{
w ∈ A∗y : ∀v ∈ kerLy, 〈∇2ϕw(y)[v], v〉 = 0 �⇒ ∇2ϕw(y)[v] = 0

}
.

Proof (a) If w ∈ Ay , then w = (ϕ ◦ c)′′(0) for some smooth curve c onM such that
c(0) = y and 0 = (ϕ ◦ c)′(0) = Ly(c′(0)), so c′(0) ∈ kerLy . By Lemma 3.24(a),
we have w ∈ Qy(c′(0))+ imLy , showing Ay ⊆ Qy(kerLy)+ imLy .
Conversely, suppose w = Qy(v)+Ly(u) for some v ∈ kerLy and u ∈ TyM. By
Lemma3.24(b), there is a smooth curve c onM satisfying c(0) = y, c′(0) = v and
(ϕ◦c)′′(0) = w. Since (ϕ◦c)′(0) = Ly(v) = 0, this showsQy(kerLy)+imLy ⊆
Ay .

(b) Ifw ∈ By , then there are smooth curves ci such that ci (0) = y,Ly(c′i (0))→ 0 and
(ϕ ◦ci )′′(0)→ w. By Lemma 3.24(a), we have (ϕ ◦ci )′′(0) ∈ Qy(c′i (0))+ imLy .
Because limi (ϕ◦ci )′′(0) = w exists, we conclude that limi (Qy(c′i (0))+imLy) =
w+ imLy exists as well, andw is contained in this limit. This shows the inclusion
⊆ in the claim.
Conversely, suppose w ∈ limi (Qy(vi ) + imLy) for some sequence (vi )i≥1 ⊆
TyM such that Ly(vi ) → 0. Then there exist ui ∈ TyM such that w =
limi (Qy(vi )+Ly(ui )). ByLemma3.24(b), there exist curves ci satisfying ci (0) =
y, c′i (0) = vi and (ϕ◦ci )′′(0) = Qy(vi )+Ly(ui ). Then (ϕ◦ci )′(0) = Ly(vi )→ 0
and (ϕ ◦ ci )′′(0) → w, so w ∈ By and hence the reverse inclusion in the claim
also holds.

(c) Let x = ϕ(y). By Proposition 3.17, a vector w ∈ E is contained in Wy iff there
exists α > 0 such that y is 2-critical for (Q) with cost gα = fα ◦ ϕ where
fα(x ′) = 〈w, x ′〉 + α

2 ‖x ′ − x‖2. By Lemma 3.11, this is equivalent to

∇gα(y) = L∗y(w) = 0, ∇2gα(y) = α L∗y◦Ly + ∇2ϕw(y) � 0.

In other words,w ∈ Wy iffw ∈ (imLy)
⊥ and∇2ϕw(y)+α L∗y ◦Ly � 0 for some

α > 0. To understand when the second condition holds, we decompose TyM =
kerLy ⊕ (kerLy)

⊥ and express the relevant self-adjoint operators on TyM in
block matrix form with respect to a basis compatible with this decomposition.

8 A sequence (vi + W )i≥1 of translates of a subspace W of a (topological) vector space V converges
(necessarily to another translate of W ) iff there exist wi ∈ W such that (vi +wi )i≥1 ⊆ V converges in V .
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More explicitly, choose a basis as described above and denote n = dim kerLy

and m = dim(kerLy)
⊥. Assume first that m > 0. We represent ∇2ϕw(y) and

α L∗y ◦ Ly in that basis as

∇2ϕw(y) =
[

1 
2


�2 
3

]
, with 
1 ∈ S

n,
3 ∈ S
m .

α L∗y ◦ Ly =
[
0 0
0 α�

]
, with � ∈ S

m�0.

Thus,

w ∈ Wy ⇐⇒ w ∈ (imLy)
⊥ and ∃α > 0 such that

[

1 
2


�2 
3 + α�

]
� 0.

By the generalized Schur complement theorem [59, Thm. 1.20], the block-matrix
on the right-hand side is positive semidefinite exactly if


1 � 0, im
2 ⊆ im
1 and 
3 + α� � 
�2

†
1
2,

where 

†
1 is the Moore–Penrose pseudo-inverse of 
1. The last condition holds

upon choosing α ≥ λmax(

�
2 


†
1
2−
3)/λmin(�). Thus, we deduce the follow-

ing expression for Wy :

Wy = {w ∈ (imLy)
⊥ : 
1 � 0 and im
2 ⊆ im
1},

with 
1 and 
2 as defined above. We now work out basis-free characterizations
of the properties 
1 � 0 and im
2 ⊆ im
1.
First, notice that 
1 � 0 iff

[
v�1 0�m

] [
1 
2


�2 
3

] [
v1
0m

]
≥ 0 for all v1 ∈ R

n,

or in basis-free terms,
〈∇2ϕw(y)[v], v〉 ≥ 0 for all v ∈ kerLy . If w ∈ (imLy)

⊥
then (3.4) shows that this is also equivalent to

〈
w,Qy(v)

〉 ≥ 0 for all v ∈ kerLy ,
which is in turn equivalent to

〈
w,Qy(v)+ Ly(u)

〉 ≥ 0 for all v ∈ kerLy and
u ∈ TyM. This last condition is just w ∈ A∗y by part (a).
Second, we must understand for which vectors w it holds that im
2 ⊆ im
1, or
equivalently, ker
1 ⊆ ker
�2 (recall that
�1 = 
1). If
1 � 0, then v1 ∈ ker
1
iff v�1
1v1 = 0. Moreover, if v1 ∈ ker
1 then

[

1 
2


�2 
3

] [
v1
0m

]
=
[

0n

�2v1

]
,
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which vanishes iff v1 ∈ ker
�2 . Thus, assuming 
1 � 0, the inclusion im
2 ⊆
im
1 is equivalent to the implication

[
v�1 0�m

] [
1 
2


�2 
3

] [
v1
0m

]
= 0 �⇒

[

1 
2


�2 
3

] [
v1
0m

]
= 0, for all v1 ∈ R

n .

In basis-free terms, we have shown that, if 
1 � 0, then im
2 ⊆ im
1 is
equivalent to the implication

〈∇2ϕw(y)[v], v〉 = 0 �⇒ ∇2ϕw(y)[v] = 0
holding for all v ∈ kerLy . Putting everything together,

Wy = {w ∈ (imLy)
⊥ : 
1 � 0 and im
2 ⊆ im
1}

= {w ∈ (imLy)
⊥ : w ∈ A∗y and ∀v ∈ kerLy,〈

∇2ϕw(y)[v], v
〉
= 0 �⇒ ∇2ϕw(y)[v] = 0}

= {w ∈ A∗y : ∀v ∈ kerLy,
〈
∇2ϕw(y)[v], v

〉
= 0 �⇒ ∇2ϕw(y)[v] = 0},

where the last equality holds because A∗y ⊆ (imLy)
⊥ by Proposition 3.21(b).

This is the claimed expression for Wy .
If m = 0, or equivalently, if Ly = 0, then w ∈ Wy iff w ∈ (imLy)

⊥ = E and
∇2ϕw(y) � 0. This in turn is equivalent to w ∈ A∗y = (Qy(kerLy))

∗ ∩ (imLy)
⊥

by (3.4), so Wy = A∗y in this case. Conversely, if w ∈ A∗y and Ly = 0 then
∇2ϕw(y) � 0 so the condition in the claimed expression for Wy is satisfied
automatically: it also evaluates to A∗y . This verifies that the claimed expression
for Wy holds for m = 0 as well. ��

3.3 Composition of lifts

In this section, we ask: when are lift properties preserved under composition? We use
the following proposition both to compute Ly andQy in various settings, and to study
some of the lifts appearing in the literature in Sects. 4 and 5.

Proposition 3.27 Let ϕ : M→ X be a smooth lift, and let ψ : N →M be a smooth
map between smooth manifolds such that ϕ ◦ ψ : N → X is surjective. Both ϕ and
ϕ ◦ ψ are smooth lifts for X . For z ∈ N and y = ψ(z) ∈M, the following hold.

(a) If ϕ ◦ ψ satisfies “local⇒ local” at z, then ϕ satisfies “local⇒ local” at y. If ψ
is open (in particular, if ψ is a submersion) at z, and if ϕ satisfies “local⇒local”
at y, then ϕ ◦ ψ satisfies “local⇒ local” at z.

(b) If ϕ ◦ ψ satisfies “1 ⇒ 1” or “2 ⇒ 1” at z, then ϕ satisfies the corresponding
property at y. If ψ is a submersion at z and ϕ satisfies “1⇒1” or “2⇒1” at y,
then ϕ ◦ ψ satisfies the corresponding property at z.

(c) If ψ is a submersion at z, then

Lϕ◦ψ
z = Lϕ

y ◦ Lψ
z and Qϕ◦ψ

z ≡ Qϕ
y ◦ Lψ

z mod imLϕ◦ψ
z .
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Moreover, imLϕ◦ψ
z = imLϕ

y , A
ϕ◦ψ
z = Aϕ

y , B
ϕ◦ψ
z = Bϕ

y , and Wϕ◦ψ
z = Wϕ

y .

The proof is straightforward, see [39, App. C.1]. Here we denote v ≡ w mod imLy

to mean v−w ∈ imLy . By Lemma 3.24, equality of Qϕ◦ψ
z and Qϕ

y modulo imLϕ
y =

imLϕ◦ψ
z means that either one can be used to verify “2⇒1”.

