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Abstract
We study piecewise affine policies for multi-stage adjustable robust optimization
(ARO) problems with non-negative right-hand side uncertainty. First, we construct
new dominating uncertainty sets and show how a multi-stage ARO problem can be
solved efficientlywith a linear programwhen uncertainty is replaced by these new sets.
We then demonstrate how solutions for this alternative problem can be transformed
into solutions for the original problem. By carefully choosing the dominating sets,
we prove strong approximation bounds for our policies and extend many previously
best-known bounds for the two-staged problem variant to its multi-stage counterpart.
Moreover, the new bounds are—to the best of our knowledge—the first bounds shown
for the generalmulti-stageAROproblemconsidered.Weextensively compare our poli-
cies to other policies from the literature and prove relative performance guarantees.
In two numerical experiments, we identify beneficial and disadvantageous properties
for different policies and present effective adjustments to tackle the most critical dis-
advantages of our policies. Overall, the experiments show that our piecewise affine
policies can be computed by orders of magnitude faster than affine policies, while
often yielding comparable or even better results.
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1 Introduction

In practice, most decision-making problems have to be solved in view of uncertain
parameters. In the operations research domain, two fundamental frameworks exist to
inform such decisions. The stochastic optimization framework captures uncertainty
by using probability distributions and aims to optimize an expected objective. Initially
introduced in the seminal work of Dantzig [26], the framework has been intensively
studied and scholars used it to solve a vast variety of problems including production
planning [6, 55], relief networks [49], expansion planning [62, 64], and newsvendor
problems [52].While stochastic optimization performs well on many problem classes,
finding tractable formulations is oftentimes challenging. Additionally, the data needed
to approximate probability distributions might not always be available, and gathering
data is often a costly and time-consuming process. The robust optimization (RO)
framework overcomes many of these shortcomings by capturing uncertainty through
distribution-free uncertainty sets insteadof probability distributions.Bychoosingwell-
representable uncertainty sets, RO often offers computationally tractable formulations
that scale well on a variety of optimization problems. In recent years, these favorable
properties have led to a steep increase in research interest, see, e.g. [8, 11, 20, 36,
63]. The flexibility of uncertainty sets and scaleability of solution methods also make
RO very attractive for applicational purposes and it has been widely applied to many
operations management problems [45].

In traditional RO, all decisions must be made before the uncertainty realization
is revealed. However, oftentimes some decisions can be delayed until after (part of)
the uncertainty realization is known in real-world situations. As a consequence, RO
may lead to excessively conservative solutions. To remedy this drawback, Ben-Tal et
al. [9] introduced the concept of adjustable robust optimization (ARO) where some
decisions can be delayed until the uncertainty realization is (partly) known. In general
ARO, uncertainty realizations are revealed over multiple stages and decisions can be
made after each reveal. A decision made in stage t can thus be modeled as a function
of all uncertainties associated with previous stages t ′ ≤ t .

While ARO improves decision-making in theory, ARO is equivalent to RO on
some special problem instances, where static decision policies yield optimal adjustable
solutions [9, 22]. Using similar arguments to the ones used for the optimality of static
solutions,Marandi and denHertog [46] identified conditions where optimal adjustable
decisions are independent of some uncertain parameters. In general, static policies do
not yield optimal solutions in the ARO setting. Elucidating this, Haddad-Sisakht and
Ryan [37] identified a collection of sufficient conditions that imply the suboptimality
of static policies and a strict improvement of ARO over RO.

In general, even the task of finding optimal adjustable solutions in the special case
of two-stage ARO proves to be computationally intractable [9]. Accordingly, recent
works developed many approximation schemes for ARO that often yield good and
sometimes even optimal results in practice, see, e.g. [9, 19, 42, 58]. In the special
case with only two decision stages, the first stage decisions are fixed before any
uncertain parameters are known and the second stage decisions use full knowledge of
the uncertainty realization. Two-stage ARO already has many applications in practice
and has widely been studied in the literature, see, e.g. [14, 16, 18, 22, 23, 39, 40, 59].

123



Designing tractable piecewise affine policies for…

Still, many real-world problems show inherent multi-stage characteristics and
cannot be modeled by two-stage ARO. Examples include variants of inventory man-
agement [12], humanitarian relief [13], and facility location [5]. The transition from
two-stage to multi-stage ARO introduces twomain challenges. First, multi-stage ARO
problems entail nonanticipativity restrictions that disallow decisions to utilize future
information. Second, many approaches that solve the problem by iteratively splitting
the uncertainty space, like scenario trees [41], and adaptive partitioning [16, 53], grow
exponentially in the number of stages. As a consequence, many results found for two-
stageAROdo not readily generalize tomulti-stage scenarios. Against this background,
we design piecewise affine policies for multi-stage ARO that overcome the previously
mentioned challenges and extend, although it is not straightforward, many of the best
know approximation bounds for two-stage problems to a multi-stage setting.

In the remainder of this section, we formally introduce our problem (Sect. 1.1), dis-
cuss closely relatedwork (Sect. 1.2), and summarize ourmain contributions (Sect. 1.3).

1.1 Problem description

In this work we study multi-stage adjustable robust optimization with covering con-
straints and a positive affine uncertain right hand side. Specifically, we consider the
following problem:

ZAR(U) =min
x(ξ)

max
ξ∈U

cᵀx(ξ)

s.t. Ax(ξ) ≥ Dξ + d ∀ξ ∈ U
(1)

with A ∈ R
l×n , c ∈ R

n , D ∈ R
l×m+ , d ∈ R

l+, and compact U ⊂ R
m+. Here, m is the

number of uncertain parameters, n is the number of decisions, and l is the number of
constraints. To model the problem’s T stages, we split the uncertainty vector ξ into T

sub-vectors ξ =
(
ξ1, . . . , ξ T

)
with ξ t being the uncertainty vector realized in stage t .

In the following, we denote by ξ t := (
ξ1, . . . , ξ t

)
the vector of all uncertainties with

known realization in stage t . Similarly, the adjustable decision vector x(ξ) divides into

x(ξ) :=
(
x1(ξ1), . . . , xT (ξ T )

)
, where the decision xt made in stage t has to preserve

nonanticipativity and may only depend on those uncertainties ξ t whose realization is

known in stage t . We explicitly allow ξ1 to be zero-dimensional making the initial

decision x1 non-adjustable. Finally, we denote by xt (ξ) :=
(
x1(ξ1), . . . , xt (ξ t )

)
the

vector of all decisions in the first t stages. Figure1 visualizes the multi-stage decision
process with nonanticipativity restrictions.

Unless explicitly stated otherwise,we assumew.l.o.g. that the following assumption
holds throughout the paper.

Assumption 1 U ⊆ [0, 1]m is convex, full-dimensional with ei ∈ U for all i ∈
{1, . . . ,m}, and down-monotone, i.e., ∀ξ ∈ U , 0 ≤ ξ ′ ≤ ξ : ξ ′ ∈ U .
Down-monotonicity holds because D, d, ξ are all non-negative, and thus constraints
become less restrictive for smaller values of ξ . Convexity holds due to the linearity
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Fig. 1 Illustration of multi-stage decision making over T stages. In each stage t a fraction ξ t of the
uncertainty is realized and decisions xt aremade. Here, decisions xt may only depend on those uncertainties
ξ t whose realization is known in stage t

of the problem, and ei ∈ U ⊆ [0, 1]m holds as U is compact and D can be re-
scaled appropriately. We note that the non-negativity assumption of the right-hand
side does restrict the problem space. As Bertsimas and Goyal [18] point out, this
assumption prevents the introduction of uncertain or constant upper bounds. However,
upper bounds in other decision variables are still possible as A is not restricted, and
D, d can be zero. Overall, Problem (1) covers awide range of different problem classes
including network design [50, 61], capacity planning [44, 48, 51], as well as versions
of inventory management [12, 60] where capacities are unbounded or subject to the
decision makers choice.

In the context of multi-stage decision making, some works require stagewise uncer-
tainty, i.e., that the uncertainty set U consists of uncertainty sets U1, . . . ,UT for each
stage, see, e.g., [19, 20, 32]. Like other approaches based on decision rules [17, 43],
we do not need these restricting assumptions. However, we show how to utilize the
existence of such a structure in Sect. 3.

1.2 Related work

Feige et al. [30] show that already the two-stage version of Problem (1) with D =
1, d = 0 and A being a 0-1-matrix is hard to approximate with a factor better than
�(logm), even for budgeted uncertainty sets. As it is thereby impossible to find
general solutions for x, a common technique to get tractable formulations is to restrict
the function space.

In this context, Ben-Tal et al. [9] consider x to be affine in ξ . Specifically, they
propose xt to be of the form xt (ξ t ) = P tξ t + qt . Affine policies have been found to
deliver good results in practice [1, 10] and are even optimal for some special problems
[19, 42, 58]. Further popular decision rules include segregate affine [24, 25], piecewise
constant [20], piecewise affine [14, 31], and polynomial [4, 21] policies, as well as
combinations of these [54]. For surveys on adjustable policies we refer to Delage and
Iancu [28] and Yanıkoğlu et al. [63].

A key question that arises when using policies to solve ARO problems is how good
the solutions are compared to an optimal unrestricted solution. To answer this, many
approximation schemes for a priori and a posteriori bounds have been proposed. In the
context of a posteriori bounds the focus lies on finding tight upper and lower approxi-
mation problems. Hadjiyiannis et al. [38] estimate the suboptimality of affine decision
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rules using sample scenarios from the uncertainty set. Similar sample lower bounds
are used by Bertsimas and Georghiou [17] to bound the performance of piecewise
affine policies. Kuhn et al. [43] investigate the optimality of affine policies by using
the gap between affine solutions on the primal and the dual of the problem. Georghiou
et al. [31] generalize this primal-dual approach to affine policies on lifted uncertainty
sets. Building on both of the previous approaches, Georghiou et al. [33] propose a con-
vergent hierarchy of policies that combine affine policies with extreme point scenario
samples. Daryalal et al. [27] construct lower bounds by relaxing nonanticipativity and
stage-connecting constraints in multi-stage ARO. They then use these lower bounds
to construct primal solutions in a rolling horizon manner.

In the context of a priori bounds, most approximation schemes have been proposed
for the two-staged version of Problem (1). For general uncertainty sets on the two-stage
version of (1), Bertsimas and Goyal [18] show that affine policies yield an O(

√
m)

approximation if c and x are non-negative. They further construct a set of instances
where this bound is tight, showing that no better general bounds for affine policies
exist. Using geometric properties of the uncertainty sets, Bertsimas and Bidkhori [15]
improve on these bounds for some commonly used sets including budgeted uncer-
tainty, norm balls, and intersections of norm balls. Ben-Tal et al. [14] propose new
piecewise affine decision rules for the two-stage problem that on some sets improve
these bounds even further. In addition to strong theoretical bounds, this new approach
also yields promising numerical results that can be found by orders ofmagnitude faster
than solutions for affine adjustable policies. For budgeted uncertainty sets and some
generalizations thereof, Housni and Goyal [40] show that affine policies even yield
optimal approximations with an asymptotic bound, i.e., asymptotic behavior of the

approximation bound, see, e.g. [56], of O
(

logm
log logm

)
. This bound was shown to be

tight by Feige et al. [30] for reasonable complexity assumptions, namely 3SAT cannot
be solved in 2O(

√
m) time on instances of size m. We present an overview of known a

priori approximation bounds for some commonly used uncertainty sets on two-stage
ARO in Table 4 of “Appendix A”.

To the best of our knowledge, Bertsimas et al. [20] are the only ones that provide
a priori bounds for multi-stage ARO so far. They show these bounds for piecewise
constant policies using geometric properties of the uncertainty sets. More specifically,
they consider multi-stage uncertainty networks, where the uncertainty realization is
taken from one of multiple independent uncertainty sets in each stage. While the
choice of the set selected in each stage may depend on the sets selected before, the
uncertainty sets are otherwise independent. Although this assumption is fairly general,
it still leaves many commonly used sets where uncertainty is dependent over multiple
stages uncovered. Among others, uncovered sets include widely used hypersphere and
budgeted uncertainty.

As can be seen, previous work has predominantly focused on providing tighter
approximation bounds for two-stage ARO, inevitably raising the question of whether
similar bounds hold for multi-stage ARO as well. This work contributes towards
answering this question by extendingmany of the currently best-known a priori bounds
on two-stage ARO to its multi-stage setting. By so doing, we are—to the best of our
knowledge—the first ones to provide a priori approximation bounds for the multi-
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stage ARO Problem (1), where uncertainty sets can range over multiple stages. Unless
explicitly stated otherwise, we will always refer to a priori approximation bounds
when we discuss approximation bounds in the remainder of this paper.

1.3 Our contributions

With this work, we extend the existing literature in multiple ways, where our main
contributions are as follows.

Tractable piecewise affine policies for multi-stage ARO: Motivated by piecewise
affine policies for two-stage ARO [14], we present a framework to construct policies
that can be used to efficiently find good solutions for the multi-stage ARO Problem
(1). Instead of solving the problem directly for uncertainty U , we first approximate U
by a dominating set Û . To do so, we define the concept of nonanticipative multi-stage
domination and show that this new definition of domination fulfills similar properties
to two-stage domination. Based on this new definition, we then construct dominating
sets Û such that solutions on Û can be found efficiently. More specifically, we choose
Û to be a polytope for whichworst-case solutions can be computed by a linear program
(LP) over its vertices. In order to ensure nonanticipativity, which is the main challenge
of this construction, we introduce a new set of constraints on the vertices that guarantee
the existence of nonanticipative extensions from the vertex solutions to the full set Û .
Finally, we show how to use the solution on the dominating set Û to construct a valid
solution for the original uncertainty set U .

Approximation bounds: To the best of our knowledge, we provide the first approx-
imation bounds for the multi-stage Problem (1) with general uncertainty sets. More
specifically,we show that our policies yieldO(

√
m) approximations of fully adjustable

policies. While this bound is tight for our type of policies in general, we show that
better bounds hold for many commonly used uncertainty sets.

While our main contribution is to extend approximation bounds to multi-stage
ARO, Problem (1) is further less restrictive than problems previously discussed in the
literature on approximation bounds. In addition to being restricted to two-stage ARO,
previous work often assumed c and x to be non-negative [14, 15, 18]. Ben-Tal et al.
[14] additionally restricted parts of A, i.e., they require the parts of A associated with
the first stage decision to be non-negative. Our policies do not need this assumption.
However, we show that Problem (1) is unbounded whenever there is a feasible x with
cᵀx < 0, due to the non-negativity of the right-hand side. As a consequence, our
policies do not readily extend to general maximization problems.

Froma theoretical perspective,mainly asymptotic bounds are of interest. In practice,
however, also the exact factors of the approximation are important. Throughout the
paper, we thus always give the asymptotic, as well as the exact bounds. We compare
all our bounds to the previously best-known bounds for the two-stage setting given in
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Ben-Tal et al. [14] and show that our constructions yield both constant factor, as well
as asymptotic improvements.

Comparison with affine policies: Using the newly found bounds, we show that no
approximation bound for affine policies on hypersphere uncertainty exists that is better
than the bound we show for our policies. For budgeted uncertainty, on the other
hand, we show that affine policies strictly dominate our piecewise affine policies.
These findings confirm results that have been reported for the two-stage variant, where
affine policies do not perform well for hypersphere uncertainty [18], but very well for
budgeted uncertainty [40].

Improvement heuristic: Due to inherent properties of our policy construction, result-
ing solutions are overly pessimistic on instances where the impact on the objective
varies significantly between different uncertainty dimensions. To diminish this effect,
we introduce an improvement heuristic that performs at least as well as our policies
and that can be integrated into the LP used to construct our policies. While these mod-
ifications come at the cost of higher solution times, they allow for significant objective
improvements on some instance classes.

Tightening piecewise affine policies via lifting: We show that in the context of
Problem (1) the piecewise affine policies via lifting presented by Georghiou et al.
[31] yield equivalent solutions to affine policies. To prevent this from happening,
we construct tightened piecewise affine policies via lifting using insights from our
piecewise affine policies. These new policies integrate the approximative power of
affine policies, and our piecewise affine policies and are guaranteed to perform at least
as well as the individual policies they combine.

Numerical evidence: Finally, we present two sets of numerical experiments showing
that our policies solve by orders of magnitude faster than the affine adjustable policies
presented by Ben-Tal et al. [9], the piecewise affine policies via lifting presented by
Georghiou et al. [31], and the near-optimal piecewise affine policies by Bertsimas and
Georghiou [17], while often yielding comparable or improving results. First, we study
a slightly modified version of the tests presented in Ben-Tal et al. [14], allowing us
to demonstrate our policies’ scalability and the impact of our improvement heuristic.
Second, we focus on demand covering instances to demonstrate good performances
of our policies for a problem that resembles a practical application. We refer to our git
repository (https://github.com/tumBAIS/piecewise-affine-ARO) for all material nec-
essary to reproduce the numerical results outlined in this paper.

Comparison against closely related work: Compared to the closely related work by
Ben-Tal et al. [14], who first introduced the concept of domination in the context of
ARO, our contributions are multifold. First, we extend domination-based piecewise
affine policies to a wider class of problems by switching from a two-stage to a multi-
stage setting and relaxing assumptions. We discuss the structural reasons that make
this extension non-trivial at the beginning of Sect. 2. In addition to showing stronger
approximation guarantees for our policies, we conduct comprehensive theoretical and
numerical comparisons with other adaptable policies. Based on these comparisons,
we construct two new policies that mitigate weaknesses of domination and integrate
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Fig. 2 Relations between multi-stage ARO policies compared in this paper. An arc from a policy P to
another policy P ′ states ZP ≤ ZP ′ , where ZP and ZP ′ are optimal objective values for the ARO Problem
(1) solved with policy P, P ′ respectively. Dashed arcs only hold for hypersphere (H) or budgeted (B)
uncertainty. Relations proved for the first time in this paper are highlighted (blue, bold). The compared
policies are: static policies (static); piecewise affine policies via domination by Ben-Tal et al. [14] (PAPBT);
our piecewise affine policies via domination (PAP), c.f., Sects. 2 and 3; affine policies [9] (AFF); our
piecewise affine policies with rescaling (SPAP), c.f., Sect. 4; near-optimal piecewise affine policies [17]
(BG); piecewise affine policies via lifting [31] (LIFT); our tightened piecewise affine policies via lifting
(TLIFT), c.f., Sect. 5

its strength with the strength of other policies. More specifically, the first policy inte-
grates finding a good outer approximation of the uncertainty set in the optimization
process. The second policy integrates structural results from domination into lifting
policies, c.f., [31]. As a result, we get a hierarchy of piecewise affine adjustable policies
with provable relative performance guarantees. We give an overview of all policies
constructed in our work and their relative performance guarantees compared to other
policies in Fig. 2.

The rest of this paper is structured as follows. In Sect. 2, we introduce our policies
and elaborate on their construction. In Sect. 3,wepresent our approximation bounds for
themulti-stageAROProblem (1).Wepresent an improvement heuristic for our policies
in Sect. 4. By using the results of Sects. 2 and 3, we construct tightened piecewise
affine policies via lifting in Sect. 5. Finally, we provide numerical evidence for the
performance of our policy compared to other state of the art policies in Sect. 6. Section7
concludes this paperwith a brief reflection of ourwork and avenues for future research.
To keep the paper concise, we defer proofs that could possibly interrupt the reading
flow to “Appendices B–O”.

2 Framework for piecewise affinemulti-stage policies

In this section, we present our piecewise affine framework for the multi-stage ARO
Problem (1). The main rationale of our framework is to construct new uncertainty sets
Û that dominate the original uncertainty sets U . With this, our framework follows a
similar rationale as the two-stage framework from Ben-Tal et al. [14]. For a problem
ZAR(U) we construct Û in such a way that ZAR(Û) can be efficiently solved, and a
solution of ZAR(Û) can be used to generate solutions for ZAR(U).
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Fig. 3 Two dimensional
hypersphere uncertainty set U
with (dashed) dominating set Û
(2) induced by the convex
combination of vertices
v0, v1, v2 and dominating
function h (4) that maps a point
ξ ∈ U to a point ξ̂ ∈ Û

In this context, we note that one cannot straightforwardly apply the construction
scheme used by Ben-Tal et al. [14] due to nonanticipativity requirements.More specif-
ically, Ben-Tal et al. [14] construct Û as polytopes, where it is well known that
worst-case solutions always occur on extreme points, as any solution can be rep-
resented by convex combinations of extreme point solutions. The construction of
these convex combinations, however, is not guaranteed to be nonanticipative in the
multi-stage setting. To overcome this challenge, we incorporate nonanticipativity in
the concept of uncertainty set domination and extend it to a multi-stage setting.

Definition 1 (Domination) Given an uncertainty set U ⊆ R
m+, we say that U is domi-

nated by Û ⊆ R
m+ if there is a domination function h : U → Û with h(ξ) ≥ ξ , and h

can be expressed as h(ξ) =
(
h1(ξ1), . . . , hT (ξ T )

)
where ht maps to the uncertainties

in stage t and depends on uncertainties up to that stage.

Intuitively, an uncertainty set Û dominates another set U if for every point ξ ∈ U
there is a point ξ̂ ∈ Û that is at least as large in each component, i.e., ξ̂ ≥ ξ . Later we
show that the dominating set Û can be constructed as the convex combination ofm+1
vertices v0, . . . , vm . We also show how to construct dominating functions h for these
vertex induced dominating sets. Figure3 illustrates the hypersphere uncertainty set
U = {

ξ ∈ R
m+
∣∣‖ξ‖22 ≤ 1

}
together with our dominating set Û (2) and the dominating

function h (4) for m = 2.
Due to the non-negativity of the problem’s right-hand side, domination at most

restricts the set of feasible solutions. As a consequence, each feasible solution for a
realization ξ̂ ∈ Û is also a feasible solution for all realizations ξ ∈ U that are dominated
by ξ̂ . Using this property, we can derive piecewise affine policies for ZAR(U) from
solutions of ZAR(Û). SinceU is full-dimensional and down-monotone byAssumption
1, there always exists a factor β ≥ 0 such that scaling U by β contains Û . Theorem 1
shows that with this factor β, solutions of problem ZAR(Û) are β-approximations for
problem ZAR(U). It also shows that ZAR(Û) is unbounded exactly when ZAR(U) is
unbounded. Thus, we assume for the remainder of this paper w.l.o.g. that both ZAR(U)

and ZAR(Û) are bounded.
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Theorem 1 Consider an uncertainty set U from Problem (1) and a dominating set Û .
Let β ≥ 1 be such that ∀ξ̂ ∈ Û : 1

β
ξ̂ ∈ U . Moreover, let Z AR(U) and ZAR(Û) be

optimal values of Problem (1). Then, either ZAR(U) and ZAR(Û) are unbounded or

0 ≤ ZAR(U) ≤ ZAR(Û) ≤ β · ZAR(U).

We present the proof for Theorem 1 in “Appendix B”.
In the remainder of this section, we demonstrate how the results of Theorem 1 can

be used to efficiently construct β-approximations for ZAR(U). Therefore, we show
in Sect. 2.1 how to construct dominating polytopes Û and efficiently find solutions
ZAR(Û) that comply with nonanticipativity requirements. Then, we construct the
dominating function h : U → Û , which allows us to extend these solutions to solutions
for ZAR(U) in Sect. 2.2.

2.1 Construction of the dominating set

In the following, we construct a dominating set in the form of a polytope for which
the worst-case solution can be efficiently found by solving a linear program on its
vertices. Specifically, for an uncertainty set U , we consider dominating sets Û of the
form

Û := conv(v0, v1, . . . , vm) (2)

where for all i ∈ {0, . . . ,m} : 1
β
vi ∈ U and for all i ∈ {1, . . . ,m} : vi = v0 +ρi ei for

some ρi ∈ R+. We postpone the construction of the domination function h, the base
vertex v0, and parameters ρ1, . . . , ρm to Sect. 2.2 and first focus on the construction of
solutions for ZAR(Û). Here, we extend the notation on x and ξ introduced in Sect. 1.1
to xi and vi . Consequently, xti is the sub-vector of xi corresponding to decisions made
in stage t , and vi

t is the sub-vector of vi corresponding to uncertainties up to stage t .
Then, the key component for our construction is LP (3)

ZLP (Û) = min
x0,...,xm

z (3a)

s.t. z ≥ cᵀxi ∀i ∈ {0, . . . ,m}
(3b)

Axi ≥ Dvi + d ∀i ∈ {0, . . . ,m}
(3c)

xti = xtj ∀i, j ∈ {0, . . . ,m}, t ∈ {1, . . . , T }, vi t = v j
t .

(3d)

Intuitively, the Objective (3a) together with Constraints (3b) minimize the maximal
cost over all vertex solutions xi . Constraints (3c) ensure that each xi is a feasible
solution for the respective uncertainty vertex vi of Û . Finally, Constraints (3d) ensure
nonanticipativity by forcing vertex solutions to be equal unless different uncertainties
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were observed. With these constraints, we construct LP (3) such that it is sufficient to
find an optimal solution for ZLP (Û) in order to find an optimal solution for ZAR(Û).

Lemma 2 Let Û be a dominating set as described in (2), ZLP (Û) be the solution of
LP (3), and ZAR(Û) be the solution of Problem (1). Then the LP solution (xi ) on the
vertices of Û can be extended to a solution on the full set Û and we find:

ZLP (Û) = ZAR(Û).

We present the proof for Lemma 2 in “Appendix C”.

2.2 Construction of the domination function

In the previous section, we showed how to construct dominating sets Û such that
ZAR(Û) can be solved efficiently. In order for Û to be a valid dominating set for some
uncertainty set U , we additionally have to construct a nonanticipative dominating
function h : U → Û according to Definition 1. Specifically, we use

h(ξ) := (ξ − v0)+ + v0 (4)

where (·)+ is the element-wise maximum with 0 and v0 is the base vertex from
Definition (2). By construction, h maps each uncertainty realization ξ to its element-
wise maximum with v0. It directly follows that h is nonanticipative, as each element
in h(ξ) solely depends on the corresponding element in ξ .

Finally, we have to ensure that h(ξ) ∈ Û for all ξ ∈ U . We do so by choosing the
base vertex v0 and parameters ρ1, . . . , ρm during the construction of Û appropriately.

Using λi (ξ) := ((ξ−v0)+)i
ρi

with the convention 0
0 = 0, we find

h(ξ) =
m∑
i=1

λi (ξ)vi +
(
1 −

m∑
i=1

λi (ξ)

)
v0.

By definition, any convex combination of vi is contained in Û . Thus, h is a valid
domination function if and only if

max
ξ∈U

m∑
i=1

λi (ξ) ≤ 1. (5)

Condition (5) gives a compact criterion to check the validity of dominating sets.
By doing so, it lays the basis for our optimal selection of the base vertex v0 and
parameters ρ0, . . . , ρm . Checking Condition (5) generally requires solving a convex
optimization problem. However, in Sect. 3 we show that for many commonly used
special uncertainty sets, this problem can be significantly simplified, leading to low
dimensional unconstrained minimization problems or even analytical solutions.
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Recall that we showed how to extend a solution (x0, . . . , xm) of LP (3) to the full
set Û in the proof of Lemma 2. Combining this with h and using Theorem 1 we get a
piecewise affine solution for ZAR(U) by

x(ξ) =
m∑
i=1

λi (ξ)xi +
(
1 −

m∑
i=1

λi (ξ)

)
x0 (6)

that has an optimality bound of β.

2.3 Limitations

While our policies overcome the nontrivial challenge of nonanticipativity on extreme
point solutions, they still rely on the ability to form convex combinations. As inte-
grality is not preserved by convex combinations, there is no natural way to extend our
approach to integer or binary recourse decisions x. However, including non-adjustable
integer or binary first-stage decisions in our framework is straightforward. Also, it is
not straightforwardly possible to incorporate uncertain recourse decisions, i.e., depen-
dence of A on ξ , into our approach, as worst-case realizations for problems with
uncertain recourse are not necessarily extreme points of U , see, e.g., [3, 33].

3 Optimality bounds for different uncertainty sets

In the previous section, we demonstrated how to construct nonanticipative piecewise
affine policies for the multi-stage Problem (1). On this basis, proving approximation
bounds mainly depends on geometric properties of the uncertainty sets U . We first
show approximation bounds for some commonly used permutation invariant uncer-
tainty sets. On these sets, the dominating sets are permutation invariant and we give
closed-form constructions. We then give approximation bounds for our piecewise
affine policies on general uncertainty sets. Finally, we demonstrate how the bounds of
an uncertainty set U generalize to transformations of that set. While in theory, mostly
asymptotic bounds are of interest, in practice constant factors are important as well.
Thus we always state exact, as well as asymptotic bounds. Table 1 gives an overview
of all bounds that are explicitly proven in Propositions 5, 7, 9, 10 and 11 of this section.
We compare all our results against the results for the two-stage setting in Ben-Tal et
al. [14] and show constant factor, as well as asymptotic improvements. For budgeted
and hypersphere uncertainty sets, we further compare the theoretical performance of
our piecewise affine policies with affine adjustable policies.

For permutation invariant uncertainty sets there exists an optimal choice of Û
that is also permutation invariant. More specifically, vi simplifies to v0 = μe and
vi = v0 + ρei , for some μ, ρ.

Lemma 3 Let U be a permutation invariant uncertainty set. Then there existμ, ρ such
that for the dominating uncertainty set Û spanned by v0 = μe and vi = v0 + ρei for
i ∈ {1, . . . ,m} there is no other dominating set Û ′ constructed as in (2)with a smaller
approximation factor β.
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Table 1 Performance bounds of the piecewise affine policy for different uncertainty sets

No. Uncertainty set U Bound Asymptotic bound

I
{
ξ ∈ R

m+
∣∣∣‖ξ‖22 ≤ 1

}
4√m

√
m−1√

2
(
m−√

m
) O( 4√m)

II
{
ξ ∈ [0, 1]m ∣∣‖ξ‖1 ≤ k

} k(m−1)
m+k(k−2) O

(
min

{
k, m

k

})

III
{
ξ ∈ R

m+
∣∣∣‖ξ‖p ≤ 1

} (
2(m − 1) + 2p

) p−1
p2 p

1−p
p (p − 1)

(
p−1
p

)2
O

(
m

p−1
p2

)

IV
{
ξ ∈ R

m+
∣∣ξᵀ�ξ ≤ 1

}
⎧⎪⎨
⎪⎩

√
1
2 + am+

√
(1−a)m+am2

2(1−a)
a ≤ m− 2

3

1√
a

a > m− 2
3

O

(
m

1
3

)

V U ⊂ R
m+ 2

√
m + 1 O

(√
m
)

We prove specific bounds for uncertainty sets of the forms I) hypersphere uncertainty; II) budgeted uncer-
tainty; III) p-norm ball uncertainty, with p ≥ 1; IV) ellipsoid uncertainty, with � := (1 − a)1 + a J where
1 is the unity matrix and J the matrix of all ones; V) general uncertainty sets

We present the proof for Lemma 3 in “Appendix D”.
With these simplifications, Condition (5) becomes

1

ρ
max
ξ∈U

m∑
i=1

(ξi − μ)+ ≤ 1. (7)

With the permutation invariance of the problem, Ben-Tal et al. [14] show that for any
μ there exists a j ≤ m, such that the maximization problem in (7) has a solution that
is constant on the first j components and zero on all others components.