Proposition 3.27 shows that, given a smooth lift ϕ : M→ X , there is no benefit to
further lifting M to another smooth manifold through ψ : N → M in terms of our
properties. Indeed, if ϕ does not satisfy one of our properties, then neither does ϕ ◦ψ

for any smooth ψ (we cannot ‘fix’ a bad lift by lifting it further). On the other hand,
this proposition also tells us that our properties, as well as the sets involved in their
characterization, are preserved under submersions. This notably means lift properties
can be checked through charts of M. Moreover, for lifts to a manifold M which is
a quotient of another manifold M (these arise naturally when quotienting by group
actions, see [9, §9]), Proposition 3.27 allows us to verify our properties on the total
space M, which is often easier.

Remark 3.28 If ψ : N → M is a submersion, for each z ∈ N , let Vz = ker Dψ(z)
and Hz = (ker Dψ(z))⊥ be the so-called vertical and horizontal spaces at z, which
satisfy TzN = Vz ⊕ Hz and Hz ∼= Tψ(z)M. Proposition 3.27 implies that Lϕ◦ψ

z =
Lϕ◦ψ
z ◦ProjHz

andQϕ◦ψ
z ≡ Qϕ◦ψ

z ◦ProjHz
where ProjHz

denotes orthogonal projection

onto Hz , so it suffices to consider the restrictions of L
ϕ◦ψ
z and Qϕ◦ψ

z to the horizontal
space at z. The latter is often simpler than TzN , see [9, §9.4].

We end this section with an implicit application of Proposition 3.27 seen in the
robotics and computer vision literature.

Example 3.29 (Shohan rotation averaging) In [19], Dellaert et al. estimate a set of n
rotations ofR

d from noisymeasurements of pairs of relative rotations. Their algorithm
involves the Burer–Monteiro lift (BM) with M = St(p, d)n for appropriate p ≥ d,
composedwith the submersionψ : SO(p)n → St(p, d)n extracting the first d columns
of each matrix. Using our framework, we can analyze this composition and thereby
strengthen the guarantees proved in [19]. Indeed, since theBurer–Monteiro lift satisfies
“2⇒1” and “local⇒local” by Proposition 2.7 andψ is a submersion, Proposition 3.27
shows that the composed lift satisfies “local⇒local” and “2⇒1” aswell. Furthermore,
if every stationary point for the original low-rank SDP of [19] is globally optimal
(e.g., if the conditions of [10] hold), then any 2-critical point for their lifted problem
is globally optimal and therefore the lifted problem enjoys benign nonconvexity.

3.4 Computing Ly and Qy

Theorem3.23 gives several conditions for “2⇒1” that (togetherwith Proposition 3.26)
can be checked using Ly and Qy from Definition 3.9. We therefore consider various
strategies for computing Ly and Qy depending on how we can access M. Since Qy

is only defined modulo imLy , different methods may yield different expressions, any
of which can be used to verify “2⇒1”.
M through charts: Suppose we are given a chart ψ : U → M on M, which is a
diffeomorphism from an open subset U ⊆ E ′ of some linear space E ′ onto its image,
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and let y ∈ ψ(U ). Then we can compose ϕ with ψ to obtain a lift to a linear space
ϕ̃ = ϕ ◦ ψ . By Proposition 3.27, the lift ϕ satisfies “1⇒1” or “2⇒1” at y ∈M if
and only if ϕ̃ satisfies the corresponding property at z = ψ−1(y). Thus, it suffices to
compute Lϕ̃

z andQϕ̃
z and use them to check “2⇒1” at z. SinceU is an open subset of

a linear space E ′, it is natural to compute Lϕ̃
z andQ

ϕ̃
z directly from Definition 3.9 using

curves c̃ṽ(t) = z + t ṽ which are straight lines through z in direction ṽ ∈ E ′ = TzU .
This choice yields the expressions

Lϕ̃
z (̃v) = (ϕ̃ ◦ c̃ṽ)

′(0) = Dϕ̃(z)[̃v], and Qϕ̃
z (̃v) = (ϕ̃ ◦ c̃ṽ)

′′(0) = D2ϕ̃(z)[̃v, ṽ],
(3.5)

where Dϕ̃(z) and D2ϕ̃(z) are the ordinary first- and second-order derivative maps of
ϕ̃ viewed as a map between linear spaces E ′ → E . In particular, ifM is itself a linear
space (e.g., for the (LR) lift), we may take U = E ′ = M and ψ = id and use (3.5)
with ϕ̃ = ϕ.
M embedded in a linear space: Suppose now thatM is an embedded submanifold of
another linear space E ′. By [9, Prop. 3.31], the lift ϕ can be extended to a smooth map
on a neighborhood V of M in E ′, denoted by ϕ : V → E . This means ϕ is a smooth
map defined on an open subset V ⊆ E ′ containing M and it satisfies ϕ|M = ϕ. If cv

is a curve on M passing through y ∈M ⊆ V with velocity v ∈ TyM ⊆ TyV = E ′,
then ϕ ◦ cv = ϕ ◦ cv because the curve is contained in M where ϕ agrees with ϕ.
Denote by uv = c̈v(0) the ordinary (extrinsic) acceleration of cv at t = 0, viewed as
a curve in E ′. Then Definition 3.9 and the chain rule give

Ly(v) = (ϕ ◦ cv)
′(0) = Dϕ(y)[v],Qy(v)

= (ϕ ◦ cv)
′′(0) = D2ϕ(y)[v, v] + Dϕ(y)[uv].

To better understand uv , let h : E ′ → R
k be a local defining function forM around y,

that is, h is smooth, M is locally its zero-set, and rank Dh(y′) = k for all y′ around
y. For a curve cv as above, we have h(cv(t)) ≡ 0 around t = 0, so in particular
(h ◦ cv)

′(0) = (h ◦ cv)
′′(0) = 0. By the chain rule, the latter equations can be written

as

Dh(y)[v] = 0 and D2h(y)[v, v] + Dh(y)[uv] = 0. (3.6)

Conversely, for any v, uv ∈ E ′ satisfying (3.6), there exists a curve on M passing
through y with velocity v and extrinsic acceleration uv by [49, Prop. 13.13]. Thus, the
expressions (3.6) describe all possible velocities and extrinsic accelerations of curve
as they pass through y. This set of all possible such accelerations of curves on M
passing through y ∈ M with velocity v ∈ TyM is the second-order tangent set to
M at y for v, and is denoted by T2

y,vM [49, Def. 13.11]. The above discussion shows
that

TyM = ker Dh(y) and T2
y,vM =

{
u ∈ E ′ : Dh(y)[u] = −D2h(y)[v, v]

}
.

(3.7)
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As a result, for any extension ϕ of ϕ and all v ∈ TyM, we have

Ly(v) = Dϕ(y)[v] and Qy(v) = D2ϕ(y)[v, v] + Dϕ(y)[uv] for some uv ∈ T2y,vM.

(3.8)

Note that T2
y,vM is an affine subspace of E ′ which is a translate of the subspace TyM,

as can be seen from (3.7). Therefore, while different choices of uv lead to different
expressions for Qy , they are all equal modulo imLy .
M as a quotient manifold: Suppose next that M is a quotient manifold of M with
quotient map π : M → M [9, §9]. Then ϕ = ϕ ◦ π gives a smooth lift of X to
M. Since π is a submersion, Proposition 3.27 and Remark 3.28 imply that to check
“2⇒1”, we need only compute Lz and Qz for ϕ restricted to the horizontal spaces
(ker Dπ(z))⊥ using the preceding two methods.

Computing ∇2ϕw: To check the equivalent condition in Theorem 3.23 for any
presentation of M, we need to compute Wy . If we use Proposition 3.26 to do so, we
need an expression for the Riemannian Hessian ∇2ϕw(y) where ϕw(y) = 〈w, ϕ(y)〉
for w ∈ (imLy)

⊥. Given Qy , we can obtain ∇2ϕw(y) as the unique self-adjoint
operator on TyM that defines the quadratic form (3.4). Conversely, if we compute
∇2ϕw(y) for all w ∈ (imLy)

⊥, e.g., using the techniques from [9, §5.5], we can set
Qy(v) to be the unique element of (imLy)

⊥ satisfying (3.4), providing another way
to compute Qy .

We now illustrate the above techniques for computing Ly and Qy . The following
example uses charts.

Example 3.30 (DesingularizationofRm×n≤r )Consider the desingularization lift (Desing)
of bounded rank matrices X = R

m×n≤r . We compute L and Q using charts. For
(X0,S0) ∈M, let Y0 ∈ R

n×(n−r) be a matrix satisfying col(Y0) = S0, so X0Y0 = 0.
Since rank(Y0) = n − r , we can find n − r linearly independent rows in Y0. Let
J ∈ R

(n−r)×(n−r) be the invertible submatrix of Y0 obtained by extracting these rows,
and let 
 ∈ R

n×n be a permutation matrix sending those n − r rows to the first rows.
Then there exist

Z0 ∈ R
m×r andW0 ∈ R

r×(n−r)satisfying
Y0 J
−1 =

[
In−r
W0

]
and X0 =

[−Z0W0, Z0
]

,

where the second identity is implied by 0 = X0Y0 J−1 = X0

�(
Y0 J−1). Accord-

ingly, a chart ψ : R
m×r × R

r×(n−r) →M containing (X0,S0) is given by

ψ(Z ,W ) =
([−ZW , Z

]

, col

(

�

[
In−r
W

]))
.

Composing with ϕ, we obtain the lift ϕ̃(Z ,W ) = ϕ(ψ(Z ,W )) = [−ZW , Z
]

, and

by (3.5),
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Lϕ̃

(Z ,W )(Ż , Ẇ ) = Dϕ̃(Z ,W )[Ż , Ẇ ] = [−ŻW − ZẆ , Ż
]

,

Qϕ̃

(Z ,W )(Ż , Ẇ ) = D2ϕ̃(Z ,W )[(Ż , Ẇ ), (Ż , Ẇ )] = [−2Ż Ẇ , 0
]

.

(3.9)

For V = [
V1, V2

]

 ∈ R

m×n where V2 is m × r , the Hessian ∇2ϕ̃V (Z ,W ) is the
ordinary Euclidean Hessian of ϕ̃V (Z ,W ) = 〈V , ϕ̃(Z ,W )〉, given by

∇2ϕ̃V (Z ,W )[Ż , Ẇ ] = [−V1Ẇ�, Ż�V1
]
. (3.10)

We use the above expressions to show that this lift satisfies “2⇒1” everywhere on
M in Sect. 5.2.

Next, we illustrate the embedded submanifold case on the following low-
dimensional example, which shows that the necessary condition for “2 ⇒ 1” in the
last implication of Theorem 3.23 is not sufficient.

Example 3.31 Consider the lift of the unit disk X in R
2 to

M = {y ∈ R
3 : y21 + y22 + y43 = 1}, ϕ(y) = (y1, y2).

Note that M is an embedded submanifold of R
3 with defining function h(y) =

y21 + y22 + y43 − 1, since ∇h(y) 
= 0 for all y ∈ M. The first two derivatives of
h are

Dh(y)[ẏ] = 2y1 ẏ1 + 2y2 ẏ2 + 4y33 ẏ3, D2h(y)[ẏ, ẏ] = 2 ẏ21 + 2 ẏ22 + 12y23 ẏ
2
3 .

Let y = (1, 0, 0) and x = ϕ(y) = (1, 0). We get from (3.7) that

TyM = {ẏ ∈ R
3 : ẏ1 = 0}, T2

y,ẏM = (−ẏ22 , 0, 0)+ TyM.

Because ϕ extends to a linear map ϕ(y) = (y1, y2) on all of R
3, whose first two

derivatives are Dϕ(y)[ẏ] = (ẏ1, ẏ2) and D2ϕ(y)[ẏ, ẏ] = 0, we have from (3.8) that

Ly(ẏ) = (0, ẏ2) and Qy(ẏ) = (−ẏ22 , 0).

On the other hand,

TxX = {ẋ ∈ R
2 : ẋ1 ≤ 0} � imLy = {ẋ ∈ R

2 : ẋ1 = 0}.

Since imLy 
= TxX , “1⇒1” does not hold at y. All the sufficient conditions for “2
⇒1” in Theorem 3.23 fail as well, see [39, Ex. 3.31].

For the equivalent condition in Theorem 3.23, if w ∈ A∗y , or equivalently, w =
(w1, 0), then ∇2ϕw(y) is the unique self-adjoint operator on TyM satisfying

〈∇2ϕw(y)[ẏ], ẏ〉 = 〈w,Qy(ẏ)〉 = −w1 ẏ
2
2 , hence ∇2ϕw(y)[ẏ] = (0,−w1 ẏ2, 0).
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For u ∈ kerLy , or equivalently, u = (0, 0, u3), we get 〈∇2ϕw(y)[u], u〉 = 0 and
∇2ϕw(y)[u] = 0. Proposition 3.26 then shows that Wy = A∗y � (TxX )∗, hence “2⇒
1” does not hold.

Nevertheless, the necessary condition in Theorem 3.23 does hold. Indeed,

Qy(TyM)+ imLy = {(−ẏ22 , 0) : ẏ2 ∈ R} + {(0, ẏ2) : ẏ2 ∈ R} = TxX ,

so taking duals on both sides yields the desired condition.

3.5 Low-rank PSDmatrices, and computing tangent cones

As an application of the theory we developed so far, we consider the set of bounded-
rank PSD matrices

X = {X ∈ R
n×n : X� = X , X � 0, rank(X) ≤ r} = S

n�0 ∩ R
n×n≤r ,

with r < n together with its lift toM = R
n×r via the factorizationmap ϕ(R) = RR�.

This is a special case of the Burer–Monteiro lift for SDPs (BM) without constraints
(m = 0). Constructions in the next section enable us to deduce the properties of the
general lift from this special case.

Proposition 3.32 The lift ϕ(R) = RR� fromM = R
n×r toX = R

n×n≤r ∩S
n�0 satisfies

• “local⇒ local” and “2⇒1” everywhere, and
• “1⇒1” at R ∈M if and only if rank(R) = r .

Moreover, with X = RR�, the sufficient condition AR = TXX for “2 ⇒ 1” holds
everywhere, and

TXX = TXR
n×n≤r ∩ TXS

n�0
= {V ∈ S

n : V⊥ � 0, rank(V⊥) ≤ r − rank(X) where V⊥ = Projcol(X)⊥VProjcol(X)⊥}

=
{
U

(
V1 V2
V�2 V3

)
U� : V1 ∈ S

rank(X), V3 � 0, rank(V3) ≤ r − rank(X)

}
,

where in the last line U ∈ O(n) is an eigenmatrix for X satisfying X = U�U� with
� ∈ R

n×n diagonal containing the eigenvalues of X in descending order.

Proof The “local⇒ local” property for this lift was proved in [12, Prop. 2.3] by (in
our terminology) establishing SLP (the condition from Remark 3.8).

For V ∈ R
n×n and X = RR� ∈ X , define

V⊥:=Projker(X)VProjker(X) = Projcol(R)⊥VProjcol(R)⊥ ,
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where we used the fact that col(R) = col(X) = ker(X)⊥. The tangent cone at X to
S
n�0 is given by [27, Eq. (9)]

TXS
n�0 = {V ∈ S

n : 〈Vu, u〉 ≥ 0, for all u ∈ ker(X)} = {V ∈ S
n : V⊥ � 0}

=
{
U

(
V1 V2
V�2 V3

)
U� : V1 ∈ R

rank(X)×rank(X), V3 � 0

}
, (3.11)

and the tangent cone at X to R
n×n≤r is given by [51, Thm. 3.2]

TXR
n×n≤r = {V ∈ R

n×n : rank(V⊥) ≤ r − rank(X)}
=
{
U

(
V1 V2
Ṽ2 V3

)
U� : V1 ∈ R

rank(X)×rank(X), rank(V3) ≤ r − rank(X)

}
.

Hence the intersection TXR
n×n≤r ∩ TXS

n�0 is given by the claimed expression. Fur-
thermore, the tangent cone to an intersection is always included in the intersection
of the tangent cones, which follows easily from Definition 3.1. Hence TXX ⊆
TXR

n×n≤r ∩ TXS
n�0 and it suffices to show the reverse inclusion. We do so simulta-

neously with proving “2⇒1”.
Since M is a linear space, the expressions (3.5) with the identity chart give

LR(Ṙ) = Dϕ(R)[Ṙ] = RṘ� + ṘR�,

QR(Ṙ) = D2ϕ(R)[Ṙ, Ṙ] = 2Ṙ Ṙ�.

Therefore,

imLR = {V ∈ S
n : V⊥ = 0}. (3.12)

Indeed, if V ∈ imLR then V = RṘ� + ṘR� for some Ṙ ∈ R
n×r and hence V⊥ = 0

since Projcol(R)⊥R = 0, while if V ∈ S
n satisfies V⊥ = 0 then

V = Projcol(R)V + VProjcol(R) − Projcol(R)VProjcol(R)

= LR

(
V R†� − 1

2
RR†V R†�

)
∈ imLR,

where RR† = Projcol(R).
Furthermore, we have

QR(kerLR) ⊇ {V ∈ S
n�0 : rank(V ) ≤ r − rank(X)}.

Indeed, if V ∈ S
n�0 with rank(V ) ≤ r − rank(X), let V = 2Ṙ0 Ṙ

�
0 be a (rescaled)

Cholesky decomposition with Ṙ0 ∈ R
n×r , so rank(Ṙ0) = rank(V ). Since

dim col(R�) = rank(R�) = rank(R) = rank(X) ≤ r − rank(Ṙ0) = dim ker(Ṙ0),
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there is an orthogonal matrix Q ∈ O(r) satisfying Qcol(R�) ⊆ ker(Ṙ0). Let Ṙ =
Ṙ0Q and note that V = 2Ṙ Ṙ� so QR(Ṙ) = V , and ṘR� = 0 so Ṙ ∈ kerLR . Thus,
with Proposition 3.26(a),

AR = QR(kerLR)+ imLR ⊇ TXR
n×n≤r ∩ TXS

n�0.