Lemma 4 (Lemma 4 in Ben-Tal et al. [14]) Let γ ( j) be the maximal average value
of the first j components of any ξ ∈ U

γ ( j) := 1

j
max
ξ∈U

j∑
i=1

ξi .

Then for each μ there exists an optimal solution ξ∗ for the maximization problem in
Eq. (7) that has the form

ξ∗ =
j∑

i=1

γ ( j)ei ,

for some j ≤ m.

Hypersphere uncertainty: We first use Lemma 4 to find a new dominating set
for hypersphere uncertainty. By doing so, we find a new approximation bound that

improves the bound of 4
√
m provided in Ben-Tal et al. [14] by a factor of

√√
m+1
2
√
m

,
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Fig. 4 Comparison of our dominating set Û (blue, solid frame) and the dominating set ÛBT proposed in
Ben-Tal et al. [14] (green, dashed frame) for the hypersphere uncertainty set U in m = 2 (a) and m = 3
(b), (c) uncertainty dimensions (color figure online)

which for large m converges towards 1√
2
. While this improvement is irrelevant for the

asymptotic complexity of the problem, the new formulation of Û does make a differ-
ence in practice. In Fig. 4 we illustrate the improvement of our dominating set Û over
the dominating set ÛBT proposed in Ben-Tal et al. [14] for hypersphere uncertainty
sets in two and three uncertainty dimensions. Note, that our sets Û are fully contained
in the sets ÛBT, and all extreme points of ÛBT are located outside of Û . This implies
ZAR(Û) ≤ ZAR(ÛBT) for hypersphere uncertainty. The formal proof follows from
straightforward convex containment and is left for brevity.

Proposition 5 (Hypersphere) Consider the hypersphere uncertainty set U ={
ξ ∈ R

m+
∣∣‖ξ‖22 ≤ 1

}
. Then a solution for ZAR(Û) where Û is constructed using Cri-

terion (7) with

μ = 1

2 4
√
m

, ρ =
4
√
m

2
,

gives a β =
√√

m+1
2 approximation for problem ZAR(U).

We present the proof for Proposition 5 in “Appendix E”.
We can also use this improved performance bound to show that affine adjustable

policies cannot yield better bounds than piecewise affine adjustable policies for m ≥
153. This is because there are instances of Problem (1) with hypersphere uncertainty

where affine adjustable policies perform at least 45

(
4
√
m − 1

4√m

)
worse than an optimal

policy. We formalize these results in Proposition 6. Note, that these better bounds do
not imply that piecewise affine adjustable policies always yield better results than
affine adjustable policies for hypersphere uncertainty.

Proposition 6 Affine adjustable policies cannot achieve better performance bounds

than 4
5

(
4
√
m − 1

4√m

)
for Problem (1) with hypersphere uncertainty, even for c, x, A

being non negative and A being a 0,1-matrix.
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We present the proof for Proposition 6 in “Appendix F”.

Budgeted uncertainty: Next, we tighten the bounds for budgeted uncertainty sets.
Proposition 7 shows that our new bound is given by β = k(m−1)

m+k(k−2) . Using

β

k
= k(m − 1)

k(m + k(k − 2))
= m − 1

m − 1 + k2 − 2k + 1
= m − 1

m − 1 + (k − 1)2
≤ 1

and
β
m
k

= k2(m − 1)

m(m + k(k − 2))
= k2(m − 1)

k2(m − 1) + k2 + m2 − 2km

= k2(m − 1)

k2(m − 1) + (m − k)2
≤ 1,

we show β ≤ min(k, m
k ), which matches the bound for the two-stage problem variant

in Ben-Tal et al. [14]. As β
k is decreasing in k and β

m
k
is increasing in k, we obtain a

maximum improvement for k = m
k ⇔ k = √

m. At this point the improvement of the
bound reaches a factor of 1

2 .

Proposition 7 (Budget) Consider thebudgeteduncertainty setU = {
ξ ∈ [0, 1]m∣∣‖ξ‖1

≤ k} for some k ∈ {1, . . . ,m}. Then a solution for ZAR(Û) where Û is constructed
using Criterion (7) with

μ = k(k − 1)

m + k(k − 2)
, ρ = k(m − k)

m + k(k − 2)
,

gives a β = k(m−1)
m+k(k−2) approximation for problem ZAR(U).

We present the proof for Proposition 7 in “Appendix G”.
Note, that there is no result analogous to Proposition 6 for budgeted uncertainty as

Housni and Goyal [40] showed that affine policies are in O
(

log(m)
log log(m)

)
for two-stage

problems with non-negative c, x, A. Furthermore, our piecewise affine policies are
strictly dominated by affine policies for integer budgeted uncertainty.

Proposition 8 Consider Problem (1)with budgeted uncertainty and an integer budget.
Let ZPAP be the optimal value found by our piecewise affine policy and ZAFF be the
optimal value found by an affine policy. Then

ZAFF ≤ ZPAP .

We present the proof for Proposition 8 in “Appendix H”.

Norm ball uncertainty: In a similar manner as before, we construct new dominating
sets for p-norm ball uncertainty and tighten the bound in Ben-Tal et al. [14] by a factor

of 2
−1+ 1

p − 1
p2 p

1
p (p − 1)

1
p2

− 1
p for sufficiently large m. This factor is always smaller

than one and converges to 1
2 for large p.
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Proposition 9 (p-norm ball) Consider the p-norm ball uncertainty set U ={
ξ ∈ R

m+
∣∣‖ξ‖p ≤ 1

}
with p > 1. Then a solution for ZAR(Û) where Û is constructed

using Criterion (7) with

μ = 2
1
p
(
2(m − 1) + 2p

)− 1
p2 p−1 (p − 1)

1
p+
(
1− 1

p

)2
,

ρ = 2
1
p −1 (2(m − 1) + 2p

) 1
p − 1

p2 p−1 (p − 1)

(
1− 1

p

)2

gives a

β ≤ (2(m − 1) + 2p
) 1
p − 1

p2 p
1
p −1

(p − 1)

(
1− 1

p

)2

≤
(

(2m)
1
p− 1

p2 + 21−
1
p

)
p

1
p −1

(p − 1)

(
1− 1

p

)2
= O

(
m

1
p − 1

p2

)

approximation for problem ZAR(U).

We present the proof for Proposition 9 in “Appendix I”.

Ellipsoid uncertainty: For the permutation invariant ellipsoid uncertainty set{
ξ ∈ R

m+
∣∣ξᵀ�ξ ≤ 1

}
with m > 1, � := 1 + a(J − 1), a ∈ [0, 1], 1 being the

unity matrix, and J being the matrix of all ones, we construct dominating sets via a
case distinction on the size of a. While for large a already a scaled simplex gives a
good approximation, we construct the dominating set for small a more carefully. By
doing so, we improve the previously best known asymptotic bound for the two-stage

problem variant of O(m
2
5 ) [14] to O(m

1
3 ). Note, that for a = 0 our bounds converge

to the bounds of hypersphere uncertainty in Proposition 5 and for a = 1 towards an
exact representation.

Proposition 10 (Ellipsoid) Consider the ellipsoid uncertainty setU = {
ξ ∈ R

m+
∣∣ξᵀ�

ξ ≤ 1} with m > 1 and � := 1 + a(J − 1) for a ∈ [0, 1]. Here 1 is the unity matrix
and J is the matrix of all ones. Then a solution for ZAR(Û) where Û is constructed
using Criterion (7) with

μ = 1

2 4
√

(1 − a)3m + (1 − a)2am2
, ρ = 1

4(1 − a)μ
if a ≤ m− 2

3 ,

μ = 0, ρ = 1√
a

if a > m− 2
3 ,

gives a

β =

⎧
⎪⎨
⎪⎩

√
1
2

(
1 + 1

1−a

(
am +√

(1 − a)m + am2
))

if a ≤ m− 2
3

1√
a

if a > m− 2
3

= O(m
1
3 )

123



Designing tractable piecewise affine policies for…

approximation for problem ZAR(U).

We present the proof for Proposition 10 in “Appendix J”.

General uncertainty sets: After having shown specific bounds for some commonly
used permutation invariant uncertainty sets, we now give a general bound that holds
for all uncertainty sets that fulfill the assumptions of Problem (1). We show that any
uncertainty set can be dominated within an approximation factor of β = 2

√
m + 1,

which improves the bound in Ben-Tal et al. [14] by a factor of 1
2 . As shown in Ben-

Tal et al. [14] this approximation bounds is asymptotically tight, when using pure
domination techniques. More precisely, for any polynomial number of vertices the
budgeted uncertainty set with k = √

m cannot be dominated with some β better than
O(

√
m).

Proposition 11 (General uncertainty) Consider anyuncertainty setU ⊆ [0, 1]m that is
convex, full-dimensionalwith ei ∈ U for all i ∈ {1, . . . ,m} anddown-monotone. Then,
there always exists a dominating uncertainty set Û of the form in (2) that dominates
U by at most a factor of β = 2

√
m + 1.

We present the proof for Proposition 11 in “Appendix K”.

Stagewise uncertainty sets: In general, our policies do not require stagewise uncer-
tainty. However, the existence of such a structure can be utilized in the construction
of dominating uncertainty sets, leading to approximation bounds that depend linearly
on the stagewise approximation bounds.

Proposition 12 (Stagewise) Let U = U1 × · · · × UT be a stagewise independent
uncertainty set and for each Ut , let Ût be a dominating set constructed as in (2).
Let βt be the approximation factor for Ût , and let β ′

t = min{β ′ : 1
β ′ e ∈ Ut } be the

constant approximation factor for set Ut . Then for any partition T1∪T2 = {1, . . . , T },
T1 ∩ T2 = ∅ of the stages, there exists a dominating set Û for U with approximation
factor

β ≤ max

⎛
⎝∑

t∈T1
βt , max

t∈T2
β ′
t

⎞
⎠ .

We present the proof for Proposition 12 in “Appendix L”.

Transformed uncertainty sets: We note that by the right-hand side Dξ + d of Prob-
lem (1) any positive affine transformation of uncertainty sets U can be dominated by
the same affine transformation of the dominating set Û . As the approximation bounds
do not depend on D and d, the bounds for the transformed set are the same as for
the original set. One well-known uncertainty type covered by these transformations
is scaled ellipsoidal uncertainty

{
ξ
∣∣∑m

i=1 wiξ
2
i ≤ 1

}
, which was first proposed by

Ben-Tal and Nemirovski [7]. These sets can be constructed via transformations from
hypersphere uncertainty sets with a diagonal matrix D with Dii = 1√

wi
. Scaled ellip-

soidal uncertainty has been applied to many robust optimization problems, including
portfolio optimization [7], supply chain contracting [10], network design [47], and
facility location [5].
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Another widely used class that is partially covered by these positive affine transfor-
mations are factor-based uncertainties given by sets U = {Dz + d|z ∈ U z}. In these
sets, uncertainties affinely depend on a set of factors z that are drawn from a factor
uncertainty set U z . Problems that were solved using such uncertainty sets include,
among others, portfolio optimization [34, 35] and multi-period inventory manage-
ment [2, 57]. In contrast to the general factor sets, that have no limitations on D and
d, our approach is restricted to positive factor matrices which allows only for posi-
tive correlations between uncertainties. Nevertheless, even this subset of factor-based
uncertainties has wide applicational use. As an intuitive example, one could consider
component demands where the factors are demands for finished products.

4 Re-scaling expensive vertices

On some instances, uncertainties do not have a uniform impact on the objective.While
accounting for high values in some of the uncertainty dimensions might drastically
influence the objective, accounting for high values in others might barely have an
impact. This effect can be crucial in our problem setting, because the creation of
dominating sets may overemphasize single uncertainty dimensions by up to a factor
of β by design. Accordingly, it might thus be beneficial to dominate these uncertainty
dimensionsmore carefully on instances where a few critical uncertainties cause almost
all the cost. In this context, we show that it is possible to shrink critical vertices vi at
the cost of slightly shifting all other vertices towards their direction.

We illustrate the re-scaling process following from Lemma 13 in Fig. 5. In the
depicted example we shrink the critical vertex v1 and shift the two remaining vertices
v0, v2 towards uncertainty dimension ξ1. As a consequence, the cost of the vertex
solution x1 decreases, while the costs of the solutions x0, x2 increase. The cost reduc-
tion on the critical vertex v1 leads to a reduction of the worst case vertex cost z which
by the construction of LP (3) corresponds to an overall improvement of the objec-
tive function. Note, that the dominating set Û used in the example is not an optimal
choice for the hypersphere uncertainty set depicted. However, the effect would barely
be visible in two dimensions without this sub-optimal choice.

Lemma 13 Let Û := conv(v0, . . . , vm) be a dominating set for U . Let s ∈ [0, 1]m be
a vector of scales. Then Û ′ := conv(v′

0, . . . , v
′
m) with v′

i j := s j (1− vi j ) + vi j is also
a dominating set for U .

We present the proof for Lemma 13 in “Appendix M”.
The two extreme cases for the modified dominating sets from Lemma 13 are given

by s = 0 and s = e. While the dominating set does not change for s = 0, all vertices
become the unit vector consisting of ones in every component for s = e. Intuitively,
increasing si leads to shifting the i th component towards one. In the same way as we
constructed our dominating sets in (2) this shift of the i th component towards one
increases the value for all v j with j �= i and decrease it for j = i . Note that this
Lemma is not limited to uncertainty sets that are constructed as described in (2), but
holds for any dominating set created as a convex combination of vertices.
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Fig. 5 Re-scaling of the expensive vertex v1 in a dominating set Û for uncertainty set U . a Shows the
change of dominating set Û (blue, dashed) and it’s vertices v0, v1, v2 to the new re-scaled dominating set
Û ′ (green, solid) with vertices v′

0, v
′
1, v

′
2 for s1 = 0.5, s2 = 0. b Shows the costs for the vertex solutions xi

with maximal cost z (blue, dashed) compared to the costs for the re-scaled vertex solutions x′
i with maximal

cost z′ (green, solid) (color figure online)

The transformation used in Lemma 13 is linear, which allows us to add s as a
further decision variable to the second constraint of LP (3) for a given Û . As s = 0
gives the original dominating set, any optimal solution found with these additional
decision variables is at least as good as a non-modified solution. Thus, all performance
bounds shown in Sect. 3 also hold for these re-scaled piecewise affine policies. Note
that Proposition 8 also extends to the re-scaled uncertainty set; thus, all re-scaled
piecewise affine policies are strictly dominated by affine policies for integer budgeted
uncertainty.

Adding s to the LP increases its size, which in practice will often lead to an increase
of solution times. To limit the increase of model size, it is possible to add only those
si where one expects si > 0, as not adding a variable si is equivalent to fixing si =
0. Those si with si > 0 correspond to the critical uncertainty dimensions, and an
experienced decision maker with sufficient knowledge of the problem might be able
to identify them a priori.

5 Piecewise affine policies via liftings

Georghiou et al. [31] propose piecewise affine policies via liftings. In this section, we
strengthen these policies by using the insights from the policies constructed in Sects. 2
and 3.