On the other hand, by Proposition 3.21(b), we have AR ⊆ TXX . Thus, we have the
chain of inclusions

TXR
n×n≤r ∩ TXS

n�0 ⊆ QR(kerLR)+ imLR ⊆ TXX ⊆ TXR
n×n≤r ∩ TXS

n�0,

so all the above inclusions are equalities. In particular,weobtain the claimedexpression
for TXX and “2⇒1” everywhere onM by Theorem 3.23. Our claims about “1⇒1”
follow from (3.12) and Theorem 2.4. ��
Finding an explicit expression for tangent cones can be difficult in general. In Propo-
sition 3.32, the set X was an intersection of two sets whose tangent cones are known,
namely R

n×n≤r and S
n�0, which gave us an inclusion TXX ⊆ TXR

n×n≤r ∩ TXS
n�0. How-

ever, the tangent cone to an intersection can be strictly contained in the intersection
of the tangent cones.9 The proof of “2⇒1” in Proposition 3.32 proceeds by showing
AR = TXR

n×n≤r ∩ TXS
n�0, which gives TXX = TXR

n×n≤r ∩ TXS
n�0 = AR because

AR ⊆ TXX by Proposition 3.21(b). This simultaneously gives us “2 ⇒ 1” and an
expression for the tangent cone.

This illustrates a more general and, as far as we know, novel technique of getting
expressions for the tangent cones using lifts. Generalizing the above discussion, if we
have an inclusion TxX ⊆ S for some set S and we are able to prove Ay ⊇ S for some
y ∈ ϕ−1(x), then we must have TxX = S by Proposition 3.21(b). In this case, we also
conclude that “2⇒1” holds at y by Theorem 3.23. In Sect. 4, we shall see another
setting in which we naturally have a superset for TxX (see Lemma 4.8), and which
allows us to derive expressions for TxX from lifts satisfying “1⇒1” and “2⇒1”.

A general condition implying that the tangent cone to an intersection is the inter-
section of the tangent cones is given in [49, Thm. 6.42]. That condition does not apply
to X = R

n×n≤r ∩S
n�0 because R

n×n≤r is not Clarke-regular in the sense of [49, Def. 6.4].
Our approach circumvents Clarke regularity, exploiting the existence of an appropriate
lift instead.

4 Constructing lifts via fiber products

In this section, we give a systematic construction of lifts for a large class of sets X . If
the resulting lifted space is a smooth manifold, we also give conditions under which
the lift satisfies our desirable properties. Moreover, under these conditions we can
obtain expressions for the tangent cones to X . We shall see that several natural lifts,
including the Hadamard and Burer–Monteiro lifts from Sect. 2, are special cases of
this construction.

9 For example, consider intersecting the circle in the plane with one of its tangent lines.
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Suppose the set X is presented in the form

X = {x ∈ E : F(x) ∈ Z} = F−1(Z),

whereZ ⊆ E ′ is some subset of a linear space and F : E → E ′ is smooth. This form is
general—any setX can be written in this form by letting F be the identity andZ = X .
However, we shall see that our framework is most useful whenZ is a product of simple
sets for which we have smooth lifts satisfying desirable properties. For example, any
set defined by k smooth equalities gi (x) = 0 and � smooth inequalities h j (x) ≥ 0 can
be written in this form by letting F(x) = (g1(x), . . . , gk(x), h1(x), . . . , h�(x)) and
Z = {0}k × R

�≥0. We can also incorporate semidefiniteness and rank constraints of
smooth functions of x by taking Cartesian products of Z with R

m×n≤r or S
n�0.

Suppose now that we have a smooth lift ψ : N → Z . We can use this lift of Z to
construct a lift of X by taking the fiber product of F and ψ .

Definition 4.1 Let X be a subset of E defined by a smooth map F : E → E ′ and a
set Z ⊆ E ′ as X = F−1(Z). Suppose ψ : N → Z is a smooth lift of Z to the
smooth manifold N . Then the fiber product lift of X with respect to F and ψ is
ϕ : MF,ψ → X where

MF,ψ = {(x, y) ∈ E ×N : F(x) = ψ(y)} and ϕ(x, y) = x .

HereMF,ψ is the (set-theoretic) fiber product of the maps F : E → E ′ and ψ : N →
E ′.
The following commutative diagram illustrates Definition 4.1. Its top horizontal arrow
is the coordinate projection π(x, y) = y.

MF,ψ N

E X Z E ′
ϕ

π

ψ

F
⊇ ⊆

The fiber product MF,ψ need not be a smooth manifold even when both F and ψ

are smooth maps between smooth manifolds. Accordingly, we make the following
assumption:

Assumption 4.2 The differential of (x, y) $→ F(x) − ψ(y) has constant rank in a
neighborhood of MF,ψ in E ×N .

Assumption 4.2 not only impliesMF,ψ is a smooth embedded submanifold of E×N ,
but also that F(x)−ψ(y) = 0 is a (constant-rank) defining function for it (in the sense
of [37, Thm. 5.12]). Under this assumption, the tangent space to MF,ψ is given by

T(x,y)MF,ψ = {(ẋ, ẏ) ∈ E × TyN : DF(x)[ẋ] = Dψ(y)[ẏ]}. (4.1)

We proceed to give some examples of the above construction. We then study fiber
product lifts in general and instantiate our results on these examples.
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Example 4.3 (Sphere to ball) Let X = {x ∈ R
n : ‖x‖2 ≤ 1} be the unit Euclidean

ball. Let Z = R≥0 and F(x) = 1 − x�x so X = F−1(Z). Let ψ : R → R≥0 be the
smooth lift ψ(y) = y2. Then MF,ψ = {(x, y) ∈ R

n × R : 1 − x�x = y2}, which
is just the unit sphere in R

n+1, and ϕ(x, y) = x projects onto the first n coordinates.
This lift is used in [47, §2.7] to apply a solver for quadratic programming over the
sphere (Q) to quadratic programs over the ball (P).

Example 4.4 (Sphere to simplex) The Hadamard lift (Had) from Sect. 2.1 can be
obtained as a special case of Definition 4.1. Indeed, let X = �n−1 = {x ∈
R
n : x ≥ 0,

∑n
i=1 xi = 1} be the standard simplex, let Z = R

n≥0 × {0} and
F(x) = (x,

∑n
i=1 xi − 1) so X = F−1(Z). Let ψ : R

n → Z be ψ(y) = (y�2, 0)
where superscript �2 denotes entrywise squaring. Then

MF,ψ =
{

(x, y) ∈ R
n × R

n : x = y�2,
n∑

i=1
xi = 1

}

=
{
(x, y) ∈ R

n × R
n : x = y�2, ‖y‖2 = 1

}
,

and ϕ(x, y) = x . It is easy to check that the coordinate projection π defines a diffeo-
morphism ofMF,ψ with Sn−1, and that the composition ϕ ◦ π−1 : Sn−1 → X yields
the Hadamard lift (Had) from Sect. 2.1. By Proposition 3.27, the fiber product lift of
the simplex is equivalent (for the purposes of checking our desirable properties) to the
lift (Had).

Example 4.5 (Torus to annulus) Let X = {x ∈ R
n : r1 ≤ ‖x‖2 ≤ r2}, where

we assume 0 < r1 < r2. Let Z = R
2≥0 and F(x) = (x�x − r21 , r22 − x�x). Let

ψ : R
2 → Z be ψ(y) = y�2 so

MF,ψ = {(x, y) ∈ R
n × R

2 : x�x − r21 = y21 , r22 − x�x = y22 },
=
{
(x, y) ∈ R

n × R
2 : ‖x‖2 =

√
r21 + y21 , ‖y‖2 =

√
r22 − r21

}
.

This is an n-dimensional manifold diffeomorphic to Sn−1× S1, with diffeomorphism


(x, y) = [(r21 + y21 )
−1/2x, (r22 − r21 )−1/2y

]
.

Viewed differently, the equivalent (by Proposition 3.27) lift ϕ◦
−1 is the composition

Sn−1 × S1 → Sn−1 ×�1 → X ,

where the first map is the Hadamard lift from the sphere to the simplex from the

preceding example, and the second map is (y, θ) $→
√

θ1r21 + θ2r22 y. If n = 2, then
X is an annulus and M is a torus.
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Example 4.6 (Smooth SDPs) The Burer–Monteiro lift (BM) from Sect. 2.2 is also a
special case of Definition 4.1. To see this, in the notation of Sect. 2.2, let

Z = (Sn�0 ∩ R
n×n≤r )× {0}m, F(X) = (X , 〈A1, X〉 − b1, . . . , 〈Am, X〉 − bm),

and ψ(R) = (RR�, 0, . . . , 0) defined on N = R
n×r . In this case,

MF,ψ = {(X , R) ∈ S
n × R

n×r : X = RR�, 〈Ai R, R〉 = bi },

which the projection π maps diffeomorphically onto the setM in (BM). Furthermore,
Assumption 4.2 is equivalent in this case to the assumption in Proposition 2.7 that
hi (R) = 〈Ai R, R〉 − bi are local defining functions. Thus, proving Proposition 2.7
is equivalent to proving the corresponding properties for the fiber product lift above
under Assumption 4.2.

Now that we have seen several examples of fiber product lifts, we ask: when do
desirable properties of the lift ψ : N → Z imply the corresponding properties for the
fiber product lift ϕ : MF,ψ → X ? This is answered by the next few propositions.

Proposition 4.7 Under Assumption 4.2, if ψ : N → Z satisfies “local ⇒ local” at
y ∈ N , then ϕ : MF,ψ → X satisfies “local ⇒ local” at (x, y) ∈ MF,ψ for any
x ∈ π−1(y).

Proof By Theorem 2.3, it is equivalent to show that openness of ψ at y implies open-
ness of ϕ at (x, y). Assumption 4.2 implies thatMF,ψ is an embedded submanifold of
E×N , hence itsmanifold topology coincideswith the subspace topology induced from
E×N . Thus, to show ϕ is open at (x, y), it suffices to show that ϕ((U ×V )∩MF,ψ )

is open for any open U ⊆ E containing x and open V ⊆ N containing y, since such
sets form a basis for the subspace topology on MF,ψ . Since ψ is open at y, we get
that ψ(V ) ⊆ Z is open. Since F is continuous, F−1(ψ(V )) ⊆ X is open. Since
ϕ(x, y) = x , we have

ϕ((U × V ) ∩MF,ψ ) = {x ∈ U ∩ X : ∃ y ∈ V s.t. F(x) = ψ(y)}
= {x ∈ U ∩ X : F(x) ∈ ψ(V )} = (U ∩ X ) ∩ F−1(ψ(V )),

which is open in X as the intersection of two open sets. Thus, ϕ is open at (x, y). ��
Note that the above proof, and hence the conclusion of Proposition 4.7, apply more
generallywheneverMF,ψ is endowedwith the subspace topology induced fromE×N
(but is not necessarily a smooth manifold) and when all maps involved are continuous
(but not necessarily smooth).

We now turn to studying “1⇒1” and “2⇒1”. Along the way, we give another
instance of the technique for finding tangent cones via lifts outlined in Sect. 3.5. To do
so, we begin by giving a superset of the tangent cone, obtained from the fact that X
is an inverse image [49, Thm. 6.31]. As usual, DF(x)−1 denotes the preimage under
the differential (which may not be invertible).
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Lemma 4.8 The following inclusion holds for all x ∈ X :

TxX ⊆ {ẋ ∈ E : DF(x)[ẋ] ∈ TF(x)Z} = DF(x)−1(TF(x)Z).

Proof If v ∈ TxX then byDefinition 3.1 there exist sequences (xi )i≥1 ⊆ X converging
to x and (τi )i≥1 ⊆ R>0 converging to zero satisfying v = limi→∞ xi−x

τi
. Because F

is differentiable at x , we have F(xi ) = F(x)+ DF(x)[xi − x] + o(‖xi − x‖), so

DF(x)[v] = lim
i→∞

F(xi )− F(x)

τi
.

Since F(xi ) ∈ Z for all i , we conclude that DF(x)[v] ∈ TF(x)Z by Definition 3.1. ��
Proposition 4.9 Let (x, y) ∈MF,ψ . Under Assumption 4.2, if ψ satisfies “1⇒1” at
y ∈ N , then ϕ satisfies “1⇒1” at (x, y), and equality holds in Lemma 4.8.

Proof Sinceψ satisfies “1⇒1” at y, Theorem 2.4 yields imLψ
y = Tψ(y)Z = TF(x)Z .

Assumption 4.2 implies that MF,ψ is an embedded submanifold of E ×N . Since ϕ

extends to ϕ(x, y) = x defined on all of E×N , we get from (3.8) thatLϕ

(x,y)(ẋ, ẏ) = ẋ
for all (ẋ, ẏ) ∈ T(x,y)MF,ψ . By (4.1),

imLϕ

(x,y) = DF(x)−1(imLψ
y ) = DF(x)−1(TF(x)Z).

Using Lemma 4.8 and Proposition 3.21(b), we get the chain of inclusions

TxX ⊆ DF(x)−1(TF(x)Z) = imLϕ

(x,y) ⊆ TxX .

We conclude that all these sets are equal and hence “1=>1” holds for ϕ at (x, y). ��

Proposition 4.10 Under Assumption 4.2, if ψ satisfies the sufficient condition Aψ
y =

Tψ(y)Z for “2⇒1” at y ∈ N (recall Theorem 3.23), then ϕ satisfies the sufficient
condition Aϕ

(x,y) = TxX for “2 ⇒ 1” at (x, y) ∈ MF,ψ , and equality holds in
Lemma 4.8.

Proof By Lemma 4.8, we always have TxX ⊆ DF(x)−1(TF(x)Z). For the reverse
inclusion and the desired sufficient condition for “2 ⇒ 1”, it suffices to prove that
DF(x)−1(TF(x)Z) ⊆ Aϕ

(x,y) since Aϕ

(x,y) ⊆ TxX by Proposition 3.21(b).

Suppose DF(x)[ẋ] ∈ TF(x)Z . By hypothesis, TF(x)Z = Tψ(y)Z = Aψ
y , so by

Proposition 3.26(a):

DF(x)[ẋ] = Qψ
y (v)+ Lψ

y (u), for some v ∈ kerLψ
y and u ∈ TyN . (4.2)

Because v ∈ kerLψ
y , we have (0, v) ∈ T(x,y)MF,ψ by (4.1). Let t $→ c(t) =

(cx (t), cy(t)) be a smooth curve onMF,ψ passing through (x, y) with velocity (0, v)
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at t = 0. Because F(cx (t)) = ψ(cy(t)) for all t near 0, differentiating this expression
twice we get

D2F(x)[c′x (0), c′x (0)] + DF(x)[c′′x (0)] = (ψ ◦ cy)′′(0).

Thefirst termvanishes since c′x (0) = 0.UsingDefinition 3.9 forQψ
y withLemma3.24,

we obtain

DF(x)[c′′x (0)] = Qψ
y (v)+ Lψ

y (u′), for some u′ ∈ TyN . (4.3)

Subtracting (4.3) from (4.2) yields (using Definition 3.9 for Lψ
y and (4.1) for

T(x,y)MF,ψ )

DF(x)[ẋ − c′′x (0)] = Lψ
y (u − u′)

= Dψ(y)[u − u′], hence (ẋ − c′′x (0), u − u′) ∈ T(x,y)MF,ψ .

Since Dϕ(x, y)[ẋ, ẏ] = ẋ , it follows that ẋ − c′′x (0) ∈ imLϕ

(x,y). By Definition 3.9
and Lemma 3.24 again, there exists w ∈ T(x,y)MF,ψ satisfying

c′′x (0)+ Lϕ

(x,y)(w) = Qϕ

(x,y)(0, v) ∈ Qϕ

(x,y)(kerL
ϕ

(x,y)),

from which we see ẋ ∈ Qϕ

(x,y)(kerL
ϕ

(x,y))+ imLϕ

(x,y) = Aϕ

(x,y) (again with Proposi-
tion 3.26(a)). ��
We remark that other sufficient conditions for equality in Lemma 4.8 to be achieved
are given in [49, Exer. 6.7, Thm. 6.31]. However, they do not apply to Example 4.6 (Z
is not Clarke-regular and DF(X) may not be surjective). In contrast, our approach via
lifts does apply to this example, and gives “2⇒1” and an expression for the tangent
cones simultaneously, see Corollary 4.12 below.

As the examples in the beginning of this section illustrate, Z is often a product of
sets. It is therefore useful to note that a product of lifts satisfying desirable properties
also satisfies those properties:

Proposition 4.11 SupposeZi ⊆ Ei for i = 1, . . . , k are subsets admitting smooth lifts
ψi : Ni → Zi . LetZ = Z1×· · ·×Zk andψ = ψ1×· · ·×ψk : N1×· · ·×Nk → Z ,
which is a smooth lift of Z . Then the following hold.

(a) TzZ ⊆ Tz1Z1 × · · · × TzkZk (the inclusion may be strict, see [49, Prop. 6.41]).
(b) ψ satisfies “local⇒ local” at y if and only if ψi satisfies “local⇒ local” at yi

for all i .
(c) We have imLψ

y = imLψ1
y1 × · · · × imLψk

yk . In particular, ψ satisfies “1⇒1” at y
if ψi satisfies “1⇒1” at yi for all i , in which case equality in (a) holds.

(d) We haveQψ
y ≡ Qψ1

y1 ×· · ·×Qψk
yk mod imLψ

y . Moreover, Aψ
y = Aψ1

y1 ×· · ·× Aψk
yk

and likewise for Bψ
y and Wψ

y . In particular, ψ satisfies “2⇒1” at y if ψi satisfies
“2⇒1” at yi for all i .
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(e) ψ satisfies the sufficient condition Aψ
y = Tψ(y)Z for “2⇒1” if ψi satisfies the

corresponding conditions Aψi
yi = Tψi (yi )Zi for all i .

The proof is straightforward, see [39, App. C.2]. By Remark 3.25, equality ofQψ
y and

Qψ1
y1 × · · · ×Qψk

yk modulo imLψ
y means that either one can be used to verify “2⇒1”.

We can now revisit the examples from the beginning of this section.

Corollary 4.12 The lifts in Examples 4.3, 4.4, 4.5 and 4.6 satisfy the following.

• The sphere to ball lift in Example 4.3 satisfies “local⇒local” everywhere, “1⇒
1” at y if and only if y 
= 0 (i.e., at preimages of the interior of the ball), and “2
⇒1” everywhere.

• The sphere to simplex lift (Had) satisfies “local⇒local” everywhere, “1⇒1” at
y if and only if yi 
= 0 for all i (i.e., at preimages of the relative interior of the
simplex), and “2⇒1” everywhere.