To construct piecewise affine policies via liftings, in the context of Assumption 1,
we first choose ri − 1 breakpoints

0 < zi1 < zi2 < · · · < ziri−1 < 1,
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for each uncertainty dimension i ∈ {1, 2, . . . ,m}. For ease of notation let zi0 := 0,

ziri := 1.With these breakpoints, we define the lifting operator L : Rm → R
mL

,where
mL := ∑m

i=1 ri , componentwise by

Li, j (ξ) :=
(
min(ξi − zij−1, z

i
j − zij−1)

)
+ .

Further, we define the linear retraction operator R : RmL → R
m componentwise by

Ri (ξ
L) :=

ri∑
j=1

ξ L
i, j .

Here ξ L
i, j are the components of the mL dimensional vector

ξ L = (ξ L
1,1, ξ

L
1,2, . . . , ξ

L
1,r1 , ξ

L
2,1, . . . , ξ

L
m,1, . . . , ξ

L
m,rm )ᵀ ∈ R

mL
.

Note that R ◦ L : U → U is the identity. Finally, Georghiou et al. [31] construct a
lifted uncertainty set U L via

U L :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ L ∈ R
mL

+ : R(ξ L) ∈ U ,

ξ L
i, j+1

zij+1 − zij
≤ ξ L

i, j

zij − zij−1

∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , ri − 1}

ξ L
i,1 ≤ zi1 ∀i ∈ {1, . . . ,m}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (8)

Uncertainty set (8) is an outer approximation of the lifting L(U) ⊆ U L and omits
R(U L) = U . Replacing the uncertainty in Problem (1) with this lifted uncertainty set
yields the lifted adjustable problem

ZL
AR(U L) = min

x(ξ L )

max
ξ L∈U L

cᵀx(ξ L)

s.t. Ax(ξ L) ≥ DR(ξ L) + d ∀ξ L ∈ U L .

(9)

Limiting x to affine policies in the lifted space, yields piecewise affine policies in the
original space, which give tighter approximations than affine policies in the original
space, i.e., ZL

AFF (U L) ≤ ZAFF (U) [31]. However, U L is not a tight outer approx-
imation of L(U), leading to little or no improvements over affine policies on some
instances [17, 31]. In fact, we show that in the framework of ARO, the piecewise affine
policies induced by lifted uncertainty (8) are equivalent to classical affine policies, in
the sense that for any optimal feasible lifted affine policy, there is an affine policy with
the same objective value and vice versa.
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Proposition 14 Let ZAFF be the optimal objective for affine policies on ZAR(U) and
let ZL I FT be the optimal objective value for lifted affine policies on Z L

AR(U L). Then

ZAFF = ZL I FT .

We present the proof for Proposition 14 in “Appendix N”.
We overcome this shortcoming in the construction of lifted affine policies using

our results on dominating uncertainty sets from Sect. 2. Consider the lifting with one
break-point v0i per uncertainty dimension. Here v0i is the i th component of the base
vector v0 from Sect. 2. Then the lifting operator L becomes

Li j (ξ) =
{
min(ξi , v0i ) if j = 1

(h(ξ) − v0)i if j = 2.

With this construction of L it is easy to verify that by Condition (5) each ξ L ∈ L(U)

satisfies
∑m

i=1
ξ L
i,2
ρi

≤ 1. Accordingly, we can tighten the lifted uncertainty set U L and
get the new lifted uncertainty set

Û L :=
{

ξ L ∈ U L ,

m∑
i=1

ξ L
i,2

ρi
≤ 1

}
. (10)

By construction Û L is an outer approximation of L(U) andwe have L(U) ⊆ Û L ⊆ U L

and R(Û L) = U . Thus, affine policies on the lifted problem with uncertainty set
Û L yield valid piecewise affine policies for the original problem. Furthermore, the
construction of Û L guarantees that the lifted policies yield tighter approximations
than our piecewise affine policies via domination and classical lifted policies with
the same breakpoints. Consequently, all approximation bounds for piecewise affine
policies via domination also hold for the strengthened piecewise affine policies via
lifting.

Proposition 15 Let ZL I FT be the optimal objective value found by the lifting policies
with breakpoints v0 and lifted uncertainty setU L defined in (8), ZT L I FT be the optimal
objective value found by the lifting policies with breakpoints v0 and tightened lifted
uncertainty set Û L defined in (10), and ZSPAP be the optimal objective value found
by the piecewise affine policies with re-scaling described in Sect.4. Then

ZT L I FT ≤ ZL I FT , ZT L I FT ≤ ZSPAP .

We present the proof for Proposition 15 in “Appendix O”.

6 Numerical experiments

In this section, we present two numerical experiments to compare the performance
of our piecewise affine policies for the different constructions of Û and our tightened
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Table 2 Overview of policies compared in the experiments

Policy Dominating set or policy function

BOX ÛBOX = {e} Constant policy

AFF xt (ξ t ) = P t ξ t + qt Affine adjustable policy [9]

BG xt (ξ t ) = maxi P
t
i ξ

t + qti − maxi P
t
i ξ

t + qt
i

Near-optimal pap [17]

PAPBT ÛBT = β conv(e1, . . . , em , v) Literature dominating set [14]

PAP Û = conv(v0, v1, . . . , vm ) Our dominating set (c.f., Sect. 2.1)

SPAP Û = conv(v′
0, v

′
1, . . . , v

′
m ) PAP with re-scaling (c.f., Sect. 4)

TLIFT AFF on Û L Tightened pap via lifting (c.f., Sect. 5)

piecewise affine policies via lifting with the performance of other policies from the
literature. We compare the performance in terms of both objective value and compu-
tational time.

We run both of the following tests with hypersphere uncertainty sets and budgeted
uncertainty sets. In the experiments of Ben-Tal et al. [14] piecewise affine policies
performed particularly well compared to affine adjustable policies for hypersphere
uncertainty and relatively bad for budgeted uncertainty. Accordingly, considering
these two uncertainty types gives a good impression of the benefits and limitations of
piecewise affine policies. Additionally, this experimental design allows us to analyze
whether or not the new formulationswith the tighter bounds presented in Propositions 5
and 7 have a significant impact in practice.

In our studies, we compare the following policies: the affine policies described in
Ben-Tal et al. [9] (AFF), the constant policies resulting from a dominating set Û = {e}
with only a single point which by down-monotonicity corresponds to a box (BOX),
the near-optimal piecewise affine policies with two pieces proposed in Bertsimas
and Georghiou [17] (BG), our piecewise affine policies constructed as described in
Propositions 5 and 7 (PAP), the piecewise affine policies constructed as described in
Propositions 1 and 5 in Ben-Tal et al. [14] (PAPBT), our piecewise affine policies
with the vertex re-scaling heuristic described in Sect. 4 (SPAP), and our tightened
piecewise affine policies via lifting described in Sect. 5 (TLIFT). Note, that piecewise
affine policies via lifting from Georghiou et al. [31] are implicitly included in the
comparison by Proposition 14. In Table 2we give an overview of all policies compared
in our experiments.

For all studies, we usedGurobiVersion 9.5 on a 6 core 3.70GHz i7 8700Kprocessor
using a single core per instance.

6.1 Gaussian instances

We base our first set of benchmark instances on the experiments of Ben-Tal et al. [14]
and Housni and Goyal [40]. Accordingly, we generate instances of Problem (1) by
choosing m = l = n, d = 0, D = 1m and generate c, A randomly as
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Fig. 6 Relative objective values (a) and solution times (b) for different policies on gaussian instances with
hypersphere uncertainty

c = e + αg,

A = 1 + G.

Here, e is the vector of all ones, 1 is the identity matrix, g and G are randomly
generated by independent and identically distributed (i.i.d.) standard gaussians, and
α is a parameter that increases the asymmetry of the problem. More specifically, G
is given by Gi j = |Yi j |/√m and g is given by gi = |yi |, where Yi j and yi are i.i.d.
standard gaussians. Uncertainties ξ and decision variables x are split into �√m� stages
where the i th decision always belongs to the same stage as the i th uncertainty. For
the budgeted uncertainty sets we use a budget of k = √

m. We consider values of
m = i2 for i ∈ {2, . . . , 10} and values of α in {0, 0.1, 0.5, 1, 5}. For each pair of
m, α, we consider 30 instances. To make the results more comparable, we scale all
objective values presented by the constant policies results (i.e., Z·/ZBOX ) and report
averages over all solved instances. For each parameter pair m, α, we only consider
those policies that found solutions on at least 75% of instances within a hard solution
time limit of 4 hours. Additionally, we present all results on a logarithmic scale and
artificially lower bound the scale for solution times by 0.01s to make the effects on
higher solution times more visible.

Figure 6 shows the performances and solution time results on hypersphere uncer-
tainty sets for the different policies. First, note that BG only finds solutions within the
time limit for the smallest instances yielding objective values comparable ormarginally
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better to TLIFT. For the other policies we observe that piecewise adjustable policies
perform significantly better than affine adjustable policies for small values of α. The
improvement increases for larger values ofm reaching almost a factor of 2 form = 100
on our policies PAP, SPAP, andTLIFT.As expected, the performance of PAP and SPAP
for small values of α is almost indistinguishable due to the construction. Additionally,
we find that TLIFT only yields marginal improvements over PAP and SPAP for small
values of α. For larger values of α the improvements of the piecewise affine adjustable
policies vanish and TLIFT starts to improve over SPAP. The two policies without
re-scaling (PAP and PAPBT) perform even worse than AFF for α = 5. More severely,
PAPBT even performs worse than BOX, which already is a worst-case policy. Only
SPAP and TLIFT achieve better results than affine adjustable policies for all values
of α.

While solution times for all policies except BOX grow exponentially in the instance
size, domination-based piecewise affine adjustable policies are by orders of magnitude
faster than classical affine adjustable policies (AFF) and piecewise affine polices via
lifting (TPAP). These solution time improvements exceed a factor of 100 for piecewise
affine policies PAP and SPAP and a factor of 1000 for PAPBT. Also, solution times of
domination-based piecewise affine adjustable policies are barely influenced by values
of α. This is not the case for AFF and TLIFT, which take longer to solve for increasing
α. While this effect is not easily visible in Fig. 6 due to the logarithmic scale, the
solution time difference for AFF and TLIFT between α = 0 and α = 5 reaches up to
a factor of two on large instances.

Figure 7 shows the performances and solution time results on budgeted uncer-
tainty sets. We observe that for budgeted uncertainty sets domination-based piecewise
affine policies perform slightly worse than affine policies throughout all instances.
This observation nicely demonstrates that our theoretical and experimental results
are aligned, as the worse performance is perfectly explained by Proposition 8, which
shows that affine policies strictly dominate our piecewise affine policies. Again, we
observe that for higher values of α, PAP and PAPBT perform even worse than BOX.
However, the solution values for SPAP stay within 5% of the affine solution values
throughout all instances. We further observe that TLIFT yields the same objective
values as AFF throughout all instances. Only BG yields slightly better solutions than
AFF on some instances. Solution times behave similarly to solution times on hyper-
sphere uncertainty, confirming that piecewise affine policies are found by orders of
magnitude faster on different instances and uncertainty types. Only for BG solution
times improve significantly, suggesting that BG is highly dependent on the shape of
the uncertainty sets.

Solution time and performance results for α = 0 align with the results found
by Ben-Tal et al. [14] for the two-stage problem variant. This demonstrates that our
generalized piecewise affine policies do not only extend all theoretical performance
bounds, but also achieve comparable numerical results in a multi-stage setting. How-
ever, by breaking the symmetry by increasing α, we show that pure domination-based
piecewise adjustable policies perform poorly on highly asymmetric instances and re-
scaling (SPAP) or tightened lifting (TLIFT) constitute good techniques to overcome
this shortcoming.
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Fig. 7 Relative objective values (a) and solution times (b) for different policies on gaussian instances with
budgeted uncertainty

6.2 Demand covering instances

For the second set of test instances, we consider the robust demand covering problem
with non-consumed resources and uncertain demands. The problem has various appli-
cations, among others in the domains of appointment scheduling, production planning,
and dispatching and is especially relevant for the optimization of service levels. Our
instances consist of ml locations, mp planning periods, and me execution periods per
planning period. In each execution period t , an uncertain demand ξlt has to be covered
at each location l. To do so, the decision maker can buy a fixed number of resources R
at a unit cost of cR in the first stage and then distributes these R resources among the
locations at the beginning of each planning period. If a demand cannot be met with
the resources assigned to a location, the decision maker will either delay the demand
to the next period or redirect it to another location. In either case a fraction qdtl ∈ [0, 1]
or qrtll ′ ∈ [0, 1] of the demand is lost. Each unit of lost demand causes costs of cD .
Mathematically, the robust demand covering problem with non-consumed resources
and uncertain demands is given by the robust LP (11), where parameters and variables
are summarized in Table 3.

min cR R + cD

⎛
⎝ ∑

t∈T ,l∈L
qdt s

d
tl +

∑
t∈T ,l �=l ′∈L

qrll ′s
r
tll ′

⎞
⎠ (11a)
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Table 3 Notation for the robust demand covering problem with non-consumed resources and uncertain
demands

Sets & elements

l ∈ L Locations

p ∈ P Planning periods

t ∈ T All (mpme) execution periods

Parameters

cR Cost of buying one unit of resources

cD Cost of loosing one unit of demand

qdt ∈ [0, 1] Fraction of demand lost when delayed in period t

qrll′ ∈ [0, 1] Fraction of demand lost when redirected form location l to l ′

Uncertainties

p(t) Planning period containing execution period t

ξtl Demand at location l ∈ L in execution period t ∈ T
Decision variables

R Number of resources bought (decided in the very first stage)

rpl Number of resources assigned to location l ∈ L in planning period p ∈ P
(decided at the beginning of planning period p)

srtll ′ Demand redirected from location l to location l ′(decided in decision stage t)

sdtl Demand delayed to the next period (decided in decision stage t)

s.t. rp(t)l + sdtl − (1 − qdt−1)s
d
(t−1)l

+
∑

l ′∈L,l ′ �=l

(
srtll ′ − (1 − qrll ′)s

r
tl ′l
) ≥ ξtl ∀ξ ∈ U ,∀t ∈ T , l ∈ L

(11b)∑
l∈L

rpl ≤ R ∀p ∈ P

(11c)

R, r, sr , sd ≥ 0 (11d)

Here Objective (11a) minimizes the sum of resource costs and lost demand costs
due to delay and relocation. Constraints (11b) ensure that all demands are fulfilled,
delayed, or relocated, and Constraints (11c) upper bound the allocated resources in
each planning period by the total number of available resources R.

In most real-world applications of the demand covering problem, some of the
demand will be revealed before the actual demand occurs, e.g. due to already exist-
ing contracts, sign-ups, orders, or due to forecasting. To incorporate the increase in
knowledge over time, we assume an uncertainty vector of the form ξ = ξ c + ξ p + ξ e.
Here, ξ c is constant and known before the first stage decision, ξ p is revealed before
each planning period and ξ e accounts for the short-term uncertainties revealed before
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each execution period. Specifically, we assume that demands are given by

ξlt = dlt

(
1 + ξ

p
lt + 1

2
ξ elt

)
, (12)

where dlt is the base demand for location l in execution period t . Here the uncertainty
vector (ξ p, ξ e) is taken fromonebase uncertainty setU B of dimensionm = 2mlm pme.
Note, that short-term uncertainties have a less severe effect on demands than uncer-
tainties known in advance. The resulting demand uncertainty set

U =
{
ξ

∣∣∣∣ ξlt = dlt

(
1 + ξ

p
lt + 1

2
ξ elt

)
, (ξ p, ξ e) ∈ U B

}

is m/2 dimensional, where in our experiments U B is either a hypersphere uncertainty
set, or a budgeted uncertainty set with budget

√
m.

To construct our instances we draw ml ∈ {2, 4, 6, 8, 10} locations at uniform ran-

dom integer positions in the square
[
0, 2�√ml� + 1

]2
. In each of themp ∈ {1, 3, 5, 7}

planning periods, we consider me = 8 execution periods corresponding to the hours
in a working day. We assume that a fraction qdtl = 0.1 of the demand is lost when
deferred to a later execution period and consider a doubled loss rate (qdtl = 0.2) when
demand is deferred to another planning period. Similarly, a fraction of the demand is
lost when assigned to another location. We assume this fraction to be correlated to the
distance and given by qrll ′ := min

(
1, 0.02 · dist(l, l ′)). We draw the base demands dlt

uniformly from the normal distribution N (10, 4). Finally, we set cR = 1 and choose
cD ∈ {0.1, 0.25, 0.5}. For each combination of ml ,mp we consider 45 instances,
wherewe use each possible value for cD ∈ {0.1, 0.25, 0.5} in a third of these instances.

To analyze practical expected objectives, we also report a simulated average
objective that the respective policies achieved on 500 randomly drawn uncertainty
realizations ξ , in addition to the robust objective value. We give a detailed description
of how uniform uncertainty realizations can efficiently be sampled from the budgeted
and hypersphere uncertainty sets in “Appendix P”. We again scale the results by the
results achieved by constant policies and use logarithmic scales. For each instance
size, we only consider those policies that found solutions on at least 75% of instances
within a hard solution time limit of 2 hours.

First, we observe that BG did not solve any instance within the time limit which
can be attributed to the fact that our demand covering instances are significantly larger
than our gaussian instances.

For the remaining policies, Fig. 8 shows the performance and solution time results
on demand covering instanceswith hypersphere uncertainty. Compared to our previous
experiment (see Sect. 6.1) we no longer observe the strong objective improvements
of piecewise affine policies over affine adjustable policies. Still, our piecewise affine
formulations give similar results as affine policies, andweobserve small improvements
on instances with a larger number of planning periods, with TLIFT yielding strict
improvements for mp ≥ 3. On the simulated realizations, improvements of PAP and
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Fig. 8 Relative objective values (a) and solution times (b) for different policies on demand covering
instances with hypersphere uncertainty

SPAP over affine adjustable policies can already be seen for mp ≥ 3, which might be
of interest for a decision maker with practical interest beyond worst-case solutions.

For the solution times, we observe similar improvements to the ones observed on
the gaussian instances. Still, all domination-based piecewise affine policies can be
found by orders of magnitude faster than affine policies and TLIFT. Interestingly, PAP
is solved similarly fast as PAPBT on these instances, while still achieving up to 15%
better objective values on all instances. The largest instance that could be solved by
affine adjustable policies within two hours consisted of 320 uncertainty variables and
700 decision variables, while the largest instance solved by PAPs was more than three
times larger with 1, 120 uncertainty variables and 6, 230 decision variables.

Figure 9 shows the results on demand covering instances with budgeted uncertainty
sets. For budgeted uncertainty sets, domination-based piecewise affine policies per-
form worse than affine adjustable policies throughout all instances, which again can
be explained by Proposition 8. Notably, PAPBT even performs worse than constant
policies on most instances. In this setting, domination-based piecewise affine policies
remain better only from a solution time perspective, as they still solve by orders of
magnitude faster than affine policies. Also, TLIFT does not yield any improvements
over AFF.

While in this set of experiments piecewise affine policies do not show the same
improvements in the objective over affine adjustable policies, they still perform slightly
better with hypersphere uncertainty on larger instances. Also, they still solve by orders
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Fig. 9 Relative objective values (a) and solution times (b) for different policies on demand covering
instances with budgeted uncertainty

of magnitude faster, which makes them an attractive alternative for large-scale opti-
mization in practice.

6.3 Discussion

In the experiments presented in Sects. 6.1 and 6.2, some results, e.g. the solution time
improvements of piecewise affine policies over affine policies, are consistent through-
out all instances. However, other results strongly depend on the set of benchmark
instances used. In the following, we give an explanation for the strong solution time
improvements, discuss two of the main deviations that we observe between our results
on gaussian instances and demand covering instances, and give intuitions of why these
differences occur.

Size of robust counterparts: Throughout all experiments, we see strong solution time
improvements of piecewise affine policies over affine policies—including affine poli-
cies on lifted uncertainty TLIFT. These can be explained by their respective robust
counterparts. The robust counterpart for piecewise affine policies is given by LP (3).
For the robust counterparts of affine policies, we refer to Ben-Tal et al. [9]. Counter-
parts of piecewise affine policies have O(nm) variables compared to O(nm + lm)

variables for affine policies and both counterparts have O(lm) constraints. More crit-
ically, constraints for piecewise affine policies contain at most O(n) variables each
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and feature a block structure, which solvers use to significantly speed up the solution
process. This block structure is only connected by the nonanticipativity constraints. In
the robust counterpart of affine policies on the other hand, O(l) constraints have up to
O(nm) variables resulting in a denser constraint matrix and the lack of a block struc-
ture. Moreover, the robust counterpart for affine policies on hypersphere uncertainty
sets is no longer linear. Instead, a quadratic program has to be solved, which tends to
be computationally more challenging.

Solution times of PAPBT: In the experiments we see that PAPBT solves by a factor
of 10 to 50 faster than PAP on gaussian instances, but both find solutions similarly fast
on-demand covering instances. This can be explained by the construction of PAPBT
and the structure of the instances’ constraints. On the gaussian instances, A and x are
non-negative and D is the unit matrix. In the construction of dominating sets Û for
PAPBT most of the vertices are chosen to be scaled unit vectors. As a consequence,
most Constraints (3c) in LP (3) have a zero right-hand side, such that they trivially hold.
Consequently, these constraints can be eliminated, which reduces the total number of
constraints by a factor of O(m). On demand covering instances, however, A contains
negative entries. Thus, no constraints trivially hold and no constraints can be removed.
For a decision maker who is primarily interested in fast policies, this gives a good
criterion onwhen PAPBT can improve solution times andwhen no such improvements
can be expected.

Performance differences between gaussian and demand covering instances: We
observe that the strong performance improvements of piecewise affine policies over
affine policies on gaussian instances with hypersphere uncertainty do not transfer to
our demand covering instances. This suggests that the relative performance between
piecewise affine policies and affine policies significantly depends on the structure of
the problem at hand. An intuitive explanation for this lies in the policies’ construction.

Recall that piecewise affine policies derive solutions by finding vertex solutions
xi that can be extended to a full solution. Thereby, x0 focuses on finding a good
solution for uncertainty realizations where all uncertainties take equal values, and
each xi focuses on finding a good recourse to uncertainty ξi . Thus, good results can
be expected when there are (a) synergy effects that can be utilized by x0, and (b)
good universal recourse decisions for each uncertainty ξi that do not depend on the
realization of other uncertainty dimensions and can be exploited by xi . On the other
hand, affine policies directly find solutions on the original uncertainty set. In doing
so, they do not depend as strongly on good universal recourse decisions as piecewise
affine policies do. However, they also lack the ability to use synergy effects in the way
vertex solutions x0 do.

The gaussian instances used fulfill both of the properties that are favorable for
piecewise affine policies. By being based on a unity matrix, A has relatively large
values along the diagonal, leading to the existence of gooduniversal recourse decisions.
Additionally, the relatively small non-negative entries on the non-diagonals lead to
synergy effects for uncertainty realizations with many small values. Demand covering
instances, however, do not fulfill these properties. The question of how to redirect
demand optimally heavily depends on the demand observed at other locations. Also,
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the only synergistic effects that can be used solely emerge when multiple demands
occur at the same location in a single planning period.

On general instances in practice, we would thus not expect to see the same per-
formance improvements that could be observed on our gaussian benchmark instance.
Still, piecewise affine policies find solutions by orders of magnitude faster than affine
policies and achieve good results throughout all benchmark instanceswith hypersphere
uncertainty. Additionally, Properties (a) and (b) give intuitive criteria on when strong
objective improvements over affine policies can be expected.

7 Conclusion

In this work, we presented piecewise affine policies for multi-stage adjustable robust
optimization. We construct these policies by carefully approximating uncertainty sets
with a dominating polytope,which yields a newproblem thatwe efficiently solvewith a
linear program. Bymaking use of the problem’s structure, we then extend solutions for
the new problem with approximated uncertainty to solutions for the original problem.
We show strong approximation bounds for our policies that extend many previously
best-known bounds for two-stage ARO to its multi-stage counterpart. By doing so,
we contribute towards closing the gap between the state of the art for two-stage and
multi-stage ARO. To the best of our knowledge, the bounds we give are the first
bounds shown for the general multi-stage ARO Problem. Furthermore, our bounds
yield constant factor as well as asymptotic improvements over the state-of-the-art
bounds for the two-stage problem variant.

In two numerical experiments, we find that our policies find solutions by a factor of
10 to 1000 faster than affine adjustable policies, while mostly yielding similar or even
better results. Especially for hypersphere uncertainty sets our new policies perform
well and sometimes even outperform affine adjustable policies up to a factor of two.
We observe particularly high improvements on instances that exhibit certain syner-
gistic effects and allow for universal recourse decisions. However, on some instances
where few uncertainty dimensions have a high impact on the objective, pure piece-
wise affine policies perform particularly badly by design, sometimes even worse than
constant policies. To mitigate this shortcoming, we present an improvement heuristic
that significantly improves the solution quality by re-scaling the critical uncertainty
dimension. Furthermore, we construct new tightened piecewise affine policies via lift-
ing that integrate the two frameworks of piecewise affine policies via domination and
piecewise affine policies via lifting and combine their approximative power.

While this work extends most of the best-known approximation results for a rela-
tively general class of ARO problems from the two-stage to the multi-stage setting,
it remains an open question whether other strong two-stage ARO results can be gen-
eralized to multi-stage ARO in a similar manner. Answering this question remains
an interesting area for further research. In this context, binary and uncertain recourse
decisions remain particularly relevant challenges. Our analysis in Sect. 2.3 has shown
that the extension of our policies to encompass these recourse decision types is not
straightforward. Nevertheless, exploring the integration of our methodology into the
established approaches of piecewise constant policies and k-adaptability, which have
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proven to be effective in these cases, appears as a promising starting point for future
work. Another interesting area for future research is the extension of piecewise affine
policies and the concept of domination to adjustable data-driven and distributionally
robust optimization. More specifically, we believe that one can obtain tractable data-
driven policies by directly fitting the polyhedral uncertainty sets used to construct our
policies from data.
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Appendix A Comparison of literature approximation bounds

Table 4 summarizes existing approximation bounds for some commonly used uncer-
tainty sets in two-stage ARO. We want to point out that in addition to being less
restrictive, our bounds for multi-stage ARO presented in Table 1 outperform all these
bounds except the ones byHousni andGoyal [40], which require the significant restric-
tive assumption of A, x, c being non-negative.

Appendix B Proof of Theorem 1

Proof We split the proof in two parts. First, we handle the cases where at least ZAR(U)

or ZAR(Û) is negative and show that this already implies that both ZAR(U) and
ZAR(Û) are unbounded. Second, we assume ZAR(U), ZAR(Û) ≥ 0 are bounded and
prove that in this case, the desired performance bounds hold.

Part 1: Let Ũ ∈ {U , Û} such that ZAR(Ũ) < 0. Then, there exists a solution x̃ such
that

max
ξ∈Ũ

cᵀ x̃(ξ) < 0.

Now, assume that ZAR(U) or ZAR(Û) is bounded and let Ū ∈ {U , Û} such that
ZAR(Ū) is bounded with an optimal solution x̄. Arbitrarily fix one ξ̃ ∈ Ũ and consider
the constant vector x̃(ξ̃). Then x̄(ξ̄) + x̃(ξ̃) is a feasible solution for ZAR(Ū) as for

123

http://creativecommons.org/licenses/by/4.0/


Designing tractable piecewise affine policies for…

Table 4 Approximation bounds for two-stage ARO

No [20] [18] [15] [14] [40]

I 1 + √
m − 1

2 (1 + √
m) 4√m −

II 1 + m
k − k2+km

k2+m
min(k, m

k )
8 logm
log logm + 1

III 1 + p√m − m
p−1
p +m

m
p−1
p +m

1
p

2
p (p − 1)

p−1
p m

p−1
p2 −

IV − − −
(
a
2 +

√
1−a

4√am2+(1−a)m

)−1
−

V m 4
√
m − 4

√
m −

Policy Static Affine Affine Piecewise affine Affine

We compare bounds for uncertainty sets of the forms I) hypersphere uncertainty
{
ξ ∈ R

m+
∣∣∣‖ξ‖22 ≤ 1

}
;

II) budgeted uncertainty
{
ξ ∈ [0, 1]m ∣∣‖ξ‖1 ≤ k

}
; III) p-norm ball uncertainty

{
ξ ∈ R

m+
∣∣∣‖ξ‖p ≤ 1

}
, with

p ≥ 1; IV) ellipsoid uncertainty
{
ξ ∈ R

m+
∣∣ξᵀ�ξ ≤ 1

}
, with � := (1 − a)1 + a J where 1 is the unity

matrix and J the matrix of all ones; V) general uncertainty sets U ⊂ R
m+. Note, that some of the results

require more restrictive assumptions on A, x, c than our Problem (1). Most prominently [40] requires
A, x, c to be non-negative

all ξ̄ ∈ Ū :

A
(
x̄(ξ̄) + x̃(ξ̃)

) (a)≥ D
(
ξ̄ + ξ̃

)
+ 2d

(b)≥ Dξ̄ + d.

Here, (a) holds because x̃, x̄ are feasible solutions and (b) holds as ξ̃ , D, d are non-
negative. For the objective we then find

max
ξ̄∈Ū

cᵀ
(
x̄(ξ̄) + x̃(ξ̃)

)
≤ max

ξ̄∈Ū
cᵀ x̄(ξ̄) + max

ξ∈Ũ
cᵀ x̃(ξ) < ZAR(Ū).

This is a contradiction to x̄ being a minimal solution. Thus, ZAR(Ū) cannot be
bounded. We have thus shown that if any of ZAR(U), ZAR(Û) are negative, both
have to be unbounded.

Part 2: Assume ZAR(U), ZAR(Û) ≥ 0 are bounded. Let x̂ be an optimal solution for
ZAR(Û). Furthermore, let h : U → Û be the domination function from Definition 1.
We claim that x̃ := x̂ ◦ h is a feasible solution for ZAR(U). First, we see that by the
definition of h the solution x̃ fulfills the nonanticipativity requirements. Specifically,
we have

x̃(ξ) = x̂(h(ξ)) =
(
x̂1
(
h1(ξ1)

)
, . . . , x̂T

(
hT (ξ T )

))
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where the decisions in stage t depend only on the uncertainty revealed up to that stage.
For the constraints, we find

Ax̃(ξ) = Ax̂(h(ξ))
(a)≥ Dh(ξ) + d

(b)≥ Dξ + d.

Here, (a) follows from the feasibility of x̂ and (b) follows from the definition of h and
D being non-negative. Thus, x̃ is a well-defined feasible solution for ZAR(U) and we
have

ZAR(U) ≤ max
ξ∈U

cᵀ x̃(ξ) ≤ max
ξ̂∈Û

cᵀ x̂(ξ̂) = ZAR(Û).