• The lift of the annulus in Example 4.5 satisfies “local⇒local” everywhere, “1⇒
1” at y if and only if y1, y2 
= 0 (i.e., at preimages of the interior of the annulus),
and “2⇒1” everywhere.

• The Burer–Monteiro lift (BM) under the smoothness assumption satisfies “local
⇒local” everywhere, “1⇒1” at R if and only if rank(R) = r (i.e., at preimages
of points of rank r), and “2⇒1” everywhere. Moreover, we get an expression for
the tangent cones to X :

TXX = {V ∈ S
n : V ∈ TXS

n�0 ∩ TXR
n×n≤r and 〈Ai , V 〉 = 0 for all i}. (4.4)

In particular, this proves Propositions 2.5 and 2.7. Note that an expression for TXS
n�0∩

TXR
n×n≤r is derived in Proposition 2.7 (incidentally, also as a consequence of the

sufficient condition for “2⇒1” used in Proposition 4.10).

Proof For the first three bullet points, consider the lift ψ(y) = y2 from N = R to
Z = R≥0. Observe that it satisfies “local⇒local” everywhere, “1⇒1” at y 
= 0, and
the sufficient condition Ay = Tψ(y)Z for “2⇒1” at y = 0. Indeed, at y 
= 0 we have
Ly(ẏ) = 2y ẏ which is an isomorphism of TyN = R and Ty2Z = R; and at y = 0 we
haveLy = 0 andQy(ẏ) = 2 ẏ2 by (3.5) so Ay = Qy(kerLy)+ imLy = R≥0 = T0Z .
Propositions 4.7 and 4.9–4.11 imply that the first three lifts satisfy “local⇒local” and
“2⇒1” everywhere, and give the claimed “if” directions for “1⇒1”. The “only if”
directions follow from Theorem 2.4.

For the Burer–Monteiro lift, consider the lift ψ(R) = RR� from N = R
n×r to

Z = S
n�0 ∩ R

n×n≤r . Proposition 3.32 shows that ψ satisfies “local ⇒ local” and the
sufficient condition AR = TRR�Z for “2⇒1” everywhere, aswell as “1⇒1” at points
R of rank r . Therefore, Propositions 4.7 and 4.9–4.11 imply that the Burer–Monteiro
lift satisfies “local⇒local” and “2⇒1” everywhere and “1⇒1” at R if rank(R) = r .
The “1⇒1” property does not hold at other points by Theorem 2.4. Proposition 4.10
gives the claimed expression for the tangent cones to X . ��
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Example 4.13 We can now revisit the example from Sect. 1 about computing the small-
est eigenvalue of a symmetric matrix A = Udiag(λ)U�with U orthogonal. There,

X = �d−1, M = Sd−1 and ϕ(y) = diag(U�yy�U ).

Observe that ϕ(y) = (U�y)�2, which is the composition of the diffeomorphism
y $→ U�y from the sphere to itself and the Hadamard lift from Example 4.4. We
conclude that this lift satisfies “2 ⇒ 1” everywhere on M by Proposition 3.27 and
Corollary 4.12. Therefore, any 2-critical point for (Q)maps to a stationary point for (P),
for any cost f . If f is convex, then since X is also convex any stationary point for (P)
is globally optimal. Thus, in this case any 2-critical point for (Q) is globally optimal
and its nonconvexity is benign. This is well-known for the eigenvalue problem, which
corresponds to the case of linear f .

Example 4.14 Proposition 4.11 together with Corollary 4.12 implies the properties
stated in Proposition 2.6 for the lift (HadProd) of stochastic matrices. Indeed, the set
of stochastic matricesX = {X ∈ R

n×m
≥0 : X�1n = 1n} is just the product of simplices

X = (�n−1)m , and the lift (HadProd) is precisely them-fold power lift of (Had). Thus,
Proposition 4.11(b)-(d) yields “local⇒local” and “2⇒1” everywhere and “1⇒1” at
tuples (yi ) with no zero entries. Furthermore, since simplices are closed convex sets
and hence Clarke-regular [49, Thm. 6.9], the tangent cone to their product is equal
to the product of tangent cones (i.e., equality in Proposition 4.11(a) holds) by [49,
Prop. 6.41], and hence “1⇒1” does not hold elsewhere.

5 Analysis of low rank lifts

In this section, we use our theory to prove the remaining results from Sect. 2 concern-
ing lifts of low rank matrices and tensors. Some of the straightforward but technical
arguments are omitted here and are given in the arxiv version of this paper [39].

5.1 Proof of Proposition 2.8 (LR�lift)

The “local⇒local” property at “balanced” factorizations (L, R) satisfying rank(L) =
rank(R) = rank(LR�) was proved in [38, Prop. 2.34] by showing that (in our ter-
minology) SLP holds there. We show “local ⇒ local” does not hold at other pairs
(L, R) anywhere else by disproving SLP there via an explicit construction, see the
arxiv version for details [39, Sec. 5.1].

For “1⇒1” and “2⇒1”, note that M is a linear space, hence (3.5) gives

L(L,R)(L̇, Ṙ) = L̇ R� + L Ṙ�, Q(L,R)(L̇, Ṙ) = 2L̇ Ṙ�.

If rank(LR�) = r , then [38, Prop. 2.15] (which is a slight generalization of the proof
of “1⇒1” in Proposition 2.7) shows imL(L,R) = TLR�X hence “1⇒1” holds. If
rank(LR�) < r then TLR�X is not a linear space [28, Thm. 2.2], hence “1⇒1” does
not hold at (L, R) by Theorem 2.4.
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To show “2⇒1” holds everywhere on M, it suffices to show B∗(L,R) ⊆ (TXX )∗

whenever rank(LR�) < r by Theorem 3.23. Since rank(LR�) < r we must have
either rank(L) < r or rank(R) < r , assume the former (the case rank(R) < r is
similar). Then there exists w ∈ R

r such that Lw = 0 and ‖w‖2 = 1. For any u ∈ R
m ,

v ∈ R
n , and i ∈ N, let L̇i = i−1uw� and Ṙi = (i/2)vw�. Then

L(L,R)(L̇i , Ṙi ) = i−1uw�R� i→∞−−−→ 0, Q(L,R)(L̇i , Ṙi ) = uv�,

showing that uv� ∈ B(L,R). Thus, B(L,R) contains all rank-1 matrices, showing that
B∗y = {0} = (TXX )∗.

5.2 Proof of Proposition 2.9 (desingularization lift)

We show that “local ⇒ local” does not hold at (X ,S) ∈ M if rank(X) < r by
disproving SLP via an explicit construction, see the arxiv version [39, App. 5.2]. We
show “local⇒local” does hold at (X ,S) ∈M if rank(X) = r by showing that “1⇒
1” holds there, which suffices by Proposition 2.12.

For “1⇒1” and “2⇒1”, we use the results of Example 3.30. Using the notation
of that example, recall that every (X ,S) ∈ M is in the image of a chart ψ(Z ,W ),
and that L(Z ,W ) and Q(Z ,W ) in this chart are given by (3.9).

Suppose rank(X) = r and (X ,S) = ψ(Z ,W ). Note that col(X) = col(Z), so
rank(Z) = r . If L(Z ,W )(Ż , Ẇ ) = 0, then Ż = 0 and ZẆ = 0. This implies Ẇ = 0
since Z has full column rank. Thus, L(Z ,W ) is injective, but since its domain has
dimension (m + n − r)r = dimR

m×n=r , we conclude that it is an isomorphism. Thus,
“1⇒1” holds at (Z ,W ) by Theorem 2.4. If rank(X) < r then TXX is not a linear
space [28, Thm. 2.2], hence “1⇒1” cannot hold for any lift by Theorem 2.4.

Suppose rank(X) < r .We show “2⇒1” holds at (Z ,W ) by showing that B∗(Z ,W ) ⊆
(TXX )∗. To that end, note that rank(Z) = rank(X) < r , so there is a unit vector
w ∈ R

r satisfying Zw = 0. Let u ∈ R
m and v ∈ R

n−r be arbitrary. For any i ∈ N, let
Żi = i−1uw� and Ẇi = iwv�. Then

L(Z ,W )(Żi , Ẇi ) =
[−i−1uw�W − i(Zw)v�, i−1uw�

]



i→∞−−−→ 0,

Q(Z ,W )(Żi , Ẇi ) ≡
[−2uv�, 0

]

.

We conclude that

B(Z ,W ) ⊇ (R
m×(n−r)
≤1 × {0})
+ imL(Z ,W )

�⇒ B∗(Z ,W ) ⊆ ({0} × R
m×r )
 ∩ (imL(Z ,W ))

⊥.

To characterize (imL(Z ,W ))
⊥, observe that V = [

V1, V2
]

 ∈ R

m×n with V1 ∈
R
m×(n−r) satisfies V ∈ (imL(Z ,W ))

⊥ iff the following holds for all (Ż , Ẇ ) ∈ R
m×r×
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R
r×(n−r):

〈V ,L(Z ,W )(Ż , Ẇ )〉 = 〈V1,−ŻW − ZẆ 〉 + 〈V2, Ż〉
= 〈Ż , V2 − V1W

�〉 − 〈Ẇ , Z�V1〉 = 0.

This is equivalent to V2 = V1W� and Z�V1 = 0. Thus, if V1 = 0 then V = 0, hence
B∗(Z ,W ) = {0} = (TXX )∗. This shows “2 ⇒ 1” holds at (Z ,W ), and hence also at
(X ,S) by Proposition 3.27.