For the other direction let x∗ be an optimal solution for ZAR(U). Then, for all ξ̂ ∈ Û
we have 1

β
ξ̂ ∈ U by definition of β. We define x̃(ξ̂) := βx∗

(
1
β
ξ̂
)
and find

Ax̃(ξ̂) = βAx∗
(
1

β
ξ̂

)
(a)≥ β

(
1

β
Dξ̂ + d

)
(b)≥ Dξ̂ + d

where (a) follows from the feasibility of x∗ and (b) from the non-negativity of d. Thus,
x̃ is a well-defined feasible solution for ZAR(Û) and we have

ZAR(Û) ≤ max
ξ̂∈Û

cᵀ x̃(ξ̂) ≤ β max
ξ∈U

cᵀx∗(ξ) = βZAR(U).

Having shown both inequalities this concludes the proof. ��

Appendix C Proof of Lemma 2

Proof We begin by showing ZAR(Û) ≥ ZLP (Û). Let x be an optimal solution of
ZAR(Û). Then, (xi , z) is a valid solution for ZLP (Û), where xi , z are defined by

xi := x(vi ) ∀i ∈ {0, . . . ,m},
z := max

i∈{0,...,m} c
ᵀxi .

Thefirst set of LP constraints (3b) holds by definition of z. The second set of constraints
(3c) holds as x is a solution of ZAR(Û) and vi ∈ Û , and the last set of constraints (3d)
holds by nonanticipativity of x and the definition of vi . Furthermore, we find

ZLP (Û) ≤ z = max
i∈{0,...,m} c

ᵀxi ≤ max
ξ∈Û

cᵀx(ξ) = ZAR(Û).
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For the other direction let (xi , z) be an optimal solution for ZLP (Û). Define λi (ξ)

for each ξ ∈ Û by:

λi (ξ) := (ξ − v0)i

ρi
.

For ease of notation we will in the following drop the explicit dependence on ξ and
use λi . We directly find

m∑
i=1

λi ≤ 1

for all ξ ∈ Û , as by definition of Û each ξ is a convex combination of v0, . . . , vm . Also,
note that λi only depends on the i th component of the uncertainty vector ξ . Using this

we can define a nonanticipative decision vector x(ξ) =
(
x1(ξ1), . . . , xT (ξ T )

)
by

xt (ξ t ) :=
∑

i∈I t
λi xti +

⎛
⎝1 −

∑

i∈I t
λi

⎞
⎠ xt0

where I t := {
i ∈ {1, . . . ,m}∣∣ei t �= 0

}
is the index set corresponding to the uncertain-

ties up to stage t .
By the nonanticipativity constraints (3d) we have xti = xt0 for all 1 ≤ t ≤ T and

i ∈ {1, . . . ,m} \ I t . Thus,

xt (ξ t ) =
∑

i∈I t
λi xti +

⎛
⎝1 −

∑

i∈I t
λi

⎞
⎠ xt0 =

m∑
i=1

λi xti +
(
1 −

m∑
i=1

λi

)
xt0,

which shows that x is a convex combination of x0, . . . , xm by

x(ξ) =
m∑
i=1

λi xi +
(
1 −

m∑
i=1

λi

)
x0.

Using this, we find

Ax(ξ) =
m∑
i=1

λi Axi +
(
1 −

m∑
i=1

λi

)
Ax0

(a)≥
m∑
i=1

λi Dvi +
(
1 −

m∑
i=1

λi

)
Dv0 + d

(b)= Dξ + d.

Here, (a) holds because all xi are valid solutions for (3), and (b) holds as by definition
of λi we have ξ = ∑m

i=1 λivi + (
1 −∑m

i=1 λi
)
v0.
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Now we find the missing inequality

ZAR(Û)
(a)≤ max

ξ∈Û
cᵀx(ξ) = max

ξ∈Û

m∑
i=1

λi cᵀxi +
(
1 −

m∑
i=1

λi

)
cᵀx0

(b)≤ max
ξ∈Û

max
i∈{0,...,m} c

ᵀxi = max
i∈{0,...,m} c

ᵀxi = ZLP (Û),

wherewe use for (a) that x is a valid solution for ZAR(Û). For (b),we use that x is a con-
vex combination of x0, . . . , xm with convex coefficients (1 −∑m

i=1 λi ), λ1, . . . , λm .
The convex sum is upper bounded by its largest summand cᵀxi . We can thus take the
maximum over all these cᵀxi , which equals the LP solution value ZLP (Û). ��

Appendix D Proof of Lemma 3

Proof Let S be the set of all permutations on {1, . . . ,m} and for any vector ξ let
σ(ξ) be the vector with components permuted according to σ . Let S j i ⊆ S be
the subset of all permutations mapping component j to component i . Let Û be a
dominating uncertainty set for U of the form in (2), such that the approximation factor
β is minimal. Let v0, ρ1, . . . , ρm be the parameters defining the vertices of Û . Define
μ := 1

m eᵀv0, ρ := 1
m

∑m
i=1 ρi . Then for each i ∈ {1, . . . ,m}

μe + ρei
(a)= 1

|S|
∑
σ∈S

σ(v0) + 1

m

m∑
j=1

ρ j ei
(b)=

m∑
j=1

⎛
⎝ 1

|S|
∑

σ∈S j i

σ(v0) + 1

m
ρ j ei

⎞
⎠

(c)=
m∑
j=1

⎛
⎝ 1

|S|
∑

σ∈S j i

σ(v0) + 1

m|S j i |
∑

σ∈S j i

ρ j ei

⎞
⎠

(d)= 1

|S|
m∑
j=1

∑
σ∈S j i

(
σ(v0) + ρ j ei

) (e)= 1

|S|
m∑
j=1

∑
σ∈S j i

σ
(
v0 + ρ j e j

)
,

where (a) follows from symmetry and the invariance of the average component
under permutations, (b) follows from S = ⋃m

j=1S j i for all i , (c) follows from∑
σ∈S j i

1
|S j i | = 1, (d) follows from |S j i | = 1

m |S|, and (e) follows from the linearity
of permutations. For each i ∈ {1, . . . ,m} we now conclude

∀ j ∈ {1, . . . ,m} : 1

β

(
v0 + ρ j e j

) (a)∈ U

⇒ ∀ j ∈ {1, . . . ,m} : σ

(
1

β

(
v0 + ρ j e j

)) (b)∈ U

⇒ 1

β
(μe + ρei ) = 1

|S|
m∑
j=1

∑
σ∈S j i

σ

(
1

β

(
v0 + ρ j e j

)) (c)∈ U .
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Here (a) follows from Û being a valid dominating set with approximation factor β,
(b) follows from permutation invariance of U , and (c) from convexity of U . Further-
more, 1

β
μe ∈ U as U is down-monotone. Thus the convex set induced by vertices

μe, μe + ρe1, . . . , μe+ρem is also a valid dominating set for U with approximation
factor β. ��

Appendix E Proof of Proposition 5

Proof Ourmain idea is to findμ, ρ such that (7) is always fulfilled and β is minimized.
Recall that β is given by the minimal value such that 1

β
vi ∈ U for all vi . In the

case of the hypersphere uncertainty set, this is given when ‖vi‖22 ≤ β2. As for each
i ∈ {1, . . . ,m}, vi is given by vi = v0 + ρei and v0 = μe we find:

‖v0‖22 ≤ ‖vi‖22 = (m − 1)μ2 + (μ + ρ)2 = mμ2 + 2μρ + ρ2. (E1)

This is the term for β2 that we want to minimize in the following.
Using Lemma 4 the left-hand side in (7) becomes:

1

ρ
max

j∈{1,...,m}

j∑
i=1

(γ ( j) − μ)+
(a)= 1

ρ
max

j∈{1,...,m} j(γ ( j) − μ)+

(b)= 1

ρ
max

j∈{1,...,m} j(γ ( j) − μ).

For (a) we use that all summands are the same and for (b) we assume w.l.o.g. that
max j∈{1,...,m}(γ ( j) − μ) ≥ 0, as otherwise (7) trivially holds.

Using the property ‖ξ‖22 ≤ 1 of the hypersphere uncertainty set, we find γ ( j) = 1√
j

for all j . Substituting γ ( j) in the above equation we find Property (7) to become:

max
j∈{1,...,m}

√
j − jμ ≤ ρ.

The maximum of the left hand side is taken for j = 1
4μ2 and for any optimal choice

of μ, ρ the inequality will be tight. Thus, we find ρ = 1
4μ .

Substituting ρ in Eq. (E1), we get:

β =
√
mμ2 + 1

2
+ 1

16μ2 .

This is minimized by μ = 1
2 4√m

, which gives ρ = 4√m
2 and concludes the proof. ��
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Appendix F Proof of Proposition 6

Proof Consider the following two-stage instance of Problem (1):

Z(U) = min
α,x(ξ)

max
ξ∈U

√
mα + eᵀx(ξ)

s.t. αe + x ≥ ξ ∀ξ ∈ U
α, x ≥ 0,

where U = {ξ | ‖ξ‖22 ≤ 1} ⊂ [0, 1]m is the hypersphere uncertainty set, α ∈ R is
the first stage decision variable and x ∈ R

m are the second stage decisions that may
depend on the uncertainty realization ξ .

We begin by finding a lower bound for affine policies on this problem class. By
symmetry of the problem there always exists an optimal affine adjustable solution
x(ξ) of the form

xi = aξi + b
∑
j �=i

ξ j + c,

for some a, b, c ∈ R. To see this let x∗, α be an optimal affine solution to the above
problem and define

x(ξ) := 1

|S|
∑
σ∈S

σ
(
x∗ (σ−1(ξ)

))
,

where S is the set of all permutations on m elements. Then

αe + x(ξ) = αe + 1

|S|
∑
σ∈S

σ
(
x∗ (σ−1(ξ)

))
(a)= 1

|S|
∑
σ∈S

σ
(
αe + x∗ (σ−1(ξ)

))

(b)≥ 1

|S|
∑
σ∈S

σ
(
σ−1(ξ)

)
= ξ ,

where (a) follows from the permutation invariance of αe and (b) follows from permu-
tation invariance of U and feasibility of x∗. Furthermore,

max
ξ∈U

eᵀx(ξ) = 1

|S| max
ξ∈U

eᵀ ∑
σ∈S

σ
(
x∗ (σ−1(ξ)

)) (a)= 1

|S| max
ξ∈U

∑
σ∈S

eᵀx∗ (σ−1(ξ)
)

(b)≤ 1

|S|
∑
σ∈S

max
ξ∈U

eᵀx∗ (σ−1(ξ)
) (c)= 1

|S|
∑
σ∈S

max
ξ∈U

eᵀx∗ (ξ) = max
ξ∈U

eᵀx∗ (ξ) .

Here, (a) follows from permutation invariance of e, (b) follows from the subadditiv-
ity of a maximization function, and (c) follows from permutation invariance of U .
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Non-negativity of x follows from 0 ∈ U . Thus x, α is an optimal feasible solution.
Additionally for any σ ∈ S,

x(σ (ξ)) = 1

|S|
∑
σ∈S

σ
(
x∗ (σ−1 ◦ σ(ξ)

)) = σ

(
1

|S|
∑
σ∈S

σ−1 ◦ σ
(
x∗ (σ−1 ◦ σ(ξ)

)))

(a)= σ

(
1

|S|
∑
σ∈S

σ
(
x∗ (σ−1(ξ)

))
)

= σ(x(ξ)),

where (a) follows from (σ−1 ◦ ·) being an automorphism on S. Let σi j be the
permutation switching components i and j . Then x(σi j (0)) = σi j (x(0)) implies
xi (0) = x j (0), x(σi j (e j )) = σi j (x(e j )) implies xi (ei ) = x j (e j ) and xk(ei ) = xk(e j )
for i �= k �= j , and x(σi j (ek)) = σi j (x(ek)) for i �= k �= j implies xi (ek) = x j (ek).
This guarantees the claimed structure.

Let ξ ∈ U and for some i ≤ m define the vector ξ ′ by ξ ′ := ξ − ξi ei . Then ξ ′ is
also in U and by xi (ξ

′) ≥ 0 we find that every feasible solution has to fulfill

b
∑
j �=i

ξ j + c ≥ 0 (F1)

for all ξ ∈ U . Additionally, by αe + x(ei ) ≥ ei every feasible solution also fulfills

α + a + c ≥ 1. (F2)

Using this we obtain a lower bound for the maximum over U in the objective function
as follows

max
ξ∈U

√
mα +

∑
i

⎛
⎝aξi + b

∑
j �=i

ξ j + c

⎞
⎠

(a)≥ max
ξ∈U

√
mα + a

∑
i

ξi = max
ξ∈U

√
mα + aeᵀξ

(b)= √
mα + √

ma
(c)≥ √

mα + √
m(1 − α − c) = √

m(1 − c).

Here (a) follows from Eq. (F1), (b) follows as the maximum is taken for ξ = 1√
m
e,

and (c) follows from Eq. (F2). On the other hand, using 0 ∈ U the maximum can also
be lower bounded by

√
mα +

∑
i

c = √
mα + mc ≥ mc.
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Thus we find

ZAFF (U) = min
α,a,b,c

max
ξ∈U

√
mα +

∑
i

⎛
⎝aξi + b

∑
j �=i

ξ j + c

⎞
⎠

≥ min
c

max
(√

m(1 − c),mc
) (a)= √

m − m

m + √
m

≥ √
m − 1,

where (a) holds as the maximum is taken at equality of the two terms, which is given

by c =
√
m

m+√
m
.

Having found a lower bound for affine policies, we will now give an upper bound
for optimal policies. Consider the policy given by α = 1

4√m
and x = (ξ − αe)+. By

construction this is feasible and we find

ZOPT (U) ≤ max
ξ∈U

√
mα + eᵀ(ξ − αe)+

(a)= max
0≤k≤m

4
√
m + k

(
1√
k

− 1
4
√
m

)

= max
0≤k≤m

4
√
m + √

k − k
4
√
m

(b)= 5

4
4
√
m.

Here (a) follows from Lemma 4 and (b) follows as the maximum over k is taken for
k =

√
m
4 . To finish the proof, we find the optimality ratio, which is given by

ZAFF (U)

ZOPT (U)
≥

√
m − 1

5 4
√
m/4

= 4

5

(
4
√
m − 1

4
√
m

)
.

��

Appendix G Proof of Proposition 7

Proof We proceed analogously as in the proof for Proposition 5. Again, the idea is to
find μ, ρ such that (7) is always fulfilled and β is minimized. Using the definition of
U and vi we find 1

β
vi ∈ U to be fulfilled when

β = min

(
m

k
μ + 1

k
ρ,μ + ρ

)
. (G1)

Here the first term of the maximization follows from 1
β
eᵀvi ≤ k and the second term

from 1
β
eᵀ
i vi ≤ 1. By Lemma 4 the left hand side in (7) becomes:

1

ρ
max

j∈{1,...,m} j(γ ( j) − μ).
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Using the properties ‖ξ‖1 ≤ k and ξi ≤ 1 of the budgeted uncertainty set we find
γ ( j) = k

j for all j ≥ k and γ ( j) = 1 for all j ≤ k. Inserting γ ( j) into the above, we
find Property (7) to become:

max
j∈{1,...,m} j

(
min

(
1,

k

j

)
− μ

)
≤ ρ.

As for μ ≥ 1 the vector v0 would already dominate every uncertainty realization in
U , we can assume μ ≤ 1. With this, the maximum on the left-hand side is taken for
j = k and we find the minimal possible ρ to be ρ = k − kμ.
Using this ρ together with β from Eq. (G1), we obtain:

β = min
((m

k
− 1

)
μ + 1, k − (k − 1)μ

)
.

As the left term in the minimization is linearly increasing in μ and the right term
is linearly decreasing in μ, the minimum is taken at equality. This is the case when
μ = k(k−1)

m+k(k−2) , which gives ρ = k(m−k)
m+k(k−2) . ��

Appendix H Proof of Proposition 8

To prove Proposition 8 we first introduce a more general form of piecewise affine
policies. Recall that affine policies are given by xt (ξ t ) = P tξ t + qt , with decision
variables P t and qt . By introducing additional decision variables ζ of the same dimen-
sion as the uncertainty set, we extend affine policies to fully piecewise affine policies
(FPAP)

xt (ξ t ) = P t
(
ξ t − ζ t

)
+ + qt ,

where we use the same notation for ζ , as for ξ . By extending the decision matrices P t

with zeroes and concatenating them to a single decision matrix

P =

⎛
⎜⎜⎜⎝

P1 0 0 · · · 0
P2 0 · · · 0

...

PT

⎞
⎟⎟⎟⎠ ,

weget the compact expressions x(ξ) = Pξ + q and x(ξ) = P (ξ − ζ )+ + q for affine
and fully piecewise affine policies, respectively.

By our initial assumption U ⊆ [0, 1]m , we can w.l.o.g. assume 0 ≤ ζ ≤ e. First,
consider a policy P, ζ , q with ζi < 0. Then replacing ζi by 0 and q by q ′ := q−ζi P :i ,
where P :i is the i th column of P , yields an identical policy on the uncertainty set, as
(ξi − ζi )+ = ξi − ζi for all ξ ∈ U . Similarly, if ζi > 1, we can replace it by 1 without
changing the policy, as (ξi − ζi )+ = (ξi − 1)+ = 0 for all ξ ∈ U .
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We can show that the fully piecewise affine adjustable policies defined above are
in fact a generalization of the piecewise affine policies we introduce in this work.

Lemma 16 Consider Problem (1). Let ZPAP be the optimal value found by our piece-
wise affine policy and let ZFPAP be the optimal value found by a fully piecewise affine
policy where the right hand side uncertainty is replaced by D ((ξ − ζ )+ + ζ ) + d.
Then

ZFPAP ≤ ZPAP .

Proof We prove the inequality by showing that every feasible piecewise affine policy
is a feasible fully piecewise affine policy. Let v0, . . . , vm be the chosen vertices of
the piecewise affine policy and let x0, . . . , xm be the vertex solutions received from
solving LP (3). Then the piecewise affine policy is given by Eq. (6) and we find

x(ξ) =
m∑
i=1

λi (ξ)xi +
(
1 −

m∑
i=1

λi (ξ)

)
x0

=
m∑
i=1

λi (ξ) (xi − x0) + x0

(a)=
m∑
i=1

(
(ξ − v0)+

)
i

ρi
(xi − x0) + x0

(b)=
(

1

ρ1
(x1 − x0) , . . . ,

1

ρm
(xm − x0)

)
(ξ − v0)+ + x0.

Here (a) follows from the definition of λi in Sect. 2.2 and (b) follows by replacing the
sum with a matrix–vector multiplication. By the nonanticipativity Constraint (3d) the
vector xi − x0 is zero for all uncertainty dimensions associated to later stages. Thus
setting

P :=
(

1

ρ1
(x1 − x0) , . . . ,

1

ρm
(xm − x0)

)

ζ := v0

q := x0

yields a valid fully piecewise affine policy that is identical to the initial piecewise
affine policy. Even with the modified right hand side, as demanded in the Lemma, the
constructed fully piecewise affine policy fulfills all constraints, as by construction of
the policy, and definition of the dominating function h:

Ax(ξ) ≥ Dh(ξ) + d = D ((ξ − ζ )+ + ζ ) + d.

��
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Even though fully piecewise affine policies are slightly more flexible than affine
policies in general, both are equivalent on Problem (1) under some additional assump-
tions.

Lemma 17 Consider Problem (1) with budgeted uncertainty and integer budget. Let
ZFPAP be the optimal value found by a fully piecewise affine policy with modified
right hand side uncertainty as in Lemma 16 and let Z AFF be the optimal value found
by an affine policy. Then

ZAFF = ZFPAP .

For the proof of Lemma 17 we first need the following helpful result that allows us
to construct a robust counterpart of Problem (1) with fully piecewise affine adjustable
policies in a similar manner as robust counterparts for affine policies are constructed.

Lemma 18 Let c ∈ R
m, ζ ∈ [0, 1]m and k ∈ N+. Then the following two problems

yield the same objective.

max
ξ

cᵀ (ξ − ζ )+

s.t. eᵀξ ≤ k

0 ≤ ξ ≤ e

(H1)

and

min
α,β

eᵀβ + kα

s.t. β + αe ≥ diag(e − ζ )c

α ≥ 0, β ≥ 0.

(H2)

Proof Let I k be the indices of the largest k values ci (1−ζi ) and let eI k be the indicator
vector of I k . Then for Problem (H1) we find the following set of inequalities.

max
{
cᵀ (ξ − ζ )+

∣∣eᵀξ ≤ k, 0 ≤ ξ ≤ e
}

(H3)
(a)≤ max

{
cᵀ diag (e − ζ ) ξ

∣∣eᵀξ ≤ k, 0 ≤ ξ ≤ e
}

(H4)
(b)≤ cᵀ diag (e − ζ ) eI k
(c)≤ cᵀ

(
eI k − ζ

)
+

(d)≤ max
{
cᵀ (ξ − ζ )+

∣∣eᵀξ ≤ k, 0 ≤ ξ ≤ e
}

(H5)

Here (a) follows from (ξ − ζ )+ ≤ diag (e − ζ ) ξ . Inequality (b) follows as eI k is an
optimal choice for Problem (H4). For (c), observe that diag (e − ζ ) eI k = (

eI k − ζ
)
+.

Finally, (d) follows, as eI k is a feasible choice for Problem (H5). As (H3) and (H5)
are the same problem all inequalities are in fact equalities.
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To conclude the proof note that Problem (H4) is a linear optimization problem,
where taking the dual yields Problem (H2). ��

Having this result, we now show Lemma 17.

Proof of Lemma 17 To prove this result we show that the robust counterparts of the two
policies on Problem (1) with integer budget uncertainty are equivalent. Let k ∈ N+
be the budget.

Then Problem (1) with affine policies becomes

ZAFF (U) =min
P,q

max
ξ

(
cᵀPξ

∣∣0 ≤ ξ ≤ e, eᵀξ ≤ k
)+ cᵀq

s.t. max
ξ

(
(Di − Ai P) ξ

∣∣0 ≤ ξ ≤ e, eᵀξ ≤ k
) ≤ Aiq − di ∀i ∈ {1, . . . , l},

where Ai and Di are the i th rows of A and D, respectively, and di is the i th entry of
d. Dualizing the suproblems we find this to be equivalent to

ZAFF (U) = min
P,q,α0,...,αl ,β0,...,βl

eᵀβ0 + kα0 + cᵀq

s.t. β0 + α0e ≥ (
cᵀP

)ᵀ
eᵀβ i + kαi ≤ Aiq − di ∀i ∈ {1, . . . , l}
β i + αi e ≥ (Di − Ai P)ᵀ ∀i ∈ {1, . . . , l}
αi ≥ 0, β i ≥ 0 ∀i ∈ {1, . . . , l}.

(H6)

Similarly Problem (1) with fully piecewise affine policies and modified right hand
side becomes

ZFPAP (U) = min
P,q,ζ

max
ξ

(
cᵀP(ξ − ζ )+

∣∣0 ≤ ξ ≤ e, eᵀξ ≤ k
)+ cᵀq

s.t. max
ξ

(
(Di − Ai P) (ξ − ζ )+

∣∣0 ≤ ξ ≤ e, eᵀξ ≤ k
)

≤ Aiq − Diζ − di ∀i ∈ {1, . . . , l}
0 ≤ ζ ≤ e.

Using Lemma 18 on the subproblems we find this to be equivalent to

ZFPAP (U) = min
P,q,ζ ,α0,...,αl ,β0,...,βl

eᵀβ0 + kα0 + cᵀq (H7a)

s.t. β0 + α0e ≥ (
cᵀP diag(e − ζ )

)ᵀ (H7b)

eᵀβ i + kαi ≤ Aiq − Diζ − di ∀i ∈ {1, . . . , l} (H7c)

β i + αi e ≥ ((Di − Ai P) diag(e − ζ ))ᵀ ∀i ∈ {1, . . . , l} (H7d)

αi ≥ 0, β i ≥ 0 ∀i ∈ {1, . . . , l} (H7e)

0 ≤ ζ ≤ e. (H7f)
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We now show that for each solution of Problem (H7) there is an equivalent solution
with ζ = 0. Let P, q, ζ , α0, . . . , αl ,β0, . . . ,βl be a feasible solution to Problem
(H7). We replace P by P ′ := P diag(e− ζ ), β i by β ′i := β i + diag(ζ )Dᵀ

i for i > 0
and ζ by 0 and leave all other decision variables untouched. As none of the variables
in the objective function was changed, it is sufficient to show that the new solution
is again feasible. Feasibility of Constraint (H7b) directly follows from P ′ diag(e) =
P diag(e − ζ ). For Constraint (H7c), we find

eᵀβ ′i + kαi (a)= eᵀ diag(ζ )Dᵀ
i + eᵀβ i + kαi

(b)≤ eᵀ diag(ζ )Dᵀ
i + Aiq − Diζ − di

(c)= Aiq − di ,

where (a) follows from the definition of β ′i , (b) from the feasibility of the original
solution and (c) from eᵀ diag(ζ )Dᵀ

i = Diζ . Similarly, Constraint (H7d) is fulfilled
by

β ′i + kαi e
(a)= diag(ζ )Dᵀ

i + β i + kαi e
(b)≥ diag(ζ )Dᵀ

i + ((Di − Ai P) diag(e − ζ ))ᵀ (c)= (Di − Ai P ′)ᵀ,

where (a) and (b) again follow by the definition of β ′i and feasibility of the initial
problem and (c) follows by definition of P ′. Finally, β ′i = β i +diag(ζ )Dᵀ

i ≥ β i ≥ 0
holds as ζ and D are both non-negative. Thus we can w.l.o.g. set ζ = 0 in Problem
(H7). In doing so, we transform Problem (H7) into Problem (H6). Thus the robust
counterparts of affine policies and fully piecewise affine policies with modified right
hand side are equivalent. ��

Having shown these results, Proposition 8 directly follows by combining Lem-
mas 16 and 17. Note, that Lemma 18, which is crucial for the construction of tractable
reformulations of fully piecewise affine policies, heavily depends on the linear struc-
ture of budgeted uncertainty and the existence of integer optimal solutions. Thus the
results cannot easily be extended to other settings and in general one cannot hope for
tractable reformulations of FPAPs.

Appendix I Proof of Proposition 9

Proof Analogously to the proofs of Propositions 5 and 7, we use Condition (7) and
Lemma 4 to find a valid choice ofμ and ρ. Using the property ‖e‖p ≤ 1 of the p-norm
ball uncertainty set, we find jγ ( j)p ≤ 1 for all j ∈ {1, . . . ,m} and thus

γ ( j) = j−
1
p .
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Inserting γ ( j) in Condition (7), a valid choice of ρ is given by

max
j∈{1,...,m} j

(
j−

1
p − μ

) (a)≤ μ1−p p−p(p − 1)p−1 =: ρ, (I1)

where (a) follows, as the maximum is taken at j = (pμ)−p(p − 1)p. Using the
definition of U and vi we find 1

β
vi ∈ U to be fulfilled when

β p = (m − 1)μp + (μ + ρ)p
(a)≤
(
m − 1 + 2p−1

)
μp + 2p−1ρ p

(b)=
(
m − 1 + 2p−1

)
μp + 2p−1μp−p2 p−p2(p − 1)p

2−p.

Here (a) follows from Jensen’s inequality, as x p is a convex function for x ≥ 0, p > 1,
and (b) holds by our choice of ρ in Eq. (I1). We now choose μ to minimize
the right-hand side upper bound for β and find the minimum to be realized at

μ = 2
1
p (2(m − 1) + 2p)

− 1
p2 p−1 (p − 1)

1
p +
(
1− 1

p

)2
. Using thisμ in Eq. (I1), we find

the desired ρ and we get the desired upper bound for β by taking the pth root of

β p ≤ (
2(m − 1) + 2p

)1− 1
p p−p (p − 1)

1+p
(
1− 1

p

)2

+ (
2(m − 1) + 2p

)1− 1
p pp2−p (p − 1)

1−p+(p−p2)
(
1− 1

p

)2
p−p2 (p − 1)p

2−p

= (
2(m − 1) + 2p

)1− 1
p p−p

(
(p − 1)

1+p
(
1− 1

p

)2
+ (p − 1)

1−2p+(p−p2)
(
1− 1

p

)2+p2
)

= (
2(m − 1) + 2p

)1− 1
p p−p

(
(p − 1)p−1+ 1

p + (p − 1)p−2+ 1
p

)

= (
2(m − 1) + 2p

)1− 1
p p−p (p − 1)p−2+ 1

p (1 + (p − 1))

= (
2(m − 1) + 2p

)1− 1
p p1−p (p − 1)p−2+ 1

p .

��

Appendix J Proof of Proposition 10

Proof We first show that our choice of μ, ρ yields a valid dominating set using Con-
dition (7) and Lemma 4. Using the properties ξᵀ�ξ ≤ 1 and � = 1 + a(J − 1) of
the ellipsoid uncertainty set, we find (1 − a) jγ ( j)2 + aj2γ ( j)2 ≤ 1 and thus

γ ( j) = 1√
aj2 + (1 − a) j

.
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Inserting γ ( j) in Condition (7) we have to choose ρ such that

ρ ≥ max
j∈{1,...,m} j

(
1√

aj2 + (1 − a) j
− μ

)
.

For the right-hand side term we find

j

(
1√

aj2 + (1 − a) j
− μ

)
(a)≤ j

(
1√
aj2

)
= 1√

a

and

j

(
1√

aj2 + (1 − a) j
− μ

)
≤ j

(
1√

(1 − a) j
− μ

)
(b)≤ 1

4(1 − a)μ
,

where for (a) we use μ ≥ 0, a ≤ 1 and (b) follows as the term is maximized for
j = 1

4(1−a)μ2 . Thus choosingρ = 1√
a
orρ = 1

4(1−a)μ
always yields a valid dominating

set. Using the definition of U and vi we find 1
β
vi ∈ U to be fulfilled when

β2 = ρ2 + 2(1 − a + am)ρμ + (am2 + (1 − a)m)μ2.

For μ = 0, ρ = 1√
a
this results in β = ρ = 1√

a
. Fixing ρ = 1

4(1−a)μ
yields

β2 = 1

16(1 − a)2μ2 + 1

2

(
1 + a

1 − a
m

)
+ (am2 + (1 − a)m)μ2,

which is minimized for μ = 1
2 4
√

(1−a)3m+(1−a)2am2
resulting in

β2 = 1

2

(
1 + 1

1 − a

(
am +

√
(1 − a)m + am2

))
.

Finally, we close the proof by showing the desired asymptotic approximation bounds.