5.3 Multilinear lifts, and tensors

In this section, we prove two obstructions to “2⇒1” for multilinear lifts, which apply
in particular to lifts defined by tensor factorizations and linear neural networks as
discussed in Sects. 2.4–2.5.

Proposition 5.1 Suppose ϕ : M → X ⊆ E is a smooth lift where M ⊆ E ′ = E1 ×
· · · × Ed is a smooth embedded submanifold of a product of Euclidean spaces Ei , and
ϕ is defined on all of E ′ and is multilinear in its d arguments. If M contains a point
(y1, . . . , yd) such that yi = 0 for three indices i , and 0 = ϕ(y1, . . . , yd) is not an
isolated point of X , then ϕ does not satisfy “2⇒1” at (y1, . . . , yd).

Proof Let (y1, . . . , yd) ∈ E ′. Note that if yi = 0 for some i , then ϕ(y1, . . . , yd) =
0 by the multilinearity of ϕ. Similarly, multilinearity gives Dϕ(y1, . . . , yd) =
D2ϕ(y1, . . . , yd) = 0 if yi = 0 for at least three indices i . Hence (3.8) gives
L(y1,...,yd ) = 0 and Q(y1,...,yd ) = 0. This implies

(imL(y1,...,yd ))
⊥ ∩ (Q(y1,...,yd )(T(y1,...,yd )M))∗ = E .

The necessary condition for “2⇒1” given by the last implication in Theorem 3.23 is
satisfied iff (T0X )∗ = E , or equivalently T0X = {0}. This holds if and only if 0 is an
isolated point of X , since if (xi ) ⊆ X \ {0} is a sequence converging to 0, then after
passing to a subsequence (xi/‖xi‖) converges and gives a nonzero element of T0X . ��
Proposition 5.1 implies that the lifts corresponding to linear neural networks, as well
as standard tensor decompositions such as CPD, Tensor Train (TT), and Tucket, all
do not satisfy “2⇒1” as points with at least three zero factors.

Proposition 5.1 might suggest that failure of “2⇒1” can be avoided by normalizing
the arguments of the lift to have unit norm. Specifically, by multilinearity of ϕ we have

ϕ(y1, . . . , yd) =
(

d∏
i=1
‖yi‖

)
ϕ

(
y1
‖y1‖ , . . . ,

yd
‖yd‖

)
, whenever yi 
= 0 for all i .

Using this observation, one could replace a lift ϕ : R
n1 ×· · ·×R

nd → X to a product
of Euclidean spaces by a liftψ : R×Sn1−1×· · ·×Snd−1 to a product ofR and several
spheres, satisfying ψ(λ, x1, . . . , xd) = λϕ(x1, . . . , xd). Only one factor can be zero
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in this new lift, so Proposition 5.1 does not apply and we might hope that “2 ⇒1”
holds. Unfortunately, this may not resolve the problem as there is another obstruction
to “2⇒1” for the following specific form of a lift.

Proposition 5.2 Suppose ϕ : M→ X is a smooth lift of the form

ϕ(λ,Y1, . . . ,Yd) =
r∑

i=1
λi · (Y1):,i ⊗ · · · ⊗ (Yd):,i ,

whereM ⊆ R
r ×R

n1×r × · · · ×R
nd×r . Denote X = ϕ(λ,Y1, . . . ,Yd). If d ≥ 3 and

col(Y1)
⊥ ⊗ · · · ⊗ col(Yd)

⊥
� (TXX )∗, (5.1)

then ϕ does not satisfy “2⇒1” at (λ,Y1, . . . ,Yd) for any λ ∈ R
r . If d = 2 and (5.1)

holds, then ϕ does not satisfy “2⇒1” at (0,Y1,Y2).

Proof of Proposition 5.2 For any W ∈ col(Y1)⊥ ⊗ . . .⊗ col(Yd)⊥, we have

〈W ,Dϕ(λ,Y1, . . . ,Yd)[λ̇, Ẏ1, . . . , Ẏd ]〉
= 〈W ,D2ϕ(λ,Y1, . . . ,Yd)[(λ̇, Ẏ1, . . . , Ẏd), (λ̇, Ẏ1, . . . , Ẏd)]〉 = 0,

for all (Ẏ1, . . . , Ẏd) if d ≥ 3 or d = 2 and λ = 0, by multilinearity. Since L(λ,Y1,...,Yd )

is the restriction of Dϕ(λ,Y1, . . . ,Yd) to T(λ,Y1,...,Yd )M and Q(λ,Y1,...,Yd ) is given
by (3.8), we get

col(Y1)
⊥ ⊗ . . .⊗ col(Yd)

⊥ ⊆ (imL(λ,Y1,...,Yd ))
⊥ ∩ (Q(λ,Y1,...,Yd )(T(λ,Y1,...,Yd )M))∗,

if either d ≥ 3 or d = 2 and λ = 0. Thus, if col(Y1)⊥ ⊗ . . .⊗ col(Yd)⊥ � (TXX )∗
then the necessary condition for “2⇒1” from Theorem 3.23 does not hold. ��

Proposition 5.2 applies in particular to lifts corresponding to symmetric and nor-
malized CP decompositions and ODECO tensors [48], as well as the SVD lift (SVD).
As discussed in Sect. 2, these obstructions to “2⇒1” imply that guarantees for second-
order optimization algorithms running on (Q) must use the structure in the particular
cost function involved. This is particularly significant since our obstructions apply to
a broad class of lifts arising naturally in several applications.

6 Conclusions and future work

For the pair of problems (Q) and (P), we characterized the properties the lift ϕ : M→
X needs to satisfy in order to map desirable points of (Q) to desirable points of (P).We
noted that globalminima for (Q) alwaysmap to globalminima for (P) (Proposition 3.5),
and showed that local minima for (Q) map to local minima for (P) if and only if ϕ is
open (Theorem 2.3). We also showed that 1-critical points for (Q) map to stationary
points for (P) if and only if the differential of ϕ, viewed as amap from tangent spaces of
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M to tangent cones ofX , is surjective (Theorem 2.4). This requires the tangent cones
of X to be linear spaces. We then characterized when 2-critical points for (Q) map to
stationary points for (P), and gave two sufficient conditions and a necessary condition
that may be easier to check for some examples (Theorem 3.23). We explained several
techniques to compute all quantities involved in these conditions in Sect. 3.4.

Using our theory, we studied the above properties for a variety of lifts, including
several lifts of low-rank matrices and tensors (Sect. 5) and the Burer–Monteiro lift for
smooth SDPs (Corollary 4.12). We also proposed a systematic construction of lifts
using fiber products that applies whenX is the preimage of a smooth function (Sect. 4).
We gave conditions under which it satisfies our desirable properties. In some cases,
we can also obtain an expression for the tangent cones of X simultaneously with “2
⇒1”, as explained in Sect. 3.5.

We end by listing several future directions suggested by this work.

(a) “k⇒1” for general k: Several lifts of interest, notably tensor factorizations with
more than two factors, do not satisfy “2⇒1”. It would therefore be interesting to
characterize “k⇒1” for general k, i.e., when do k-critical points for (Q) map to
stationary points for (P) for any k times differentiable cost f ?
Do lifts that are multilinear in k arguments, such as order-k tensor lifts, satisfy
“k⇒1”?
What can be said about “k⇒ �” for � > 1? Already for � = 2, the second-order
optimality conditions on X can be involved [50, Thm. 3.45]. On the positive side,
if “1⇒1” holds at a preimage of a smooth point, then “k⇒k” holds there for all
k ≥ 1 by Proposition 2.12.

(b) Robust “k⇒ 1”: Algorithms run for finitely many iterations in practice, hence
can only find approximate k-critical points for (Q). It is therefore important to
characterize “robust” versions of “k⇒1”, guaranteeing that approximate k-critical
points for (Q) map to approximate stationary points for (P).
Note that if X lacks regularity, care is needed when defining approximate station-
arity for (P), see [40].

(c) Obstructions to “local⇒ local” and “k⇒1”:
For some sets X , we are not aware of any lifts which satisfy, say, “local⇒local”
or “2⇒1”. Are there fundamental obstructions which preclude existence of such
lifts for those sets and others? For example, is there a lift for low-rank tensors
satisfying “2⇒1”? Is there a lift for R

m×n≤r satisfying “local⇒ local”?
(d) Regularization on the lift: It is common to modify (Q) by adding a regularizer

to g = f ◦ ϕ, see [33, 53, 55]. For example, with the lift (L, R) $→ LR�, we
may regularize (Q) by adding 1

2

(‖L‖2F + ‖R‖2F
)
, motivated by the fact that its

minimum over a fiber {(L, R) : LR� = X} is the nuclear norm ‖X‖∗ [53]. Our
framework does not directly apply in this case (because the regularizer may not
be constant over fibers, hence may not factor through ϕ). Can it be extended to
relate the landscape of the regularized (Q) to that of (P)?

(e) Bypassing tangent cones via lifts:
To verify “1⇒1” and “2⇒1” on concrete examples of X using the theory in
this paper, we need to understand the tangent cones to X , which is often chal-
lenging. Many sets X encountered in applications are only defined implicitly via
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a lift ϕ : M→ E . Examples include the set of tensors admitting a certain type of
factorization, the set of functions parametrized by a given neural network archi-
tecture, and the set of positions and orientations attainable by a robotic arm with
a given joint configuration. Are there sufficient conditions for “k⇒1” that can
be checked using ϕ and M alone, without an explicit expression for the tangent
cones to X ?

(f) Dynamical systems on M and their image on X : This paper is focused on
comparing properties of points on M and their images on X . In contrast, sev-
eral applications are concerned with properties of entire trajectories of dynamical
systems on M, and it may be interesting to compare these properties with their
counterparts for the images of the trajectories onX . Examples of such comparisons
include relating gradient flowon theweights of a neural network to gradient flow in
function ormeasure spaces [6, 7, 29], and the “algorithmic equivalence” technique
used in [3, 24, 43] to study mirror descent by showing that its continuous-time
analogue is equivalent to gradient flow on a reparametrized problem.
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A Lifts preserving local minima

We characterize the lifts that map local minima of (Q) to local minima of (P). To this
end, we introduce a number of properties related to preservation of local minima and
then prove that they are all equivalent. Recall that S is our notation for the closure of
a set S.

Definition A.1 Let ϕ : M → X be a continuous, surjective map from a topological
space M to a metric space X with distance dist, and let x = ϕ(y).

1. ϕ is open at y if ϕ(U ) is a neighborhood of x in X for all neighborhoods U of y
inM.

2. ϕ is approximately open at y if ϕ(U ) is a neighborhood of x in X for all neigh-
borhoods U of y inM.

3. ϕ satisfies the Subsequence Lifting Property (SLP) at y if for every sequence
(xi )i≥1 ⊆ X converging to x there exists a subsequence indexed by (i j ) j≥1 and a
sequence (yi j ) j≥1 ⊆M converging to y such that ϕ(yi j ) = xi j for all j ≥ 1.
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4. ϕ satisfies the Approximate Subsequence Lifting Property (ASLP) at y if for every
sequence (xi )i>1 ⊆ X converging to x and every sequence (εi )i≥1 ⊆ R>0
converging to 0 there exists a subsequence indexed by (i j ) j≥1 and a sequence
(yi j ) j≥1 ⊆M converging to y such that dist(ϕ(yi j ), xi j ) ≤ εi j for all j ≥ 1.

Theorem A.2 IfM is Hausdorff, second-countable and locally compact (all of which
hold if M is a topological manifold), then the four properties of ϕ at y ∈ M in
Definition A.1 are equivalent to each other and to the “local⇒ local” property at y
(Definition 2.2(a)).

Proof We show that ASLP �⇒ approximate openness �⇒ openness �⇒ SLP
�⇒ “local⇒ local” �⇒ ASLP.

Supposeϕ satisfiesASLP at y. Suppose there exists a neighborhoodU of y such that
ϕ(U ) is not a neighborhood of x = ϕ(y). Then we can find a sequence (xi )i≥1 ⊆ X
such that xi → x but xi /∈ ϕ(U ) for all i . Set εi = 1

2dist(xi , ϕ(U )) > 0 and apply
ASLP to find a sequence (yi )i≥1 ⊆ M such that yi → y and dist(ϕ(yi ), xi ) ≤ εi .
Because dist(ϕ(yi ), xi ) < dist(xi , ϕ(U )), we have ϕ(yi ) /∈ ϕ(U ) for all i . However,
because U is a neighborhood of y and yi → y, we must have yi ∈ U for all large i , a
contradiction. Thus, ϕ(U ) is a neighborhood of x , so ϕ is approximately open at y.

Suppose ϕ is approximately open at y, and let U be a neighborhood of y in M.
Because M is locally compact, we can find a compact neighborhood V ⊆ U of x .
Since ϕ is continuous and V is compact, we have that ϕ(V ) is compact; since X is
Hausdorff (it is a metric space), it follows that ϕ(V ) is closed. Combining with the
fact that ϕ is approximately open at y, we deduce that ϕ(V ) is a neighborhood of x .
Since ϕ(U ) ⊇ ϕ(V ), we conclude that ϕ(U ) is a neighborhood of x as well. Thus, ϕ
is open at y.

Suppose ϕ is open at y, and (x j ) j≥1 ⊆ X converges to x = ϕ(y). Owing to the
topological properties ofM, there is a sequence of open neighborhoods Ui of y with
compact closures such thatUi ⊇ Ui+1 and

⋂∞
i=1Ui = {y}, see Lemma A.3 following

this proof. Because ϕ is open, each ϕ(Ui ) is an open neighborhood of x such that
ϕ(Ui ) ⊇ ϕ(Ui+1) and x ∈ ⋂∞

i=1 ϕ(Ui ). Moreover, because ϕ(Ui ) is a neighborhood
of x and x j → x , there exists index J (i) such that x j ∈ ϕ(Ui ) for all j ≥ J (i). After
passing to a subsequence of (x j ), we may assume x j ∈ ϕ(Uj ) and pick y j ∈ Uj

satisfying x j = ϕ(y j ). Because (y j ) is an infinite sequence contained in the compact
setU1, after passing to a subsequence again we may assume that lim j y j exists. With i
arbitrary, we have for all j > i that y j ∈ Uj ⊆ Ui+1, hence that lim j y j ∈ Ui+1 ⊆ Ui .
This holds for all i , hence lim j y j ∈⋂i Ui = {y}. Thus, y = limi yi and ϕ(yi ) = xi ,
so ϕ satisfies SLP.

Suppose ϕ satisfies SLP at y. Let f : X → R be a cost function onX and g = f ◦ϕ.
Suppose x = ϕ(y) is not a local minimum for f on X , that is, there exists a sequence
(xi )i≥1 ⊆ X converging to x such that f (xi ) < f (x) for all i . Applying SLP, after
passing to a subsequence we can find a sequence (yi )i≥1 ⊆M converging to y such
that ϕ(yi ) = xi . Since g(yi ) = f (xi ) < f (x) = g(y) and yi → y, we conclude that
y is not a local minimum for g. By contrapositive, this shows that ϕ satisfies the “local
⇒ local” property at y.

For the last implication, we proceed by contrapositive once again. Suppose ϕ does
not satisfy ASLP at y. Then, we can find sequences (xi )i≥1 ⊆ X converging to x and
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(εi )i≥1 ⊆ R>0 converging to 0 such that no subsequence of (xi ) can be approximately
lifted to M in the sense of ASLP. Let B̄(x, ε) = {x ′ ∈ X : dist(x, x ′) ≤ ε}. Notice
that x = ϕ(y) /∈ B̄(xi , εi ) for all but finitely many indices i , as otherwise the constant
sequence yi ≡ y would give an approximate lift of a subsequence. Since xi → x and
εi → 0, after passing to a subsequence we may assume that the closed balls B̄(xi , εi )
are pairwise disjoint and none contain x . Define the following sum of smooth bump
functions centered at the xi

f (x ′) =
{
− exp

(
1− 1

1−(dist(xi ,x ′)/εi )2
)

if x ′ ∈ B̄(xi , εi ) for somei,

0 otherwise.

This is well defined because the balls B̄(xi , εi ) are disjoint. (As a side note, we remark
that if X is a metric subspace of a Euclidean space E as in our general treatment, then
f extends to a smooth function on E .) Note that x is not a local minimum for f since
xi → x and f (xi ) = −1 < 0 = f (x). However, y is a local minimum for g = f ◦ ϕ.
Indeed, if there was a sequence (yi ) converging to y such that g(yi ) < g(y) = 0, then
we would have ϕ(yi ) ∈ B̄(xni , εni ) for an infinite subsequence (ni ) with ni → ∞
(sincewemust haveϕ(yi )→ x bycontinuity ofϕ), showing that (yi ) is an approximate
lift of the subsequence (xni ): a contradiction to our assumptions about (xi ), (εi ). Thus,
ϕ does not satisfy the “local⇒ local” property at y. ��
Lemma A.3 Suppose M is Hausdorff, second-countable, and locally compact. Then
for any y ∈ M there is a sequence of open neighborhoods Ui of y with compact
closures such that Ui ⊇ Ui+1 and

⋂∞
i=1Ui = {y}.

Proof Because M is second-countable and locally compact, we can find a countable
basis of open neighborhoods with compact closures {Vj } j≥1 for y. SinceM is Haus-
dorff and {Vj } is a basis for y, we have⋂∞

j=1 Vj = {y}. Indeed, if y′ 
= y, then there
exists a neighborhood of y not containing y′, and this neighborhood contains Vi for
some i by definition of a local basis. By replacing Vi by

⋂i
j=1 Vj (which preserves

their intersection), we may assume Vi ⊇ Vi+1. We construct {Ui }i≥1 inductively. Set
U1 = V1, which is an open neighborhood of y with compact closure by assumption.
Having constructed U1, . . . ,Ui , use local compactness to find a compact neighbor-
hood Ki+1 ⊆ Vi+1 ∩ Ui of y and let Ui+1 be the interior of Ki+1. Then Ui+1 is
an open neighborhood of y by construction, and Ui+1 ⊆ Ki+1 ⊆ Ui which also
shows Ui+1 is compact as a closed subset of the compact set Ki+1. Finally, we have
{y} ⊆⋂∞

i=1Ui ⊆⋂∞
i=1 Vi = {y} hence

⋂∞
i=1Ui = {y}. ��
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