The case a > m− 2
3 directly follows from β = 1√

a
≤ 1√

m− 2
3

= O(m
1
3 ) and for

a ≤ m− 2
3 we find

β =
√
1

2

(
1 + 1

1 − a

(
am +

√
(1 − a)m + am2

))

(a)≤
√√√√1

2

(
1 + 1

1 − m− 2
3

(
m

1
3 +

√
m + m

4
3

))
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(b)= O(m
1
3 ),

where for (a) we use a ≤ m− 2
3 and for (b) we use m ≥ 2. ��

Appendix K Proof of Proposition 11

We prove Proposition 11 by explicitly constructing a dominating set fulfilling the
desired properties. To find a good choice of ρ1, . . . , ρm, v0 for the construction of Û
in (2), we use the iterative approach described in Algorithm 1. Intuitively, we increase
the base vertex v0, as well as an upper bound for ρi , in each iteration. We bound
the approximation factor β, by bounding the maximal number of iterations in the
algorithm. Algorithm 1 is a refinement of Algorithm 1 in Ben-Tal et al. [14] and uses a
different updating step. This modified updating step leads to a less aggressive increase
of the base vertex v0 ultimately improving the approximation bound by a factor of 1

2 .

Algorithm 1 Generating v0 for general uncertainty sets U
1: j = 0
2: v0 = 0
3: while maxξ∈U eᵀ(ξ − v j )+ > j + 1 do

4: ξ j ∈ argmaxξ∈U eᵀ(ξ − v j )+
5: v j+1 = v j + (ξ j − v j )+
6: j = j + 1
7: end while
8: return β = 2 j + 1, v0 = v j

Lemma 19 Let β, v0 be the output of Algorithm 1. Then a solution for ZAR(Û), where
Û is constructed according to (2) with v0 and ρi = β+1

2 is a β approximation for
ZAR(U) and β ≤ 2

√
m + 1.

Proof In this proof let J := β−1
2 be the index j at termination of Algorithm 1. First,

we show that Û is a valid dominating set for U using Criterion (5). Let ξ ∈ U . Then

m∑
i=1

((ξ − v0)+)i

ρi

(a)= 1

J + 1
eᵀ(ξ − v0)+

(b)≤ 1,

where (a) follows from our choice of ρi and (b) from the termination criterion of
Algorithm 1. Next, we show 1

β
vi ∈ U for all i ∈ {1, . . . ,m} by

1

β
vi = J + 1

β
ei + 1

β

J−1∑
j=0

(ξ j − v j )+ ≤ 1

β

⎛
⎝(J + 1)ei +

J−1∑
j=0

ξ j

⎞
⎠ (a)∈ U .

Here, the containment (a) follows from down-monotinicity, convexity and ei ∈ U .
Finally, we show that Algorithm 1 terminates after at most β−1

2 = J ≤ √
m iterations,
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which implies β ≤ 2
√
m + 1. Let J ′ := J − 1 be the index of the last iteration that

fulfills the criterion of the loop. Then

J 2 =
J ′∑
j=0

J
(a)≤

J ′∑
j=0

eᵀ(ξ J ′ − v J ′
)+

(b)≤
J ′∑
j=0

eᵀ(ξ J ′ − v j )+

(c)≤
J ′∑
j=0

max
ξ∈U

eᵀ(ξ − v j )+
(d)=

J ′∑
j=0

eᵀ(ξ j − v j )+

=
m∑
i=1

J ′∑
j=0

(ξ
j
i − v

j
i )+

(e)=
m∑
i=1

v J
i

(f)=
m∑
i=1

max
j∈{0,...,J ′}

ξ
j
i

(g)≤
m∑
i=1

1 = m.

Here, inequality (a) follows from the termination criterion of Algorithm 1, (b) follows
as v j only increases through the algorithm and thus ∀ j ≤ J ′ : v J ′ ≥ v j , (c) follows
as by ξ J ′ ∈ U the maximum over U is an upper bound, (d) follows from the choice of
ξ j in Algorithm 1, (e) follows from the construction of v j , (f) follows as by induction

v
j+1
i = max(v j

i , ξ
j
i ) = max j ′≤ j ξ

j ′
i , and (g) follows by e j ∈ U ⊆ [0, 1]m . ��

Appendix L Proof of Proposition 12

Proof For each t , let mt be the dimension Ut . Then m = ∑T
t=1mt , and an uncertainty

vector ξ ∈ U can be expressed as ξ = (ξ1, . . . , ξ T ) = (ξ11 , . . . , ξ1m1
, . . . , ξ TmT

), where
ξ t ∈ Ut . For each t , let vt0 be the base vertex and let ρt

1, . . . , ρ
t
mt

be the parameters

inducing Ût via Construction (2). Let β = ∑
t∈T1 βt , and construct the dominating set

Û for U with base vertex v′
0 := (v′1

0 , . . . , v′T
0 ), where

v′t
0 :=

{
vt0 if t ∈ T1
e if t ∈ T2

and parameters

ρ′t
i :=

{
β
βt

ρt
i if t ∈ T1

0 if t ∈ T2

using Construction (2). This construction corresponds to dominating each Ut with
t ∈ T2 by the unit vector e. Here {e} is dominating Ut by Assumption 1. We dominate
the remaining Ut for t ∈ T1 with a combined polytope. Then the maximal sum of
convex factors for the vertices is given by

max
ξ∈U

∑
t∈T1

mt∑
i=1

(
(ξ − v′

0)+
)t
i

ρ′t
i

(a)= 1

β
max
ξ∈U

∑
t∈T1

βt

mt∑
i=1

(
(ξ t − vt0)+

)
i

ρt
i
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(b)= 1

β

∑
t∈T1

βt max
ξ t∈Ut

mt∑
i=1

(
(ξ t − vt0)+

)
i

ρt
i

(c)≤ 1

β

∑
t∈T1

βt
(d)= 1,

where (a) follows from the definition of v′
0 and ρ′t

i , (b) follows fromU being stagewise

independent, (c) follows from Condition (5) and Ût being a dominating set for Ut , and
(d) follows from the definition of β. Thus Û fulfills Condition (5) and is a valid
dominating set for U .

Let β ′ := maxt∈T2 β ′
t . To see that max(β, β ′) is indeed an upper bound for the

approximation factor, we find

1

max(β, β ′)
v′t
0

(a)≤ 1

β
(v′t

0 + ρ′t
i ei )

(b)= 1

β
(vt0 + β

βt
ρt
i ei )

(c)≤ 1

βt
(vt0 + ρt

i ei )
(d)∈ Ut ∀t ∈ T1

1

max(β, β ′)
v′t
0

(e)≤ 1

β ′ e
(f)≤ 1

β ′
t
e
(g)∈ Ut ∀t ∈ T2,

where (a) follows from β ≤ max(β, β ′) and ρ′t
i ≥ 0, (b) follows from the definitions

of v′t
0 and ρ′t

i , (c) follows from βt ≤ β for all t ∈ T1, (d) follows as βt is a valid

approximation factor for Ût , (e) follows from β ′ ≤ max(β, β ′) and the definition of
v′t
0 , (f) follows from β ′

t ≤ β ′ for all t ∈ T2, and (g) follows from the definition of β ′
t .

Using the stagewise structure and down monotinicity of U this implies

1

max(β, β ′)
v′
0 = 1

max(β, β ′)
(v′1

0 , . . . , v′T
0 ) ∈ U ,

1

max(β, β ′)
(v′

0 + ρ′t
i e

t
i ) = 1

max(β, β ′)
(v′1

0 , . . . , v′t
0 + ρ′t

i ei , . . . , v
′T
0 ) ∈ U .

��

Appendix M Proof of Lemma 13

Proof Let h : U → Û be the domination function of Û . Then define h′ : U → Û ′ by

h′
j (ξ) := h j (ξ) + s j (1 − h j (ξ)). (M1)

This new dominating function h′ is nonanticipative, as h is nonanticipative and the
j th component of h′ only depends on the j th component of h. To see that (M1) is also
a domination function, consider the two cases h j (ξ) ≥ 1 and h j (ξ) ≤ 1.

1. For h j (ξ) ≥ 1 the second summand on the right hand side of (M1) is neg-
ative for all s j ∈ [0, 1]. Thus h′

j (ξ) is minimal for s j = 1 and we find
h′
j (ξ) ≥ h j (ξ) + 1(1 − h j (ξ)) = 1.

2. On the other hand, for h′
j (ξ) ≤ 1 the second summand is positive and h′

j (ξ) is
minimal for s j = 0. Thus, we have h′

j (ξ) ≥ h j (ξ).
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In any case, we find h′(ξ) ≥ ξ by h′
j ≥ min(1, h j (ξ)) ≥ ξ j where we used U ⊆

[0, 1]m from Assumption 1.
Next, we show h′(ξ) ∈ Û ′. For this let h(ξ) = ∑m

i=0 λivi be the convex combina-
tion of h(ξ) ∈ Û . Then,

h′
j (ξ) = h j (ξ) + s j (1 − h j (ξ))

(a)=
m∑
i=0

(
λivi j + s j (1 − vi j )

) =
m∑
i=0

λiv
′
i j .

Note that in (a) we used
∑m

i=0 λi = 1. This shows h′(ξ) = ∑m
i=0 λiv

′
i and thus

h′(ξ) ∈ Û ′. ��

Appendix N Proof of Proposition 14

Proof As ZL I FT ≤ ZAFF was already shown by Georghiou et al. [31], we are left to
show ZL I FT ≥ ZAFF . We do so by showing that for any optimal affine solution for
ZL
AR(U L), there is an affine solution for ZAR(U) with the same objective value. First,

we define the average lifting operator L̄ : U → U L via

L̄i j (ξ) := (zij − zij−1)ξi .

Note, that Ri (L̄(ξ)) = ∑ri
j=1(z

i
j − zij−1)ξi = (ziri − zi0)ξi = ξi , which implies

R(L̄(ξ)) = ξ . Thus, L̄(ξ) fulfills the first condition of (8). Next, we verify the second
condition by

L̄i, j+1(ξ)

zij+1 − zij
= (zij+1 − zij )ξi

zij+1 − zij
= ξi = (zij − zij−1)ξi

zij − zij−1

= L̄i j (ξ)

zij − zij−1

.

Finally, the third condition holds by L̄i1 = zi1ξi ≤ zi1 which follows from ξi ≤ 1 in
Assumption 1. Thus L̄(ξ) ∈ U L . Let xL be an optimal affine solution for ZL

AR(U L).
As L̄ is a nonanticipative affine map, the concatenation xL ◦ L̄ is also nonanticipative
and affine. By L̄(U) ⊆ U L the decision x := xL ◦ L̄ is a feasible solution for ZAR(U).
Finally, we find

ZAFF ≤ max
ξ∈U

cᵀx(ξ) = max
ξ L∈L̄(U)

cᵀxL(ξ L) ≤ max
ξ L∈U L

cᵀxL(ξ L) = ZL I FT .

��

Appendix O Proof of Proposition 15

Proof To prove ZT L I FT ≤ ZL I FT and ZT L I FT ≤ ZSPAP we show that any affine
solution for ZL

AR(U L) and any picecwise affine solution with re-scaling for Z(Û)
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can be transformed to a feasible affine solution for ZL
AR(Û L) with at most the same

objective value.
For ZT L I FT ≤ ZL I FT , let xL : U L → R

n be an optimal affine solution to
ZL
AR(U L). Then xL is also a feasible affine solution for ZL

AR(Û L) by Û L ⊆ U L .
For the objective value, we find

ZT L I FT ≤ max
ξ L∈Û L

cᵀxL(ξ L)
(a)≤ max

ξ L∈U L
cᵀxL(ξ L) = ZL I FT ,

where (a) also follows from Û L ⊆ U L .
For ZT L I FT ≤ ZSPAP let x̂(ξ̂) given by vertex solutions x0, . . . , xm and scaling

factor s be a an optimal solution to ZLP (ξ̂) with re-scaling as described in Sect. 4. We
define the map hL

s : Û L → Û ′ from the tightened lifted uncertainty set Û L defined in
Eq. (10) to the re-scaled dominating uncertainty set Û ′ defined in Lemma 13 by

hLsi (ξ̂
L
) := (1 − si )(v0i + ξ̂ L

i2) + si .

This mapping is nonanticipative. Furthermore, hL
s (ξ̂

L
) dominates R(ξ̂

L
) by

R(ξ̂
L
)i = ξ̂ L

i1 + ξ̂ L
i2

(a)≤ (1 − si )(ξ̂
L
i1 + ξ̂ L

i2) + si
(b)≤ (1 − si )(v0i + ξ̂ L

i2) + si = hLsi (ξ̂
L
).

Here, (a) follows as ξ̂ L
i1 + ξ̂ L

i2 ≤ 1 by Assumption 1, and (b) follows from ξ̂ L
i1 ≤ v0i as

v0i is the break-point. Using the definition of the re-scaled vertices v′
i from Lemma 13,

we find

hL
s (ξ̂

L
) =

m∑
i=1

ξ̂ L
i2

ρi
v′
i +

(
1 −

m∑
i=1

ξ̂ L
i2

ρi

)
v′
0. (O1)

By the tightening constraint in Definition (10) this is a valid convex combination for

all ξ̂
L ∈ Û L and thus hL

s

(
Û L
)

⊆ Û ′ as claimed. Thus xL := x̂ ◦hL
s is a valid solution

for ZL
AR(Û L) and

max
ξ̂
L∈Û L

cᵀxL(ξ̂
L
) = max

ξ̂∈hLs
(
Û L

) cᵀ x̂(ξ̂) ≤ max
ξ̂∈Û

cᵀ x̂(ξ̂) = ZSPAP .

Using that x̂ is given by the vertex solutions x0, . . . , xm together with (O1) we find

xL (ξ̂
L
) = x̂ ◦ hL

s (ξ̂
L
) =

m∑
i=1

ξ̂ L
i2

ρi
xi +

(
1 −

m∑
i=1

ξ̂ L
i2

ρi

)
x0 =

m∑
i=1

(
ξ̂ L
i2

ρi
(xi − x0)

)
+ x0,
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Fig. 10 Acceptance rate of our proposed sampling method for budgeted uncertainty with budget k = √
m

which is affine in Û L and thus

ZT L I FT ≤ max
ξ̂
L∈Û L

cᵀxL(ξ̂
L
).

��

Appendix P Sampling Uniform Uncertainty Realizations

In this section, we describe how to generate uniform samples from the uncertainty sets
used in our numerical experiments efficiently.

Hypersphere uncertainty: To sample uniformly from the hypersphere uncertainty
set U = {

ξ ∈ R
m+
∣∣‖ξ‖22 ≤ 1

}
, we first draw i.i.d. samples ξ B from the m-dimensional

unit ball. It is commonly known, that this can efficiently be done by drawing m i.i.d.
normal variables that are normalized and rescaled by the radius appropriately, see, e.g.
[29]. We now map the samples from the unit ball to the positive orthant by taking the
absolute value in each component, i.e., we get ξ ∈ U by ξi := |ξ B

i |. By rotational
invariance of the unit ball, this yields a uniform sample on the hypersphere uncertainty
set.

Budgeted uncertainty: For the budgeted uncertainty set U = {
ξ ∈ [0, 1]m∣∣‖ξ‖1

≤ k} with budged k = √
m, we first draw i.i.d. samples ξ S from the m-dimensional

unit simplex conv(0, e1, . . . , em). This can be done efficiently by taking the first m of
m + 1 i.i.d. exponentially distributed variables that were normalized with respect to
the one norm, see, e.g. [29]. By scaling the samples from the unit simplex with the
budget k, and rejecting all samples that do not fulfill ξ := kξ S ∈ [0, 1]m , we get a
uniform sample on the budgeted uncertainty set. In Fig. 10, we show the acceptance
rate of the samples, which shows that the proposed rejection method is efficient for
our application.
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